LM4947TL/NOPB [TI]

具有 87mW 耳机放大器和 3D 增强功能的 2.2W 单声道、模拟输入 D 类放大器 | YZR | 25 | -40 to 85;
LM4947TL/NOPB
型号: LM4947TL/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 87mW 耳机放大器和 3D 增强功能的 2.2W 单声道、模拟输入 D 类放大器 | YZR | 25 | -40 to 85

放大器 商用集成电路
文件: 总36页 (文件大小:1446K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM4947, LM4947TLEVAL  
www.ti.com  
SNAS349D JUNE 2006REVISED MAY 2013  
LM4947  
Mono Class D and Stereo Audio Sub-System  
with OCL Headphone Amplifier and TI 3D  
Check for Samples: LM4947, LM4947TLEVAL  
1
FEATURES  
DESCRIPTION  
The LM4947 is an audio subsystem capable of  
I2C Control Interface  
2
efficiently delivering 500mW (Class D operation) of  
continuous average power into a mono 8bridged-  
tied load (BTL) with 1% THD+N, 37mW (Class AB  
operation) power channel of continuous average  
power into stereo 32single-ended (SE) loads with  
1% THD+N, or an output capacitor-less (OCL)  
configuration with identical specification as the SE  
configuration, from a 3.3V power supply.  
I2C Programmable Texas Instruments 3D  
Audio  
I2C Controlled 32 Step Digital Volume Control  
(-59.5dB to +18dB)  
Three Independent Volume Channels (Left,  
Right, Mono)  
Eight Distinct Output Modes  
Small, 25–Bump DSBGA Packaging  
“Click and Pop” Suppression Circuitry  
Thermal Shutdown Protection  
Low Shutdown Current (0.1μA, typ)  
RF Suppression  
The LM4947 has six input channels: one pair for a  
two-channel stereo signal, the second pair for a  
secondary two-channel stereo input, and the third pair  
for  
Additionally, the two sets of stereo inputs may be  
configured as single stereo differential input  
a
differential single-channel mono input.  
a
(differential left and differential right). The LM4947  
features a 32-step digital volume control and eight  
distinct output modes. The digital volume control, 3D  
enhancement, and output modes are programmed  
through a two-wire I2C compatible interface that  
allows flexibility in routing and mixing audio channels.  
Differential Mono and Stereo Inputs  
Stereo Input Mux  
KEY SPECIFICATIONS  
THD+N at 1kHz, 500mW into 8BTL (3.3V):  
1.0% (typ)  
The RF suppression circuitry in the LM4947 makes it  
well-suited for GSM mobile phones and other  
portable applications in which strong RF signals  
generated by an antenna (and long output traces)  
may couple audibly into the amplifier.  
THD+N at 1kHz, 37mW into 32SE (3.3V):  
1.0% (typ)  
Single Supply Operation (VDD): 2.7 to 5.5 V  
I2C Single Supply Operation: 2.2 to 5.5 V  
The LM4947 is designed for cellular phones, PDAs,  
and other portable handheld applications. It delivers  
high quality output power from a surface-mount  
package and requires only eight external components  
in the OCL mode (two additional components in SE  
mode).  
APPLICATIONS  
Mobile Phones  
PDAs  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2006–2013, Texas Instruments Incorporated  
LM4947, LM4947TLEVAL  
SNAS349D JUNE 2006REVISED MAY 2013  
www.ti.com  
TYPICAL APPLICATION  
V
DD  
1 mF  
0.1 mF ceramic  
optional  
capacitors  
C
C
S2  
Loud  
S1  
Speaker  
1 mF  
MIN+  
+
LS+  
LS-  
Volume Control  
-59.50 dB to +18 dB  
+6 dB  
8W  
1 mF  
MIN-  
-
0.22 mF  
Mixer  
and  
R
HP  
+
-
LIN1 or L  
32W  
Volume Control  
-59.50 dB to +18 dB  
Output  
Mode  
Select  
0.22 mF  
0.22 mF  
0.22 mF  
VOC  
LIN2 or L  
National  
3D  
MUX  
+
RIN1 or R  
L
HP  
32W  
Volume Control  
-59.50 dB to +18 dB  
-
RIN2 or R  
2
C
B
I CVDD  
Click/Pop  
Suppression  
2
SDA  
I C  
Interface  
C
Bypass  
SCL  
2.2 mF  
ADDR  
C
C
3DR  
3DL  
Figure 1. Typical Audio Amplifier Application Circuit-Output Capacitor-less  
V
DD  
1 mF  
0.1 mF ceramic  
optional  
capacitors  
Loud  
C
S1  
C
S2  
Speaker  
1 mF  
MIN+  
+
-
LS+  
LS-  
Volume Control  
-59.50 dB to +18 dB  
+6dB  
8W  
1 mF  
MIN-  
Mixer  
and  
0.22 mF  
C
O
R
HP  
+
LIN1 or L  
32W  
Volume Control  
-59.50 dB to +18 dB  
Output  
Mode  
Select  
100 mF  
0.22 mF  
0.22 mF  
0.22 mF  
-
LIN2 or L  
National  
3D  
VOC  
MUX  
+
C
RIN1 or R  
RIN2 or R  
O
L
HP  
Volume Control  
32W  
-59.50 dB to +18 dB  
-
100 mF  
2
C
B
I CVDD  
SDA  
2
Click/Pop  
Suppression  
I C  
Interface  
C
Bypass  
SCL  
2.2 mF  
ADDR  
C
C
3DR  
3DL  
Figure 2. Typical Audio Amplifier Application Circuit-Single Ended  
2
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4947 LM4947TLEVAL  
 
