LM5050-1-Q1 [TI]

汽车类 5V 至 75V、400uA IQ ORing FET 控制器;
LM5050-1-Q1
型号: LM5050-1-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 5V 至 75V、400uA IQ ORing FET 控制器

控制器
文件: 总30页 (文件大小:1100K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM5050-1, LM5050-1-Q1  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
LM5050-1LM5050-1-Q1 高侧 OR-ing FET 控制器  
1 特性  
3 说明  
1
提供标准和符合 AEC-Q100 标准版本的  
LM5050Q0MK-1(高达 150°C TJ)和  
LM5050Q1MK-1(高达 125°C TJ)  
LM5050-1/-Q1 高侧 OR-ing FET 控制器与外部  
MOSFET 配合工作,当与电源串联时则用作理想的二  
极管整流器。此 ORing 控制器可使 MOSFET 替换电  
源分配网络中的二极管整流器,从而降低功率损耗和压  
降。  
提供功能安全  
提供文档以帮助创建功能安全系统设计  
宽工作输入电压范围 VIN1V 75VVIN < 5V 时  
需要 VBIAS  
LM5050-1/-Q1 控制器为外部 N 沟道 MOSFET 和快速  
响应比较器提供电荷泵栅极驱动,以在电流反向流动时  
关断 FETLM5050-1/-Q1 可连接 5V 75V 的电  
源,可承受高达 100V 的瞬态电压。  
100V 瞬态电压  
适用于外部 N 沟道 MOSFET 的电荷泵栅极驱动器  
针对电流反向 50ns 快速响应  
2A 峰值栅极关断电流  
器件信息(1)  
超小 VDS 关断电压,可缩短关断时间  
封装:SOT-6(薄型 SOT-23-6)  
器件型号  
LM5050-1  
LM5050-1-Q1  
封装  
封装尺寸(标称值)  
SOT (6)  
2.90mm × 1.60mm  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
冗余 (N+1) 电源的有源 OR-ing  
完整应用  
V
V
OUT  
IN  
+5.0V to +75V  
100W  
IN  
GATE  
LM5050-1  
GND  
OUT  
VS  
Low= FET On, High= FET Off  
Shutdown  
GND  
OFF  
0.1 mF  
GND  
典型冗余电源配置  
PS1  
IN GATE OUT  
LM5050-1  
VS  
GND  
C
LOAD  
R
LOAD  
PS2  
IN  
GATE  
LM5050-1  
GND  
OUT  
VS  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVS629  
 
 
 
 
 
LM5050-1, LM5050-1-Q1  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 14  
8.1 Application Information............................................ 14  
8.2 Typical Applications ................................................ 16  
Power Supply Recommendations...................... 21  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings: LM5050-1 .......................................... 4  
6.3 ESD Ratings: LM5050-1-Q1 ..................................... 4  
6.4 Recommended Operating Conditions....................... 4  
6.5 Thermal Information.................................................. 4  
6.6 Electrical Characteristics........................................... 5  
6.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 12  
8
9
10 Layout................................................................... 21  
10.1 Layout Guidelines ................................................. 21  
10.2 Layout Example .................................................... 21  
11 器件和文档支持 ..................................................... 22  
11.1 文档支持................................................................ 22  
11.2 相关链接................................................................ 22  
11.3 社区资源................................................................ 22  
11.4 ....................................................................... 22  
11.5 静电放电警告......................................................... 22  
11.6 Glossary................................................................ 22  
12 机械、封装和可订购信息....................................... 22  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision E (December 2015) to Revision F  
Page  
特性 部分添加了提供功能安全的链接.................................................................................................................................. 1  
Changes from Revision D (June 2013) to Revision E  
Page  
已添加 添加了 ESD 额定值 表、特性 说明 部分、器件功能模式应用和实施 部分、电源相关建议 部分、布局 部  
分、器件和文档支持 部分以及机械、封装和可订购信息 部分 ................................................................................................ 1  
2
Copyright © 2011–2019, Texas Instruments Incorporated  
 
