LM5100CMA [TI]

1A HALF BRDG BASED MOSFET DRIVER, PDSO8, MS-012AA, SOIC-8;
LM5100CMA
型号: LM5100CMA
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1A HALF BRDG BASED MOSFET DRIVER, PDSO8, MS-012AA, SOIC-8

驱动 光电二极管 接口集成电路 驱动器
文件: 总36页 (文件大小:1826K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
LM5100A/B/C, LM5101A/B/C 3-A, 2-A, and 1-A High-Voltage, High-Side  
and Low-Side Gate Drivers  
An integrated high-voltage diode is provided to  
charge the high-side gate drive bootstrap capacitor. A  
robust level shifter operates at high speed while  
consuming low power and providing clean level  
transitions from the control logic to the high-side gate  
driver. Undervoltage lockout is provided on both the  
low-side and the high-side power rails. These devices  
are available in the standard SOIC-8 pin, SO  
PowerPAD-8 pin, and the WSON-10 pin packages.  
The LM5100C and LM5101C are also available in  
MSOP-PowerPAD-8 package. The LM5101A is also  
available in WSON-8 pin package.  
1 Features  
1
Drives Both a High-Side and Low-Side N-Channel  
MOSFETs  
Independent High- and Low-Driver Logic Inputs  
Bootstrap Supply Voltage up to 118 V DC  
Fast Propagation Times (25-ns Typical)  
Drives 1000-pF Load With 8-ns Rise and Fall  
Times  
Excellent Propagation Delay Matching (3-ns  
Typical)  
Supply Rail Undervoltage Lockout  
Low Power Consumption  
Device Information(1)  
PEAK OUTPUT  
PART NUMBER INPUT THRESHOLD  
CURRENT  
Pin Compatible With HIP2100/HIP2101  
LM5100A  
LM5101A  
LM5100B  
LM5101B  
LM5100C  
LM5101C  
CMOS  
TTL  
3 A  
3 A  
2 A  
2 A  
1 A  
1 A  
2 Applications  
CMOS  
TTL  
Current-Fed Push-Pull Converters  
Half and Full Bridge Power Converters  
Synchronous Buck Converters  
CMOS  
TTL  
Two Switch Forward Power Converters  
Forward with Active Clamp Converters  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
3 Description  
The LM5100A/B/C and LM5101A/B/C high-voltage  
gate drivers are designed to drive both the high-side  
and the low-side N-Channel MOSFETs in  
a
synchronous buck or a half-bridge configuration. The  
floating high-side driver is capable of operating with  
supply voltages up to 100 V. The A versions provide  
a full 3-A of gate drive, while the B and C versions  
provide 2 A and 1 A, respectively. The outputs are  
independently controlled with CMOS input thresholds  
(LM5100A/B/C) or TTL input thresholds  
(LM5101A/B/C).  
Simplified Block Diagram  
HB  
UVLO  
HO  
HS  
DRIVER  
LEVEL  
SHIFT  
HI  
LI  
VDD  
UVLO  
LO  
DRIVER  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
www.ti.com  
Table of Contents  
8.3 Feature Description................................................. 14  
8.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 Typical Application ................................................. 16  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ..................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics ......................................... 6  
7.6 Switching Characteristics......................................... 8  
7.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 14  
8.1 Overview ................................................................. 14  
8.2 Functional Block Diagram ....................................... 14  
9
10 Power Supply Recommendations ..................... 20  
11 Layout................................................................... 21  
11.1 Layout Guidelines ................................................. 21  
11.2 Layout Example .................................................... 21  
12 Device and Documentation Support ................. 22  
12.1 Documentation Support ....................................... 22  
12.2 Related Links ........................................................ 22  
12.3 Community Resources.......................................... 22  
12.4 Trademarks........................................................... 22  
12.5 Electrostatic Discharge Caution............................ 22  
12.6 Glossary................................................................ 22  
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 22  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision P (March 2013) to Revision Q  
Page  
Added ESD Ratings table, Thermal Information table, Feature Description section, Device Functional Modes,  
Application and Implementation section, Power Supply Recommendations section, Layout section, Device and  
Documentation Support section, and Mechanical, Packaging, and Orderable Information section. .................................... 1  
Changes from Revision O (March 2013) to Revision P  
Page  
Changed layout of National Data Sheet to TI format ........................................................................................................... 19  
2
Submit Documentation Feedback  
Copyright © 2006–2015, Texas Instruments Incorporated  
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
 