 
LM4947, LM4947TLEVAL  
www.ti.com  
SNAS349D JUNE 2006REVISED MAY 2013  
CONNECTION DIAGRAM  
Top View  
A
B
C
D
E
5
4
RHP3D2  
LHP3D2  
LHP3D1  
MIN-  
VOC  
CBYPASS  
SCL  
LHP  
RHP  
AVDD  
I2CVDD  
LSVDD  
RHP3D1  
MIN+  
GND  
LS+  
3
2
GND  
LIN1  
LIN2  
SDA  
RIN1  
RIN2  
ADDR  
1
AVDD  
LS-  
Figure 3. 25-Bump DSBGA Package  
See Package Number YZR0025BBA  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
SNAS349D JUNE 2006REVISED MAY 2013  
www.ti.com  
PIN DESCRIPTIONS  
Bump  
A1  
A2  
A3  
A4  
A5  
B1  
B2  
B3  
B4  
B5  
C1  
C2  
C3  
C4  
C5  
D1  
D2  
D3  
D4  
D5  
E1  
E2  
E3  
E4  
E5  
Name  
Description  
RIN2  
LIN1  
Right Input Channel 2 or Right Differential Input –  
Left Input Channel 1 or Left Differential Input +  
Mono Channel Non-inverting Input  
Right Headphone 3D Input 1  
Right Headphone 3D Input 2  
Right Input Channel 1 or Right Differential Input +  
Left Input Channel 2 or Left Differential Input–  
Mono Channel Inverting Input  
Left Headphone 3D Input 2  
Left Headphone 3D Input 1  
Address Identification  
MIN+  
RHP3D1  
RHP3D2  
RIN1  
LIN2  
MIN-  
LHP3D1  
LHP3D2  
ADDR  
SDA  
Serial Data Input  
SCL  
Serial Clock Input  
CBYPASS  
VOC  
Half-Supply Bypass Capacitor  
Headphone return bias output  
Analog Power Supply  
AVDD  
LSVDD  
I2CVDD  
AVDD  
RHP  
Loudspeaker Power Supply  
I2C Interface Power Supply  
Analog Power Supply  
Right Headphone Output  
LS-  
Loudspeaker Output Negative  
Ground  
GND  
LS+  
Loudspeaker Output Positive  
Ground  
GND  
LHP  
Left Headphone Output  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
4
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
www.ti.com  
SNAS349D JUNE 2006REVISED MAY 2013  
ABSOLUTE MAXIMUM RATINGS(1)(2)  
Supply Voltage  
6.0V  
65°C to +150°C  
0.3 to VDD +0.3  
2.0kV  
Storage Temperature  
Input Voltage  
ESD Susceptibility(3)  
ESD Machine model(4)  
Junction Temperature (TJ)  
Solder Information  
200V  
150°C  
Vapor Phase (60 sec.)  
Infrared (15 sec.)  
215°C  
220°C  
Thermal Resistance  
θJA (typ) - YZR0025BBA  
65°C/W  
(1) Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured  
specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed.  
Some performance characteristics may degrade when the device is not operated under the listed test conditions.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(3) Human body model, 100pF discharged through a 1.5kΩ resistor.  
(4) Machine Model ESD test is covered by specification EIAJ IC-121-1981. A 200pF cap is charged to the specified voltage, then  
discharged directly into the IC with no external series resistor (resistance of discharge path must be under 50).  
OPERATING RATINGS  
Temperature Range  
Supply Voltage (VDD  
Supply Voltage (I2C)  
40°C to 85°C  
2.7V VDD 5.5V  
2.2V VDD 5.5V  
2.7V VDD 5.5V  
)
Supply Voltage (Loudspeaker VDD  
)
ELECTRICAL CHARACTERISTICS 3.3V(1)(2)  
The following specifications apply for VDD = 3.3V, TA = 25°C, and all gains are set for 0dB unless otherwise specified.  
Symbol  
Parameter  
Conditions  
LM4947  
Units  
(Limits)  
Typical(3)  
Limits(4)  
Output Modes 2, 4, 6  
VIN = 0V; No load,  
OCL = 0 (Table 2)  
4.5  
6.5  
6.5  
mA (max)  
mA (max)  
IDDQ  
Quiescent Supply Current  
Output Modes 1, 3, 5, 7  
VIN = 0V; No load, BTL,  
OCL = 0 (Table 2)  
8
ISD  
Shutdown Current  
Output Mode 0  
0.1  
2
1
µA (max)  
mV (max)  
mV (max)  
VIN = 0V, Mode 7, Mono  
VIN = 0V, Mode 7, Headphones  
15  
15  
VOS  
Output Offset Voltage  
2
MONO OUT; RL = 8Ω  
THD+N = 1%; f = 1kHz, BTL, Mode 1  
500  
37  
400  
33  
mW (min)  
mW (min)  
PO  
Output Power  
ROUT and LOUT; RL = 32Ω  
THD+N = 1%; f = 1kHz, SE, Mode 4  
MONOOUT  
f = 1kHz, POUT = 250mW;  
RL = 8, BTL, Mode 1  
0.03  
0.02  
%
%
THD+N Total Harmonic Distortion Plus Noise  
ROUT and LOUT  
f = 1kHz, POUT = 12mW;  
RL = 32, SE, Mode 4  
(1) Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured  
specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed.  
Some performance characteristics may degrade when the device is not operated under the listed test conditions.  
(2) All voltages are measured with respect to the ground pin, unless otherwise specified.  
(3) Typical specifications are specified at +25°C and represent the most likely parametric norm.  
(4) Tested limits are specified to AOQL (Average Outgoing Quality Level).  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
SNAS349D JUNE 2006REVISED MAY 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS 3.3V(1)(2) (continued)  
The following specifications apply for VDD = 3.3V, TA = 25°C, and all gains are set for 0dB unless otherwise specified.  
Symbol  
Parameter  
Conditions  
LM4947  
Units  
(Limits)  
Typical(3)  
Limits(4)  
A-weighted, 0dB  
inputs terminated, output referred  
Speaker; Mode 1  
39  
39  
42  
38  
15  
15  
17  
12  
15  
17  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
Speaker; Mode 3  
Speaker; Mode 5  
Speaker; Mode 7  
NOUT  
Output Noise  
Headphone; SE, Mode 2  
Headphone; SE, Mode 4  
Headphone; SE, Mode 6  
Headphone; OCL, Mode 2  
Headphone; OCL, Mode 4  
Headphone; OCL, Mode 6  
VRIPPLE = 200mVPP; f = 217Hz,  
RL = 8, CB = 2.2µF, BTL  
All audio inputs terminated to GND;  
output referred  
Power Supply Rejection Ratio  
Loudspeaker out  
BTL, Output Mode 1  
BTL, Output Mode 3  
BTL, Output Mode 5  
BTL, Output Mode 7  
79  
78  
79  
80  
dB  
dB  
dB  
dB  
VRIPPLE = 200mVPP; f = 217Hz,  
RL = 32, CB = 2.2µF, BTL  
All audio inputs terminated to GND;  
output referred  
PSRR  
SE, Output Mode 2  
SE, Output Mode 4  
SE, Output Mode 6  
OCL, Output Mode 2  
OCL, Output Mode 4  
OCL, Output Mode 6  
Output Mode 1, 3, 5  
78  
71  
71  
83  
74  
74  
86  
dB  
dB  
dB  
dB  
dB  
dB  
%
Power Supply Rejection Ratio  
ROUT and LOUT  
η
Class D Efficiency  
f = 217Hz, VCM = 1Vpp,  
Mode 1, BTL, RL = 8Ω  
CMRR Common-Mode-Rejection Ratio  
–49  
–58  
–73  
dB  
dB  
dB  
Headphone, PO = 12mW,  
f = 1kHz, OCL, Mode 4, RL = 32Ω  
XTALK Crosstalk  