LM5050-1, LM5050-1-Q1  
www.ti.com.cn  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
5 Pin Configuration and Functions  
DDC Package  
6-Pin SOT  
Top View  
VS 1  
GND 2  
OFF 3  
6 OUT  
5 GATE  
4 IN  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
The main supply pin for all internal biasing and an auxiliary supply for the internal gate drive  
charge pump. Typically connected to either VOUT or VIN; a separate supply can also be used.  
VS  
I
2
GND  
PWR  
Ground return for the controller  
A logic high state at the OFF pin will pull the GATE pin low and turn off the external MOSFET.  
Note that when the MOSFET is off, current will still conduct through the FET's body diode. This  
pin should may be left open or connected to GND if unused.  
3
OFF  
I
4
5
6
IN  
I
Voltage sense connection to the external MOSFET Source pin.  
Connect to the Gate of the external MOSFET. Controls the MOSFET to emulate a low forward-  
voltage diode.  
GATE  
OUT  
O
O
Voltage sense connection to the external MOSFET Drain pin.  
Copyright © 2011–2019, Texas Instruments Incorporated  
3
LM5050-1, LM5050-1-Q1  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
65  
MAX  
100  
100  
100  
7
UNIT  
V
IN, OUT Pins to Ground(2)  
GATE Pin to Ground(2)  
VS Pin to Ground  
V
V
OFF Pin to Ground  
V
Storage Temperature  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The GATE pin voltage is typically 12 V above the IN pin voltage when the LM5050-1 is enabled (that is, OFF Pin is Open or Low, and  
VIN > VOUT). Therefore, the absolute maximum rating for the IN pin voltage applies only when the LM5050-1 is disabled (that is, OFF  
Pin is logic high), or for a momentary surge to that voltage because the Absolute Maximum Rating for the GATE pin is also 100 V  
6.2 ESD Ratings: LM5050-1  
VALUE  
±2000  
±150  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Machine model (MM)(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) The MM is a 200-pF capacitor discharged through a 0-Ω resistor (that is, directly) into each pin. Applicable test standard is JESD-A115-  
A.  
6.3 ESD Ratings: LM5050-1-Q1  
VALUE  
±2000  
±150  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Machine model (MM)(2)  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
(2) The MM is a 200-pF capacitor discharged through a 0-Ω resistor (that is, directly) into each pin. Applicable test standard is JESD-A115-  
A.  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
5
MAX  
75  
UNIT  
V
IN, OUT, VS Pins  
OFF Pin  
0
5.5  
V
Standard Grade  
LM5050Q0MK-1  
LM5050Q1MK-1  
40  
40  
40  
125  
150  
125  
°C  
°C  
°C  
Junction Temperature (TJ)  
6.5 Thermal Information  
LM5050-1/-Q1  
DDC (SOT)  
6 PINS  
180.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
41.3  
28.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.7  
ψJB  
27.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2011–2019, Texas Instruments Incorporated  
LM5050-1, LM5050-1-Q1  
www.ti.com.cn  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
Thermal Information (continued)  
LM5050-1/-Q1  
THERMAL METRIC(1)  
DDC (SOT)  
6 PINS  
N/A  
UNIT  
RθJC(bot)  
Junction-to-case (bottom) thermal resistance  
°C/W  
6.6 Electrical Characteristics  
Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless  
otherwise stated the following conditions apply: VIN = 12 V, VVS = VIN, VOUT = VIN, VOFF = 0 V, CGATE= 47 nF, and TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VS PIN  
Operating  
VVS  
Supply Voltage  
TJ = –40°C to 125°C  
5
75  
V
Range  
TJ = 25°C  
75  
100  
130  
VVS= 5 V, VIN = 5 V  
VOUT = VIN - 100 mV  
TJ = –40°C to 125°C  
TJ = 25°C  
105  
147  
288  
Operating  
Supply Current  
VVS= 12 V, VIN = 12 V  
VOUT = VIN - 100 mV  
IVS  
μA  
TJ = –40°C to 125°C  
TJ = 25°C  
VVS= 75 V, VIN = 75 V  
VOUT = VIN - 100 mV  
TJ = –40°C to 125°C  
IN PIN  
Operating Input  
Voltage Range  
VIN  
TJ = –40°C to 125°C  
5
75  
V
VIN = 5 V  
VVS= VIN  
VOUT = VIN - 100 mV  
GATE = Open  
TJ = 25°C  
190  
320  
TJ = –40°C to 125°C  
32  
305  
IIN  
IN Pin current  
μA  
TJ = 25°C  
VIN = 12 V to 75 V  
VVS= VIN  
VOUT = VIN - 100 mV  
GATE = Open  
LM5050MK-1,  
LM5050Q1MK-1  
TJ = –40°C to 125°C  
TJ = –40°C to 125°C  
233  
233  
400  
475  
LM5050Q0MK-1  
OUT PIN  
Operating  
Output Voltage  
Range  
VOUT  
TJ = –40°C to 125°C  
VIN = 5 V to 75 V  
5
75  
8
V
TJ = 25°C  
3.2  
IOUT  
OUT Pin Current VVS= VIN  
VOUT = VIN - 100 mV  
µA  
TJ = –40°C to 125°C  
GATE PIN  
VIN = 5 V  
VVS = VIN  
VGATE = VIN  
VOUT = VIN - 175 mV  
TJ = 25°C  
30  
32  
TJ = –40°C to 125°C  
TJ = 25°C  
12  
20  
41  
41  
Gate Pin Source  
Current  
IGATE(ON)  
µA  
VIN = 12 V to 75 V  
VVS = VIN  
VGATE = VIN  
TJ = –40°C to 125°C  
VOUT = VIN - 175 mV  
VIN = 5 V  
TJ = 25°C  
7
VVS = VIN  
VOUT = VIN - 175 mV  
VGATE - VIN in  
Forward  
TJ = –40°C to 125°C  
TJ = 25°C  
4
9
9
VGS  
V
Operation(1)  
VIN = 12 V to 75 V  
VVS = VIN  
VOUT = VIN - 175 mV  
12  
TJ = –40°C to 125°C  
14  
(1) Measurement of VGS voltage (that is. VGATE - VIN) includes 1 Min parallel with CGATE  
.
Copyright © 2011–2019, Texas Instruments Incorporated  
5
LM5050-1, LM5050-1-Q1  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless  
otherwise stated the following conditions apply: VIN = 12 V, VVS = VIN, VOUT = VIN, VOFF = 0 V, CGATE= 47 nF, and TJ = 25°C.  
PARAMETER  
TEST CONDITIONS  
TJ = 25°C  
MIN  
TYP  
MAX UNIT  
Gate  
Capacitance  
Discharge Time  
tGATE(REV) at Forward to  
Reverse  
25  
CGATE = 0(2)  
TJ = –40°C to 125°C  
TJ = 25°C  
85  
ns  
CGATE = 10 nF(2)  
CGATE = 47 nF(2)  
60  
TJ = 25°C  
180  
Transition  
See Figure 1  
TJ = –40°C to 125°C  
350  
Gate  
Capacitance  
DischargeTime  
tGATE(OFF) at OFF pin Low CGATE = 47 nF(3)  
TJ = 25°C  
TJ = 25°C  
486  
2.8  
ns  
to High  
Transition  
See Figure 2  
VGATE = VIN + 3 V  
Gate Pin Sink  
Current  
LM5050MK-1,  
LM5050Q1MK-1  
IGATE(OFF)  
VOUT > VIN + 100 mV TJ = –40°C to 125°C  
t 10 ms  
1.8  
1.4  
A
TJ = –40°C to 125°C  
LM5050Q0MK-1  
Reverse VSD  
Threshold  
VIN < VOUT  
TJ = 25°C  
–28  
VSD(REV)  
VIN - VOUT  
mV  
TJ = –40°C to 125°C  
–41  
–16  
Reverse VSD  
Hysteresis  
ΔVSD(REV)  
TJ = 25°C  
TJ = 25°C  
10  
19  
mV  
LM5050MK-1,  
LM5050Q1MK-1  
VIN = 5 V  
VVS = VIN  
VIN - VOUT  
TJ = –40°C to 125°C  
1
1
37  
Regulated  
Forward VSD  
Threshold  
VIN > VOUT  
TJ = –40°C to 125°C  
TJ = 25°C  
LM5050Q0MK-1  
60  
VSD(REG)  
mV  
22  
LM5050MK-1,  
LM5050Q1MK-1  
VIN = 12 V  
VVS = VIN  
VIN - VOUT  
TJ = –40°C to 125°C  
TJ = –40°C to 125°C  
4.4  
4.4  
37  
60  
LM5050Q0MK-1  
OFF PIN  
OFF Input High  
Threshold  
Voltage  
TJ = 25°C  
1.56  
1.4  
VOUT = VIN-500 mV  
VOFF Rising  
VOFF(IH)  
TJ = –40°C to 125°C  
TJ = 25°C  
1.75  
V
OFF Input Low  
Threshold  
Voltage  
VOUT = VIN - 500 mV  
VOFF Falling  
VOFF(IL)  
TJ = –40°C to 125°C  
1.1  
OFF Threshold  
Voltage  
Hysteresis  
ΔVOFF  
VOFF(IH) - VOFF(IL)  
TJ = 25°C  
155  
5
mV  
TJ = 25°C  
VOFF = 4.5 V  
VOFF = 5 V  
OFF Pin Internal  
Pulldown  
IOFF  
TJ = –40°C to 125°C  
TJ = 25°C  
3
7
µA  
8
(2) Time from VIN-VOUT voltage transition from 200 mV to -500 mV until GATE pin voltage falls to VIN + 1 V. See Figure 1.  
(3) Time from VOFF voltage transition from 0 V to 5 V until GATE pin voltage falls to VIN + 1 V. See Figure 2  
6
Copyright © 2011–2019, Texas Instruments Incorporated  
LM5050-1, LM5050-1-Q1  
www.ti.com.cn  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
200 mV  
V
SD(REG)  
V
V
> V  
< V  
IN  
OUT  
0 mV  
IN  
OUT  
V
SD(REV)  
-500 mV  
t
GATE(OFF)  
V
GATE  
1.0V  
0.0V  
Figure 1. Gate OFF Timing for Forward to Reverse Transition  
5.0V  
V
OFF(IH)  
V
OFF(IL)  
0.0V  
t
GATE(OFF)  
V
GATE  
1.0V  
0.0V  
Figure 2. Gate OFF Timing for OFF Pin Low to High Transition  
Copyright © 2011–2019, Texas Instruments Incorporated  
7
 