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
www.ti.com  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
5 Device Comparison Table  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
4.00 mm × 4.00 mm  
3.90 mm × 4.89 mm  
3.91 mm × 4.90 mm  
4.00 mm × 4.00 mm  
3.91 mm × 4.90 mm  
4.00 mm × 4.00 mm  
4 .00mm × 4.00 mm  
3.90 mm × 4.89 mm  
3.91 mm × 4.90 mm  
3.00 mm × 3.00 mm  
4.00 mm × 4.00 mm  
3.91 mm × 4.90 mm  
WSON (10)  
LM5100A, LM5100C  
LM5100B, LM5101B  
SO PowerPAD™ (8)  
SOIC (8)  
WSON (10)  
SOIC (8)  
WSON (8)  
WSON (10)  
LM5101A  
LM5101C  
SO PowerPAD (8)  
SOIC (8)  
MSOP PowerPAD (8)  
WSON (10)  
SOIC (8)  
6 Pin Configuration and Functions  
D Package  
8-Pin SOIC  
Top View  
DPR Package  
10-Pin WSON With Exposed Thermal Pad  
Top View  
VDD  
HB  
LO  
1
2
3
4
8
7
6
5
LO  
VSS  
LI  
VDD  
HB  
1
2
3
4
5
10  
9
VSS  
SOIC-8  
HO  
HS  
8
7
6
WSON-10  
HO  
HS  
LI  
HI  
HI  
NC  
NC  
NGT Package  
8-Pin WSON With Exposed Thermal Pad  
Top View  
DDA Package  
8-Pin SO PowerPAD  
Top View  
VDD  
HB  
1
2
3
4
8
7
6
5
LO  
VSS  
LI  
LO  
1
2
3
4
8
VDD  
WSON-8  
7
VSS  
HB  
HO  
HS  
HO  
HS  
SO  
PowerPad-8  
HI  
LI  
6
5
HI  
Exposed Pad  
Connect to VSS  
Copyright © 2006–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
www.ti.com  
DGN Package  
8-Pin MSOP-PowerPAD  
Top View  
VDD  
HB  
1
LO  
8
7
6
5
VSS  
2
3
4
MSOP-  
PowerPad-8  
HO  
HS  
LI  
HI  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
8 PINS  
10 PINS(1)  
High-side gate driver bootstrap supply. Connect the positive terminal of the bootstrap  
capacitor to HB and the negative terminal to HS. The bootstrap capacitor should be  
placed as close to the IC as possible.  
HB  
2
2
I
I
High-side driver control input. The LM5100A/B/C inputs have CMOS type thresholds.  
The LM5101A/B/C inputs have TTL type thresholds. Unused inputs should be tied to  
ground and not left open.  
HI  
5
7
High-side gate driver output. Connect to the gate of high-side MOSFET with a short,  
low inductance path.  
HO  
HS  
3
4
3
4
O
High-side MOSFET source connection. Connect to the bootstrap capacitor negative  
terminal and the source of the high-side MOSFET.  
Low-side driver control input. The LM5100A/B/C inputs have CMOS type thresholds.  
The LM5101A/B/C inputs have TTL type thresholds. Unused inputs should be tied to  
ground and not left open.  
LI  
6
8
8
I
Low-side gate driver output. Connect to the gate of the low-side MOSFET with a  
short, low inductance path.  
LO  
10  
O
Positive gate drive supply . Locally decouple to VSS using low ESR/ESL capacitor  
located as close to the IC as possible.  
VDD  
VSS  
1
7
1
9
I
Ground return. All signals are referenced to this ground.  
TI recommends that the exposed pad on the bottom of the package is soldered to  
ground plane on the PC board, and that ground plane should extend out from  
beneath the IC to help dissipate heat.  
EP(2)  
(1) For WSON-10 package, pins 5 and 6 have no connection.  
(2) Exposed pad is not available on the 8-pin SOIC package.  
4
Submit Documentation Feedback  
Copyright © 2006–2015, Texas Instruments Incorporated  
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
www.ti.com  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
7 Specifications  
7.1 Absolute Maximum Ratings  
(1)(2)  
See  
MIN  
0.3  
0.3  
0.3  
0.3  
HS 0.3  
5  
MAX  
18  
UNIT  
V
VDD to VSS  
HB to HS  
18  
V
LI or HI input  
LO output  
VDD + 0.3  
VDD + 0.3  
VHB + 0.3  
100  
V
V
HO output  
V
V
(3)  
HS to VSS  
V
HB to VSS  
118  
V
Junction temperature  
Storage temperature  
150  
°C  
°C  
55  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military or Aerospace specified devices are required, contact the Texas Instruments Sales Office or Distributors for availability and  
specifications.  
(3) In the application the HS node is clamped by the body diode of the external lower N-MOSFET, therefore the HS node will generally not  
exceed –1 V. However, in some applications, board resistance and inductance may result in the HS node exceeding this stated voltage  
transiently. If negative transients occur, the HS voltage must never be more negative than VDD – 15 V. For example if VDD = 10 V, the  
negative transients at HS must not exceed –5 V.  
7.2 ESD Ratings  
VALUE  
±2000  
50  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Option A  
Option B and C  
Electrostatic  
discharge  
V(ESD)  
V
(2)  
Machine Model (MM)  
100  
(1) The Human Body Model (HBM) is a 100-pF capacitor discharged through a 1.5-kresistor into each pin. 2 kV for all pins except Pin 2,  
Pin 3 and Pin 4 which are rated at 1000 V for HBM.  
(2) Machine Model (MM) ratings are: 100 V(MM) for Options B and C; 50 V(MM) for Option A.  
7.3 Recommended Operating Conditions  
MIN  
9
NOM  
MAX  
14  
UNIT  
V
VDD  
HS  
–1  
100  
V
HB  
VHS + 8  
VHS + 14  
< 50  
V
HS slew rate  
Junction temperature  
V/ns  
°C  
40  
125  
Copyright © 2006–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
www.ti.com  
7.4 Thermal Information  
LM5100A,  
LM5100C,  
LM5101A  
LM5100x,  
LM5101x  
LM5101C  
LM5101A  
WSON(2)  
THERMAL METRIC(1)  
UNIT  
MSOP-  
SO PowerPAD  
WSON(2)  
SOIC  
PowerPAD(2)  
8 PINS  
40  
8 PINS  
80  
8 PINS  
37.8  
36.7  
14.9  
0.3  
10 PINS  
8 PINS  
170  
RθJA  
Junction-to-ambient thermal resistance(3)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
40  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
15.2  
4.4  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) 4-layer board with Cu finished thickness 1.5, 1, 1, 1.5 oz. Maximum die size used. 5× body length of Cu trace on PCB top.  
50-mm × 50-mm ground and power planes embedded in PCB. See Application Note AN-1187 (SNOA401).  
(3) The RθJA is not a given constant for the package and depends on the printed circuit board design and the operating environment.  
7.5 Electrical Characteristics  
unless otherwise specified, limits are for TJ = 25°C, VDD = VHB = 12 V, VSS = VHS = 0 V, no load on LO or HO  
(1)  
.
PARAMETER  
SUPPLY CURRENTS  
TEST CONDITIONS  
MIN  
TYP  
0.1  
0.25  
2
MAX UNIT  
TJ = 25°C  
VDD quiescent current,  
LM5100A/B/C  
LI = HI = 0 V  
LI = HI = 0 V  
f = 500 kHz  
LI = HI = 0 V  
f = 500 kHz  
mA  
0.2  
TJ = –40°C to 125°C  
IDD  
TJ = 25°C  
VDD quiescent current,  
LM5101A/B/C  
mA  
0.4  
TJ = –40°C to 125°C  
TJ = 25°C  
IDDO  
VDD operating current  
mA  
3
TJ = –40°C to 125°C  
TJ = 25°C  
0.06  
1.6  
0.1  
0.4  
5.4  
1.8  
IHB  
Total HB quiescent current  
Total HB operating current  
mA  
0.2  
TJ = –40°C to 125°C  
TJ = 25°C  
IHBO  
mA  
3
TJ = –40°C to 125°C  
TJ = 25°C  
IHBS  
HB to VSS current, quiescent  
HB to VSS current, operating  
HS = HB = 100 V  
f = 500 kHz  
µA  
10  
TJ = –40°C to 125°C  
IHBSO  
mA  
INPUT PINS  
TJ = 25°C  
Input voltage threshold  
LM5100A/B/C  
VIL  
VIL  
Rising Edge  
Rising Edge  
V
TJ = –40°C to 125°C  
TJ = 25°C  
4.5  
1.3  
6.3  
Input voltage threshold  
LM5101A/B/C  
V
TJ = –40°C to 125°C  
2.3  
Input voltage hysteresis  
LM5100A/B/C  
VIHYS  
VIHYS  
500  
mV  
mV  
Input voltage hysteresis  
LM5101A/B/C  
50  
TJ = 25°C  
200  
RI  
Input pulldown resistance  
kΩ  
TJ = –40°C to 125°C  
100  
400  
(1) Minimum and maximum limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through  
correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate Average Outgoing Quality Level (AOQL).  
6
Submit Documentation Feedback  
Copyright © 2006–2015, Texas Instruments Incorporated  
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
 