Headphone, PO = 12mW,  
f = 1kHz, SE, Mode 4, RL = 32Ω  
CB = 2.2µF, OCL, RL = 32Ω  
CB = 2.2µF, SE, RL = 32Ω  
90  
ms  
ms  
dB  
TWU  
Wake-Up Time from Shutdown  
Volume Control Step Size Error  
115  
±0.2  
–60.25  
–58.75  
dB (min)  
dB (max)  
Input referred maximum attenuation  
-59.5  
Digital Volume Range  
Mute Attenuation  
17.25  
18.75  
dB (min)  
dB (max)  
Input referred maximum gain  
Output Mode 1, 3, 5  
+18  
87  
dB (min)  
8
14  
k(min)  
k(max)  
Maximum gain setting  
12  
MONO_IN Input Impedance  
RIN and LIN Input Impedance  
75  
125  
k(min)  
k(max)  
Maximum attenuation setting  
100  
6
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
www.ti.com  
SNAS349D JUNE 2006REVISED MAY 2013  
ELECTRICAL CHARACTERISTICS 5V(1)(2)  
The following specifications apply for VDD = 5V, TA = 25°C and all gains are set for 0dB unless otherwise specified.  
Symbol  
Parameter  
Conditions  
LM4947  
Units  
(Limits)  
Typical(3)  
Limits(4)  
Output Modes 2, 4, 6  
VIN = 0V; No load,  
OCL = 0 (Table 2)  
5.4  
7.6  
7.5  
mA  
IDDQ  
Quiescent Supply Current  
Output Modes 1, 3, 5, 7  
VIN = 0V; No load, BTL,  
OCL = 0 (Table 2)  
12  
mA  
ISD  
Shutdown Current  
Output Mode 0  
0.1  
2
1
µA (max)  
VIN = 0V, Mode 7, Mono  
15  
mV  
(max)  
VOS  
Output Offset Voltage  
VIN = 0V, Mode 7, Headphones  
2
15  
mV  
(max)  
MONOOUT; RL = 8Ω  
THD+N = 1%; f = 1kHz, BTL, Mode 1  
1.19  
87  
W
PO  
Output Power  
ROUT and LOUT; RL = 32Ω  
THD+N = 1%; f = 1kHz, SE, Mode 4  
mW  
MONOOUT  
f = 1kHz, POUT = 500mW;  
RL = 8, BTL, Mode 1  
0.04  
0.01  
%
%
THD+N Total Harmonic Distortion + Noise  
ROUT and LOUT  
f = 1kHz, POUT = 30mW;  
RL = 32, SE, Mode 4  
A-weighted, 0dB  
inputs terminated, output referred  
Speaker; Mode 1  
38  
38  
39  
36  
21  
21  
24  
16  
16  
19  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
μV  
Speaker; Mode 3  
Speaker; Mode 5  
Speaker; Mode 7  
NOUT  
Output Noise  
Headphone; SE, Mode 2  
Headphone; SE, Mode 4  
Headphone; SE, Mode 6  
Headphone; OCL, Mode 2  
Headphone; OCL, Mode 4  
Headphone; OCL, Mode 6  
(1) Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured  
specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed.  
Some performance characteristics may degrade when the device is not operated under the listed test conditions.  
(2) All voltages are measured with respect to the ground pin, unless otherwise specified.  
(3) Typical specifications are specified at +25°C and represent the most likely parametric norm.  
(4) Tested limits are specified to AOQL (Average Outgoing Quality Level).  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
SNAS349D JUNE 2006REVISED MAY 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS 5V(1)(2) (continued)  
The following specifications apply for VDD = 5V, TA = 25°C and all gains are set for 0dB unless otherwise specified.  
Symbol  
Parameter  
Conditions  
LM4947  
Typical(3) Limits(4)  
Units  
(Limits)  
VRIPPLE = 200mVPP; f = 217Hz,  
RL = 8, CB = 2.2µF, BTL  
All audio inputs terminated to GND;  
output referred  
Power Supply Rejection Ratio  
Loudspeaker out  
BTL, Output Mode 1  
BTL, Output Mode 3  
BTL, Output Mode 5  
BTL, Output Mode 7  
70  
61  
64  
61  
dB  
dB  
dB  
dB  
VRIPPLE = 200mVPP; f = 217Hz,  
RL = 32, CB = 2.2µF, BTL  
All audio inputs terminated to GND;  
output referred  
PSRR  
SE, Output Mode 2  
SE, Output Mode 4  
SE, Output Mode 6  
OCL, Output Mode 2  
OCL, Output Mode 4  
OCL, Output Mode 6  
Output Mode 1, 3, 5  
72  
70  
65  
76  
72  
70  
86  
dB  
dB  
dB  
dB  
dB  
dB  
%
Power Supply Rejection Ratio  
ROUT and LOUT  
η
Class D Efficiency  
f = 1kHz, VCM = 1Vpp, 0dB gain,  
Mode 1, BTL, RL = 8Ω  
CMRR Common-Mode Rejection Ratio  
–49  
–55  
–72  
dB  
dB  
dB  
Headphone, PO = 30mW, f = 1kHz,  
OCL, Mode 4  
XTALK Crosstalk  
Headphone, PO = 30mW, f = 1kHz,  
SE, Mode 4  
CB = 2.2μF, OCL, RL = 32Ω  
CB = 2.2μF, SE, RL = 32Ω  
116  
150  
±0.2  
-59.5  
+18  
90  
ms  
ms  
TWU  
Wake-Up Time from Shutdown  
Volume Control Step Size Error  
Digital Volume Range  
dB  
Input referred maximum attenuation  
Input referred maximum gain  
Output Mode 1, 3, 5  
dB  
dB  
Mute Attenuation  
dB (min)  
k(min)  
k(max)  
Maximum gain setting  
11  
MONO_IN Input Impedance  
RIN and LIN Input Impedance  
k(min)  
k(max)  
Maximum attenuation setting  
100  
8
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
www.ti.com  
SNAS349D JUNE 2006REVISED MAY 2013  
I2C(1)(2)  
The following specifications apply for VDD = 5V and 3.3V, TA = 25°C unless otherwise specified.  
Symbol  
Parameter  
Conditions  
LM4947  
Typical(3) Limits(4)  
Units  
(Limits)  
t1  
Clock Period  
2.5  
100  
100  
100  
100  
µs (max)  
ns (min)  
ns (min)  
ns (min)  
ns (min)  
t2  
t3  
t4  
t5  
Clock Setup Time  
Data Hold Time  
Start Condition Time  
Stop Condition Time  
0.7xI2C  
VDD  
0.3xI2C  
VDD  
VIH  
VIL  
SPI Input Voltage High  
SPI Input Voltage Low  
V (min)  
V (max)  
(1) Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured  
specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed.  
Some performance characteristics may degrade when the device is not operated under the listed test conditions.  
(2) All voltages are measured with respect to the ground pin, unless otherwise specified.  
(3) Typical specifications are specified at +25°C and represent the most likely parametric norm.  
(4) Tested limits are specified to AOQL (Average Outgoing Quality Level).  
I2C Protocol Information  
The I2C address for the LM4947 is determined using the ID_ENB pin. The LM4947's two possible I2C chip  
addresses are of the form 111110X10 (binary), where X1 = 0, if ID_ADDR is logic LOW; and X1 = 1, if ID_ENB is  
logic HIGH. If the I2C interface is used to address a number of chips in a system, the LM4947's chip address can  
be changed to avoid any possible address conflicts.  
Figure 4. I2C Bus Format  
Figure 5. I2C Timing Diagram  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM4947 LM4947TLEVAL  
 
