LM5166YDRCT [TI]

具有超低 Iq 的 3V 至 65V 输入、500mA 同步降压转换器 | DRC | 10 | -40 to 150;
LM5166YDRCT
型号: LM5166YDRCT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有超低 Iq 的 3V 至 65V 输入、500mA 同步降压转换器 | DRC | 10 | -40 to 150

转换器
文件: 总57页 (文件大小:3771K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
具有超低 IQ LM5166 3V 65V 输入、500mA 同步降压转换器  
1 特性  
3 说明  
1
3V 65V 宽输入电压范围  
LM5166 是一款易于使用的紧凑型 3V 65V、超低 IQ  
同步降压转换器,可在宽输入电压和负载电流范围内提  
供高效率。该器件集成有高侧和低侧功率金属氧化物半  
导体场效应晶体管 (MOSFET),可提供高达 500mA 的  
输出电流,输出电压有固定式(3.3V 5V)和可调节  
式两种可供选择。该转换器设计旨在简化实现方案,同  
时优化目标应用的性能。脉频调制 (PFM) 模式可确保  
在轻负载条件下获得最优效率,恒定导通时间 (COT)  
控制可实现近似恒定的工作频率。这两种控制方案都不  
需要环路补偿,同时还能够针对较高的降压转换比实现  
出色的线路和负载瞬态响应以及短暂的脉宽调制  
(PWM) 导通时间。  
9.7µA 无负载静态电流  
–40°C 150°C 结温范围  
固定(3.3V5V)或可调节输出电压选项  
符合 EN55022/CISPR 22 EMI 标准  
集成 1Ω P 沟道场效应晶体管 (PFET) 降压开关  
支持 100% 占空比,可实现低压降  
集成 0.5Ω N 沟道场效应晶体管 (NFET) 同步整流  
无需使用外部肖特基二极管  
可编程峰值电流限制支持:  
500mA300mA 200mA 负载  
可选 PFM COT 模式工作  
1.223V ±1.2% 内部电压基准  
开关频率高达 600kHz  
高侧 P 沟道 MOSFET 能够以 100% 占空比工作以确  
保最低压差电压,而且不需要使用自举电容器进行栅极  
驱动。另外,还可以调节电流限制设定值来优化电感器  
选择,从而满足特定的负载电流要求。可选和可调节启  
动时序选项包括最短延迟(无软启动)、内部固定值  
(900μs) 以及可使用电容器进行外部编程的软启动。可  
以使用开漏 PGOOD 指示器进行定序、故障报告和输  
出电压监视。LM5166 采用引脚间距为 0.5mm 10  
引脚 VSON 封装。  
900µs 内部或外部可调节软启动  
二极管仿真以及用于在轻负载时确保超高效率的脉  
冲跳跃模式  
无环路补偿或自举升压组件  
具有迟滞功能的精密使能和输入 UVLO  
开漏电源正常指示器  
具有迟滞功能的热关断保护  
器件信息(1)  
LM5165 引脚对引脚兼容  
器件型号  
LM5166  
输出  
可调节  
封装  
10 引脚 3mm × 3mm VSON 封装  
使用 WEBENCH® 电源设计器创建定制稳压器设计  
LM5166X  
LM5166Y  
5V 固定  
3.3V 固定  
VSON (10)  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
工厂和楼宇自动化  
汽车和电池供电 应用  
高电压 LDO 替代产品  
低功耗偏置电源  
典型 COT 模式应用  
典型 COT 模式应用效率  
100  
VOUT = 5 V  
IOUT = 0.5 A  
LF  
150 mH  
VIN = 3 V...65 V  
90  
80  
70  
60  
VIN  
SW  
LM5166X  
CIN  
RESR  
EN  
ILIM  
SS  
VOUT  
PGOOD  
HYS  
2.2 mF  
0.5 W  
COUT  
47 mF  
VIN = 8V  
50  
40  
30  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 65V  
GND  
RT  
*VOUT tracks VIN if VIN < 5.5 V  
RRT  
0.01  
0.1  
1
10  
100  
500  
Load (mA)  
Copyright © 2017, Texas Instruments Incorporated  
D001  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVSA67  
 
 
 
 
 
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 25  
Applications and Implementation ...................... 26  
8.1 Application Information............................................ 26  
8.2 Typical Applications ................................................ 26  
Power Supply Recommendations...................... 44  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description................................................. 15  
8
9
10 Layout................................................................... 44  
10.1 Layout Guidelines ................................................. 44  
10.2 Layout Example .................................................... 46  
11 器件和文档支持 ..................................................... 47  
11.1 器件支持................................................................ 47  
11.2 文档支持................................................................ 47  
11.3 接收文档更新通知 ................................................. 48  
11.4 社区资源................................................................ 48  
11.5 ....................................................................... 48  
11.6 静电放电警告......................................................... 48  
11.7 Glossary................................................................ 48  
12 机械、封装和可订购信息....................................... 48  
7
4 修订历史记录  
Changes from Revision A (December 2016) to Revision B  
Page  
根据最新 TI 文档和翻译标准更新了数据表文本 ...................................................................................................................... 1  
更改了 WEBENCH 列表项的语言;在数据表中添加了有关 WEBENCH 的其他内容和链.................................................. 1  
在数据表中添加了 LM5166X LM5166Y 输出版.............................................................................................................. 1  
器件信息 表中的封装尺寸(标称值)列替换成了输出版本” ............................................................................................ 1  
典型 COT 模式应用 电路更改成了固定 5V 输出 ................................................................................................................. 1  
Changed the EN absolute maximum voltage from (VVIN + 0.3 V) to 68 V ............................................................................ 4  
Deleted note 5 under the Absolute Maximum Ratings table ................................................................................................. 4  
Changed the EN max operating voltage from VVIN to 65 V ................................................................................................... 4  
Removed note 2 under the Recommended Operating Conditions......................................................................................... 4  
Changed the IFB maximum from: 100 nA to: 25 nA ............................................................................................................... 5  
Added 13 and 14........................................................................................................................................................... 8  
Modified the Functional Block Diagram graphic ................................................................................................................... 14  
Changed RDSON1 to RDSON2 in 公式 3 ................................................................................................................................... 17  
Updated 公式 12 .................................................................................................................................................................. 19  
Added a link to TI Design TIDA-01395 to the Typical Applications section ......................................................................... 26  
Changed Design 3 to a 3.3-V fixed output, LM5166Y.......................................................................................................... 35  
Added a new part number to CIN ref description .................................................................................................................. 35  
Added a new part number to LF ref description.................................................................................................................... 38  
Added the Design 5: 12-V, 300-mA COT Converter Operating from 24-V or 48-V Input section to Typical Applications... 41  
Changed the PCB Layout and PCB Layout Guidelines section names to Layout and Layout Guidelines.......................... 44  
文档支持 部分添加了内容.................................................................................................................................................. 47  
Changes from Original (December 2016) to Revision A  
Page  
将数据表状态从产品预览更改成了生产数据”....................................................................................................................... 1  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
5 Pin Configuration and Functions  
LM5166X and LM5166Y Fixed Output DRC Package  
LM5166 Adjustable Output DRC Package  
10-Pin VSON  
Top View  
10-Pin VSON  
Top View  
GND  
HYS  
GND  
HYS  
FB  
SW  
VIN  
ILIM  
SS  
1
2
3
4
5
10  
9
SW  
VIN  
ILIM  
SS  
1
2
3
4
5
10  
9
8
8
VOUT  
EN  
7
7
EN  
PGOOD  
PGOOD  
6
6
RT  
RT  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NO.  
NAME  
Switching node that is internally connected to the drain of the PFET buck switch (high side) and the  
drain of the NFET synchronous rectifier (low side). Connect to the buck inductor.  
1
SW  
P
Regulator supply input pin to high-side power MOSFET and internal bias rail LDO. Connect to input  
supply and input filter capacitor CIN. The path from the VIN pin to the input capacitor must be as short as  
possible.  
2
3
VIN  
P
I
Programming pin for current limit. Connecting the appropriate resistance from the ILIM pin to GND  
selects one of the three current limit options. The available current limit options are detailed in 3.  
ILIM  
Programming pin for the soft-start delay. If a 100-kΩ resistor is connected from the SS pin to GND, the  
internal soft-start circuit is disabled and the FB comparator reference steps immediately from zero to full  
value when the regulator is enabled by the EN input. If the SS pin is left open, the internal soft-start  
circuit ramps the FB reference from zero to full value in 900 µs. If a capacitor is connected from the SS  
pin to GND, the soft-start time can be set longer than 900 µs.  
4
5
SS  
RT  
I
I
Mode select and on-time programming pin for Constant On-Time control. Connect a resistor from the RT  
pin to GND to program the on-time and hence switching frequency. Short RT to GND to select PFM  
(pulse frequency modulation) operation.  
Power Good output flag pin. PGOOD is connected to the drain of an NFET that holds the pin low when  
either FB or VOUT is not in regulation. Use a 10-kΩ to 100-kΩ pullup resistor to system voltage rail or  
VOUT (no higher than 12 V).  
6
7
PGOOD  
EN  
O
I
Input pin of the precision enable / UVLO comparator. The regulator is enabled when the EN pin voltage  
is greater than 1.22 V.  
Feedback input to the voltage regulation loop for the LM5166 Adjustable Output version, or a VOUT pin  
connects the internal feedback resistor divider to the regulator output voltage for the fixed 3.3-V or 5-V  
options. The FB pin connects the internal feedback comparator to an external resistor divider for the  
adjustable voltage option, and the reference for the FB pin comparator is 1.223 V.  
8
9
VOUT or FB  
HYS  
I
Drain of internal NFET that is turned off when the EN input is greater than the EN pin threshold. External  
resistors from HYS to EN and GND program the input UVLO threshold and hysteresis.  
O
10  
GND  
PAD  
G
P
Regulator ground return.  
Connect to GND pin and system ground on PCB. Path to CIN must be as short as possible.  
(1) P = Power, G = Ground, I = Input, O = Output.  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range of –40°C to 150°C (unless otherwise noted).(1)(2)  
MIN  
–0.3  
–0.7  
–3  
MAX  
68  
UNIT  
VIN, EN to GND  
SW to GND  
V
VVIN + 0.3  
V
20-ns transient  
PGOOD, VOUT(3) to GND  
HYS to GND  
ILIM, SS, RT, FB(4) to GND  
Maximum junction temperature, TJ  
Storage temperature, Tstg  
–0.3  
–0.3  
–0.3  
–40  
–55  
16  
7
V
V
3.6  
150  
150  
V
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
(3) Fixed output setting.  
(4) Adjustable output setting.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of –40°C to 150°C (unless otherwise noted).(1)  
MIN  
3
NOM  
MAX  
65  
UNIT  
VIN  
EN  
–0.3  
–0.3  
–0.3  
0
65  
Input voltages  
V
PGOOD  
12  
HYS  
5.5  
500  
150  
Output current  
Temperature  
IOUT  
mA  
°C  
Operating junction temperature  
–40  
(1) Operating Ratings are conditions under which the device is intended to be functional. For specifications and test conditions, see  
Electrical Characteristics.  
6.4 Thermal Information  
LM5166  
THERMAL METRIC(1)  
DRC (VSON)  
10 PINS  
49.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
57.2  
26.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.8  
ψJB  
23.8  
RθJC(bot)  
4.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
 