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
www.ti.com  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
Electrical Characteristics (continued)  
unless otherwise specified, limits are for TJ = 25°C, VDD = VHB = 12 V, VSS = VHS = 0 V, no load on LO or HO (1)  
.
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
UNDER VOLTAGE PROTECTION  
TJ = 25°C  
6.9  
VDDR  
VDDH  
VHBR  
VHBH  
VDD rising threshold  
VDD threshold hysteresis  
HB rising threshold  
V
TJ = –40°C to 125°C  
6
7.4  
0.5  
6.6  
V
TJ = 25°C  
V
TJ = –40°C to 125°C  
5.7  
7.1  
HB threshold hysteresis  
0.4  
0.52  
0.8  
V
BOOT STRAP DIODE  
TJ = 25°C  
VDL  
VDH  
RD  
Low-current forward voltage  
IVDD-HB = 100 µA  
IVDD-HB = 100 mA  
IVDD-HB = 100 mA  
V
TJ = –40°C to 125°C  
TJ = 25°C  
0.85  
High-current forward voltage  
V
1
TJ = –40°C to 125°C  
TJ = 25°C  
1.0  
Dynamic resistance  
LM5100A/B/C, LM5101A/B/C  
Ω
TJ = –40°C to 125°C  
1.65  
LO AND HO GATE DRIVER  
Low-level output voltage  
TJ = 25°C  
0.12  
0.16  
0.28  
0.24  
0.28  
0.6  
V
LM5100A/LM5101A  
TJ = –40°C to 125°C  
TJ = 25°C  
0.25  
Low-level output voltage  
LM5100B/LM5101B  
VOL  
IHO = ILO = 100 mA  
V
TJ = –40°C to 125°C  
TJ = 25°C  
0.4  
Low-level output voltage  
LM5100C/LM5101C  
V
TJ = –40°C to 125°C  
TJ = 25°C  
0.65  
High-level output voltage  
LM5100A/LM5101A  
V
TJ = –40°C to 125°C  
TJ = 25°C  
0.45  
IHO = ILO = 100 mA  
VOH = VDD– LO or  
VOH = HB - HO  
High-level output voltage  
LM5100B/LM5101B  
VOH  
V
TJ = –40°C to 125°C  
TJ = 25°C  
0.60  
High-level output voltage  
LM5100C/LM5101C  
V
TJ = –40°C to 125°C  
1.10  
Peak pullup current  
LM5100A/LM5101A  
3
2
1
3
2
1
A
A
A
A
A
A
Peak pullup current  
LM5100B/LM5101B  
IOHL  
HO, LO = 0 V  
TJ = 25°C  
Peak pullup current  
LM5100C/LM5101C  
Peak pulldown current  
LM5100A/LM5101A  
Peak pulldown current  
LM5100B/LM5101B  
IOLL  
HO, LO = 12 V  
TJ = 25°C  
Peak pulldown current  
LM5100C/LM5101C  
Copyright © 2006–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
 