LM4947, LM4947TLEVAL  
SNAS349D JUNE 2006REVISED MAY 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS  
THD+N vs Output Power  
THD+N vs Output Power  
VDD = 3.3V, RL = 8, f = 1kHz  
Mode 3, MONO  
VDD = 3.3V, RL = 8, f = 1kHz  
Mode 1, MONO  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
1m 2m 5m10m 20m 50m 100m 200m 500m1  
1m 2m 5m10m 20m 50m 100m 200m 500m1  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 6.  
Figure 7.  
THD+N vs Output Power  
VDD = 3.3V, RL = 8, f = 1kHz  
Mode 5, MONO  
THD+N vs Output Power  
VDD = 3.3V, RL = 32, f = 1kHz, Diff In  
Mode 2, OCL  
10  
10  
5
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
1m 2m  
5m 10m 20m  
50m 100m  
1m 2m 5m10m 20m 50m 100m 200m 500m1  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 8.  
Figure 9.  
THD+N vs Output Power  
THD+N vs Output Power  
VDD = 3.3V, RL = 32, f = 1kHz, Diff In  
VDD = 3.3V, RL = 32, f = 1kHz, Diff In  
Mode 2, SE  
Mode 4, OCL  
10  
10  
5
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
1m 2m  
5m 10m 20m  
50m 100m  
1m 2m  
5m 10m 20m  
50m 100m  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 10.  
Figure 11.  
10  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4947 LM4947TLEVAL  
 