LM5050-1, LM5050-1-Q1  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
www.ti.com.cn  
6.7 Typical Characteristics  
Unless otherwise stated: VVS = 12 V, VIN = 12 V, VOFF = 0 V, and TJ = 25°C  
Figure 3. IIN vs VIN  
Figure 4. IIN vs VIN  
Figure 6. IOUT vs VOUT  
Figure 8. IVS vs VVS  
Figure 5. IOUT vs VOUT  
Figure 7. IVS vs VVS  
8
Copyright © 2011–2019, Texas Instruments Incorporated  
LM5050-1, LM5050-1-Q1  
www.ti.com.cn  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
Typical Characteristics (continued)  
Unless otherwise stated: VVS = 12 V, VIN = 12 V, VOFF = 0 V, and TJ = 25°C  
Figure 9. (VGATE - VIN) vs VIN, VVS = VOUT  
Figure 10. (VGATE - VIN) vs VIN, VVS = VOUT  
26  
26  
Vin  
Vout  
Vgate  
Vin  
Vout  
Vgate  
24  
24  
22  
20  
18  
16  
14  
12  
10  
22  
20  
18  
16  
14  
12  
10  
-5  
0
5
10  
15  
20  
25  
30  
-50  
0
50  
100 150 200 250  
TIME (5ms / DIV)  
TIME (50ns / DIV)  
Figure 11. Forward CGATE Charge Time, CGATE = 47 nF  
Figure 12. Reverse CGATE Discharge, CGATE = 47 nF  
Figure 13. VGATE - VIN vs Temperature  
Figure 14. tGATE(REV) vs Temperature  
Copyright © 2011–2019, Texas Instruments Incorporated  
9
LM5050-1, LM5050-1-Q1  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
Unless otherwise stated: VVS = 12 V, VIN = 12 V, VOFF = 0 V, and TJ = 25°C  
Figure 15. OFF Pin Thresholds vs Temperature  
Figure 16. OFF Pin Pulldown vs Temperature  
Figure 17. CGATE Charge and Discharge vs OFF Pin  
Figure 18. OFF Pin, ON to OFF Transition  
Figure 20. GATE Pin vs (RDS(ON) × IDS  
)
Figure 19. OFF Pin, OFF to ON Transition  
10  
Copyright © 2011–2019, Texas Instruments Incorporated  
LM5050-1, LM5050-1-Q1  
www.ti.com.cn  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
7 Detailed Description  
7.1 Overview  
Blocking diodes are commonly placed in series with supply inputs for the purpose of ORing redundant power  
sources and protecting against supply reversal. The LM5050 replaces diodes in these applications with an N-  
MOSFET to reduce both the voltage drop and power loss associated with a passive solution. At low input  
voltages, the improvement in forward voltage loss is readily appreciated where headroom is tight, as shown in  
Figure 2. The LM5050 operates from 5 V to 75 V and it can withstand an absolute maximum of 100 V without  
damage. A 12-V or 15-A ideal diode application is shown in Figure 24. Several external components are included  
in addition to the MOSFET, Q1. Ideal diodes, like their non-ideal counterparts, exhibit a behavior known as  
reverse recovery. In combination with parasitic or intentionally introduced inductances, reverse recovery spikes  
may be generated by an ideal diode during an reverse current shutdown. D1, D2 and R1 protect against these  
spikes which might otherwise exceed the LM5050 100-V survival rating. COUT also plays a role in absorbing  
reverse recovery energy. Spikes and protection schemes are discussed in detail in the Short Circuit Failure of an  
Input Supply section.  
NOTE  
The OFF pin may be used to active the GATE pull down circuit and turn off the pass  
MOSFET, but it does not disconnect the load from the input because Q1’s body diode is  
still present.  
If Vs is powered while IN is floating or grounded, then about 0.5mA will leak from the Vs  
pin into the IC and about 3mA will leak from the OUT pin into the IC. From this leakage,  
about 50 uA will flow out of the IN pin and the rest will flow to ground. This does not affect  
long term reliability of the IC, but may influence circuit design. See Reverse Input Voltage  
Protection With IQ Reduction for details on how to avoid this leakage current.  
Copyright © 2011–2019, Texas Instruments Incorporated  
11  
LM5050-1, LM5050-1-Q1  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
www.ti.com.cn  
7.2 Functional Block Diagram  
INPUT  
LOAD  
IN  
GATE  
OUT  
14V  
30 µA  
+12V Charge  
Pump  
30 mV  
+
-
2A  
MOSFET Off  
35 µA  
30 mV  
Reverse  
Comparator  
-
+
Bias  
Circuitry  
VS  
OFF  
5 µA  
1.5V  
GND  
LM5050- 1  
7.3 Feature Description  
7.3.1 IN, GATE, and OUT Pins  
When power is initially applied, the load current will flow from source to drain through the body diode of the  
MOSFET. Once the voltage across the body diode exceeds VSD(REG) then the LM5050-1 begins charging the  
MOSFET gate through a 32 µA (typical) charge pump current source . In forward operation, the gate of the  
MOSFET is charged until it reaches the clamping voltage of the 12-V GATE to IN pin Zener diode internal to the  
LM5050-1.  
The LM5050-1 is designed to regulate the MOSFET gate-to-source voltage. If the MOSFET current decreases to  
the point that the voltage across the MOSFET falls below the VSD(REG) voltage regulation point of 22 mV (typical),  
the GATE pin voltage will be decreased until the voltage across the MOSFET is regulated at 22 mV. If the  
source-to-drain voltage is greater than the VSD(REG) voltage, the gate-to-source voltage will increase and  
eventually reach the 12-V GATE to IN pin Zener clamp level.  
12  
Copyright © 2011–2019, Texas Instruments Incorporated  
LM5050-1, LM5050-1-Q1  
www.ti.com.cn  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
Feature Description (continued)  
If the MOSFET current reverses, possibly due to failure of the input supply, such that the voltage across the  
LM5050-1 IN and OUT pins is more negative than the VSD(REV) voltage of -28 mV (typical), the LM5050-1 will  
quickly discharge the MOSFET gate through a strong GATE to IN pin discharge transistor.  
If the input supply fails abruptly, as would occur if the supply was shorted directly to ground, a reverse current  
will temporarily flow through the MOSFET until the gate can be fully discharged. This reverse current is sourced  
from the load capacitance and from the parallel connected supplies. The LM5050-1 responds to a voltage  
reversal condition typically within 25 ns. The actual time required to turn off the MOSFET will depend on the  
charge held by the gate capacitance of the MOSFET being used. A MOSFET with 47 nF of effective gate  
capacitance can be turned off in typically 180 ns. This fast turnoff time minimizes voltage disturbances at the  
output, as well as the current transients from the redundant supplies.  
7.3.2 VS Pin  
The LM5050-1 VS pin is the main supply pin for all internal biasing and an auxiliary supply for the internal gate  
drive charge pump.  
For typical LM5050-1 applications, where the input voltage is above 5 V, the VS pin can be connected directly to  
the OUT pin. In situations where the input voltage is close to, but not less than, the 5 V minimum, it may be  
helpful to connect the VS pin to the OUT pin through an RC Low-Pass filter to reduce the possibility of erratic  
behavior due to spurious voltage spikes that may appear on the OUT and IN pins. The series resistor value  
should be low enough to keep the VS voltage drop at a minimum. A typical series resistor value is 100 . The  
capacitor value should be the lowest value that produces acceptable filtering of the voltage noise.  
If Vs is powered while IN is floating or grounded, then about 0.5 mA will leak from the Vs pin into the IC and  
about 3mA will leak from the OUT pin into the IC. From this leakage, about 50 uA will flow out of the IN pin and  
the rest will flow to ground. This does not affect long term reliability of the IC, but may influence circuit design.  
See Reverse Input Voltage Protection With IQ Reduction for details on how to avoid this leakage current.  
Alternately, it is possible to operate the LM5050-1 with VIN value as low as 1 V if the VS pin is powered from a  
separate supply. This separate VS supply must be from 5 V and 75 V. See Figure 27.  
7.3.3 OFF Pin  
The OFF pin is a logic level input pin that is used to control the gate drive to the external MOSFET. The  
maximum operating voltage on this pin is 5.5 V.  
When the OFF pin is high, the MOSFET is turned off (independent of the sensed IN and OUT voltages). In this  
mode, load current will flow through the body diode of the MOSFET. The voltage difference between the IN pin  
and OUT pins will be approximately 700 mV if the MOSFET is operating normally through the body diode.  
The OFF pin has an internal pulldown of 5 µA (typical). If the OFF function is not required the pin may be left  
open or connected to ground.  
7.4 Device Functional Modes  
7.4.1 ON/OFF Control Mode  
The MOSFET can be turned off by asserting the OFF pin high. This mode only disables the MOSFET, but VOUT  
is still available through the body diode of the MOSFET.  
7.4.2 External Power Supply Mode  
The Vs pin of the LM5050 can be operated from 5 V to 75 V as the bias input supply. In this mode VIN voltage  
can be as low as 1 V, as shown in Figure 27.  
Copyright © 2011–2019, Texas Instruments Incorporated  
13  
LM5050-1, LM5050-1-Q1  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
Systems that require high availability often use multiple, parallel-connected redundant power supplies to improve  
reliability. Schottky OR-ing diodes are typically used to connect these redundant power supplies to a common  
point at the load. The disadvantage of using OR-ing diodes is the forward voltage drop, which reduces the  
available voltage and the associated power losses as load currents increase. Using an N-channel MOSFET to  
replace the OR-ing diode requires a small increase in the level of complexity, but reduces, or eliminates, the  
need for diode heat sinks or large thermal copper area in circuit board layouts for high power applications.  
PS1  
C
LOAD  
R
LOAD  
PS2  
Figure 21. OR-ing with Diodes  
The LM5050-1/-Q1 is a positive voltage (that is, high-side) OR-ing controller that will drive an external N-channel  
MOSFET to replace an OR-ing diode. The voltage across the MOSFET source and drain pins is monitored by  
the LM5050-1 at the IN and OUT pins, while the GATE pin drives the MOSFET to control its operation based on  
the monitored source-drain voltage. The resulting behavior is that of an ideal rectifier with source and drain pins  
of the MOSFET acting as the anode and cathode pins of a diode respectively.  
PS1  
IN  
GATE OUT  
LM5050-1  
VS  
GND  
C
LOAD  
R
LOAD  
PS2  
IN  
GATE  
LM5050-1  
GND  
OUT  
VS  
Figure 22. OR-ing With MOSFETs  
14  
Copyright © 2011–2019, Texas Instruments Incorporated  
LM5050-1, LM5050-1-Q1  
www.ti.com.cn  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
Application Information (continued)  
8.1.1 MOSFET Selection  
The important MOSFET electrical parameters are the maximum continuous Drain current ID, the maximum  
Source current (that is, body diode) IS, the maximum drain-to-source voltage VDS(MAX), the gate-to-source  
threshold voltage VGS(TH), the drain-to-source reverse breakdown voltage V(BR)DSS, and the drain-to-source On  
resistance RDS(ON)  
.
The maximum continuous drain current, ID, rating must exceed the maximum continuous load current. The rating  
for the maximum current through the body diode, IS, is typically rated the same as, or slightly higher than the  
drain current, but body diode current only flows while the MOSFET gate is being charged to VGS(TH)  
.
Gate Charge Time = Qg / IGATE(ON)  
1. The maximum drain-to-source voltage, VDS(MAX), must be high enough to withstand the highest differential  
voltage seen in the application. This would include any anticipated fault conditions.  
2. The drain-to-source reverse breakdown voltage, V(BR)DSS, may provide some transient protection to the OUT  
pin in low voltage applications by allowing conduction back to the IN pin during positive transients at the OUT  
pin.  
3. The gate-to-source threshold voltage, VGS(TH), should be compatible with the LM5050-1 gate drive  
capabilities. Logic level MOSFETs, with RDS(ON) rated at VGS(TH) at 5 V, are recommended, but sub-Logic  
level MOSFETs having RDS(ON) rated at VGS(TH) at 2.5 V, can also be used.  
4. The dominate MOSFET loss for the LM5050-1 active OR-ing controller is conduction loss due to source-to-  
drain current to the output load, and the RDS(ON) of the MOSFET. This conduction loss could be reduced by  
using a MOSFET with the lowest possible RDS(ON). However, contrary to popular belief, arbitrarily selecting a  
MOSFET based solely on having low RDS(ON) may not always give desirable results for several reasons:  
1. Reverse transition detection. Higher RDS(ON) will provide increased voltage information to the LM5050-1  
Reverse Comparator at a lower reverse current level. This will give an earlier MOSFET turnoff condition  
should the input voltage become shorted to ground. This will minimize any disturbance of the redundant  
bus.  
2. Reverse current leakage. In cases where multiple input supplies are closely matched it may be possible  
for some small current to flow continuously through the MOSFET drain to source (that is, reverse)  
without activating the LM5050-1 Reverse Comparator. Higher RDS(ON) will reduce this reverse current  
level.  
3. Cost. Generally, as the RDS(ON) rating goes lower, the cost of the MOSFET goes higher.  
5. The dominate MOSFET loss for the LM5050-1 active OR-ing controller is conduction loss due to source-to-  
drain current to the output load, and the RDS(ON) of the MOSFET. This conduction loss could be reduced by  
using a MOSFET with the lowest possible RDS(ON). However, contrary to popular belief, arbitrarily selecting a  
MOSFET based solely on having low RDS(ON) may not always give desirable results for several reasons:  
a. Selecting a MOSFET with an RDS(ON) that is too large will result in excessive power dissipation.  
Additionally, the MOSFET gate will be charged to the full value that the LM5050-1 can provide as it  
attempts to drive the Drain to Source voltage down to the VSD(REG) of 22 mV typical. This increased Gate  
charge will require some finite amount of additional discharge time when the MOSFET needs to be  
turned off.  
b. As a guideline, it is suggest that RDS(ON) be selected to provide at least 22 mV, and no more than 100  
mV, at the nominal load current.  
c. (22 mV / ID) RDS(ON) (100 mV / ID)  
d. The thermal resistance of the MOSFET package should also be considered against the anticipated  
dissipation in the MOSFET to ensure that the junction temperature (TJ) is reasonably well controlled,  
because the RDS(ON) of the MOSFET increases as the junction temperature increases.  
6. PDISS = ID2 × (RDS(ON)  
)
7. Operating with a maximum ambient temperature (TA(MAX)) of 35°C, a load current of 10 A, and an RDS(ON) of  
10 m, and desiring to keep the junction temperature under 100°C, the maximum junction-to-ambient  
thermal resistance rating (θJA) must be:  
a. RθJA (TJ(MAX) - TA(MAX))/(ID2 × RDS(ON)  
)
b. RθJA (100°C - 35°C)/(10 A × 10 A × 0.01 )  
Copyright © 2011–2019, Texas Instruments Incorporated  
15  
 