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
www.ti.com  
7.6 Switching Characteristics  
Limits in standard type are for TJ = 25°C only; limits in boldface type apply over the junction temperature (TJ) range of –40°C  
to +125°C. Minimum and Maximum limits are specified through test, design, or statistical correlation. Typical values represent  
the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise specified, VDD  
=
(1)  
VHB = 12 V, VSS = VHS = 0 V, No Load on LO or HO  
.
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
20  
MAX  
45  
UNIT  
ns  
LO turnoff propagation delay LM5100A/B/C  
tLPHL  
LI Falling to LO Falling  
LI Rising to LO Rising  
LO turnoff propagation delay LM5101A/B/C  
22  
56  
ns  
LO turnon propagation delay LM5100A/B/C  
tLPLH  
20  
45  
ns  
LO turnon propagation delay LM5101A/B/C  
26  
56  
ns  
HO turnoff propagation delay  
LM5100A/B/C  
20  
22  
45  
56  
ns  
ns  
tHPHL  
HI Falling to HO Falling  
HI Rising to HO Rising  
HO turnoff propagation delay  
LM5101A/B/C  
LO turnon propagation delay LM5100A/B/C  
tHPLH  
20  
26  
45  
56  
ns  
ns  
LO turnon propagation delay LM5101A/B/C  
Delay matching: LO on and HO off  
LM5100A/B/C  
1
4
1
10  
10  
10  
10  
ns  
ns  
ns  
tMON  
Delay matching: LO on and HO off  
LM5101A/B/C  
Delay matching: LO off and HO on  
LM5100A/B/C  
tMOFF  
Delay matching: LO on and HO off  
LM5101A/B/C  
4
8
ns  
ns  
ns  
tRC, tFC  
Either output rise and fall time  
CL = 1000 pF  
CL = 0.1 µF  
Output rise time (3 V to 9 V)  
LM5100A/LM5101A  
430  
Output rise time (3 V to 9 V)  
LM5100B/LM5101B  
tR  
570  
990  
260  
430  
715  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output rise time (3 V to 9 V)  
LM5100C/LM5101C  
Output fall time (3 V to 9 V)  
LM5100A/LM5101A  
Output fall time (3 V to 9 V)  
LM5100B/LM5101B  
tF  
CL = 0.1 µF  
Output fall time (3 V to 9 V)  
LM5100C/LM5101C  
Minimum input pulse width that changes  
the output  
tPW  
tBS  
IF = 100 mA,  
IR = 100 mA  
Bootstrap diode reverse recovery time  
37  
(1) Minimum and maximum limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through  
correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate Average Outgoing Quality Level (AOQL).  
8
Submit Documentation Feedback  
Copyright © 2006–2015, Texas Instruments Incorporated  
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
www.ti.com  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
LI  
LI  
HI  
HI  
t
HPLH  
t
LPLH  
t
HPHL  
t
LPHL  
LO  
LO  
HO  
HO  
t
t
MOFF  
MON  
Figure 1. Timing Diagram  
Copyright © 2006–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
www.ti.com  
7.7 Typical Characteristics  
5.0  
4.5  
4.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
LM5100A/LM5101A  
3.5  
LM5100A/LM5101A  
3.0  
2.5  
2.0  
LM5100B/LM5101B  
LM5100B/LM5101B  
1.5  
1.0  
LM5100C/LM5101C  
LM5100C/LM5101C  
0.5  
0.5  
0.0  
0.0  
7
8
9
10 11 12 13 14 15  
VDD (V)  
7
8
9
10 11 12 13 14 15  
VDD (V)  
Figure 3. Peak Sinking Current vs VDD  
Figure 2. Peak Sourcing Current vs VDD  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
V
= 12 V  
DD  
V
= 12 V  
DD  
LM5100A/LM5101A  
LM5100A/LM5101A  
LM5100B/LM5101B  
LM5100B/LM5101B  
LM5100C/LM5101C  
LM5100C/LM5101C  
0.5  
0.0  
0.5  
0.0  
0
2
4
8
10  
12  
6
0
2
4
8
10  
12  
6
OUTPUT VOLTAGE (V)  
Figure 4. Sink Current vs Output Voltage  
OUTPUT VOLTAGE (V)  
Figure 5. Source Current vs Output Voltage  
100000  
10000  
1000  
100  
100000  
10000  
1000  
V
= 12 V  
DD  
V
DD  
= 12 V  
C
= 4400 pF  
L
C
= 4400 pF  
L
C
= 1000 pF  
L
C
= 1000 pF  
L
C
= 0 pF  
L
C
L
= 0 pF  
100  
10  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 7. LM5101A/B/C IDD vs Frequency  
Figure 6. LM5100A/B/C IDD vs Frequency  
10  
Submit Documentation Feedback  
Copyright © 2006–2015, Texas Instruments Incorporated  
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
www.ti.com  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
Typical Characteristics (continued)  
100000  
2.3  
HB = 12 V,  
HS = 0 V  
2.1  
I
(LM5101A/B/C)  
DDO  
C
= 4400 pF  
L
10000  
1000  
100  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
I
(LM5100A/B/C)  
DDO  
C
= 1000 pF  
L
I
HBO  
C
= 0 pF  
L
10  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (oC)  
Figure 8. Operating Current vs Temperature  
400  
0.1  
1
10  
FREQUENCY (kHz)  
Figure 9. IHB vs Frequency  
100  
1000  
350  
300  
250  
200  
150  
100  
50  
350  
300  
250  
200  
150  
100  
50  
I
(LM5101A/B/C)  
DD  
I
(LM5101A/B/C)  
DD  
I
(LM5100A/B/C)  
DD  
I
(LM5100A/B/C)  
DD  
I
HB  
I
HB  
0
0
8
9
10 11 12 13 14 15 16  
, V (V)  
-50 -25  
0
25 50 75 100 125 150  
V
TEMPERATURE (°C)  
DD HB  
Figure 10. Quiescent Current vs Supply Voltage  
Figure 11. Quiescent Current vs Temperature  
0.60  
7.30  
7.20  
7.10  
7.00  
0.55  
V
DDH  
0.50  
0.45  
0.40  
0.35  
0.30  
V
DDR  
6.90  
6.80  
6.70  
6.60  
6.50  
6.40  
6.30  
V
HBH  
V
HBR  
-50  
0
25  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (oC)  
TEMPERATURE (°C)  
Figure 13. Undervoltage Threshold Hysteresis vs  
Temperature  
Figure 12. Undervoltage Rising Thresholds vs Temperature  
Copyright © 2006–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
www.ti.com  
Typical Characteristics (continued)  
1.00E-01  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
T = 150°C  
1.00E-02  
Rising  
1.00E-03  
T = 25°C  
1.00E-04  
Falling  
T = -40°C  
1.00E-05  
1.00E-06  
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
V
(V)  
D
Figure 15. LM5100A/B/C Input Threshold vs Temperature  
Figure 14. Bootstrap Diode Forward Voltage  
1.92  
1.91  
50  
49  
1.90  
Rising  
1.89  
48  
Rising  
47  
46  
45  
44  
1.88  
1.87  
1.86  
Falling  
1.85  
1.84  
1.83  
1.82  
1.81  
1.80  
43  
Falling  
42  
41  
40  
-50 -25  
0
25 50 75 100 125 150  
8
9
10 11 12 13 14 15 16  
VDD (V)  
TEMPERATURE (°C)  
Figure 16. LM5101A/B/C Input Threshold vs Temperature  
Figure 17. LM5100A/B/C Input Threshold vs VDD  
35  
1.92  
1.91  
1.90  
Rising  
1.89  
30  
1.88  
1.87  
1.86  
25  
1.85  
T_PLH  
Falling  
1.84  
20  
T_PHL  
1.83  
1.82  
1.81  
1.80  
15  
-50 -25  
0
25 50 75 100 125 150  
8
9
10 11 12 13 14 15 16  
VDD (V)  
TEMPERATURE (°C)  
Figure 18. LM5101A/B/C Input Threshold vs VDD  
Figure 19. LM5100A/B/C Propagation Delay vs Temperature  
12  
Submit Documentation Feedback  
Copyright © 2006–2015, Texas Instruments Incorporated  
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
www.ti.com  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
Typical Characteristics (continued)  
1.0  
40  
V
DD  
= 12 V  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
35  
LM5100C/LM5101C  
30  
T_PLH  
LM5100B/LM5101B  
25  
T_PHL  
20  
15  
LM5100A/LM5101A  
0.0  
-50 -25  
0
25 50 75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 21. LO and HO Gate Drive - High Level Output  
Voltage vs Temperature  
Figure 20. LM5101A/B/C Propagation Delay vs Temperature  
0.50  
0.8  
V
= 12 V  
DD  
I
= -100 mA  
OUT  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
LM5100C/LM5101C  
LM5100C/LM5101C  
LM5100B/LM5101B  
LM5100B/LM5101B  
LM5100A/LM5101A  
LM5100A/LM5101A  
0.00  
-50 -25  
0
25 50 75 100 125 150  
7
8
9
10 11 12 13 14 15  
VDD (V)  
TEMPERATURE (°C)  
Figure 22. LO and HO Gate Drive - Low Level Output  
Voltage vs Temperature  
Figure 23. LO and HO Gate Drive - Output High Voltage vs  
VDD  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
I
= 100 mA  
OUT  
LM5100C/LM5101C  
LM5100B/LM5101B  
LM5100A/LM5101A  
7
8
9
10 11 12 13 14 15  
VDD (V)  
Figure 24. LO and HO Gate Drive - Output Low Voltage vs VDD  
Copyright © 2006–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The LM5100A/B/C and LM5101A/B/C are designed to drive both the high-side and the low-side N-channel FETs  
in a synchronous buck or a half-bridge configuration. The outputs are independently controlled with CMOS input  
thresholds(LM5101A/B/C) or TTL input thresholds(LM5101A/B/C). The floating high-side driver is capable of  
working with supply voltages up to 100 V. An integrated high voltage diode is provided to charge high side gate  
drive bootstrap capacitor. A robust level shifter operates at high speed while consuming low power and providing  
clean level transitions from the control logic to the high side gate driver. Under-voltage lockout is provided on  
both the low side and the high side power rails.  
8.2 Functional Block Diagram  
HB  
UVLO  
HO  
HS  
DRIVER  
LEVEL  
SHIFT  
HI  
LI  
VDD  
UVLO  
LO  
DRIVER  
GND  
8.3 Feature Description  
8.3.1 Start-up and UVLO  
Both high and low-side drivers include under voltage lockout (UVLO) protection circuitry which monitors the  
supply voltage (VDD) and bootstrap capacitor voltage (VHB–HS) independently. The UVLO circuit inhibits each  
driver until sufficient supply voltage is available to turn on the external MOSFETs, and the built-in UVLO  
hysteresis prevents chattering during supply voltage transitions. When the supply voltage is applied to the VDD  
pin of the LM5100A/B/C and LM5101A/B/C, the outputs of the low-side and high-side are held low until VDD  
exceeds the UVLO threshold, typically about 6.6 V. Any UVLO condition on the bootstrap capacitor will disable  
only the high-side output (HO).  
8.3.2 Level Shift  
The level shift circuit is the interface from the high-side input to the high-side driver stage which is referenced to  
the switch node (HS). The level shift allows control of the HO output referenced to the HS pin and provides  
excellent delay matching with the low-side driver.  
14  
Submit Documentation Feedback  
Copyright © 2006–2015, Texas Instruments Incorporated  
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
 