LM4947, LM4947TLEVAL  
www.ti.com  
SNAS349D JUNE 2006REVISED MAY 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
THD+N vs Output Power  
VDD = 3.3V, RL = 32, f = 1kHz, Diff In  
Mode 4, SE  
THD+N vs Output Power  
VDD = 3.3V, RL = 32, f = 1kHz, Diff In  
Mode 6, OCL  
10  
10  
5
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
1m 2m  
5m 10m 20m  
50m 100m  
1m 2m  
5m 10m 20m  
50m 100m  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 12.  
Figure 13.  
THD+N vs Output Power  
THD+N vs Output Power  
VDD = 5V, RL = 8, f = 1kHz  
Mode 1, MONO  
VDD = 3.3V, RL = 32, f = 1kHz, Diff In  
Mode 6, SE  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
2m 5m10m 20m 50m100m 200m 500m 1  
2
10m  
20m 30m  
50m 70m 100m  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 14.  
Figure 15.  
THD+N vs Output Power  
VDD = 5V, RL = 8, f = 1kHz  
Mode 3, MONO  
THD+N vs Output Power  
VDD = 5V, RL = 8, f = 1kHz  
Mode 5, MONO  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
1m 2m 5m10m20m 50m100m 200m 500m1  
2
1m 2m 5m10m20m 50m100m 200m 500m1  
2
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 16.  
Figure 17.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
SNAS349D JUNE 2006REVISED MAY 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
THD+N vs Output Power  
VDD = 5V, RL = 32, f = 1kHz, Diff In  
Mode 2, OCL  
THD+N vs Output Power  
VDD = 5V, RL = 32, f = 1kHz, Diff In  
Mode 2, SE  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
1m 2m  
5m 10m 20m  
50m 100m 200m  
1m 2m  
5m 10m 20m  
50m 100m 200m  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 18.  
Figure 19.  
THD+N vs Output Power  
VDD = 5V, RL = 32, f = 1kHz, Diff In  
Mode 4, OCL  
THD+N vs Output Power  
VDD = 5V, RL = 32, f = 1kHz, Diff In  
Mode 4, SE  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
1m 2m  
5m 10m 20m  
50m 100m 200m  
1m 2m  
5m 10m 20m  
50m 100m 200m  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 20.  
Figure 21.  
THD+N vs Output Power  
VDD = 5V, RL = 32, f = 1kHz, Diff In  
Mode 6, OCL  
THD+N vs Output Power  
VDD = 5V, RL = 32, f = 1kHz, Diff In  
Mode 6, SE  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
1m 2m  
5m 10m 20m  
50m 100m 200m  
1m 2m  
5m 10m 20m  
50m 100m 200m  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 22.  
Figure 23.  
12  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
www.ti.com  
SNAS349D JUNE 2006REVISED MAY 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
THD+N vs Frequency  
VDD = 3.3V, RL = 8, PO = 250mW  
Diff In, Mode 1  
THD+N vs Frequency  
VDD = 3.3V, RL = 8, PO = 250mW  
Diff In, Mode 5  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 24.  
Figure 25.  
THD+N vs Frequency  
THD+N vs Frequency  
VDD = 3.3V, RL = 8, PO = 250mW  
VDD = 3.3V, RL = 32, PO = 12mW  
Diff In, Mode 3  
Mode 2, OCL  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 26.  
Figure 27.  
THD+N vs Frequency  
THD+N vs Frequency  
VDD = 3.3V, RL = 32, PO = 12mW  
VDD = 3.3V, RL = 32, PO = 12mW  
Mode 2, SE  
Mode 4,7, OCL  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 28.  
Figure 29.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
SNAS349D JUNE 2006REVISED MAY 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
THD+N vs Frequency  
VDD = 3.3V, RL = 32, PO = 12mW  
Mode 4,7, SE  
THD+N vs Frequency  
VDD = 3.3V, RL = 32, PO = 12mW  
Mode 6, OCL  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 30.  
Figure 31.  
THD+N vs Frequency  
THD+N vs Frequency  
VDD = 3.3V, RL = 32, PO = 12mW  
VDD = 5V, RL = 8, PO = 500mW  
Mode 6, SE  
Diff In, Mode 1  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 32.  
Figure 33.  
THD+N vs Frequency  
THD+N vs Frequency  
VDD = 5V, RL = 8, PO = 500mW  
Diff In, Mode 5  
VDD = 5V, RL = 8, PO = 500mW  
Diff In, Mode 3  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 34.  
Figure 35.  
14  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
www.ti.com  
SNAS349D JUNE 2006REVISED MAY 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
THD+N vs Frequency  
VDD = 5V, RL = 32, PO = 30mW  
Diff In, Mode 2, OCL  
THD+N vs Frequency  
VDD = 5V, RL = 32, PO = 30mW  
Diff In, Mode 2, SE  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 36.  
Figure 37.  
THD+N vs Frequency  
VDD = 5V, RL = 32, PO = 30mW  
Diff In, Mode 4,7, OCL  
THD+N vs Frequency  
VDD = 5V, RL = 32, PO = 30mW  
Diff In, Mode 4,7, SE  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 38.  
Figure 39.  
THD+N vs Frequency  
VDD = 5V, RL = 32, PO = 30mW  
Diff In, Mode 6, OCL  
THD+N vs Frequency  
VDD = 5V, RL = 32, PO = 30mW  
Diff In, Mode 6, SE  
10  
5
10  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 40.  
Figure 41.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
SNAS349D JUNE 2006REVISED MAY 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
PSRR vs Frequency  
VDD = 3.3V, AV = 0dB  
Mode 1, MONO  
PSRR vs Frequency  
VDD = 3.3V, AV = 0dB  
Mode 2, OCL  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-100  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 42.  
Figure 43.  
PSRR vs Frequency  
VDD = 3.3V, AV = 0dB  
Mode 2, SE  
PSRR vs Frequency  
VDD = 3.3V, AV = 0dB  
Mode 3, MONO  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-100  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 44.  
Figure 45.  
PSRR vs Frequency  
VDD = 3.3V, AV = 0dB  
Mode 4, OCL  
PSRR vs Frequency  
VDD = 3.3V, AV = 0dB  
Mode 4, SE  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-100  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 46.  
Figure 47.  
16  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
www.ti.com  
SNAS349D JUNE 2006REVISED MAY 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
PSRR vs Frequency  
VDD = 3.3V, AV = 0dB  
Mode 5, MONO  
PSRR vs Frequency  
VDD = 3.3V, AV = 0dB  
Mode 6, OCL  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-100  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 48.  
Figure 49.  
PSRR vs Frequency  
VDD = 3.3V, AV = 0dB  
Mode 6, SE  
PSRR vs Frequency  
VDD = 3.3V, AV = 0dB  
Mode 7, MONO  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-100  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 50.  
Figure 51.  
PSRR vs Frequency  
VDD = 5V, AV = 0dB  
Mode 1, MONO  
PSRR vs Frequency  
VDD = 5V, AV = 0dB  
Mode 2, OCL  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-100  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 52.  
Figure 53.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
SNAS349D JUNE 2006REVISED MAY 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
PSRR vs Frequency  
VDD = 5V, AV = 0dB  
Mode 2, SE  
PSRR vs Frequency  
VDD = 5V, AV = 0dB  
Mode 3, MONO  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-100  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 54.  
Figure 55.  
PSRR vs Frequency  
VDD = 5V, AV = 0dB  
Mode 4, OCL  
PSRR vs Frequency  
VDD = 5V, AV = 0dB  
Mode 4, SE  
+0  
+0  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-20  
-30  
-40  
-50  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-100  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 56.  
Figure 57.  
PSRR vs Frequency  
VDD = 5V, AV = 0dB  
Mode 5, MONO  
PSRR vs Frequency  
VDD = 5V, AV = 0dB  
Mode 6, OCL  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-100  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 58.  
Figure 59.  
18  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
www.ti.com  
SNAS349D JUNE 2006REVISED MAY 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
PSRR vs Frequency  
VDD = 5V, AV = 0dB  
Mode 6, SE  
PSRR vs Frequency  
VDD = 5V, AV = 0dB  
Mode 7, MONO  
+0  
-10  
-20  
-30  
-40  
-50  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-100  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 60.  
Figure 61.  
Power Dissipation vs Output Power  
VDD = 3.3V, RL = 32, f = 1kHz  
Mode 7, OCL  
Power Dissipation vs Output Power  
VDD = 3.3V, RL = 32, f = 1kHz  
Mode 7, SE  
250  
200  
150  
100  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
0
5
10 15 20 25 30 35 40 45 50  
0
5
10 15 20 25 30 35 40 45 50  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
Figure 62.  
Figure 63.  
Power Dissipation vs Output Power  
VDD = 3.3V, RL = 8, f = 1kHz  
Mode 1, 3, 5, MONO  
Power Dissipation vs Output Power  
VDD = 3.3V, RL = 32, f = 1kHz  
Mode 2, 4, 6, OCL  
120  
250  
100  
80  
60  
40  
20  
0
200  
150  
100  
50  
0
0
100 200 300 400 500 600 700  
0
10  
20  
30  
40  
50  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
Figure 64.  
Figure 65.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
SNAS349D JUNE 2006REVISED MAY 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Power Dissipation vs Output Power  
VDD = 3.3V, RL = 32, f = 1kHz  
Mode 2, 4, 6, SE  
Power Dissipation vs Output Power  
VDD = 5V, RL = 32, f = 1kHz  
Mode 7, OCL  
70  
350  
60  
50  
40  
30  
20  
10  
0
300  
250  
200  
150  
100  
50  
0
0
10  
20  
30  
40  
0
10  
20  
30  
40  
50  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
Figure 66.  
Figure 67.  
Power Dissipation vs Output Power  
VDD = 5V, RL = 32, f = 1kHz  
Mode 7, SE  
Power Dissipation vs Output Power  
VDD = 5V, RL = 8, f = 1kHz  
Mode 1, 3, 5, MONO  
160  
300  
140  
120  
100  
80  
250  
200  
150  
100  
50  
60  
40  
20  
0
0
0
10  
20  
30  
40  
50  
0
400  
800  
1200  
1600  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
Figure 68.  
Figure 69.  
Power Dissipation vs Output Power  
VDD = 5V, RL = 32, f = 1kHz  
Mode 2, 4, 6, OCL  
Power Dissipation vs Output Power  
VDD = 5V, RL = 32, f = 1kHz  
Mode 2, 4, 6, SE  
500  
200  
450  
400  
180  
160  
140  
120  
100  
80  
350  
300  
250  
200  
150  
100  