 
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
6.5 Electrical Characteristics  
Typical values correspond to TJ = 25°C. Minimum and maximum limits are based on TJ = –40°C to +125°C. VIN = 12 V  
(unless otherwise noted).(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN DC supply current,  
shutdown  
IQ-SD  
VEN = 0 V, TJ = 25°C  
4
6
µA  
IQ-SLEEP  
VIN DC supply current, no load VFB = 1.5 V, TJ = 25°C  
9.7  
10  
15  
µA  
IQ-SLEEP-  
VINMAX  
VIN DC supply current, no load VFB = 1.5 V, VVIN = 65 V, TJ = 25°C  
15  
µA  
IQ-ACTIVE-PFM  
VIN DC supply current, active  
VIN DC supply current, active  
PFM mode, RRT = 0 Ω, RSS = 100 kΩ  
COT mode, RRT = RSS = 100 kΩ  
205  
320  
µA  
µA  
IQ-ACTIVE-COT  
POWER SWITCHES  
RDSON1 High-side MOSFET RDS(on)  
RDSON2 Low-side MOSFET RDS(on)  
ISW = –100 mA  
ISW = 100 mA  
0.93  
0.48  
Ω
Ω
CURRENT LIMITING  
IHS_LIM1  
1125  
675  
1250  
750  
500  
415  
315  
1375  
825  
High-side peak current limit  
threshold  
IHS_LIM2  
IHS_LIM3  
ILS_LIM1  
ILS_LIM2  
See 3  
See 3  
mA  
mA  
440  
560  
Low-side valley current limit  
threshold  
REGULATION COMPARATOR  
VVOUT5  
VOUT 5-V DC setpoint  
LM5166X  
4.9  
5.0  
3.3  
7
5.1  
V
V
VVOUT3.3  
VOUT 3.3-V DC setpoint  
LM5166Y  
3.23  
3.37  
VVOUT = 5 V, LM5166X  
VVOUT = 3.3 V, LM5166Y  
IVOUT  
VOUT pin input current  
µA  
3.8  
Lower FB regulation threshold  
(PFM and COT)  
VFB1  
VFB2  
1.208  
1.218  
1.223  
1.233  
1.238  
V
V
Adjustable VOUT version  
VFB = 1 V  
Upper FB regulation threshold  
(PFM)  
1.248  
25  
IFB  
FB pin input bias current  
nA  
FBHYS-PFM  
FB comparator PFM hysteresis PFM mode  
10  
4
mV  
FB comparator dropout  
COT mode  
FBHYS-COT  
mV  
%/V  
%/V  
hysteresis  
FBLINE-REG  
VOUTLINE-REG  
FB threshold variation over line VVIN = 3 V to 65 V  
0.005  
0.005  
VOUT threshold variation over  
line  
LM5166X, VVIN = 6 V to 65 V  
LM5166Y, VVIN = 4.5 V to 65 V  
POWER GOOD  
UVTRISING  
VFB rising relative to VFB1 threshold  
VFB falling relative to VFB1 threshold  
VFB = 1 V  
94%  
87%  
80  
PGOOD comparator  
UVTFALLING  
RPGOOD  
PGOOD on-resistance  
200  
1.65  
100  
Ω
V
VVIN falling  
IPGOOD = 0.1 mA, VPGOOD < 0.5 V  
Minimum required VIN for valid  
PGOOD  
VINMIN-PGOOD  
1.2  
10  
IPGOOD  
PGOOD off-state leakage  
VFB = 1.2 V, VPGOOD = 5.5 V  
nA  
ENABLE / UVLO  
VIN-ON  
Turnon threshold  
Turnoff threshold  
EN turnon threshold  
EN turnoff threshold  
VVIN rising  
VVIN falling  
VEN rising  
VEN falling  
2.60  
2.35  
2.75  
2.45  
2.95  
2.60  
V
V
V
V
VIN-OFF  
VEN-ON  
1.163  
1.109  
1.22  
1.276  
1.178  
VEN-OFF  
1.144  
(1) All hot and cold limits are specified by correlating the electrical characteristics to process and temperature variations and applying  
statistical process control.  
(2) The junction temperature (TJ in °C) is calculated from the ambient temperature (TA in °C) and power dissipation (PD in Watts) as follows:  
TJ = TA + (PD θJA) where θJA (in °C/W) is the package thermal impedance provided in Thermal Information.  
Copyright © 2016–2017, Texas Instruments Incorporated  
5
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
Typical values correspond to TJ = 25°C. Minimum and maximum limits are based on TJ = –40°C to +125°C. VIN = 12 V  
(unless otherwise noted).(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
76  
MAX  
UNIT  
mV  
V
VEN-HYS  
VEN-SD  
RHYS  
EN hysteresis  
EN shutdown threshold  
HYS on-resistance  
HYS off-state leakage  
VEN falling  
0.3  
0.6  
80  
VEN = 1 V  
200  
100  
Ω
IHYS  
VEN = 1.5 V, VHYS = 5.5 V  
10  
nA  
SOFT-START  
ISS  
Soft-start charging current  
Soft-start rise time  
VSS = 1 V  
10  
µA  
µs  
TSS-INT  
SS floating  
900  
THERMAL SHUTDOWN  
TJ-SD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
170  
10  
°C  
°C  
TJ-SD-HYS  
6.6 Switching Characteristics  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Minimum on-time  
On-time  
TEST CONDITIONS  
MIN  
TYP  
180  
MAX  
UNIT  
ns  
TON-MIN  
TON1  
16 kΩ from RT to GND  
75 kΩ from RT to GND  
280  
ns  
TON2  
On-time  
1150  
ns  
6
版权 © 2016–2017, Texas Instruments Incorporated  
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
6.7 Typical Characteristics  
Unless otherwise specified, VIN = 12 V, VOUT = 5 V. Please refer to Typical Applications for circuit designs.  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
VIN = 8V  
VIN = 8V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 65V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 65V  
0.01  
0.1  
1
10  
100  
500  
0.01  
0.1  
1
10  
100  
500  
Load (mA)  
Load (mA)  
D001  
D001  
See schematic,  
52  
LF = 150 µH  
COUT = 47 µF  
FSW(nom) = 100 kHz  
See schematic,  
63  
LF = 47 µH  
COUT = 47 µF  
FSW(nom) = 200 kHz  
RRT = 309 kΩ  
RRT = 100 kΩ  
1. Converter Efficiency: 5 V, 500 mA, COT  
2. Converter Efficiency: 3.3 V, 500 mA, COT  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
VIN = 8V  
VIN = 8V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
0.01  
0.1  
1
10  
100 300  
0.01  
0.1  
1
10  
100  
500  
Load (mA)  
Load (mA)  
D001  
D001  
See schematic,  
70  
LF = 4.7 µH  
COUT = 47 µF  
FSW(nom) = 600 kHz  
See schematic,  
77  
LF = 22 µH  
COUT = 200 µF  
FSW(nom) = 100 kHz  
RRT = 0 Ω  
RRT = 0 Ω  
3. Converter Efficiency: 3.3 V, 300 mA, PFM  
4. Converter Efficiency: 5 V, 500 mA, PFM  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
1.24  
1.22  
1.2  
Rising  
Falling  
1.18  
1.16  
1.14  
1.12  
1.1  
Rising  
Falling  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Temperature (èC)  
D001  
D002  
5. Internal VIN UVLO Voltage vs Temperature  
6. Enable Threshold Voltage vs Temperature  
版权 © 2016–2017, Texas Instruments Incorporated  
7
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
Unless otherwise specified, VIN = 12 V, VOUT = 5 V. Please refer to Typical Applications for circuit designs.  
12  
10  
8
16  
14  
12  
10  
8
6
6
4
4
Shutdown  
Sleep  
Shutdown  
Sleep  
2
2
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
50  
60  
70  
Temperature (èC)  
Input Voltage (V)  
D003  
D0014  
7. VIN Sleep and Shutdown Supply Current vs  
8. VIN Sleep and Shutdown Supply Current vs Input  
Temperature  
Voltage  
400  
360  
320  
280  
240  
200  
160  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
180  
PFM  
COT  
PFM  
COT  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
50  
60  
70  
Temperature (èC)  
Input Voltage (V)  
D005  
D006  
RRT = 100 kΩ  
RRT = 100 kΩ  
9. VIN Active Mode Supply Current vs Temperature  
10. VIN Active Mode Supply Current vs Input Voltage  
1.25  
600  
500  
400  
300  
200  
100  
0
VSW = 0 V  
VSW = 65 V  
PFM Rising  
COT/PFM Falling  
1.245  
1.24  
1.235  
1.23  
1.225  
1.22  
1.215  
1.21  
1.205  
-50  
VVIN = 65 V  
11. SW Pin Leakage Current vs Temperature  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Temperature (èC)  
D007  
D008  
12. Feedback Comparator Threshold Voltage vs  
Temperature  
8
版权 © 2016–2017, Texas Instruments Incorporated  
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
Typical Characteristics (接下页)  
Unless otherwise specified, VIN = 12 V, VOUT = 5 V. Please refer to Typical Applications for circuit designs.  
3.36  
3.34  
3.32  
3.3  
5.08  
5.06  
5.04  
5.02  
5
PFM Rising  
COT/PFM Falling  
PFM Rising  
COT/PFM Falling  
4.98  
4.96  
4.94  
4.92  
3.28  
3.26  
3.24  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
LM5166X  
14. VOUT Regulation Thresholds vs Temperature  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
Temperature (èC)  
LM5166Y  
13. VOUT Regulation Thresholds vs Temperature  
1.5  
1.25  
1
98  
96  
94  
92  
90  
88  
86  
FB Rising  
FB Falling  
0.75  
0.5  
0.25  
0
0
0.25  
0.5  
0.75  
VSS (V)  
1
1.25  
1.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (èC)  
D012  
D011  
16. Feedback Voltage vs Soft-Start Voltage  
15. PGOOD Thresholds vs Temperature  
200  
190  
180  
170  
160  
150  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
RRT = 15.8 kW  
RRT = 75 kW  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
50  
60  
70  
Temperature (èC)  
Input Voltage (V)  
D014  
D015  
17. Soft-Start to Feedback Clamp Offset vs Temperature  
18. COT One-Shot Timer TON vs Input Voltage  
版权 © 2016–2017, Texas Instruments Incorporated  
9
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
Unless otherwise specified, VIN = 12 V, VOUT = 5 V. Please refer to Typical Applications for circuit designs.  
1.75  
1.5  
1.25  
1
2
1.8  
1.6  
1.4  
1.2  
1
-50èC  
25èC  
150èC  
0.8  
0.6  
0.4  
0.75  
0.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
50  
60  
70  
Temperature (èC)  
Input Voltage (V)  
D016  
D017  
19. High-Side MOSFET On-State Resistance vs  
20. High-Side MOSFET On-State Resistance vs Input  
Temperature  
Voltage  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
1.2  
-50èC  
25èC  
150èC  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
50  
60  
70  
Temperature (èC)  
Input Voltage (V)  
D018  
D019  
21. Low-Side MOSFET On-State Resistance vs  
22. Low-Side MOSFET On-State Resistance vs Input  
Temperature  
Voltage  
1375  
1250  
1125  
1000  
875  
1750  
500 mA  
750 mA  
1250 mA  
1500  
1250  
1000  
750  
500 mA  
750 mA  
1250 mA  
750  
625  
500  
500  
375  
250  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
50  
60  
70  
Temperature (èC)  
Input Voltage (V)  
D020  
D021  
23. High-Side Peak Current Limit vs Temperature  
24. High-Side Peak Current Limit vs Input Voltage  
版权 © 2016–2017, Texas Instruments Incorporated  
10  
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
Typical Characteristics (接下页)  
Unless otherwise specified, VIN = 12 V, VOUT = 5 V. Please refer to Typical Applications for circuit designs.  
450  
400  
350  
300  
250  
450  
400  
350  
300  
250  
300 mA  
400 mA  
300 mA  
400 mA  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
10  
20  
30  
40  
50  
60  
70  
Temperature (èC)  
Input Voltage (V)  
D022  
D023  
25. Low-Side Valley Current Limit vs Temperature  
26. Low-Side Valley Current Limit vs Input Voltage  
50  
150  
125  
100  
75  
40  
30  
20  
10  
0
50  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
25  
-50  
Temperature (èC)  
-25  
0
25  
50  
75  
100  
125  
150  
D024  
Temperature (èC)  
D025  
28. PGOOD and HYS Pulldown RDS(on) vs Temperature  
27. Zero-Cross Current Threshold vs Temperature  
Time Scale: 20 ms/Div  
CH1: VSW, 5 V/Div  
CH2: VOUT, 50 mV/Div  
CH4: IL, 200 mA/Div  
Time Scale: 10 µs/Div  
CH1: VSW, 5 V/Div  
CH2: VOUT, 50 mV/Div  
CH4: IL, 200 mA/Div  
29. No-Load Switching Waveforms, COT, Type 2  
30. Full Load Switching Waveforms, COT, Type 2  
版权 © 2016–2017, Texas Instruments Incorporated  
11  
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
Typical Characteristics (接下页)  
Unless otherwise specified, VIN = 12 V, VOUT = 5 V. Please refer to Typical Applications for circuit designs.  
Time Scale: 2 ms/Div  
CH1: VIN, 2 V/Div  
CH2: VOUT, 1 V/Div  
CH4: IL, 200 mA/Div  
Time Scale: 100 µs/Div  
CH1: VSW, 4 V/Div  
CH4: IL, 200 mA/Div  
31. Full-Load Start-Up, COT, Type 2  
32. Short Circuit, COT, Type 2  
Time Scale: 10 µs/Div  
CH1: VSW, 5 V/Div  
CH2: VOUT, 100 mV/Div  
CH4: IL, 400 mA/Div  
Time Scale: 20 ms/Div  
CH1: VSW, 5 V/Div  
CH2: VOUT, 50 mV/Div  
CH4: IL, 400 mA/Div  
34. Full-Load Switching Waveforms  
33. No-Load Switching Waveforms  
PFM Mode, ILIM = 750 mA  
PFM Mode, ILIM = 750 mA  
Time Scale: 20 µs/Div  
CH1: VSW, 4 V/Div  
Time Scale: 2 ms/Div  
CH1: VIN, 2 V/Div  
CH2: VOUT, 1 V/Div  
CH4: IL, 400 mA/Div  
CH4: IL, 400 mA/Div  
36. Short Circuit, PFM, ILIM = 750 mA  
35. Full-Load Start-Up, PFM, ILIM = 750 mA  
12  
版权 © 2016–2017, Texas Instruments Incorporated  
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
Typical Characteristics (接下页)  
Unless otherwise specified, VIN = 12 V, VOUT = 5 V. Please refer to Typical Applications for circuit designs.  
Time Scale: 50 ms/Div  
CH1: VSW, 5 V/Div  
CH2: VOUT, 50 mV/Div  
CH4: IL, 400 mA/Div  
Time Scale: 20 µs/Div  
CH1: VSW, 5 V/Div  
CH2: VOUT, 100 mV/Div  
CH4: IL, 400 mA/Div  
37. No-Load Switching Waveforms  
38. Full-Load Switching Waveforms  
PFM Mode, ILIM = 1.25 A, Modulated  
PFM Mode, ILIM = 1.25 A, Modulated  
版权 © 2016–2017, Texas Instruments Incorporated  
13  
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LM5166 regulator is an easy-to-use synchronous buck DC-DC converter that operates from a supply voltage  
ranging from 3 V to 65 V. The device is intended for step-down conversions from 5-V, 12-V, 24-V, and 48-V  
unregulated, semi-regulated, and fully-regulated supply rails. With integrated high-side and low-side power  
MOSFETs, the LM5166 delivers up to 500-mA DC load current with exceptional efficiency and ultra-low input  
quiescent current in a very small solution size. Designed for simple implementation, a choice of operating modes  
offers flexibility to optimize its usage according to the target application. Fixed-frequency, constant on-time (COT)  
operation with discontinuous conduction mode (DCM) at light loads is ideal for low-noise, high current, fast  
transient load requirements. Alternatively, pulse frequency modulation (PFM) mode, complemented by an  
adjustable current limit, achieves ultra-high light-load efficiency performance. Control loop compensation is not  
required with either operating mode, which reduces design time and external component count.  
The LM5166 incorporates other features for comprehensive system requirements, including an open-drain Power  
Good circuit for power-rail sequencing and fault reporting, internally-fixed or externally-adjustable soft start,  
monotonic start-up into prebiased loads, precision enable with customizable hysteresis for programmable line  
undervoltage lockout (UVLO), and thermal shutdown with automatic recovery. These features enable a flexible  
and easy-to-use platform for a wide range of applications. The pin arrangement is designed for simple and  
optimized PCB Layout, requiring only a few external components.  
7.2 Functional Block Diagram  
VIN  
LDO BIAS  
REGULATOR  
VDD  
IN  
VDD UVLO  
THERMAL  
SHUTDOWN  
EN  
VIN UVLO  
1.22V  
1.144V  
ILIM  
I-LIMIT  
SELECT  
HYS  
ENABLE  
VIN  
HI ILIM  
DETECT  
+
ON-TIME  
ONE SHOT  
SW  
Control  
Logic  
OUT  
VIN  
ZC / LS ILIM  
DETECT  
ZC  
VOUT/FB  
+
HYSTERETIC  
MODE  
RT  
GND  
SS  
R1(1)  
FB  
R2(1)  
+
VOLTAGE  
REFERENCE  
UV  
PGOOD  
s
ENABLE  
1.223V  
1.150V  
1.064V  
REFERENCE  
SOFT-START  
Note:  
(1) R1, R2 are implemented in the fixed output voltage versions only.  
Copyright © 2016, Texas Instruments Incorporated  
14  
版权 © 2016–2017, Texas Instruments Incorporated  
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
7.3 Feature Description  
7.3.1 Integrated Power MOSFETs  
The LM5166 is a step-down buck converter with integrated high-side PMOS buck switch and low-side NMOS  
synchronous switch. During the high-side MOSFET on-time, the SW voltage VSW swings up to approximately VIN,  
and the inductor current increases with slope (VIN – VOUT)/LF. When the high-side MOSFET is turned off by the  
control logic, the low-side MOSFET turns on after a fixed dead time. Inductor current flows through the low-side  
MOSFET with slope –VOUT/LF. Duty cycle D is defined as TON/TSW, where TON is the high-side MOSFET  
conduction time and TSW is the switching period.  
7.3.2 Selectable PFM or COT Mode Converter Operation  
Depending on how the RT pin is connected, the LM5166 operates in PFM or COT mode. With the RT pin tied to  
GND, the device operates in PFM mode. An RRT resistor connected between the RT and GND pins enables COT  
control and sets the desired switching frequency as defined by 公式 4. 39 and 40 show converter  
schematics for PFM and COT modes of operation.  
VIN  
VOUT  
VIN  
VOUT  
LF  
LF  
VIN  
EN  
VIN  
SW  
SW  
LM5166X  
LM5166Y  
RUV1  
LM5166  
RFB1  
EN  
VOUT  
FB  
SS  
CIN  
CIN  
COUT  
COUT  
RUV2  
PGOOD  
HYS  
PGOOD  
HYS  
SS  
RFB2  
ILIM  
CSS  
RILIM  
ILIM  
RHYS  
RT  
RT  
GND  
GND  
(a)  
(b)  
39. PFM Mode Converter Schematics: (a) Fixed Output Voltage of 5 V or 3.3 V, (b) Adjustable Output  
Voltage With Programmable Soft Start, Current Limit, and UVLO  
VIN  
VOUT  
VIN  
VOUT  
LF  
LF  
VIN  
EN  
VIN  
EN  
SW  
SW  
FB  
LM5166X  
LM5166Y  
RUV1  
RFB1  
LM5166  
RESR  
COUT  
RESR  
COUT  
VOUT  
CIN  
CIN  
RUV2  
PGOOD  
HYS  
PGOOD  
SS  
SS  
RFB2  
HYS  
RT  
ILIM  
CSS  
RILIM  
ILIM  
RT  
RHYS  
RRT  
RRT  
GND  
GND  
(a)  
(b)  
40. COT Mode Converter Schematics: (a) Fixed Output Voltage of 5 V or 3.3 V, (b) Adjustable Output  
Voltage With Programmable Soft Start, Current Limit, and UVLO  
版权 © 2016–2017, Texas Instruments Incorporated  
15  
 