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
www.ti.com  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
Feature Description (continued)  
8.3.3 Bootstrap Diode  
The bootstrap diode necessary to generate the high-side bias is included in the LM5100/1 family. The diode  
anode is connected to VDD and cathode connected to VHB. With the VHB capacitor connected to HB and the HS  
pins, the VHB capacitor charge is refreshed every switching cycle when HS transitions to ground. The boot diode  
provides fast recovery times, low diode resistance, and voltage rating margin to allow for efficient and reliable  
operation.  
8.3.4 Output Stages  
The output stages are the interface to the power MOSFETs in the power train. High slew rate, low resistance,  
and high peak current capability of both output drivers allow for efficient switching of the power MOSFETs. The  
low-side output stage is referenced from VDD to VSS and the high-side is referenced from VHB to VHS  
.
8.4 Device Functional Modes  
The device operates in normal mode and UVLO mode. See Start-up and UVLO for more information on UVLO  
operation mode. In normal mode, the output stage is dependent on the states of the HI and LI pins.  
Table 1. Input/Output Logic Table  
HI  
L
LI  
L
HO(1)  
LO(2)  
L
L
L
H
L
L
H
L
H
H
H
L
H
x(3)  
H
x
H
L
(1) HO is measured with respect to the HS.  
(2) LO is measured with the respect to the VSS.  
(3) x is floating condition  
Copyright © 2006–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
www.ti.com  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
To affect fast switching of power devices and reduce associated switching power losses, a powerful gate driver is  
employed between the PWM output of controllers and the gates of the power semiconductor devices. Also, gate  
drivers are indispensable when it is impossible for the PWM controller to directly drive the gates of the switching  
devices. With the advent of digital power, this situation will be often encountered because the PWM signal from  
the digital controller is often a 3.3-V logic signal which cannot effectively turn on a power switch. Level shifting  
circuitry is needed to boost the 3.3-V signal to the gate-drive voltage (such as 12 V) in order to fully turn on the  
power device and minimize conduction losses. Traditional buffer drive circuits based on NPN/PNP bipolar  
transistors in totem-pole arrangement, being emitter follower configurations, prove inadequate with digital power  
because they lack level-shifting capability. Gate drivers effectively combine both the level-shifting and buffer-drive  
functions. Gate drivers also find other needs such as minimizing the effect of high-frequency switching noise by  
locating the high-current driver physically close to the power switch, driving gate-drive transformers and  
controlling floating power-device gates, reducing power dissipation and thermal stress in controllers by moving  
gate charge power losses from the controller into the driver.  
The LM5100A/B/C and LM5101A/B/C are the high voltage gate drivers that are designed to drive both the high-  
side and low-side N-Channel MOSFETs in a half-bridge/full bridge configuration or in a synchronous buck circuit.  
The floating high side driver is capable of operating with supply voltages up to 100 V. This allows for N-Channel  
MOSFET control in half-bridge, full-bridge, push-pull, two switch forward and active clamp topologies. The  
outputs are independently controlled. Each channel is controlled by its respective input pins (HI and LI), allowing  
full and independent flexibility to control on and off state of the output.  
9.2 Typical Application  
Optional external  
fast recovery diode  
VIN  
VCC  
RBOOT DBOOT  
HB  
LM5101A  
VSS  
RGATE  
HO  
VDD  
OUT1  
OUT2  
VDD  
HI  
CBOOT  
0.1 µF  
HS  
LO  
PWM  
Controller  
T1  
LI  
RGATE  
1.0 µF  
Figure 25. LM5101A Driving MOSFETs in Half-Bridge Configuration  
16  
Submit Documentation Feedback  
Copyright © 2006–2015, Texas Instruments Incorporated  
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
www.ti.com  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
Typical Application (continued)  
9.2.1 Design Requirements  
See Table 2 for the parameter and values.  
Table 2. Operating Parameters  
PARAMETER  
Gate Driver  
MOSFET  
VDD  
VALUE  
LM5101A  
CSD18531Q5A  
10 V  
Qgmax  
Fsw  
43 nC  
100 kHz  
95%  
Dmax  
IHBS  
10 µA  
VDH  
1.0 V  
VHBR  
7.1 V  
VHBH  
0.4 V  
9.2.2 Detailed Design Procedure  
9.2.2.1 Select Bootstrap and VDD capacitor  
The bootstrap capacitor must maintain the HB pin voltage above the UVLO voltage for the HB circuit in any  
circumstances during normal operation. Calculate the maximum allowable drop across the bootstrap capacitor  
with Equation 1.  
ΔVHB = VDD – VDH – VHBL= 10 V – 1.0 V – 6.7 V = 2.3 V  
where  
VDD = Supply voltage of the gate drive IC  
VDH = Bootstrap diode forward voltage drop  
VHBL = VHBR – VHBH = 6.7 V, HB falling threshold  
(1)  
The quiescent current of the bootstrap circuit is 10 µA, which is negligible compared to the Qgs of the MOSFET  
(see Equation 2 and Equation 3).  
DMAX  
0.95  
QTOTAL = Qgmax +IHBS  
= 43 nC +10 µA  
= 43.01nC  
FSW  
100 kHz  
(2)  
QTOTAL  
43.01nC  
2.3 V  
CBOOT  
=
=
=18.7 nF  
DVHB  
(3)  
In practice the value for the CBOOT capacitor should be greater than that calculated to allow for situations where  
the power stage may skip pulse due to load transients. It is recommended to place the bootstrap capacitor as  
close to the HB and HS pins as possible.  
CBOOT = 100 nF  
(4)  
As a general rule the local VDD bypass capacitor should be 10 times greater than the value of CBOOT.  
CVDD = 10 × CBOOT = 1 µF  
(5)  
The bootstrap and bias capacitors should be ceramic types with X7R dielectric. The voltage rating should be  
twice that of the maximum VDD to allow for loss of capacitance once the devices have a DC bias voltage across  
them and to ensure long-term reliability of the devices.  
Copyright © 2006–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
 
 
 
 
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
www.ti.com  
9.2.2.2 Select External Bootstrap Diode and Resistor  
The bootstrap capacitor is charged by the VDD through the internal bootstrap diode every cycle when low side  
MOSFET turns on. The charging of the capacitor involves high peak currents, and therefore transient power  
dissipation in the internal bootstrap diode may be significant and dependent on its forward voltage drop. Both the  
diode conduction losses and reverse recovery losses contribute to the total losses in the gate driver and need to  
be considered in the gate driver IC power dissipation.  
For high frequency and high capacitive loads, it may be necessary to consider using an external bootstrap diode  
placed in parallel with internal bootstrap diode to reduce power dissipation of the driver. For the selection of  
external bootstrap diodes for LM510x device, please refer to the application note SNVA083.  
Bootstrap resistor RBOOT is selected to reduce the inrush current in DBOOT and limit the ramp up slew rate of  
voltage of HB-HS. It is recommended that RBOOT is between 2 Ω and 10 Ω. For this design, a current limiting  
resistor of 2.2 Ω is selected to limit inrush current of bootstrap diode.  
V
DD - VDBOOT  
10 V - 0.6 V  
IDBOOT pk  
( )  
=
=
=4.27 A  
RBOOT  
2.2 W  
(6)  
9.2.2.3 Select Gate driver Resistor  
Resistor RGATE is sized to reduce ringing caused by parasitic inductances and capacitances and also to limit the  
current coming out of the gate driver. For this design 4.7-Ω resistors were selected for this design. Maximum HO  
and LO drive current are calculated by Equation 7 through Equation 10.  
V
DD - VDH - VOH  
10 V -1.0 V - 0.45 V  
IHOH  
ILOH  
IHOL  
ILOL  
=
=
=
=
= 1.819 A  
RGATE  
4.7 W  
(7)  
(8)  
(9)  
VDD - VOH  
10 V - 0.45 V  
4.7 W  
=
= 2.032 A  
RGATE  
VDD - VDH - VOL  
10 V -1.0 V - 0.25 V  
4.7 W  
=
= 1.862 A  
RGATE  
VDD - VOH  
10 V - 0.25 V  
4.7 W  
=
=
= 2.074 A  
RGATE  
where  
IHOH = Maximum HO source current  
ILOH = Maximum LO source current  
IHOL = Maximum HO sink current  
ILOH = Maximum HO sink current  
VOH = High-Level output voltage drop across HB to HO or VDD to LO  
VOL = Low-Level output voltage drop across HO to HS or LO to GND  
(10)  
9.2.2.4 Estimate the Driver Power Losses  
The total IC power dissipation is the sum of the gate driver losses and the bootstrap diode losses. The gate  
driver losses are related to the switching frequency (fsw), output load capacitance on LO and HO (CL), and supply  
voltage (VDD). The gate charge losses can be calculated by Equation 11.  
PDGATES = 2´ VD2D ´CL ´ fsw  
(11)  
There are some additional losses in the gate drivers due to the internal CMOS stages used to buffer the LO and  
HO outputs. The following plot shows the measured gate driver power dissipation versus frequency and load  
capacitance. At higher frequencies and load capacitance values, the power dissipation is dominated by the  
power losses driving the output loads and agrees well with Equation 11. Figure 26 can be used to approximate  
the power losses due to the gate drivers.  
18  
Submit Documentation Feedback  
Copyright © 2006–2015, Texas Instruments Incorporated  
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
 