60  
40  
20  
50  
0
0
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
Figure 70.  
Figure 71.  
20  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
www.ti.com  
SNAS349D JUNE 2006REVISED MAY 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Crosstalk vs Frequency  
VDD = 3.3V, RL = 32, PO = 12mW  
Mode 4, OCL  
Crosstalk vs Frequency  
VDD = 3.3V, RL = 32, PO = 12mW  
Mode 4, SE  
+0  
-5  
+0  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
Left to right  
Right to left  
Right to left  
Left to right  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 72.  
Figure 73.  
Crosstalk vs Frequency  
Crosstalk vs Frequency  
VDD = 5V, RL = 32, PO = 30mW  
VDD = 5V, RL = 32, PO = 30mW  
Mode 4, OCL  
Mode 4, SE  
+0  
-5  
+0  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
Left to right  
Right to left  
Right to left  
Left to right  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 74.  
Figure 75.  
Supply Current vs Supply Voltage  
No Load, Mode 7, OCL  
Supply Current vs Supply Voltage  
No Load, Mode 7, SE  
12  
10  
8
14  
12  
10  
8
6
6
4
4
2
2
0
0
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
Figure 76.  
Figure 77.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
SNAS349D JUNE 2006REVISED MAY 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Supply Current vs Supply Voltage  
No Load, Mode 1, 3, 5, MONO  
Supply Current vs Supply Voltage  
No Load, Mode 2, 4, 6, OCL  
10  
10  
9
8
7
9
8
7
6
6
5
4
3
2
1
0
5
4
3
2
1
0
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 78.  
Figure 79.  
Supply Current vs Supply Voltage  
Output Power vs Supply Voltage  
RL = 8, Mode 1, 3, 5, MONO  
No Load, Mode 2, 4, 6, Headphone SE  
8
2500  
7
6
5
4
3
2
1
2000  
1500  
1000  
500  
0
THD+N = 10%  
THD+N = 1%  
0
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 80.  
Figure 81.  
Output Power vs Supply Voltage  
RL = 32, Mode 2, 4, 6, OCL  
Output Power vs Supply Voltage  
RL = 32, Mode 2, 4, 6, SE  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
THD+N = 10%  
THD+N = 10%  
60  
60  
THD+N = 1%  
THD+N = 1%  
40  
40  
20  
20  
0
0
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 82.  
Figure 83.  
22  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
www.ti.com  
SNAS349D JUNE 2006REVISED MAY 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Output Power vs Supply Voltage  
Output Power vs Supply Voltage  
RL = 32, Mode 7, OCL  
RL = 32, Mode 7, SE  
180  
160  
140  
120  
100  
80  
180  
160  
140  
120  
100  
80  
THD+N = 10%  
THD+N = 10%  
60  
60  
THD+N = 1%  
THD+N = 1%  
40  
40  
20  
20  
0
0
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 84.  
Figure 85.  
Efficiency vs Output Power  
Efficiency vs Output Power  
VDD = 5V, RL = 8, Mode 1, 3, 5, BTL  
VDD = 3.3V, RL = 8, Mode 1, 3, 5, BTL  
100  
1
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.8  
0.6  
0.4  
0.2  
0
0
200 400 600 800 1000 1200 1400 1600  
0
200  
400  
600  
800  
OUTPUT POWER (mW)  
OUTPUT POWER (mW)  
Figure 86.  
Figure 87.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
SNAS349D JUNE 2006REVISED MAY 2013  
www.ti.com  
APPLICATION INFORMATION  
I2C PIN DESCRIPTION  
SDA: This is the serial data input pin.  
SCL: This is the clock input pin.  
ID_ENB: This is the address select input pin.  
I2C COMPATIBLE INTERFACE  
The LM4947 uses a serial bus which conforms to the I2C protocol to control the chip's functions with two wires:  
clock (SCL) and data (SDA). The clock line is uni-directional. The data line is bi-directional (open-collector). The  
maximum clock frequency specified by the I2C standard is 400kHz. In this discussion, the master is the  
controlling microcontroller and the slave is the LM4947.  
The I2C address for the LM4947 is determined using the ID_ENB pin. The LM4947's two possible I2C chip  
addresses are of the form 111110X10 (binary), where X1 = 0, if ID_ADDR is logic LOW; and X1 = 1, if ID_ENB is  
logic HIGH. If the I2C interface is used to address a number of chips in a system, the LM4947's chip address can  
be changed to avoid any possible address conflicts.  
The bus format for the I2C interface is shown in Figure 4. The bus format diagram is broken up into six major  
sections:  
1. The "start" signal is generated by lowering the data signal while the clock signal is HIGH. The start signal will  
alert all devices attached to the I2C bus to check the incoming address against their own address.  
2. The 8-bit chip address is sent next, most significant bit first. The data is latched in on the rising edge of the  
clock. Each address bit must be stable while the clock level is HIGH.  
3. After the last bit of the address bit is sent, the master releases the data line HIGH (through a pull-up  
resistor). Then the master sends an acknowledge clock pulse. If the LM4947 has received the address  
correctly, then it holds the data line LOW during the clock pulse. If the data line is not held LOW during the  
acknowledge clock pulse, then the master should abort the rest of the data transfer to the LM4947.  
4. The 8 bits of data are sent next, most significant bit first. Each data bit should be valid while the clock level is  
stable HIGH.  
5. After the data byte is sent, the master must check for another acknowledge to see if the LM4947 received  
the data.  
6. The "stop" signal ends the transfer. To signal "stop", the data signal goes HIGH while the clock signal is  
HIGH. The data line should be held HIGH when not in use.  
I2C INTERFACE POWER SUPPLY PIN (I2CVDD)  
The LM4947's I2C interface is powered up through the I2CVDD pin. The LM4947's I2C interface operates at a  
voltage level set by the I2CVDD pin which can be set independent to that of the main power supply pin VDD. This  
is ideal whenever logic levels for the I2C interface are dictated by a microcontroller or microprocessor that is  
operating at a lower supply voltage than the main battery of a portable system.  
Table 1. Chip Address  
A7  
1
A6  
1
A5  
1
A4  
1
A3  
1
A2  
0
A1  
EC  
0
A0  
0
Chip Address  
ID_ADDR = 0  
ID_ADDR = 1  
1
1
1
1
1
0
0
1
1
1
1
1
0
1
0
24  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
www.ti.com  
SNAS349D JUNE 2006REVISED MAY 2013  
Table 2. Control Registers  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Mode Control  
0
0
SE/Diff  
(select)  
0
OCL (select)  
MC2  
MC1  
MC0  
Programmable 3D  
0
1
L2R2  
L1R1 (select)  
N3D3  
N3D2  
N3D1  
N3D0  
(select)  
Mono Volume Control  
Left Volume Control  
Right Volume Control  
1
1
1
0
1
1
0
0
1
MVC4  
LVC4  
RVC4  
MVC3  
LVC3  
RVC3  
MVC2  
LVC2  
RVC2  
MVC1  
LVC1  
RVC1  
MVC0  
LVC0  
RVC0  
Table 3. Programmable Texas Instruments 3D Audio  
N3D3  
N3D2  
Low  
Medium  
High  
0
0
1
1
0
1
0
1
Maximum  
Table 4. Input/Output Control  
L2R2  
L1R1  
SE/DIFF  
Select LIN1 and RIN1 Stereo Pair  
Select LIN2 and RIN2 Stereo Pair  
Select LIN1+LIN2 and RIN1+RIN2 Stereo Pair  
Sets Stereo Inputs to Differential  
0
1
1
x
1
0
1
x
0
0
0
1
Table 5. Output Volume Control Table  
Volume Step  
xVC4  
0
xVC3  
0
xVC2  
0
xVC1  
0
xVC0  
0
Gain, dB  
–59.50  
–48.00  
–40.50  
–34.50  
–30.00  
–27.00  
–24.00  
–21.00  
–18.00  
–15.00  
–13.50  
–12.00  
–10.50  
–9.00  
–7.50  
–6.00  
–4.50  
–3.00  
–1.50  
0.00  
1
2
0
0
0
0
1
3
0
0
0
1
0
4
0
0
0
1
1
5
0
0
1
0
0
6
0
0
1
0
1
7
0
0
1
1
0
8
0
0
1
1
1
9
0
1
0
0
0
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
0
1
0
0
1
0
1
0
1
0
0
1
0
1
1
0
1
1
0
0
0
1
1
0
1
0
1
1
1
0
0
1
1
1
1
1
0
0
0
0
1
0
0
0
1
1
0
0
1
0
1
0
0
1
1
1
0
1
0
0
1.50  
1
0
1
0
1
3.00  
1
0
1
1
0
4.50  
1
0
1
1
1
6.00  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
SNAS349D JUNE 2006REVISED MAY 2013  
www.ti.com  
Table 5. Output Volume Control Table (continued)  
Volume Step  
xVC4  
xVC3  
xVC2  
xVC1  
xVC0  
Gain, dB  
25  
26  
27  
28  
29  
30  
31  
32  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
7.50  
9.00  
10.50  
12.00  
13.50  
15.00  
16.50  
18.00  
Table 6. Output Mode Selection  
Output Mode MC2  
Number  
MC1  
MC0  
Handsfree Mono Output  
Right HP Output  
Left HP Output  
0
1
2
3
4
5
6
7
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
SD  
SD  
MUTE  
SD  
MUTE  
2 x GM x M  
SD  
GL x L + GR x R  
SD  
GM x M  
GM x M  
MUTE  
MUTE  
GR x R  
GL x L  
GL x L + GR x R + 2(GM x M)  
SD  
MUTE  
MUTE  
GR x R + GM x M  
GR x R  
GL x L + GM x M  
GL x L  
GR x R + GL x L  
TI 3D ENHANCEMENT  
The LM4947 features a stereo headphone, 3D audio enhancement effect that widens the perceived soundstage  
from a stereo audio signal. The 3D audio enhancement creates a perceived spatial effect optimized for stereo  
headphone listening. The LM4947 can be programmed for a “narrow” or “wide” soundstage perception. The  
narrow soundstage has a more focused approaching sound direction, while the wide soundstage has a spatial,  
theater-like effect. Within each of these two modes, four discrete levels of 3D effect that can be programmed:  
low, medium, high, and maximum (Table 2), each level with an ever increasing aural effect, respectively. The  
difference between each level is 3dB.  
The external capacitors, shown in Figure 88, are required to enable the 3D effect. The value of the capacitors set  
the cutoff frequency of the 3D effect, as shown by Equation 1 and Equation 2. Note that the internal 20kΩ  
resistor is nominal (±25%).  
(internal resistors)  
LM4947  
C
3DL  
C
3DR  
C
C
3DR  
3DL  
Figure 88. External 3D Effect Capacitors  
f3DL(-3dB) = 1 / 2π * 20k* C3DL  
f3DR(-3dB) = 1 / 2π * 20k* C3DR  
(1)  
(2)  
Optional resistors R3DL and R3DR can also be added (Figure 89) to affect the -3dB frequency and 3D magnitude.  
26  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4947 LM4947TLEVAL  
 