 
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
Feature Description (接下页)  
7.3.2.1 PFM Mode Operation  
In PFM mode, the LM5166 behaves as a hysteretic voltage regulator operating in boundary conduction mode.  
The output voltage is regulated between upper and lower threshold levels according to the PFM feedback  
comparator hysteresis of 10 mV. 41 shows the relevant output voltage and inductor current waveforms. The  
LM5166 provides the required switching pulses to recharge the output capacitor to the upper threshold, followed  
by a sleep period where most of the internal circuits are disabled. The load current is supported by the output  
capacitor during this time, and the LM5166 current consumption reduces to 9.7 µA. The sleep period duration  
depends on load current and output capacitance.  
VIN  
SW  
Voltage  
VOUT  
VREF = 1.233V  
10mV  
FB  
Voltage  
(internal)  
ILIM  
Inductor  
Current  
IOUT2  
t
IOUT1  
ACTIVE  
SLEEP  
ACTIVE SLEEP  
ACTIVE SLEEP ACTIVE  
41. PFM Mode Output Voltage and Inductor Current Representative Waveforms  
When operating in PFM mode at given input and output voltages, the chosen filter inductance dictates the PFM  
pulse frequency as  
÷
VOUT  
VOUT  
FSW(PFM)  
=
1-  
LF IPK(PFM)  
V
IN  
«
where  
IPK(PFM) is one of the programmable levels for peak current limit. See Adjustable Current Limit for more detail.  
(1)  
One of the supported ILIM settings enables a function that modulates the peak current threshold levels during  
the first three switching cycles of each active period as illustrated in 42. This function improves efficiency  
under most application conditions at the expense of slightly degraded load transient response.  
16  
版权 © 2016–2017, Texas Instruments Incorporated  
 
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
Feature Description (接下页)  
VIN  
SW  
Voltage  
VOUT  
10mV  
FB  
Voltage  
(internal)  
VREF = 1.223V  
1.25A  
1.00A  
0.75A  
Inductor  
Current  
0.50A  
IOUT2  
IOUT1  
t
ACTIVE  
SLEEP  
ACTIVE  
SLEEP  
ACTIVE  
SLEEP ACTIVE  
42. PFM Mode With Modulated ILIM, Output Voltage and Inductor Current Representative Waveforms  
As expected, the choice of mode and switching frequency represents a compromise between conversion  
efficiency, quiescent current, and passive component size. Lower switching frequency implies reduced switching  
losses (including gate charge losses, transition losses, and so forth) and higher overall efficiency. Higher  
switching frequency, on the other hand, implies smaller LC output filter and hence, a more compact design.  
Lower inductance also helps transient response and reduces the inductor DCR conduction loss. The ideal  
switching frequency in a given application is a tradeoff and thus is determined on a case-by-case basis. It relates  
to the input voltage, output voltage, most frequent load current level(s), external component choices, and circuit  
size requirement. At light loads, the PFM converter has a relatively longer sleep time interval and thus operates  
at lower input quiescent current levels.  
7.3.2.2 COT Mode Operation  
In COT mode, the LM5166-based converter turns on the high-side MOSFET with constant on-time that adapts to  
VIN, as defined by 公式 2, to operate with nearly fixed switching frequency when in continuous conduction mode  
(CCM). The high-side MOSFET turns on when the feedback voltage (VFB) falls below the reference voltage. The  
regulator control loop maintains a constant output voltage by adjusting the PWM off-time as defined with 公式 3.  
For stable operation, the feedback voltage must decrease monotonically in phase with the inductor current during  
the off-time as explained in Ripple Generation Methods.  
175 RRT[k]  
tON[ns] =  
V
IN  
(2)  
LF ûIL(nom)  
tOFF  
=
VOUT + (RDCR + RDSON2 )IOUT  
(3)  
Diode emulation mode (DEM) prevents negative inductor current, and pulse skipping maintains high efficiency at  
light load currents by decreasing the effective switching frequency. The COT-controlled LM5166 waveforms in  
CCM and DEM are shown in 43.  
版权 © 2016–2017, Texas Instruments Incorporated  
17  
 