LM5050-1, LM5050-1-Q1  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
www.ti.com.cn  
Application Information (continued)  
c. RθJA 65°C/W  
8.1.2 Short Circuit Failure of an Input Supply  
An abrupt 0-Ω short circuit across the input supply will cause the highest possible reverse current to flow while  
the internal LM5050-1 control circuitry discharges the gate of the MOSFET. During this time, the reverse current  
is limited only by the RDS(ON) of the MOSFET, along with parasitic wiring resistances and inductances. Worst  
case instantaneous reverse current would be limited to:  
ID(REV) = (VOUT - VIN) / RDS(ON)  
(1)  
The internal Reverse Comparator will react, and will start the process of discharging the Gate, when the reverse  
current reaches:  
ID(REV) = VSD(REV) / RDS(ON)  
(2)  
When the MOSFET is finally switched off, the energy stored in the parasitic wiring inductances will be transferred  
to the rest of the circuit. As a result, the LM5050-1 IN pin will see a negative voltage spike while the OUT pin will  
see a positive voltage spike. The IN pin can be protected by diode clamping the pin to GND in the negative  
direction. The OUT pin can be protected with a TVS protection diode, a local bypass capacitor, or both. In low  
voltage applications, the MOSFET drainto- source breakdown voltage rating may be adequate to protect the  
OUT pin (that is, VIN + V(BR)DSS(MAX) < 75 V ), but most MOSFET data sheets do not ensure the maximum  
breakdown rating, so this method should be used with caution.  
Parasitic  
Inductance  
Parasitic  
Inductance  
Reverse Recovery Current  
C
OUT  
C
LOAD  
IN  
GATE OUT  
LM5050-1  
Shorted  
Input  
VS  
GND  
Figure 23. Reverse Recovery Current Generates Inductive Spikes at VIN and VOUT pins.  
8.2 Typical Applications  
8.2.1 Typical Application With Input and Output Transient Protection  
Q1  
SUM40N10-30  
V
IN  
V
OUT  
48V  
S
D
D1  
G
C
SS16T3  
IN  
R1  
1 mF  
75V  
C
OUT  
100W  
+
OUT  
VS  
IN  
GATE  
D2  
SMBJ60A  
22 mF  
63V  
LM5050-1  
C1  
0.1 mF  
100V  
OFF  
OFF/ON  
GND  
GND  
GND  
Figure 24. Typical Application With Input and Output Transient Protection Schematic  
16  
Copyright © 2011–2019, Texas Instruments Incorporated  
 