 
 
LM4947, LM4947TLEVAL  
www.ti.com  
SNAS349D JUNE 2006REVISED MAY 2013  
(internal resistors)  
LM4947  
C
3DL  
C
3DR  
R
R
3DR  
3DL  
Figure 89. External RC Network with Optional R3DL and R3DR Resistors  
f3DL(-3dB) = 1 / 2π * (20k+ R3DL) * C3DL  
f3DR(-3dB) = 1 / 2π * 20k+ R3DR) * C3DR  
(3)  
(4)  
ΔAV (change in AC gain) = 1 / 1 + M, where M represents some ratio of the nominal internal resistor, 20k(see  
example below).  
f3dB (3D) = 1 / 2π (1 + M)(20k* C3D  
)
(5)  
(6)  
CEquivalent (new) = C3D / 1 + M  
Table 7. Pole Locations  
R3D (k)  
(optional)  
C3D (nF)  
M
ΔAV (dB)  
f-3dB (3D)  
(Hz)  
Value of C3D  
to keep same  
pole location  
(nF)  
new Pole  
Location  
(Hz)  
0
1
68  
68  
68  
68  
68  
0
0
117  
111  
94  
0.05  
0.25  
0.50  
1.00  
–0.4  
–1.9  
–3.5  
–6.0  
64.8  
54.4  
45.3  
34.0  
117  
117  
117  
117  
5
10  
20  
78  
59  
PCB LAYOUT AND SUPPLY REGULATION CONSIDERATIONS FOR DRIVING 8LOAD  
Power dissipated by a load is a function of the voltage swing across the load and the load's impedance. As load  
impedance decreases, load dissipation becomes increasingly dependent on the interconnect (PCB trace and  
wire) resistance between the amplifier output pins and the load's connections. Residual trace resistance causes  
a voltage drop, which results in power dissipated in the trace and not in the load as desired. For example, 0.1Ω  
trace resistance reduces the output power dissipated by an 8Ω load from 158.3mW to 156.4mW. The problem of  
decreased load dissipation is exacerbated as load impedance decreases. Therefore, to maintain the highest load  
dissipation and widest output voltage swing, PCB traces that connect the output pins to a load must be as wide  
as possible.  
Poor power supply regulation adversely affects maximum output power. A poorly regulated supply's output  
voltage decreases with increasing load current. Reduced supply voltage causes decreased headroom, output  
signal clipping, and reduced output power. Even with tightly regulated supplies, trace resistance creates the  
same effects as poor supply regulation. Therefore, making the power supply traces as wide as possible helps  
maintain full output voltage swing.  
POWER DISSIPATION AND EFFICIENCY  
In general terms, efficiency is considered to be the ratio of useful work output divided by the total energy required  
to produce it with the difference being the power dissipated, typically, in the IC. The key here is “useful” work. For  
audio systems, the energy delivered in the audible bands is considered useful including the distortion products of  
the input signal. Sub-sonic (DC) and super-sonic components (>22kHz) are not useful. The difference between  
the power flowing from the power supply and the audio band power being transduced is dissipated in the  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
SNAS349D JUNE 2006REVISED MAY 2013  
www.ti.com  
LM4947 and in the transducer load. The amount of power dissipation in the LM4947 is very low. This is because  
the ON resistance of the switches used to form the output waveforms is typically less than 0.25. This leaves  
only the transducer load as a potential "sink" for the small excess of input power over audio band output power.  
The LM4947 dissipates only a fraction of the excess power requiring no additional PCB area or copper plane to  
act as a heat sink.  
The LM4947 also has a pair of single-ended amplifiers driving stereo headphones, RHP and LHP. The maximum  
internal power dissipation for RHP and LHP is given by Equation 7 and Equation 8. From Equation 7 and  
Equation 8, assuming a 5V power supply and a 32load, the maximum power dissipation for LHP and RHP is  
40mW, or 80mW total.  
PDMAX-LHP = (VDD)2 / (2π2 RL): Single-ended Mode  
PDMAX-RHP = (VDD)2 / (2π2 RL): Single-ended Mode  
(7)  
(8)  
The maximum internal power dissipation of the LM4947 occurs when all 3 amplifiers pairs are simultaneously on;  
and is given by Equation 9.  
PDMAX-TOTAL = PDMAX-SPKROUT + PDMAX-LHP + PDMAX-RHP  
(9)  
The maximum power dissipation point given by Equation 9 must not exceed the power dissipation given by  
Equation 10:  
PDMAX = (TJMAX - TA) / θJA  
(10)  
The LM4947's TJMAX = 150°C. In the ITL package, the LM4947's θJA is 65°C/W. At any given ambient  
temperature TA, use Equation 10 to find the maximum internal power dissipation supported by the IC packaging.  
Rearranging Equation 10 and substituting PDMAX-TOTAL for PDMAX' results in Equation 11. This equation gives the  
maximum ambient temperature that still allows maximum stereo power dissipation without violating the LM4947's  
maximum junction temperature.  
TA = TJMAX - PDMAX-TOTAL θJA  
(11)  
For a typical application with a 5V power supply and an 8load, the maximum ambient temperature that allows  
maximum stereo power dissipation without exceeding the maximum junction temperature is approximately 104°C  
for the ITL package.  
TJMAX = PDMAX-TOTAL θJA + TA  
(12)  
Equation 12 gives the maximum junction temperature TJMAX. If the result violates the LM4947's 150°C, reduce  
the maximum junction temperature by reducing the power supply voltage or increasing the load resistance.  
Further allowance should be made for increased ambient temperatures.  
The above examples assume that a device is a surface mount part operating around the maximum power  
dissipation point. Since internal power dissipation is a function of output power, higher ambient temperatures are  
allowed as output power or duty cycle decreases. If the result of Equation 9 is greater than that of Equation 10,  
then decrease the supply voltage, increase the load impedance, or reduce the ambient temperature. If these  
measures are insufficient, a heat sink can be added to reduce θJA. The heat sink can be created using additional  
copper area around the package, with connections to the ground pin(s), supply pin and amplifier output pins.  
External, solder attached SMT heatsinks such as the Thermalloy 7106D can also improve power dissipation.  
When adding a heat sink, the θJA is the sum of θJC, θCS, and θSA. (θJC is the junction-to-case thermal impedance,  
θCS is the case-to-sink thermal impedance, and θSA is the sink-to-ambient thermal impedance). Refer to the  
TYPICAL PERFORMANCE CHARACTERISTICS curves for power dissipation information at lower output power  
levels.  
POWER SUPPLY BYPASSING  
As with any power amplifier, proper supply bypassing is critical for low noise performance and high power supply  
rejection. Applications that employ a 5V regulator typically use a 1µF in parallel with a 0.1µF filter capacitors to  
stabilize the regulator's output, reduce noise on the supply line, and improve the supply's transient response.  
However, their presence does not eliminate the need for a local 1.1µF tantalum bypass capacitance connected  
between the LM4947's supply pins and ground. Keep the length of leads and traces that connect capacitors  
between the LM4947's power supply pin and ground as short as possible. Connecting a 2.2µF capacitor, CB,  
between the BYPASS pin and ground improves the internal bias voltage's stability and improves the amplifier's  
PSRR. The PSRR improvements increase as the bypass pin capacitor value increases. Too large, however,  
increases turn-on time and can compromise the amplifier's click and pop performance. The selection of bypass  
capacitor values, especially CB, depends on desired PSRR requirements, click and pop performance (as  
explained in the section, SELECTING EXTERNAL COMPONENTS), system cost, and size constraints.  
28  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4947 LM4947TLEVAL  
 