 
 
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
Feature Description (接下页)  
VIN  
SW  
Voltage  
Extended  
On-Time  
VOUT  
FB  
Voltage  
(internal)  
VREF  
4 mV  
DCM  
Operation  
IOUT2  
Inductor  
Current  
CCM  
IOUT1  
t
Operation  
ACTIVE  
SLEEP  
ACTIVE SLEEP  
43. COT Mode Feedback Voltage and Inductor Current Representative Waveforms  
The required on-time adjust resistance for a particular frequency (in CCM) is given in 公式 4 and tabulated in 表  
1. The maximum programmable on-time is 15 µs.  
104  
V
OUT[V]  
RRT[k] =  
FSW [kHz] 1.75  
(4)  
1. On-Time Adjust Resistance (E96 EIA Values) for Various Switching  
Frequencies and Output Voltages(1)  
RRT (kΩ)  
FSW (kHz)  
VOUT = 1.8 V  
102  
VOUT = 3.3 V  
187  
VOUT = 5 V  
287  
VOUT = 12 V  
681  
100  
200  
300  
400  
500  
600  
51.1  
95.3  
143  
340  
34  
63.4  
95.3  
226  
25.5  
47.5  
71.5  
169  
20.5  
37.4  
57.6  
137  
16.9  
31.6  
47.5  
115  
(1) For a more precise adjustment of the switching frequency consider 公式 2 and 公式 3. The LM5166  
Quickstart Calculatorl estimates and plots the switching frequency as a function of load current.  
18  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
7.3.2.2.1 Ripple Generation Methods  
In the Constant-On-Time (COT) control scheme, the on-time is terminated by a one-shot, and the off-time is  
terminated by the feedback voltage (VFB) falling below the reference voltage (VFB1). Therefore, for stable  
operation, the feedback voltage must decrease monotonically in phase with the inductor current during the off-  
time. Furthermore, this change in feedback voltage (VFB) during the off-time must be large enough to dominate  
any noise present at the feedback node.  
2. Ripple Generation Methods  
TYPE  
SCHEMATIC  
CALCULATION  
VIN  
LF  
VOUT  
VIN  
SW  
LM5166  
CIN  
RFB1  
20mV VOUT  
VFB1 ∂ DIL(nom)  
RESR  
PGOOD  
FB  
EN  
RESR  
í
Type 1  
Lowest Cost  
(5)  
(6)  
HYS  
COUT  
VOUT  
RESR  
í
2V FSW COUT  
ILIM  
RT  
SS  
RFB2  
IN  
RRT  
GND  
VOUT  
VIN  
LF  
VIN  
SW  
20mV  
LM5166  
RESR  
í
CIN  
CFF  
RFB1  
DIL(nom)  
RESR  
(7)  
(8)  
(9)  
EN  
PGOOD  
FB  
VOUT  
Type 2  
Reduced Ripple  
HYS  
RESR  
í
2V FSW COUT  
COUT  
IN  
RFB2  
ILIM  
RT  
SS  
1
CFF  
í
2p FSW (RFB1 || RFB2  
)
RRT  
GND  
LF  
VOUT  
VIN  
10  
VIN  
SW  
CA  
í
CA  
RA  
FSW (RFB1 || RFB2  
)
(10)  
LM5166  
CIN  
RACA  
Ç
PGOOD  
FB  
EN  
CB  
RFB1  
Type 3(1)  
Lowest Ripple  
V
- VOUT T  
(
)
COUT  
IN-nom  
ON @V  
(
)
IN-nom  
HYS  
RT  
20mV  
RFB2  
ILIM  
(11)  
TTR-Settling  
RRT  
CB í  
SS  
GND  
3 RFB1  
(12)  
(1) Lin, Min and others, "Frequency Domain Analysis of Fixed On-Time With Bottom Detection Control for Buck Converter," IEEE IECON  
2010, pp. 481–485.  
2 presents three different methods for generating appropriate voltage ripple at the feedback node. Type 1  
ripple generation method uses a single resistor, designated RESR, in series with the output capacitor. The  
generated voltage ripple has two components:  
Capacitive ripple caused by the inductor ripple current charging and discharging the output capacitor.  
Resistive ripple caused by the inductor ripple current flowing in the output capacitor ESR and series  
resistance RESR  
.
版权 © 2016–2017, Texas Instruments Incorporated  
19  
 
 
 
 
 
 
 
 
 
 
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
The capacitive ripple component is out of phase with the inductor current. As a result, the capacitive ripple does  
not decrease monotonically during the off-time. The resistive ripple component is in phase with the inductor  
current and decreases monotonically during the off-time. The resistive ripple must exceed the capacitive ripple at  
the output (VOUT) for stable operation. If this condition is not satisfied, unstable switching behavior is observed in  
COT converters, with multiple on-time bursts in close succession followed by a long off-time. 公式 5 and 公式 6  
define the value of the RESR resistor that ensures the required amplitude and phase of the ripple at the feedback  
node.  
Type-2 ripple generation method uses a CFF capacitor in addition to the RESR resistor. As the output voltage  
ripple is directly AC-coupled by CFF to the feedback node, the RESR value and ultimately the output voltage ripple  
are reduced by a factor of VOUT / VFB1  
.
Type-3 ripple generation method uses an RC network consisting of RA and CA, and the switch node (SW) voltage  
to generate a triangular ramp. This triangular ramp is then AC-coupled into the feedback node (FB) with  
capacitor CB. Because this circuit does not use the output voltage ripple, it is suited for applications where low  
output voltage ripple is critical. Application note AN-1481 Controlling Output Ripple & Achieving ESR  
Independence in Constant On-Time Regulator Designs provides additional details on this topic.  
7.3.2.2.2 COT Mode Light-Load Operation  
Diode emulation mode (DEM) operation occurs when the low-side MOSFET switches off as the inductor valley  
current reaches zero. Here, the load current is less than half of the peak-to-peak inductor current ripple in CCM.  
Turning off the low-side MOSFET at zero current reduces switching loss, and preventing negative current  
conduction reduces conduction loss. In DEM, the duration that both high-side and low-side MOSFETs remain off  
progressively increases as load current decreases.  
7.3.3 Low Dropout Operation and 100% Duty Cycle Mode  
Using RDSON1 and RDSON2 for the high-side and low-side MOSFET on-state resistances, respectively, and RDCR  
for the inductor DC resistance, the duty cycle in COT (CCM) or PFM mode is given by 公式 13.  
VOUT + R  
+ RDCR I  
(
)
VOUT  
DSON2  
OUT  
OUT  
D =  
ö
V - RDSON1 -RDSON2 I  
V
(
)
IN  
IN  
(13)  
The LM5166 provides a low input voltage to output voltage dropout by engaging the high-side MOSFET at 100%  
duty cycle. In COT operation, the extended on-time mode seamlessly increases the duty cycle during low  
dropout conditions or load-step transients. The buck switch on-time extends based on the requirement that the  
FB voltage exceeds the internal 4-mV FB comparator hysteresis during any COT mode on-time. The on-time  
(and duty cycle) are extended as needed at low input voltage conditions until the FB voltage reaches the upper  
threshold. 100% duty cycle operation is eventually reached as the input voltage decreases to a level near the  
output voltage setpoint. Very low dropout voltages can be achieved with 100% duty cycle and a low DCR  
inductor.  
Note that PFM mode operation provides a natural transition to 100% duty cycle if needed during low input  
voltage conditions. If the input-to-output voltage difference is very low, the inductor current increases to a level  
determined by the load and may not reach the peak current threshold required to turn off the buck switch.  
Use 公式 14 to calculate the minimum input voltage to maintain output regulation at 100% duty cycle.  
V
= VOUT +IOUT RDSON1 +RDCR  
(
)
IN(min)  
(14)  
7.3.4 Adjustable Output Voltage (FB)  
Three voltage feedback settings are available. The fixed 3.3-V and 5-V versions include internal feedback  
resistors that sense the output directly through the VOUT pin, and the adjustable voltage option senses the  
output through an external resistor divider connected from the output to the FB pin.  
The LM5166 voltage regulation loop regulates the output voltage by maintaining the FB voltage equal to the  
internal reference voltage (VFB1). A resistor divider programs the ratio from output voltage VOUT to FB. For a  
target VOUT setpoint, calculate RFB2 based on the selected RFB1 by 公式 15.  
1.223V  
RFB2  
=
RFB1  
VOUT -1.223V  
(15)  
20  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
 
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
RFB1 in the range of 100 kΩ to 1 Mis recommended for most applications. A larger RFB1 consumes less DC  
current, which is necessary if light-load efficiency is critical. However, RFB1 larger than 1 MΩ is not recommended  
as the feedback path becomes more susceptible to noise. Larger feedback resistances generally require more  
careful feedback path PCB layout. It is important to route the feedback trace away from the noisy area of the  
PCB. For more PCB layout recommendations, see Layout.  
7.3.5 Adjustable Current Limit  
The LM5166 protects the system from overload conditions using cycle-by-cycle current limiting of the peak  
inductor current. The current sensed in the high-side MOSFET is compared to the current limit threshold set by  
the ILIM pin (see 3). Current is sensed after a 120-ns leading-edge blanking time following the high-side  
MOSFET turnon. The propagation delay of the current limit comparator is 80 ns, typical.  
3. Current Limit Thresholds  
MODE OF  
OPERATION  
RILIM (kΩ)  
TYPICAL IHS_LIM (mA) TYPICAL ILS_LIM (mA) IOUT(max) (mA)  
0
750  
500  
415  
315  
N/A  
N/A  
N/A  
N/A  
500  
300  
500  
500  
300  
200  
COT Mode  
100(1)  
0
1250  
1250(2)  
750  
24.9  
PFM Mode  
56.2  
100(1)  
500  
(1) For this current limit threshold selection, the ILIM pin may also be left open instead of using a 100-kΩ  
or greater resistor.  
(2) This ILIM setting enables a function that modulates the ILIM levels during the first three switching cycles  
as illustrated in 42.  
Note that in PFM mode, the inductor current ramps from zero to the chosen peak threshold every switching  
cycle. Consequently, the maximum output current is equal to half the peak inductor current. The output current  
capability in COT mode is higher and equal to the peak current threshold minus one-half the inductor ripple  
current. The ripple current is determined by the input and output voltages and the chosen inductance and  
switching frequency.  
7.3.6 Precision Enable (EN) and Hysteresis (HYS)  
The precision EN input supports adjustable input undervoltage lockout (UVLO) with hysteresis programmed  
independently through the HYS pin for application specific power-up and power-down requirements. EN connects  
to the input of a comparator with 76-mV hysteresis. The reference input of the comparator is connected to a  
1.22-V bandgap reference. An external logic signal can be used to drive EN input to toggle the output on and off  
for system sequencing or protection. The simplest way to enable operation is to connect EN directly to VIN. This  
allows self-start-up of the LM5166 when VIN is within its valid operating range.  
VIN  
RUV1  
EN  
Comparator  
EN  
7
RUV2  
1.22V  
1.144V  
RHYS  
HYS  
9
44. Input Voltage UVLO Using EN and HYS  
版权 © 2016–2017, Texas Instruments Incorporated  
21  
 
 
 