 
LM5050-1, LM5050-1-Q1  
www.ti.com.cn  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
Typical Applications (continued)  
8.2.1.1 Design Requirements  
Table 1 shows the parameters for Figure 24  
Table 1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Minimum Input Voltage, VINMIN  
Maximum Input Voltage, VINMax  
Output Current Range, IOUT  
Ambient Temperature Range, TA  
6 V  
50 V  
0 to 15 A  
0°C to 50°C  
8.2.1.2 Detailed Design Procedure  
The following design procedure can be used to select component values for the LM5050-1.  
8.2.1.2.1 Power Supply Components (R1 C1,) Selection  
The LM5050-1 VS pin is the main supply pin for all internal biasing and an auxiliary supply for the internal gate  
drive charge pump. The series resistor (R1) value should be low enough to keep the VS voltage drop at a  
minimum. A typical series resistor value is 100 . The capacitor value (0.1 uF typical) should be the lowest value  
that produces acceptable filtering of the voltage noise.  
8.2.1.2.2 MOSFET (Q1) Selection  
The MOSFET (Q1) selection procedure is explained in detail in MOSFET Selection. The MOSFET used in the  
design example is SUM40N10-30-E3.  
8.2.1.2.3 D1 and D2 Selection for Inductive Kick-Back Protection  
Diode D1 and capacitor C1 and diode D2 and capacitor C2 in the Figure 27 serve as inductive kick-back  
protection to limit negative transient voltage spikes generated on the input when the input supply voltage is  
abruptly shorted to zero volts. As a result, the LM5050-1 IN pin will see a negative voltage spike while the OUT  
pin will see a positive voltage spike. The IN pin can be protected by schottky diode (D1) clamping the pin to GND  
in the negative direction, similarly the OUT pin should be protected with a TVS protection diode (D1), or with a  
local bypass capacitor, or both. D1 is selected as 1-A, 60-V Schottky Barrier Rectifier (SS16T3G) and D2 is the  
60 V, TVS (SMBJ60A-13-F).  
8.2.1.3 Application Curves  
Figure 25. Forward voltage (VIN-VOUT) Drop Reduces  
When Gate is Enabled (VIN = 12 V)  
Figure 26. Forward Voltage (VIN-VOUT) Drop Increases  
When Gate is Disabled (VIN = 12 V)  
Copyright © 2011–2019, Texas Instruments Incorporated  
17  
 