 
 
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
www.ti.com  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
1.000  
0.100  
0.010  
0.001  
C
= 4400 pF  
L
C
= 1000 pF  
L
C
= 0 pF  
L
0.1  
1.0  
10.0  
100.0  
1000.0  
SWITCHING FREQUENCY (kHz)  
Figure 26. Gate Driver Power Dissipation (LO + HO)  
VDD = 12 V, Neglecting Diode Losses  
The internal bootstrap diode power loss is the sum of the forward bias power loss that occurs while charging the  
bootstrap capacitor and the reverse bias power loss that occurs during reverse recovery. Since each of these  
events happens once per cycle, the diode power loss is proportional to frequency. Larger capacitive loads  
require more energy to recharge the bootstrap capacitor resulting in more losses. Higher input voltages (VIN) to  
the half bridge result in higher reverse recovery losses. The following plot was generated based on calculation  
and lab measurements of the diode recovery time and current under several operating conditions. This can be  
useful for approximating the internal diode power dissipation. If the diode losses can be significant, an external  
diode placed in parallel with the internal bootstrap diode can be helpful to reduce power dissipation within the IC.  
0.100  
C
= 4400 pF  
L
C
= 0 pF  
L
0.010  
0.001  
1
10  
100  
1000  
SWITCHING FREQUENCY (kHz)  
Figure 27. Diode Power Dissipation VIN = 50 V  
The total IC power dissipation can be estimated from the plots shown in Figure 26 and Figure 27 by summing the  
gate drive losses with the internal bootstrap diode losses for the intended application. For a given ambient  
temperature, the maximum allowable power loss of the IC can be defined as equation Equation 12.  
TJ - TA  
P
=
loss  
RqJA  
where  
Ploss = The total power dissipation of the driver  
TJ = Junction temperature  
TA = Ambient temperature  
RθJA = Junction-to-ambient thermal resistance  
(12)  
19  
Copyright © 2006–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
 
 
 
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
www.ti.com  
The thermal metrics for the driver package is summarized in the Thermal Information table. For detailed  
information regarding the thermal information table, refer to the Application Note from Texas Instruments entitled  
Semiconductor and IC Package Thermal Metrics SPRA953.  
9.2.3 Application Curves  
Figure 28. HI/LI to HO/LO Turnon Propagation Delay  
Figure 29. HI/LI to HO/LO Turnoff Propagation Delay  
10 Power Supply Recommendations  
The bias supply voltage range for which the device is rated to operate is from 9 V to 14 V. The lower end of this  
range is governed by the internal under voltage-lockout (UVLO) protection feature on the VDD pin supply circuit  
blocks. Whenever the driver is in UVLO condition when the VDD pin voltage is below the VDDR supply start  
threshold, this feature holds the output low, regardless of the status of the inputs. The upper end of this range is  
driven by the 18-V absolute maximum voltage rating of the VDD pin of the device (which is a stress rating).  
Keeping a 4-V margin to allow for transient voltage spikes, the maximum recommended voltage for the VDD pin  
is 14 V.  
The UVLO protection feature also involves a hysteresis function. This means that when the VDD pin bias voltage  
has exceeded the threshold voltage and device begins to operate, and if the voltage drops, then the device  
continues to deliver normal functionality unless the voltage drop exceeds the hysteresis specification VDDH.  
Therefore, ensuring that, while operating at or near the 9-V range, the voltage ripple on the auxiliary power  
supply output is smaller than the hysteresis specification of the device is important to avoid triggering device  
shutdown.  
During system shutdown, the device operation continues until the VDD pin voltage has dropped below the  
threshold (VDDR – VDDH), which must be accounted for while evaluating system shutdown timing design  
requirements. Likewise, at system start up, the device does not begin operation until the VDD pin voltage has  
exceeded above the VDDR threshold. The quiescent current consumed by the internal circuit blocks of the device  
is supplied through the VDD pin. Keep in mind that the charge for source current pulses delivered by the LO pin  
is also supplied through the same VDD pin. As a result, every time a current is sourced out of the LO pin a  
corresponding current pulse is delivered into the device through the VDD pin. Thus ensuring that a local bypass  
capacitor is provided between the VDD and GND pins and located as close as possible to the device for the  
purpose of decoupling is important. A low ESR, ceramic surface mount capacitor is necessary. TI recommends  
using two capacitors between VDD and GND: a 100-nF ceramic surface-mount capacitor that can be nudged  
very close to the pins of the device and another surface-mount capacitor in the range 0.22 µF to 10 µF added in  
parallel. In a similar manner, the current pulses delivered by the HO pin are sourced from the HB pin. Therefore,  
a 0.022-µF to 1-µF local decoupling capacitor is recommended between the HB and HS pins.  
20  
Submit Documentation Feedback  
Copyright © 2006–2015, Texas Instruments Incorporated  
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
www.ti.com  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
11 Layout  
11.1 Layout Guidelines  
The optimum performance of high and low-side gate drivers cannot be achieved without taking due  
considerations during circuit board layout. Following points are emphasized.  
1. Low-ESR/ESL capacitors must be connected close to the IC, between VDD and VSS pins and between the  
HB and HS pins to support the high peak currents being drawn from VDD during turnon of the external  
MOSFET.  
2. To prevent large voltage transients at the drain of the top MOSFET, a low ESR electrolytic capacitor must be  
connected between MOSFET drain and ground (VSS).  
3. In order to avoid large negative transients on the switch node (HS pin), the parasitic inductances in the  
source of top MOSFET and in the drain of the bottom MOSFET (synchronous rectifier) must be minimized.  
4. Grounding Considerations:  
The first priority in designing grounding connections is to confine the high peak currents that charge and  
discharge the MOSFET gate into a minimal physical area. This will decrease the loop inductance and  
minimize noise issues on the gate terminal of the MOSFET. The MOSFETs should be placed as close as  
possible to the gate driver.  
The second high current path includes the bootstrap capacitor, the bootstrap diode, the local ground  
referenced bypass capacitor and low-side MOSFET body diode. The bootstrap capacitor is recharged on  
a cycle-by-cycle basis through the bootstrap diode from the ground referenced VDD bypass capacitor.  
The recharging occurs in a short time interval and involves high peak current. Minimizing this loop length  
and area on the circuit board is important to ensure reliable operation.  
A recommended layout pattern for the driver is shown in Figure 30. If possible a single layer placement is  
preferred.  
11.2 Layout Example  
Recommended Layout for Driver IC and  
Passives  
VDD  
HB  
LO  
VSS  
LI  
SO  
PowerPAD-8  
HO  
HS  
HI  
Single Layer  
Option  
Multi Layer  
Option  
To Hi-Side FET  
To Low-Side FET  
Figure 30. PCB Layout Recommendation  
Copyright © 2006–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
 