 
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
However, many applications benefit from using a resistor divider RUV1 and RUV2 as shown in 44 to establish a  
precision UVLO level. Adding RHYS and the connection to the HYS pin increases the voltage hysteresis as  
needed.  
The input UVLO voltages are calculated using 公式 16 and 公式 17.  
÷
RUV1  
V
= 1.22V 1+  
IN(on)  
RUV2 ◊  
«
(16)  
(17)  
÷
RUV1  
V
= 1.144V 1+  
IN(off)  
RUV2 + RHYS ◊  
«
The LM5166 enters a low IQ shutdown mode when EN is pulled below an NPN transistor base-emitter voltage  
drop (approximately 0.6 V at room temperature). If EN is below this hard shutdown threshold, the internal LDO  
regulator powers off and the internal bias supply rail collapses, turning off the bias currents of the LM5166.  
7.3.7 Power Good (PGOOD)  
The LM5166 has a built-in PGOOD flag to indicate whether the output voltage is within a regulation window. The  
PGOOD signal can be used for start-up sequencing of downstream converters, as shown in 45, or fault  
protection. PGOOD is an open-drain output that requires a pullup resistor to a DC supply (12 V maximum).  
Typical range of pullup resistance is 10 kto 100 k. If necessary, use a resistor divider to decrease the  
PGOOD pin voltage from a higher pullup rail.  
VIN(ON) = 4.5 V  
VIN(OFF) = 4.1 V  
RUV1  
VOUTSLAVE = 1.5 V  
VOUTMASTER = 2.5 V  
1 M  
EN  
7
9
EN  
7
9
RFB3  
RFB1  
RPGOOD  
RUV2  
PGOOD  
FB  
6
8
PGOOD  
FB  
6
8
22.4 kꢀ  
105 kꢀ  
100 kꢀ  
374 kꢀ  
HYS  
HYS  
1.223 V  
1.223 V  
RHYS  
4.02 kꢀ  
RFB4  
RFB2  
100 kꢀ  
100 kꢀ  
Regulator #1  
Regulator #2  
Startup based on  
Input Voltage UVLO  
Sequential Startup  
based on PGOOD  
45. Master-Slave Sequencing Implementation Using PGOOD and EN  
When the FB voltage exceeds 94% of the internal reference VFB1, the PGOOD switch turns off and PGOOD will  
be pulled high. If the FB voltage falls below 87% of VFB1, the PGOOD switch turns on, and PGOOD pulls low to  
indicate power bad. The rising edge of PGOOD has a built-in noise filter delay of 5 µs.  
7.3.8 Configurable Soft Start (SS)  
The LM5166 has a flexible and easy-to-use start-up control through the SS pin. A soft-start feature prevents  
inrush current impacting the LM5166 and its supply when power is first applied. Soft start is achieved by slowly  
ramping up the target regulation voltage when the device is enabled or powered up. Selectable and adjustable  
soft-start timing options include minimum delay (no soft-start), 900-µs internally fixed soft-start, and an externally-  
adjustable soft start.  
The simplest way to use the LM5166 is to leave the SS pin open circuit for a 900-µs soft-start time. The LM5166  
will employ the internal soft-start control ramp and start-up to the regulated output voltage. In applications with a  
large amount of output capacitors, higher VOUT, or other special requirements, extend the soft-start time by  
connecting an external capacitor CSS from SS to GND. Longer soft-start time further reduces the supply current  
needed to charge the output capacitors. An internal current source (ISS = 10 µA) charges CSS and generates a  
ramp to control the ramp rate of the output voltage. For a desired soft-start time tSS, the CSS capacitance is:  
22  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
CSS nF = 8.1t  
ms  
ÿ
»
ÿ
»
SS  
(18)  
CSS is discharged by an internal 80-Ω FET when VOUT is shutdown by EN, UVLO, or thermal shutdown.  
It is desirable in some applications for the output voltage to reach its nominal setpoint in the shortest possible  
time. Connecting a 100-kΩ resistor from SS to GND disables the soft-start circuit of the LM5166, and the  
LM5166 operates in current limit during start-up to rapidly charge the output capacitance.  
Diode emulation mode (DEM) of the LM5166 prevents negative inductor current enabling monotonic start-up  
under prebiased output conditions. With a prebiased output voltage, the LM5166 waits until the soft-start ramp  
allows regulation above the prebiased voltage and then follows the soft-start ramp to the regulation setpoint as  
shown in 46 and 47.  
Time Scale: 2 ms/Div  
CH1: VEN, 1 V/Div  
CH2: VOUT, 1 V/Div  
CH4: IOUT, 200 mA/Div  
Time Scale: 2 ms/Div  
CH1: VEN, 5 V/Div  
CH2: VOUT, 1 V/Div  
CH4: IOUT, 200 mA/Div  
46. ENABLE On and Off; VOUT Prebiased to 1.8 V  
52 Circuit, VIN = 24 V, No Load  
47. ENABLE On and Off; VOUT Prebiased to 1.8 V  
52 Circuit, VIN = 24 V, 500 mA Load  
7.3.9 Short-Circuit Operation  
The LM5166 features a clamping circuit that clamps the SS voltage about 175 mV above the FB voltage (see 图  
48 and 49). The circuit is enabled in COT mode and only works when an external soft-start capacitor is  
connected.  
200  
190  
180  
170  
160  
150  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0
0.2  
0.4  
0.6  
0.8  
1
-50  
-25  
0
25  
50  
75  
100  
125  
150  
VFB (V)  
Temperature (èC)  
D013  
D014  
48. Soft-Start (SS) Voltage vs Feedback (FB) Voltage  
49. Soft-Start to Feedback Clamp Offset vs Temperature  
版权 © 2016–2017, Texas Instruments Incorporated  
23  
 
 
 
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
In case of an overload event such as an output short circuit, the clamping circuit discharges the soft-start  
capacitor. When the short is removed, the FB voltage quickly rises until it reaches the level of the SS pin. Then,  
the recovery continues under the soft-start capacitor control. 50 and 51 show short-circuit entry and  
recovery waveforms.  
Time Scale: 1 ms/Div  
CH2: VOUT, 2 V/Div  
CH4: IL, 200 mA/Div  
Time Scale: 1 ms/Div  
CH2: VOUT, 2 V/Div  
CH4: IL, 200 mA/Div  
50. Short-Circuit Entry  
(52 Circuit)  
51. Short-Circuit Recovery  
(52 Circuit)  
7.3.10 Thermal Shutdown  
Thermal shutdown is a built-in self protection to limit junction temperature and prevent damage related to  
overheating. Thermal shutdown turns off the device when the junction temperature exceeds 170°C typically to  
prevent further power dissipation and temperature rise. Junction temperature decreases during thermal  
shutdown, and the LM5166 restarts when the junction temperature falls to 160°C.  
24  
版权 © 2016–2017, Texas Instruments Incorporated  
 
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode  
The EN pin provides ON / OFF control for the LM5166. When VEN is below 0.3 V, the device is in shutdown  
mode. Both the internal LDO and the switching regulator are off. The quiescent current in shutdown mode drops  
to 4 µA (typical) at VIN = 12 V. The LM5166 also includes undervoltage protection of the internal bias LDO. If the  
internal bias supply voltage is below the UV threshold level, the switching regulator remains off.  
7.4.2 Standby Mode  
The internal bias LDO has a lower enable threshold than the switching regulator. When VEN is above 0.6 V and  
below the precision enable threshold (1.22 V typically), the internal LDO is on and regulating. The precision  
enable circuitry is turned on if the LDO output is above the bias rail UV threshold. The switching action and  
output voltage regulation are disabled in the standby mode.  
7.4.3 Active Mode – COT  
The LM5166 is in active mode when VEN is above the precision enable threshold and the internal bias rail is  
above its UV threshold level. In COT active mode, the LM5166 operates in one of three modes depending on the  
load current:  
1. CCM with fixed switching frequency when the load current is more than half of the peak-to-peak inductor  
current ripple;  
2. Pulse skipping and diode emulation mode when load current is less than half of the peak-to-peak inductor  
current ripple of CCM operation;  
3. Extended on-time mode when VIN is nearly equal to VOUT (dropout) and during load step transients.  
7.4.4 Sleep Mode – COT  
The LM5166 is in COT sleep mode when VEN and VIN are above their relevant threshold levels, FB has  
exceeded its upper hysteresis level, and the output capacitor is sourcing the load current. In COT sleep mode,  
the LM5166 operates with very low quiescent current (9.7 µA typical). There is a 2-µs wake-up delay from sleep  
to active modes.  
7.4.5 Active Mode – PFM  
The LM5166 is in PFM active mode when VEN and VIN are above their relevant thresholds, FB has fallen below  
the lower hysteresis level, and boundary conduction mode switching is recharging the output capacitor to the  
upper hysteresis level.  
7.4.6 Sleep Mode – PFM  
The LM5166 is in PFM sleep mode when VEN and VIN are above their relevant threshold levels, FB has  
exceeded the upper hysteresis level, and the output capacitor is sourcing the load current. In PFM sleep mode,  
the LM5166 operates with very low quiescent current (9.7 µA typical). There is a 2-µs wake-up delay from sleep  
to active modes.  
版权 © 2016–2017, Texas Instruments Incorporated  
25  
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
8 Applications and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LM5166 only requires a few external components to convert from a wide range of supply voltages to a fixed  
output voltage. To expedite and streamline the process of designing a LM5166-based converter, a  
comprehensive LM5166 Quickstart Calculator is available for download to assist the designer with component  
selection for a given application. WEBENCH® online software is also available to generate complete designs,  
leveraging iterative design procedures and access to comprehensive component databases. The following  
sections discuss the design procedure for both COT and PFM converters using specific circuit design examples.  
The LM5166 integrates several optional features to meet system design requirements, including precision  
enable, UVLO, programmable soft start, programmable switching frequency in COT mode, adjustable current  
limit, and PGOOD indicator. Each application incorporates these features as needed for a more comprehensive  
design. The application circuits detailed below show LM5166 configuration options suitable for several application  
use cases. Please see the LM5166EVM-C50A and LM5166EVM-C33A EVM user's guides for more detail.  
8.2 Typical Applications  
For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation and test results of  
an LM5166-powered implementation, refer to 24-V AC Power Stage with Wide VIN Converter and Battery  
Gauge for Smart Thermostat reference design.  
8.2.1 Design 1: Wide VIN, Low IQ, High-Efficiency COT Converter Rated at 5 V, 500 mA  
LF  
U1  
150 mH  
VOUT = 5 V  
IOUT = 0.5 A  
SW  
VIN  
VIN = 6 V...65 V  
LM5166  
CIN  
RFB1  
CFF  
RESR  
PGOOD  
EN  
2.2 mF  
309 kW  
100 pF  
0.11 W  
HYS  
FB  
COUT  
RFB2  
47 mF  
ILIM  
SS  
RT  
100 kW  
CSS  
33 nF  
GND  
RRT  
309 kW  
Copyright © 2016, Texas Instruments Incorporated  
52. Schematic for Design 1 With VIN(nom) = 24 V, VOUT = 5 V, IOUT(max) = 500 mA, FSW(nom) = 100 kHz  
8.2.1.1 Design Requirements  
The target efficiency is 90% for loads above 10 mA based on a nominal input voltage of 24 V and an output  
voltage of 5 V. The required input voltage range is 6 V to 65 V. The LM5166 is chosen to deliver a 5-V output  
voltage. The switching frequency is set at 100 kHz. The output voltage soft-start time is 4 ms. The required  
components are listed in 4.  
26  
版权 © 2016–2017, Texas Instruments Incorporated  
LM5166  
www.ti.com.cn  
COUN  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
4. List of Components for Design 1(1)  
REF DES  
DESCRIPTION  
PART NUMBER  
MFR  
T
1
1
1
1
CIN  
Capacitor, Ceramic, 2.2 μF, 100 V, X7R, 10%, 1210  
Capacitor, Ceramic, 47 μF, 10 V, X7R, 10%, 1210  
Capacitor, Ceramic, 33 nF, 16 V, X7R, 10%, 0402  
Capacitor, Ceramic, 100 pF, 50 V, X7R, 10%, 0402  
Inductor, 150 µH, 0.240 Ω typ, 1.4 A Isat, 5 mm max  
Inductor, 150 µH, 0.285 Ω typ, 1.12 A Isat, 5.1 mm max  
Resistor, Chip, 309 kΩ, 1/16W, 1%, 0402  
GRM32ER72A225KA35L  
Murata  
Murata  
Std  
COUT  
CSS  
CFF  
GRM32ER71A476KE15L  
Std  
Std  
Std  
7447714151  
Würth  
Sumida  
Std  
1
LF  
CDRH105RNP-151NC  
1
1
1
1
1
RRT  
RFB1  
RESR  
RFB2  
U1  
Std  
Resistor, Chip, 309 kΩ, 1/16W, 1%, 0402  
Std  
Std  
Resistor, Chip, 0.11 Ω, 1/16W, 1%, 0402  
Std  
Std  
Resistor, Chip, 100 kΩ, 1/16W, 1%, 0402  
Std  
Std  
LM5166, Synchronous Buck Converter, VSON-10, ADJ  
LM5166DRCR  
TI  
(1) See 第三方产品免责声明.  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LM5166 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.1.2.2 Feedback Resistors – RFB1, RFB2  
While the 5-V fixed output version of the LM5166 is suitable here, the adjustable version is chosen to provide the  
user with the option to trim or margin the output voltage if needed. The feedback resistor divider network  
comprises the upper feedback resistor RFB1 and lower feedback resistor RFB2. Select RFB1 of 309 kΩ to minimize  
quiescent current and improve light-load efficiency in this application. With the desired output voltage setpoint of  
5 V and VFB = 1.223 V, calculate the resistance of RFB2 using 公式 15 as 100.1 kΩ. Choose the closest available  
standard value of 100 kΩ for RFB2. See Adjustable Output Voltage (FB) for more details.  
8.2.1.2.3 Switching Frequency – RT  
The switching frequency of a COT-configured LM5166 is set by the on-time programming resistor at the RT pin.  
Using 公式 4, a standard 1% resistor of 309 kΩ gives a switching frequency of 92 kHz. Including the inductor  
RDCR and RDSON2 in the calculation of tOFF (公式 3) gives an adjusted FSW of 101 kHz at 500 mA. The LM5166  
Quickstart Calculator estimates and plots the switching frequency as a function of load current.  
Note that at very low duty cycles, the minimum controllable on-time of the high-side MOSFET, TON(min), of 180 ns  
may affect choice of switching frequency. In CCM, TON(min) limits the voltage conversion step-down ratio for a  
given switching frequency. The minimum controllable duty cycle is given by 公式 19.  
DMIN = TON(min) FSW  
(19)  
版权 © 2016–2017, Texas Instruments Incorporated  
27  
 