LM5050-1, LM5050-1-Q1  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
www.ti.com.cn  
8.2.2 Using a Separate VS Supply for Low Vin Operation  
In some applications, it is desired to operate LM5050-1 from low supply voltage. The LM5050-1 can operate with  
a 1-V rail voltage, provided its VS pin is biased from 5 V to 75 V. The detail of such application is depicted in  
Figure 27.  
V
BIAS  
5.0V to 75V  
GND  
Q1  
V
IN  
V
OUT  
1V to 75V  
C1  
R1  
D1  
1.0 mF  
100V  
100  
+
OUT  
VS  
IN  
GATE  
C2  
D2  
22 mF  
100V  
TVS  
82V  
LM5050-1  
C3  
0.1 mF  
100V  
Off/On  
GND  
OFF  
GND  
GND  
Figure 27. Using a Separate vs Supply for Low Vin Operation Schematic  
8.2.3 ORing of Two Power Sources  
C
LOAD  
R
LOAD  
PS1  
IN  
GATE OUT  
LM5050-1  
GND  
VS  
C
OUT  
PS2  
IN  
GATE OUT  
LM5050-1  
GND  
VS  
Figure 28. ORing of Two Power Sources  
18  
Copyright © 2011–2019, Texas Instruments Incorporated  
 