LM5100A, LM5100B, LM5100C  
LM5101A, LM5101B, LM5101C  
SNOSAW2Q SEPTEMBER 2006REVISED NOVEMBER 2015  
www.ti.com  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
AN-1187 Leadless Leadframe Package (LLP) (SNOA401)  
AN-1317 Selection of External Bootstrap Diode for LM510X Devices (SNVA083)  
Semiconductor and IC Package Thermal Metrics (SPRA953)  
12.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 3. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
LM5100A  
LM5100B  
LM5100C  
LM5101A  
LM5101B  
LM5101C  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
12.3 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 Trademarks  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
22  
Submit Documentation Feedback  
Copyright © 2006–2015, Texas Instruments Incorporated  
Product Folder Links: LM5100A LM5100B LM5100C LM5101A LM5101B LM5101C  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Oct-2016  
PACKAGING INFORMATION  
Orderable Device  
LM5100AM/NOPB  
LM5100AMR/NOPB  
LM5100AMRX/NOPB  
LM5100AMX/NOPB  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
SOIC  
D
8
8
8
8
95  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
-40 to 125  
L5100  
AM  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
DDA  
DDA  
D
95  
Green (RoHS  
& no Sb/Br)  
L5100  
AMR  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
L5100  
AMR  
ACTIVE  
SOIC  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
L5100  
AM  
LM5100ASD  
NRND  
WSON  
WSON  
DPR  
DPR  
10  
10  
1000  
1000  
TBD  
Call TI  
CU SN  
Call TI  
-40 to 125  
-40 to 125  
5100ASD  
5100ASD  
LM5100ASD/NOPB  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LM5100BMA/NOPB  
LM5100BMAX/NOPB  
LM5100BSD/NOPB  
LM5100CMA/NOPB  
LM5100CMAX/NOPB  
LM5100CMY/NOPB  
LM5100CMYE/NOPB  
LM5100CMYX/NOPB  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
WSON  
SOIC  
SOIC  
D
D
8
8
95  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
Call TI  
CU SN  
Call TI  
Call TI  
Call TI  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
L5100  
BMA  
2500  
1000  
Green (RoHS  
& no Sb/Br)  
L5100  
BMA  
ACTIVE  
DPR  
D
10  
8
Green (RoHS  
& no Sb/Br)  
5100BSD  
OBSOLETE  
ACTIVE  
TBD  
L5100  
CMA  
D
8
2500  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
Call TI  
L5100  
CMA  
OBSOLETE  
OBSOLETE  
OBSOLETE  
MSOP-  
PowerPAD  
DGN  
DGN  
DGN  
8
TBD  
TBD  
TBD  
TBD  
SXCB  
MSOP-  
PowerPAD  
8
Call TI  
SXCB  
MSOP-  
PowerPAD  
8
Call TI  
SXCB  
LM5100CSD/NOPB  
LM5101AM/NOPB  
OBSOLETE  
ACTIVE  
WSON  
SOIC  
DPR  
D
10  
8
Call TI  
CU SN  
Call TI  
-40 to 125  
-40 to 125  
5100CSD  
95  
95  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
L5101  
AM  
LM5101AMR/NOPB  
LM5101AMRX/NOPB  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
DDA  
DDA  
8
8
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
L5101  
AMR  
2500  
Green (RoHS  
& no Sb/Br)  
L5101  
AMR  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Oct-2016  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
LM5101AMX/NOPB  
ACTIVE  
SOIC  
D
8
2500  
Green (RoHS  
& no Sb/Br)  
CU SN  
Level-1-260C-UNLIM  
L5101  
AM  
LM5101ASD  
NRND  
WSON  
WSON  
DPR  
NGT  
10  
8
1000  
1000  
TBD  
Call TI  
Call TI  
-40 to 125  
5101ASD  
5101A-1  
LM5101ASD-1/NOPB  
ACTIVE  
Green (RoHS CU NIPDAU | CU SN  
& no Sb/Br)  
Level-1-260C-UNLIM  
LM5101ASD/NOPB  
ACTIVE  
WSON  
DPR  
10  
1000  
Green (RoHS CU NIPDAU | CU SN  
& no Sb/Br)  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
5101ASD  
LM5101ASDX  
NRND  
WSON  
WSON  
DPR  
NGT  
10  
8
4500  
4500  
TBD  
Call TI  
CU SN  
Call TI  
5101ASD  
5101A-1  
LM5101ASDX-1/NOPB  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LM5101ASDX/NOPB  
LM5101BMA/NOPB  
LM5101BMAX/NOPB  
LM5101BSD/NOPB  
LM5101BSDX/NOPB  
LM5101CMA/NOPB  
LM5101CMAX/NOPB  
LM5101CMY/NOPB  
LM5101CMYE/NOPB  
LM5101CMYX/NOPB  
LM5101CSD/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
SOIC  
DPR  
D
10  
8
4500  
95  
Green (RoHS CU NIPDAU | CU SN  
& no Sb/Br)  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
5101ASD  
Green (RoHS  
& no Sb/Br)  
CU SN  
L5101  
BMA  
SOIC  
D
8
2500  
1000  
4500  
95  
Green (RoHS  
& no Sb/Br)  
CU SN  
L5101  
BMA  
WSON  
WSON  
SOIC  
DPR  
DPR  
D
10  
10  
8
Green (RoHS CU NIPDAU | CU SN  
& no Sb/Br)  
(5101ASD ~  
5101BSD)  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
5101BSD  
Green (RoHS  
& no Sb/Br)  
L5101  
CMA  
SOIC  
D
8
2500  
1000  
250  
Green (RoHS  
& no Sb/Br)  
L5101  
CMA  
MSOP-  
PowerPAD  
DGN  
DGN  
DGN  
DPR  
8
Green (RoHS  
& no Sb/Br)  
SXDB  
MSOP-  
PowerPAD  
8
Green (RoHS  
& no Sb/Br)  
SXDB  
MSOP-  
PowerPAD  
8
3500  
1000  
Green (RoHS  
& no Sb/Br)  
SXDB  
WSON  
10  
Green (RoHS CU NIPDAU | CU SN  
& no Sb/Br)  
-40 to 125  
5101CSD  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Oct-2016  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Oct-2016  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM5100AMRX/NOPB  
SO  
Power  
PAD  
DDA  
8
2500  
330.0  
12.4  
6.5  
5.4  
2.0  
8.0  
12.0  
Q1  
LM5100AMX/NOPB  
LM5100ASD  
SOIC  
WSON  
WSON  
SOIC  
D
8
10  
10  
8
2500  
1000  
1000  
2500  
1000  
2500  
2500  
330.0  
178.0  
178.0  
330.0  
178.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
6.5  
4.3  
4.3  
6.5  
4.3  
6.5  
6.5  
5.4  
4.3  
4.3  
5.4  
4.3  
5.4  
5.4  
2.0  
1.3  
1.3  
2.0  
1.3  
2.0  
2.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
DPR  
DPR  
D
LM5100ASD/NOPB  
LM5100BMAX/NOPB  
LM5100BSD/NOPB  
LM5100CMAX/NOPB  
LM5101AMRX/NOPB  
WSON  
SOIC  
DPR  
D
10  
8
SO  
Power  
PAD  
DDA  
8
LM5101AMX/NOPB  
LM5101ASD  
SOIC  
D
8
10  
8
2500  
1000  
1000  
1000  
4500  
4500  
4500  
330.0  
178.0  
180.0  
180.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
6.5  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
5.4  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
2.0  
1.3  
1.1  
1.1  
1.3  
1.3  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DPR  
NGT  
DPR  
DPR  
NGT  
DPR  
LM5101ASD-1/NOPB  
LM5101ASD/NOPB  
LM5101ASDX  
10  
10  
8
LM5101ASDX-1/NOPB  
LM5101ASDX/NOPB  
10  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Oct-2016  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM5101BMAX/NOPB  
LM5101BSD/NOPB  
LM5101BSDX/NOPB  
LM5101CMAX/NOPB  
LM5101CMY/NOPB  
SOIC  
WSON  
WSON  
SOIC  
D
8
10  
10  
8
2500  
1000  
4500  
2500  
1000  
330.0  
180.0  
330.0  
330.0  
178.0  
12.4  
12.4  
12.4  
12.4  
12.4  
6.5  
4.3  
4.3  
6.5  
5.3  
5.4  
4.3  
4.3  
5.4  
3.4  
2.0  
1.1  
1.3  
2.0  
1.4  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
DPR  
DPR  
D
MSOP-  
Power  
PAD  
DGN  
8
LM5101CMYE/NOPB  
LM5101CMYX/NOPB  
LM5101CSD/NOPB  
MSOP-  
Power  
PAD  
DGN  
DGN  
DPR  
8
8
250  
3500  
1000  
178.0  
330.0  
180.0  
12.4  
12.4  
12.4  
5.3  
5.3  
4.3  
3.4  
3.4  
4.3  
1.4  
1.4  
1.1  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
MSOP-  
Power  
PAD  
WSON  
10  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM5100AMRX/NOPB  
LM5100AMX/NOPB  
LM5100ASD  
SO PowerPAD  
SOIC  
DDA  
D
8
8
2500  
2500  
1000  
1000  
2500  
367.0  
367.0  
210.0  
210.0  
367.0  
367.0  
367.0  
185.0  
185.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
WSON  
DPR  
DPR  
D
10  
10  
8
LM5100ASD/NOPB  
LM5100BMAX/NOPB  
WSON  
SOIC  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Oct-2016  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM5100BSD/NOPB  
LM5100CMAX/NOPB  
LM5101AMRX/NOPB  
LM5101AMX/NOPB  
LM5101ASD  
WSON  
SOIC  
DPR  
D
10  
8
1000  
2500  
2500  
2500  
1000  
1000  
1000  
4500  
4500  
4500  
2500  
1000  
4500  
2500  
1000  
250  
210.0  
367.0  
367.0  
367.0  
210.0  
203.0  
203.0  
367.0  
367.0  
346.0  
367.0  
203.0  
367.0  
367.0  
210.0  
210.0  
367.0  
203.0  
185.0  
367.0  
367.0  
367.0  
185.0  
203.0  
203.0  
367.0  
367.0  
346.0  
367.0  
203.0  
367.0  
367.0  
185.0  
185.0  
367.0  
203.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
SO PowerPAD  
SOIC  
DDA  
D
8
8
WSON  
DPR  
NGT  
DPR  
DPR  
NGT  
DPR  
D
10  
8
LM5101ASD-1/NOPB  
LM5101ASD/NOPB  
LM5101ASDX  
WSON  
WSON  
10  
10  
8
WSON  
LM5101ASDX-1/NOPB  
LM5101ASDX/NOPB  
LM5101BMAX/NOPB  
LM5101BSD/NOPB  
LM5101BSDX/NOPB  
LM5101CMAX/NOPB  
LM5101CMY/NOPB  
LM5101CMYE/NOPB  
LM5101CMYX/NOPB  
LM5101CSD/NOPB  
WSON  
WSON  
10  
8
SOIC  
WSON  
DPR  
DPR  
D
10  
10  
8
WSON  
SOIC  
MSOP-PowerPAD  
MSOP-PowerPAD  
MSOP-PowerPAD  
WSON  
DGN  
DGN  
DGN  
DPR  
8
8
8
3500  
1000  
10  
Pack Materials-Page 3  
MECHANICAL DATA  
DGN0008A  
MUY08A (Rev A)  
BOTTOM VIEW  
www.ti.com  
MECHANICAL DATA  
DDA0008B  
MRA08B (Rev B)  
www.ti.com  
MECHANICAL DATA  
NGT0008A  
SDC08A (Rev A)  
www.ti.com  
MECHANICAL DATA  
DPR0010A  
SDC10A (Rev A)  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2016, Texas Instruments Incorporated  