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
Given a fixed TON(min), it follows that higher switching frequency implies a larger minimum controllable duty cycle.  
Ultimately, the choice of switching frequency for a given output voltage affects the available input voltage range,  
solution size, and efficiency. The maximum supply voltage for a given TON(min) before switching frequency  
reduction occurs is given by 公式 20.  
VOUT  
V
=
IN(max)  
TON(min) FSW  
(20)  
8.2.1.2.4 Filter Inductance – LF  
The inductor ripple current (assuming CCM operation) and peak inductor current are given respectively by 公式  
21 and 公式 22.  
÷
VOUT  
VOUT  
DIL =  
1-  
FSW LF  
V
IN  
«
(21)  
(22)  
DIL  
2
IL(peak) = IOUT(max)  
+
For most applications, choose the inductance such that the inductor ripple current, ΔIL, is between 30% and 60%  
of the rated load current at nominal input voltage. Calculate the inductance using 公式 23.  
«
VOUT  
VOUT  
LF =  
1-  
÷
÷
FSW ∂ DIL(nom)  
V
IN(nom)  
(23)  
Choosing a 150-μH inductor in this design results in 295-mA peak-to-peak ripple current at nominal input voltage  
of 24 V, equivalent to 59% of the 500-mA rated load current. The peak inductor current at maximum input voltage  
of 65 V is 675 mA, which is sufficiently below the LM5166 peak current limit of 750 mA.  
Check the inductor datasheet to ensure that the inductor saturation current is well above the current limit setting  
of a particular design. Ferrite designs have low core loss and are preferred at high switching frequencies, so  
design goals can then concentrate on copper loss and preventing saturation. However, ferrite core materials  
exhibit a hard saturation characteristic – the inductance collapses abruptly when the saturation current is  
exceeded. This results in an abrupt increase in inductor ripple current, higher output voltage ripple, not to  
mention reduced efficiency and compromised reliability. Note that inductor saturation current generally decreases  
as the core temperature increases.  
8.2.1.2.5 Output Capacitors – COUT  
Select the output capacitor to limit the capacitive voltage ripple at the converter output. This is the sinusoidal  
ripple voltage that arises from the triangular ripple current flowing in the capacitor. Select an output capacitance  
using 公式 24 to limit the capacitive voltage ripple component to 0.5% of the output voltage.  
DIL(nom)  
COUT  
í
8 FSW ûVOUT  
(24)  
Substituting ΔIL(nom) of 295 mA and ΔVOUT of 25 mV gives COUT greater than 16 μF. Mindful of the voltage  
coefficient of ceramic capacitors, select a 47-μF, 10-V capacitor with a high-quality dielectric.  
8.2.1.2.6 Ripple Generation Network – RESR, CFF  
For this design, the Type 2 ripple generation method is selected as it offers a good balance between cost and  
output voltage ripple. For other methods, see Ripple Generation Methods.  
Select a series resistor, RESR, such that sufficient ripple in phase with the inductor current ripple appears at the  
feedback node, FB, using 公式 7 and 公式 8. Select a feedforward capacitor, CFF, using 公式 9.  
With ΔIL(nom) of 295 mA at the nominal input voltage of 24 V, the required RESR is 0.11 Ω. The required  
feedforward capacitance, CFF, is 100 pF. Calculate the total output voltage ripple in CCM using 公式 25.  
2
«
÷
1
2
DVOUT = DIL(nom) RESR  
+
8FSW COUT ◊  
(25)  
28  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
 
 
 
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
8.2.1.2.7 Input Capacitor – CIN  
An input capacitor is necessary to limit the input ripple voltage while providing switching-frequency AC current to  
the buck power stage. To minimize the parasitic inductance in the switching loop, position the input capacitors as  
close as possible to the VIN and GND pins of the LM5166. The input capacitors conduct a trapezoidal-wave  
current of peak-to-peak amplitude equal to the output current. It follows that the resultant capacitive component  
of AC ripple voltage is a triangular waveform. Together with the ESR-related ripple component, the peak-to-peak  
input ripple voltage amplitude is given by 公式 26.  
IOUT D 1- D  
(
)
+ IOUT RESR  
DV  
=
IN  
FSW CIN  
(26)  
The input capacitance required for a particular load current, based on an input voltage ripple specification of  
ΔVIN, is given by 公式 27.  
IOUT D1-D  
(
)
CIN  
í
FSW ∂ DV -IOUT RESR  
(
)
IN  
(27)  
The recommended high-frequency input capacitance is 2.2 μF or higher and should be a high-quality ceramic  
component with sufficient voltage rating. Based on the voltage coefficient of ceramic capacitors, choose a  
voltage rating of twice the maximum input voltage. Additionally, some bulk capacitance is required if the LM5166  
circuit is not located within approximately 5 cm from the input voltage source. This capacitor provides damping to  
the resonance associated with parasitic inductance of the supply lines and high-Q ceramics.  
8.2.1.2.8 Soft-Start Capacitor – CSS  
Connect an external soft-start capacitor for a specific soft-start time. In this example, select a soft-start  
capacitance of 33 nF based on 公式 18 to achieve a soft-start time of 4 ms.  
8.2.1.2.9 Application Curves  
Unless otherwise stated, application performance curves were taken at TA = 25°C.  
5.1  
5.08  
5.06  
5.04  
5.02  
5
100  
90  
80  
70  
60  
50  
40  
30  
4.98  
4.96  
4.94  
4.92  
4.9  
VIN = 8V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 65V  
VIN = 8V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
0.01  
0.1  
1
10  
100  
500  
0.01  
0.1  
1
10  
100  
500  
Load (mA)  
Load (mA)  
D001  
DD00101  
LF = 150 µH  
FSW(nom) = 100 kHz  
LF = 150 µH  
FSW(nom) = 100 kHz  
COUT = 47 µF  
RRT = 309 kΩ  
COUT = 47 µF  
RRT = 309 kΩ  
53. Converter Efficiency  
54. Converter Regulation  
版权 © 2016–2017, Texas Instruments Incorporated  
29  
 
 
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
Time Scale: 20 ms/Div  
CH1: VSW, 5 V/Div  
CH2: VOUT, 50 mV/Div  
CH4: IL, 200 mA/Div  
Time Scale: 10 µs/Div  
CH1: VSW, 5 V/Div  
CH2: VOUT, 50 mV/Div  
CH4: IL, 200 mA/Div  
55. No-Load Switching Waveforms, VIN = 24 V  
56. Full-Load Switching Waveforms, VIN = 24 V  
Time Scale: 100 µs/Div  
CH1: VSW, 4 V/Div  
CH4: IL, 200 mA/Div  
Time Scale: 2 ms/Div  
CH1: VIN, 3 V/Div  
CH2: VOUT, 1 V/Div  
CH4: IL, 200 mA/Div  
58. Short Circuit, VIN = 24 V  
57. Full-Load Start-Up, VIN = 24 V  
Time Scale: 2 ms/Div  
CH1: VEN, 1 V/Div  
CH2: VOUT, 1 V/Div  
CH4: IOUT, 200 mA/Div  
Time Scale: 2 ms/Div  
CH1: VEN, 5 V/Div  
CH2: VOUT, 1 V/Div  
CH4: IOUT, 200 mA/Div  
59. ENABLE On and Off; VOUT Prebiased to 1.8 V  
60. ENABLE On and Off; VOUT Prebiased to 1.8 V  
VIN = 24 V, No Load  
VIN = 24 V, 500 mA Load  
30  
版权 © 2016–2017, Texas Instruments Incorporated  
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
Time Scale: 1 ms/Div  
CH2: VOUT, 2 V/Div  
CH4: IL, 200 mA/Div  
Time Scale: 1 ms/Div  
CH2: VOUT, 2 V/Div  
CH4: IL, 200 mA/Div  
61. Short-Circuit Entry  
62. Short-Circuit Recovery  
版权 © 2016–2017, Texas Instruments Incorporated  
31  
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
8.2.2 Design 2: Wide VIN, Low IQ COT Converter Rated at 3.3 V, 500 mA  
LF  
U1  
47 mH  
VOUT = 3.3V  
IOUT = 0.5 A  
SW  
VIN  
VIN = 4.5 V...65 V  
LM5166  
CIN  
RFB1  
RESR  
PGOOD  
2.2 mF  
EN  
169 kW  
0.2 W  
FB  
HYS  
COUT  
RFB2  
47 mF  
ILIM  
SS  
RT  
CSS  
100 kW  
47 nF  
GND  
RRT  
100 kW  
Copyright © 2016, Texas Instruments Incorporated  
63. Schematic for Design 2 With VIN(nom) = 12 V, VOUT = 3.3 V, IOUT(max) = 500 mA, FSW(nom) = 200 kHz  
8.2.2.1 Design Requirements  
The target efficiency is 85% for loads above 10 mA based on a nominal input voltage of 12 V and an output  
voltage of 3.3 V. The required input voltage range is 4.5 V to 65 V. The LM5166 is chosen to deliver a 3.3-V  
output voltage. The switching frequency is set at 200 kHz. The output voltage soft-start time is 4 ms. The  
required components are listed in 5.  
5. List of Components for Design 2(1)  
COUN  
REF DES  
DESCRIPTION  
PART NUMBER  
MFR  
T
1
1
1
CIN  
Capacitor, Ceramic, 2.2 μF, 100 V, X7R, 10%, 1210  
Capacitor, Ceramic, 47 μF, 10 V, X7R, 10%, 1210  
Capacitor, Ceramic, 47 nF, 16 V, X7R, 10%, 0402  
Inductor, 47 µH, 0.245 Ω max, 1.2 A Isat, 3.5 mm max  
Inductor, 47 µH, 0.315 Ω typ, 1.3 A Isat, 2.8 mm max  
Resistor, Chip, 100 kΩ, 1/16W, 1%, 0402  
GRM32ER72A225KA35L  
Murata  
Murata  
Std  
COUT  
CSS  
GRM32ER71A476KE15L  
Std  
LPS6235-473MR  
Coilcraft  
Würth  
Std  
1
LF  
74404063470  
1
1
1
1
1
RRT  
RFB1  
RESR  
RFB2  
U1  
Std  
Resistor, Chip, 169 kΩ, 1/16W, 1%, 0402  
Std  
Std  
Resistor, Chip, 0.2 Ω, 1/16W, 1%, 0402  
Std  
Std  
Resistor, Chip, 100 kΩ, 1/16W, 1%, 0402  
Std  
Std  
LM5166, Synchronous Buck Converter, VSON-10, ADJ  
LM5166DRCR  
TI  
(1) See 第三方产品免责声明.  
8.2.2.2 Detailed Design Procedure  
8.2.2.2.1 Feedback Resistors – RFB1, RFB2  
The output voltage of the LM5166 is externally adjustable using a resistor divider network. The divider network  
comprises the upper feedback resistor RFB1 and lower feedback resistor RFB2. Select RFB1 of 169 kΩ to minimize  
quiescent current and improve light-load efficiency in this application. With the desired output voltage setpoint of  
3.3 V and VFB = 1.223 V, calculate the resistance of RFB2 using 公式 15 as 100.1 kΩ. Choose the closest  
available standard value of 100 kΩ for RFB2. See Adjustable Output Voltage (FB) for more detail.  
32  
版权 © 2016–2017, Texas Instruments Incorporated  
 