LM5050-1, LM5050-1-Q1  
www.ti.com.cn  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
8.2.4 Reverse Input Voltage Protection With IQ Reduction  
If Vs is powered while IN is floating or grounded, then about 0.5 mA will leak from the Vs pin into the IC and  
about 3 mA will leak from the OUT pin into the IC. From this leakage, about 50 uA will flow out of the IN pin and  
the rest will flow to ground. This does not affect long term reliability of the IC, but may influence circuit design.  
In battery powered applications, whenever LM5050-1 functionality is not needed, the supply to the LM5050-1 can  
be disconnected by turning “OFF” Q2, as shown in Figure 29. This disconnects the ground path of the LM5050-1  
and eliminates the current leakage from the battery.  
The quiescent current of LM5050-1 can be also reduced by disconnecting the supply to VS pin, whenever  
LM5050-1 function is not need.  
Q1  
SUM40N10-30  
VIN  
48V  
VOUT  
R1  
100»  
IN  
GATE  
OUT  
VS  
D1  
LM5050-1  
GND  
SS16T3  
D4  
SMBJ60A  
CIN  
Cout  
22uF  
63V  
1uF  
75V  
D2  
BAS40-7-F  
D3  
SS16T3  
C1  
0.1µF  
100V  
Q2  
NTR5198NLT3G  
ON/OFF  
Control  
GND  
GND  
Figure 29. Reverse Input Voltage Protection With IQ Reduction Schematic  
8.2.5 Basic Application With Input Transient Protection  
Q1  
SUM40N10-30  
V
IN  
V
OUT  
S
D
5.0V to 75V  
D1  
G
C
B180-13-F  
IN  
1 mF  
100V  
OUT  
VS  
IN  
GATE  
LM5050-1  
OFF  
OFF/ON  
GND  
GND  
GND  
Figure 30. Basic Application With Input Transient Protection Schematic  
Copyright © 2011–2019, Texas Instruments Incorporated  
19  
 