相关型号:

LM5100CMA/NOPB

3A, 2A and 1A High Voltage High-Side and Low-Side Gate Drivers
TI

LM5100CMAX

1A HALF BRDG BASED MOSFET DRIVER, PDSO8, MS-012AA, SOIC-8
TI

LM5100CMAX

IC 1 A HALF BRDG BASED MOSFET DRIVER, PDSO8, MS-012AA, SOIC-8, MOSFET Driver
NSC

LM5100CMAX/NOPB

3A, 2A and 1A High Voltage High-Side and Low-Side Gate Drivers
TI

LM5100CMY/NOPB

3A, 2A and 1A High Voltage High-Side and Low-Side Gate Drivers
TI

LM5100CMYE

暂无描述
NSC

LM5100CMYE

High-Voltage, High-Side and Low-Side Gate Drivers
TI

LM5100CMYE/NOPB

3A, 2A and 1A High Voltage High-Side and Low-Side Gate Drivers
TI

LM5100CMYX

IC 1 A HALF BRDG BASED MOSFET DRIVER, PDSO8, MSOP-8, MOSFET Driver
NSC

LM5100CMYX

暂无描述
TI

LM5100CMYX/NOPB

3A, 2A and 1A High Voltage High-Side and Low-Side Gate Drivers
TI

LM5100CSD

IC 1 A HALF BRDG BASED MOSFET DRIVER, PDSO10, 4 X 4 MM, LLP-10, MOSFET Driver
TI