 
 
 
 
 
LM4947, LM4947TLEVAL  
www.ti.com  
SNAS349D JUNE 2006REVISED MAY 2013  
SELECTING EXTERNAL COMPONENTS  
Input Capacitor Value Selection  
Amplifying the lowest audio frequencies requires high value input coupling capacitor (Ci in Figure 1 and  
Figure 2). A high value capacitor can be expensive and may compromise space efficiency in portable designs. In  
many cases, however, the speakers used in portable systems, whether internal or external, have little ability to  
reproduce signals below 150Hz. Applications using speakers with this limited frequency response reap little  
improvement by using large input capacitor.  
The internal input resistor (Ri), nominal 20k, and the input capacitor (Ci) produce a high pass filter cutoff  
frequency that is found using Equation 13.  
fc = 1 / (2πRiCi)  
(13)  
As an example when using a speaker with a low frequency limit of 150Hz, Ci, using Equation 13 is 0.053µF. The  
0.22µF Ci shown in Figure 1 allows the LM4947 to drive high efficiency, full range speaker whose response  
extends below 40Hz.  
Bypass Capacitor Value Selection  
Besides minimizing the input capacitor size, careful consideration should be paid to value of CB, the capacitor  
connected to the BYPASS bump. Since CB determines how fast the LM4947 settles to quiescent operation, its  
value is critical when minimizing turn-on pops. The slower the LM4947's outputs ramp to their quiescent DC  
voltage (nominally VDD/2), the smaller the turn-on pop. Choosing CB equal to 1.0µF along with a small value of Ci  
(in the range of 0.1µF to 0.39µF), produces a click-less and pop-less shutdown function. As discussed above,  
choosing Ci no larger than necessary for the desired bandwidth helps minimize clicks and pops. CB's value  
should be in the range of 5 times to 7 times the value of Ci. This ensures that output transients are eliminated  
when power is first applied or the LM4947 resumes operation after shutdown.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LM4947 LM4947TLEVAL  
 
LM4947, LM4947TLEVAL  
SNAS349D JUNE 2006REVISED MAY 2013  
www.ti.com  
DEMO BOARD SCHEMATIC  
Figure 90.  
30  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4947 LM4947TLEVAL  
LM4947, LM4947TLEVAL  
www.ti.com  
SNAS349D JUNE 2006REVISED MAY 2013  
REVISION HISTORY  
Rev  
1.0  
Date  
Description  
06/16/06  
06/19/06  
Initial release.  
1.1  
Changed the Class D Efficiency (n) on Typical limit (from 79 to 86) on the 5V  
specification table.  
1.2  
1.3  
1.4  
1.5  
06/22/06  
07/18/06  
08/29/06  
10/18/06  
Added more Typ Perf curves.  
Replaced some of the curves.  
Text edits.  
Edited DSBGA pkg drawing, Figure 1 and Figure 2.  
Changed IDDQ typical and limit values on the 3.3V and 5.0V specification table.  
Removed CMRR SE condition and changed typical values for CMRR BTL on  
3.3V and 5.0V specification table.  
Changed Mute Attenuation typical value on 5.0V specification table.  
1.6  
1.7  
1.8  
1.9  
D
03/02/07  
03/02/07  
09/06/07  
11/09/07  
05/03/13  
Edited the 3.3V and 5V EC tables.  
Composed (CONFIDENTIAL) D/S for customer (SAMSUNG).  
Edited Table 4.  
Text edits.  
Changed layout of National Data Sheet to TI format.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LM4947 LM4947TLEVAL  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM4947TL/NOPB  
ACTIVE  
DSBGA  
YZR  
25  
250  
RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 85  
GH1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM4947TL/NOPB  
DSBGA  
YZR  
25  
250  
178.0  
8.4  
2.69  
2.69  
0.76  
4.0  
8.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
DSBGA YZR 25  
SPQ  
Length (mm) Width (mm) Height (mm)  
208.0 191.0 35.0  
LM4947TL/NOPB  
250  
Pack Materials-Page 2  
MECHANICAL DATA  
YZR0025xxx  
0.600±0.075  
D
E
TLA25XXX (Rev D)  
D: Max = 2.532 mm, Min =2.472 mm  
E: Max = 2.532 mm, Min =2.472 mm  
4215055/A  
12/12  
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.  
B. This drawing is subject to change without notice.  
NOTES:  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

LM4947TLX

IC,AUDIO AMPLIFIER,DUAL,BGA,25PIN,PLASTIC
TI

LM4947TLX/NOPB

VOLUME CONTROL CIRCUIT
TI

LM4949

Stereo Class D Audio Subsystem with OCL Headphone Amplifier
NSC

LM4949TL

Stereo Class D Audio Subsystem with OCL Headphone Amplifier
NSC

LM4949TL/NOPB

IC,AUDIO AMPLIFIER,DUAL,BGA,25PIN,PLASTIC
TI

LM4949_07

Stereo Class D Audio Subsystem with OCL Headphone
NSC

LM494CJ

Pulse Width Modulated Control Circuit
NSC

LM494CN

Pulse Width Modulated Control Circuit
NSC

LM494IN

Pulse Width Modulated Control Circuit
NSC

LM4950

7.5W Mono-BTL or 3.1W Stereo Audio Power Amplifier
NSC

LM4950

3.1W 单声道、9.6V 至 16V 电源电压、模拟输入 D 类音频放大器
TI

LM4950TA

7.5W Mono-BTL or 3.1W Stereo Audio Power Amplifier
NSC