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
8.2.2.2.2 Switching Frequency – RT  
The switching frequency of a COT-configured LM5166 is set by the on-time programming resistor at the RT pin.  
Using 公式 4, a standard 1% resistor of 100 kΩ gives a switching frequency of 190 kHz. Including the inductor  
RDCR and RDSON2 in the calculation of tOFF (公式 3) gives an adjusted FSW of 215 kHz at 500 mA. The LM5166  
Quick-Start Design Tool estimates and plots the switching frequency as a function of load current.  
Note that at very low duty cycles, the minimum controllable on-time of the high-side MOSFET, TON(min), of 180 ns  
may affect choice of switching frequency. In CCM, TON(min) limits the voltage conversion step-down ratio for a  
given switching frequency. The minimum controllable duty cycle is given by 公式 19.  
Given a fixed TON(min), it follows that higher switching frequency implies a larger minimum controllable duty cycle.  
Ultimately, the choice of switching frequency for a given output voltage affects the available input voltage range,  
solution size, and efficiency. The maximum supply voltage for a given TON(min) before switching frequency  
reduction occurs is given by 公式 20.  
8.2.2.2.3 Filter Inductance – LF  
The inductor ripple current (assuming CCM operation) and peak inductor current are given respectively by 公式  
21 and 公式 22. For most applications, choose an inductance such that the inductor ripple current, ΔIL, is  
between 30% and 60% of the rated load current at nominal input voltage. Calculate the inductance using 公式  
23.  
Choosing a 47-μH inductor in this design results in 275-mA peak-to-peak ripple current at nominal input voltage  
of 12 V, equivalent to 55% of the 500-mA rated load current. The peak inductor current at maximum input voltage  
of 65 V is 694 mA, which is sufficiently below the LM5166 peak current limit of 750 mA.  
8.2.2.2.4 Output Capacitors – COUT  
Select the output capacitor to limit the capacitive voltage ripple at the converter output. This is the sinusoidal  
ripple voltage that arises from the triangular ripple current flowing in the capacitor. Select an output capacitance  
using 公式 24 to limit the capacitive voltage ripple component to 0.5% of the output voltage.  
Substituting ΔIL(nom) of 275 mA and ΔVOUT of 25 mV gives COUT greater than 11 μF. Mindful of the voltage  
coefficient of ceramic capacitors, select a 47-μF, 10-V capacitor with a high-quality dielectric.  
8.2.2.2.5 Ripple Generation Network – RESR  
For this design, the Type 1 ripple generation method is selected as it only requires a single external component.  
For other schemes, see Ripple Generation Methods.  
Select a series resistor, RESR, using 公式 5 and 公式 6 such that sufficient ripple in phase with the SW node  
voltage appears at the feedback node, FB. With ΔIL(nom) of 275 mA at the nominal input voltage of 12 V, the  
required RESR is 0.2 Ω. Calculate the total output voltage ripple in CCM using 公式 25.  
8.2.2.2.6 Input Capacitor – CIN  
An input capacitor is necessary to limit the input ripple voltage while providing switching-frequency AC current to  
the buck power stage. To minimize the parasitic inductance in the switching loop, position the input capacitors as  
close as possible to the VIN and GND pins of the LM5166. The input capacitors conduct a trapezoidal-wave  
current of peak-to-peak amplitude equal to the output current. It follows that the resultant capacitive component  
of AC ripple voltage is a triangular waveform. Together with the ESR-related ripple component, the peak-to-peak  
input ripple voltage amplitude is given by 公式 26. The input capacitance required for a particular load current,  
based on an input voltage ripple specification of ΔVIN, is given by 公式 27.  
The recommended high-frequency capacitance is 2.2 μF or higher and should be a high-quality ceramic with  
sufficient voltage rating. Based on the voltage coefficient of ceramic capacitors, choose a voltage rating of twice  
the maximum input voltage. Additionally, some bulk capacitance is required if the LM5166 circuit is not located  
within approximately 5 cm from the input voltage source. This capacitor provides damping to the resonance  
associated with parasitic inductance of the supply lines and high-Q ceramics.  
8.2.2.2.7 Soft-Start Capacitor – CSS  
Connect an external soft-start capacitor for a specific soft-start time. In this example, select a soft-start  
capacitance of 47 nF based on 公式 18 to achieve a soft-start time of 6 ms.  
版权 © 2016–2017, Texas Instruments Incorporated  
33  
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
8.2.2.2.8 Application Curves  
Unless otherwise stated, application curves were taken at TA = 25°C.  
3.4  
3.38  
3.36  
3.34  
3.32  
3.3  
100  
90  
80  
70  
60  
50  
40  
30  
3.28  
3.26  
3.24  
3.22  
3.2  
VIN = 8V  
VIN = 8V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 65V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 65V  
0.01  
0.1  
1
10  
100  
500  
0.01  
0.1  
1
10  
100  
500  
Load (mA)  
Load (mA)  
D001  
D001  
LF = 47 µH  
FSW(nom) = 200 kHz  
LF = 47 µH  
FSW(nom) = 200 kHz  
COUT = 47 µF  
RRT = 100 kΩ  
COUT = 47 µF  
RRT = 100 kΩ  
64. Converter Efficiency  
65. Converter Regulation  
Time Scale: 5 µs/Div  
CH1: VSW, 5 V/Div  
CH2: VOUT, 50 mV/Div  
CH4: IL, 200 mA/Div  
Time Scale: 20 ms/Div  
CH1: VSW, 5 V/Div  
CH2: VOUT, 50 mV/Div  
CH4: IL, 200 mA/Div  
67. Full-Load Switching Waveforms  
66. No-Load Switching Waveforms  
Time Scale: 2 ms/Div  
CH1: VIN, 2 V/Div  
CH2: VOUT, 1 V/Div  
CH4: IL, 200 mA/Div  
Time Scale: 100 µs/Div  
CH1: VSW, 4 V/Div  
CH4: IL, 200 mA/Div  
68. Full-Load Start-Up  
69. Short Circuit  
34  
版权 © 2016–2017, Texas Instruments Incorporated  
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
8.2.3 Design 3: High-Density PFM Converter Rated at 3.3 V, 0.3 A  
LF  
U1  
4.7 mH  
VOUT = 3.3 V  
IOUT = 0.3 A  
COUT  
VIN = 4.5 V...36 V  
VIN  
EN  
SW  
CIN  
4.7 mF  
VOUT  
47 mF  
LM5166Y  
PGOOD  
ILIM  
SS  
HYS  
RILIM  
56.2 kW  
RT  
GND  
Copyright © 2017, Texas Instruments Incorporated  
70. Schematic for Design 3 With VIN(nom) = 24 V, VOUT = 3.3 V, IOUT(max) = 0.3 A, FSW(nom) = 600 kHz  
8.2.3.1 Design Requirements  
The target efficiency is 75% for loads above 10 mA based on a nominal input voltage of 24 V, an output voltage  
of 3.3 V, with the emphasis on small solution size. The required input voltage range is 4.5 V to 36 V. The  
LM5166 has an internally-set soft-start time of 900 µs and an adjustable peak current limit threshold. The  
required components are listed in 6.  
6. List of Components for Design 3(1)  
COUN REF  
DESCRIPTION  
PART NUMBER  
MFR  
T
1
1
1
DES  
GRM31CR71H475MA12L  
885012208094  
Murata  
Würth  
Murata  
TDK  
CIN  
Capacitor, Ceramic, 4.7 μF, 50 V, X7R, 10%, 1206  
COUT  
LF  
Capacitor, Ceramic, 47 μF, 6.3 V, X5R, 10%, 1206  
Inductor, 4.7 µH, 0.18 Ω typ, 2.2 A Isat, 1.2 mm max  
Inductor, 4.7 µH, 0.3 Ω typ, 2.1 A Isat, 1.2 mm max  
Resistor, Chip, 56.2 kΩ, 1/16W, 1%, 0402  
GRM31CR60J476KE19  
TFM252012ALMA4R7TMAA  
Würth  
Würth  
Std  
1
1
RILIM  
U1  
Std  
LM5166Y, Synchronous Buck Converter, VSON-10, 3.3-V Fixed  
LM5166YDRCR  
TI  
(1) See 第三方产品免责声明.  
8.2.3.2 Detailed Design Procedure  
8.2.3.2.1 Peak Current Limit Setting – RILIM  
Install a 56.2-kΩ resistor from ILIM to GND to select a 750-mA peak current limit threshold setting to meet the  
rated output current of 300 mA in PFM. See Adjustable Current Limit for more detail.  
8.2.3.2.2 Switching Frequency – LF  
Tie RT to GND to select PFM mode of operation. The inductor, input voltage, output voltage and peak current  
determine the pulse switching frequency of a PFM-configured LM5166. For a given input voltage, output voltage  
and peak current, the inductance of LF sets the switching frequency when the output is in regulation. Use 公式 28  
to select an inductance of 4.7 μH based on the target PFM converter switching frequency of 600 kHz at 24-V  
input.  
÷
VOUT  
VOUT  
LF =  
1-  
FSW(PFM) IPK(PFM)  
V
IN  
«
(28)  
35  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
IPK(PFM) in this example is the peak current limit setting of 750 mA plus the inductor current overshoot resulting  
from the 80-ns peak current comparator delay, tILIM_delay. An additional constraint on the inductance is the 180-ns  
minimum on-time of the high-side MOSFET. Therefore, to keep the inductor current well controlled, choose an  
inductance that is larger than LF(min) using 公式 29 where VIN(max) is the maximum input supply voltage for the  
application, tILIM_delay is 80 ns, tON(min) is 180 ns, the maximum current limit threshold, ILIM(max), is 825 mA, and the  
maximum allowed peak inductor current, IL(max), is 1.6 A.  
V
IN(max) tON(min)  
VIN(max) tILIM_delay  
LF(min) = Max  
,
«
÷
÷
IL(max)  
IL(max) -ILIM(max)  
(29)  
Choose an inductor with saturation current rating above the peak current limit setting, and allow for derating of  
the saturation current at the highest expected operating temperature.  
8.2.3.2.3 Output Capacitors – COUT  
The output capacitor, COUT, filters the inductor’s ripple current and stores energy to meet the load current  
requirement when the LM5166 is in sleep mode. The output ripple has a base component of amplitude VOUT/123  
related to the typical feedback comparator hysteresis in PFM. The wake-up time from sleep to active mode adds  
a ripple voltage component that is a function of the output current. Approximate the total output ripple by 公式 30.  
I
VOUT  
123  
1s  
PK(PFM)  
DVOUT  
=
+IOUT  
+
÷
÷
2
COUT  
«
(30)  
Also, the output capacitance must be large enough to accept the energy stored in the inductor without a large  
deviation in output voltage. Setting this voltage change equal to 1% of the output voltage results in a COUT  
requirement defined with 公式 31.  
2
I
PK(PFM)  
COUT í 50 L ∂  
÷
÷
F
VOUT  
«
(31)  
In general, select the capacitance of COUT to limit the output voltage ripple at full load current, ensuring that it is  
rated for worst-case RMS ripple current given by IRMS = IPK(PFM)/2. In this design example, select a 47-μF, 6.3-V  
capacitor with a high-quality dielectric.  
8.2.3.2.4 Input Capacitor – CIN  
The input capacitor, CIN, filters the triangular current waveform of the high-side MOSFET (see 89). To prevent  
large ripple voltage, use a low-ESR ceramic input capacitor sized for the worst-case RMS ripple current given by  
IRMS = IOUT/2. In this design example, choose a 2.2-μF, 50-V ceramic input capacitor with a high-quality dielectric.  
36  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
8.2.3.2.5 Application Curves  
Unless otherwise stated, application curves were taken at TA = 25°C.  
3.4  
3.38  
3.36  
3.34  
3.32  
3.3  
100  
90  
80  
70  
60  
50  
40  
30  
3.28  
3.26  
3.24  
3.22  
3.2  
VIN = 8V  
VIN = 8V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
0.01  
0.1  
1
10  
100 300  
0.01  
0.1  
1
10  
100 300  
Load (mA)  
Load (mA)  
D001  
D001  
LF = 4.7 µH  
FSW(nom) = 600 kHz  
LF = 4.7 µH  
FSW(nom) = 600 kHz  
COUT = 47 µF  
RRT = 0 Ω  
COUT = 47 µF  
RRT = 0 Ω  
71. Converter Efficiency  
72. Converter Regulation  
Time Scale: 20 ms/Div  
CH1: VSW, 10 V/Div  
CH2: VOUT, 50 mV/Div  
CH4: IL, 400 mA/Div  
Time Scale: 10 µs/Div  
CH1: VSW, 10 V/Div  
CH2: VOUT, 50 mV/Div  
CH4: IL, 400 mA/Div  
73. No-Load Switching Waveforms, VIN = 24 V  
74. Full-Load Switching Waveforms, VIN = 24 V  
Time Scale: 2 ms/Div  
CH1: VIN, 4 V/Div  
CH2: VOUT, 1 V/Div  
CH4: IL, 400 mA/Div  
Time Scale: 20 µs/Div  
CH1: VSW, 6 V/Div  
CH4: IL, 400 mA/Div  
75. Full-Load Start-Up, VIN = 24 V  
76. Short Circuit, VIN = 24 V  
版权 © 2016–2017, Texas Instruments Incorporated  
37  
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
8.2.4 Design 4: Wide VIN, Low IQ PFM Converter Rated at 5 V, 500 mA  
LF  
U1  
22 mH  
VOUT = 5 V  
IOUT = 0.5 A  
VIN  
SW  
VIN = 6 V...42 V  
LM5166  
RFB1  
COUT  
2 x 100 mF  
CIN  
EN  
SS  
PGOOD  
309 kW  
4.7 mF  
FB  
RFB2  
HYS  
RT  
ILIM  
100 kW  
RILIM  
24.9 kW  
GND  
Copyright © 2016, Texas Instruments Incorporated  
77. Schematic for Design 4 With VIN(nom) = 12 V, VOUT = 5 V, IOUT(max) = 500 mA, FSW(nom) = 100 kHz  
8.2.4.1 Design Requirements  
The target efficiency is 85% for loads above 1 mA based on a nominal input voltage of 12 V, an output voltage of  
5 V. The required input voltage range is 6 V to 42 V. The LM5166 has an internally-set soft-start time of 900 µs  
and an adjustable peak current limit threshold. The required components are listed in 7.  
7. List of Components for Design 4(1)  
COUN  
REF DES  
DESCRIPTION  
PART NUMBER  
MFR  
T
1
2
1
GRM31CR71H475MA12L  
C3216X7R1H475M160AC  
GRM32ER61A107ME20K  
LPS6235-223MR  
CMLB063T-220MS  
Std  
Murata  
TDK  
CIN  
COUT  
LF  
Capacitor, Ceramic, 4.7 μF, 50 V, X7R, 20%, 1206  
Capacitor, Ceramic, 100 μF, 10 V, X5R, 10%, 1210  
Inductor, 22 µH, 0.145 Ω max, 1.7 A Isat, 3.5 mm max  
Inductor, 22 µH, 0.2 Ω max, 2.3 A Isat, 3 mm max  
Resistor, Chip, 24.9 kΩ, 1/16W, 1%, 0402  
Murata  
Coilcraft  
Cyntec  
Std  
1
1
1
1
RILIM  
RFB1  
RFB2  
U1  
Resistor, Chip, 309 kΩ, 1/16W, 1%, 0402  
Std  
Std  
Resistor, Chip, 100 kΩ, 1/16W, 1%, 0402  
Std  
Std  
LM5166, Synchronous Buck Converter, VSON-10, ADJ  
LM5166DRCR  
TI  
(1) See 第三方产品免责声明.  
8.2.4.2 Detailed Design Procedure  
8.2.4.2.1 Feedback Resistors – RFB1, RFB2  
The output voltage of the LM5166 is externally adjustable using a resistor divider network. The divider network  
comprises the upper feedback resistor RFB1 and lower feedback resistor RFB2. Select RFB1 of 309 kΩ to minimize  
quiescent current and improve light-load efficiency in this application. With the desired output voltage setpoint of  
5 V and VFB = 1.223 V, calculate the resistance of RFB2 using 公式 15 as 99.5 kΩ. Choose the closest available  
standard value of 100 kΩ for RFB2. See Adjustable Output Voltage (FB) for more detail.  
8.2.4.2.2 Peak Current Limit Setting – RILIM  
Install a 24.9-kΩ resistor from ILIM to GND to select a 1.25-A peak current limit threshold setting with modulated  
ILIM function to meet the rated output current of 500 mA and the efficiency target. See Adjustable Current Limit  
for more detail.  
38  
版权 © 2016–2017, Texas Instruments Incorporated  
 