LM5050-1, LM5050-1-Q1  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
www.ti.com.cn  
8.2.6 48-V Application With Reverse Input Voltage (VIN = –48 V) Protection  
Q1  
SUM40N10-30  
V
IN  
V
OUT  
48V  
S
D
D1  
G
C
SS16T3  
IN  
R1  
1 mF  
75V  
C
OUT  
100W  
+
OUT  
VS  
IN  
GATE  
D2  
SMBJ60A  
22 mF  
63V  
LM5050-1  
C1  
0.1 mF  
100V  
OFF  
GND  
D3  
SS16T3  
GND  
GND  
Figure 31. 48-V Application With Reverse Input Voltage (VIN = –48 V) Protection Schematic  
8.2.6.1 Application Curves  
Figure 32. Operation With Positive Polarity Input With  
(VIN = 25 V)  
Figure 33. Operation With Negative polarity Input With  
(VIN = –25 V)  
20  
Copyright © 2011–2019, Texas Instruments Incorporated  
LM5050-1, LM5050-1-Q1  
www.ti.com.cn  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
9 Power Supply Recommendations  
When the LM5050-1/-Q1 shuts off the external MOSFET, transient voltages will appear on the input and output  
due to reverse recovery, as discussed in Short Circuit Failure of an Input Supply.To prevent LM5050-1 and  
surrounding components from damage under the conditions of a direct input short circuit, it is necessary to clamp  
the negative transient at IN, and OUT pins with TVS.  
10 Layout  
10.1 Layout Guidelines  
The typical PCB layout for LM5050-1/-Q1 is shown in Figure 34. TI recommends connecting the IN, Gate and  
OUT pins close to the source and drain pins of the MOSFET. Keep the traces of the MOSFET drain wide and  
short to minimize resistive losses. Place surge suppressors (D1 and D4) components as shown in the example  
layout of LM5050-1 in Layout Example.  
10.2 Layout Example  
R1  
VS  
OUT  
Gate  
GND  
VOUT  
OFF  
IN  
LM5050-1  
D1  
CIN  
VIN  
D4  
GND  
Figure 34. Typical Layout Example With D2PAK N-MOSFET  
版权 © 2011–2019, Texas Instruments Incorporated  
21  
 
 
LM5050-1, LM5050-1-Q1  
ZHCSKM9F MAY 2011REVISED DECEMBER 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
《使用具有低电流和高噪声输入电源的 LM5050-1 实现稳定 VGS》,SLVA684  
11.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
2. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
样片与购买  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
工具与软件  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
LM5050-1  
LM5050-1-Q1  
11.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
22  
版权 © 2011–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM5050MK-1/NOPB  
LM5050MKX-1/NOPB  
LM5050Q0MK-1/NOPB  
LM5050Q0MKX-1/NOPB  
LM5050Q1MK-1/NOPB  
LM5050Q1MKX-1/NOPB  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
6
6
1000 RoHS & Green  
3000 RoHS & Green  
1000 RoHS & Green  
3000 RoHS & Green  
1000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 150  
-40 to 150  
-40 to 125  
-40 to 125  
SZHB  
SZHB  
SL5B  
SL5B  
SP3B  
SP3B  
SN  
SN  
SN  
SN  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM5050MK-1/NOPB  
SOT-23-  
THIN  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
6
6
1000  
3000  
1000  
3000  
1000  
3000  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
LM5050MKX-1/NOPB SOT-23-  
THIN  
LM5050Q0MK-1/NOPB SOT-23-  
THIN  
LM5050Q0MKX-1/NOPB SOT-23-  
THIN  
LM5050Q1MK-1/NOPB SOT-23-  
THIN  
LM5050Q1MKX-1/NOPB SOT-23-  
THIN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM5050MK-1/NOPB  
LM5050MKX-1/NOPB  
LM5050Q0MK-1/NOPB  
LM5050Q0MKX-1/NOPB  
LM5050Q1MK-1/NOPB  
LM5050Q1MKX-1/NOPB  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
6
6
1000  
3000  
1000  
3000  
1000  
3000  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDC0006A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
1
6
4X 0.95  
1.9  
3.05  
2.75  
4
3
0.5  
0.3  
0.1  
6X  
TYP  
0.0  
0.2  
C A B  
C
0 -8 TYP  
0.25  
GAGE PLANE  
SEATING PLANE  
0.20  
0.12  
TYP  
0.6  
0.3  
TYP  
4214841/C 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X (0.95)  
4
3
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4214841/C 04/2022  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0006A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
6X (1.1)  
1
6
6X (0.6)  
SYMM  
4X(0.95)  
4
3
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4214841/C 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LM5050-2

EVAL Evaluation Board Minimum Input Voltage, 6V
NSC

LM5050-2

LM5050-2 High Side OR-ing FET Controller
TI

LM5050MK-1

High Side OR-ing FET Controller
TI

LM5050MK-1/NOPB

5-V to 75-V, 400-uA IQ ideal diode controller 6-SOT-23-THIN -40 to 125
TI

LM5050MK-2

EVAL Evaluation Board Minimum Input Voltage, 6V
NSC

LM5050MK-2

LM5050-2 High Side OR-ing FET Controller
TI

LM5050MK-2/NOPB

LM5050-2 High Side OR-ing FET Controller
TI

LM5050MKX-1

High Side OR-ing FET Controller
TI

LM5050MKX-1/NOPB

5V 至 75V、400uA IQ ORing FET 控制器

| DDC | 6 | -40 to 125
TI

LM5050MKX-2

LM5050-2 High Side OR-ing FET Controller
TI

LM5050MKX-2/NOPB

LM5050-2 High Side OR-ing FET Controller
TI

LM5050Q0MK-1/NOPB

汽车类 5V 至 75V、400uA IQ ORing FET 控制器

| DDC | 6 | -40 to 150
TI