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
8.2.4.2.3 Switching Frequency – LF  
Tie RT to GND to select PFM mode of operation. The inductor, input voltage, output voltage and peak current  
determine the pulse switching frequency of a PFM-configured LM5166. For a given input voltage, output voltage  
and peak current, the inductance of LF sets the switching frequency when the output is in regulation. Use 公式 28  
to select an inductance of 22 μH based on the target PFM converter switching frequency of 100 kHz at 12-V  
input.  
IPK(PFM) in this example is the peak current limit setting of 1.25 A plus the inductor current overshoot resulting  
from the 80-ns peak current comparator delay. An additional constraint on the inductance is the 180-ns minimum  
on-time of the high-side MOSFET. Therefore, to keep the inductor current well controlled, choose an inductance  
that is larger than LF(min) using 公式 29.  
Choose an inductor with saturation current rating above the peak current limit setting, and allow for derating of  
the saturation current at the highest expected operating temperature.  
8.2.4.2.4 Output Capacitors – COUT  
The output capacitor, COUT, filters the ripple current of the inductor and stores energy to meet the load current  
requirement when the LM5166 is in sleep mode. The output ripple has a base component of amplitude VOUT/123  
related to the typical feedback comparator hysteresis in PFM. The wake-up time from sleep to active mode adds  
a ripple voltage component that is a function of the output current. Approximate the total output ripple by 公式 30.  
Also, the output capacitance must be large enough to accept the energy stored in the inductor without a large  
deviation in output voltage. Setting this voltage change equal to 1% of the output voltage results in a COUT  
requirement defined with 公式 31.  
In general, select the capacitance of COUT to limit the output voltage ripple at full load current, ensuring that it is  
rated for worst-case RMS ripple current given by IRMS = IPK(PFM)/2. In this design example, select two 100-μF, 10-  
V capacitors with a high-quality dielectric.  
8.2.4.2.5 Input Capacitor – CIN  
The input capacitor, CIN, filters the triangular current waveform of the high-side MOSFET (see 89). To prevent  
large ripple voltage, use a low-ESR ceramic input capacitor sized for the worst-case RMS ripple current given by  
IRMS = IOUT/2. In this design example, choose a 4.7-μF, 50-V ceramic input capacitor with a high-quality dielectric.  
版权 © 2016–2017, Texas Instruments Incorporated  
39  
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
8.2.4.3 Application Curves  
Unless otherwise stated, application curves were taken at TA = 25°C.  
5.1  
5.08  
5.06  
5.04  
5.02  
5
100  
90  
80  
70  
60  
50  
40  
30  
4.98  
4.96  
4.94  
4.92  
4.9  
VIN = 8V  
VIN = 8V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
0.01  
0.1  
1
10  
100  
500  
0.01  
0.1  
1
10  
100  
500  
Load (mA)  
Load (mA)  
D001  
D001  
LF = 22 µH  
FSW(nom) = 100 kHz  
LF = 22 µH  
FSW(nom) = 100 kHz  
COUT = 200 µF  
RRT = 0 Ω  
COUT = 200 µF  
RRT = 0 Ω  
78. Converter Efficiency  
79. Converter Regulation  
Time Scale: 50 ms/Div  
CH1: VSW, 5 V/Div  
CH2: VOUT, 50 mV/Div  
CH4: IL, 0.4 A/Div  
Time Scale: 20 µs/Div  
CH1: VSW, 5 V/Div  
CH2: VOUT, 100 mV/Div  
CH4: IL, 0.4 A/Div  
80. No-Load Switching Waveforms  
81. Full-Load Switching Waveforms  
Time Scale: 50 µs/Div  
CH1: VSW, 4 V/Div  
Time Scale: 2 ms/Div  
CH1: VIN, 2 V/Div  
CH2: VOUT, 1 V/Div  
CH4: IL, 0.4 A/Div  
CH4: IL, 0.4 A/Div  
83. Short Circuit  
82. Full-Load Start-Up  
40  
版权 © 2016–2017, Texas Instruments Incorporated  
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
8.2.5 Design 5: 12-V, 300-mA COT Converter Operating From 24-V or 48-V Input  
The schematic diagram of 12-V, 300-mA COT converter is given in 84.  
LF  
100 H  
U1  
VOUT = 12 V  
IOUT = 0.3 A  
VIN = 24 V...65 V  
VIN  
EN  
SW  
RUV1  
10 MW  
LM5166  
RFB1  
1 MW  
CA  
RA  
402 kW  
CIN  
4.7 F  
COUT  
10 F  
CB  
2.2 nF  
100 pF  
RUV2  
649 kW  
PGOOD  
HYS  
FB  
SS  
RFB2  
113 kW  
CSS  
47 nF  
RHYS  
14 kW  
ILIM  
RT  
GND  
RRT  
169 kW  
Copyright © 2017, Texas Instruments Incorporated  
84. Schematic for Design 5 With VOUT = 12 V, IOUT(max) = 300 mA, FSW(nom) = 400 kHz  
8.2.5.1 Design Requirements  
The full-load efficiency specifications are 93% and 89% based on input voltages of 24 V and 48 V, respectively,  
and an output voltage setpoint of 12 V. The input voltage range is 24 V to 65 V, with UVLO turnon and turnoff at  
20 V and 18 V, respectively. The output voltage setpoint is established by feedback resistors, RFB1 and RFB2. The  
required components are listed in 8.  
8. List of Components for Design 5(1)  
REF DES QTY SPECIFICATION  
VENDOR  
Murata  
Murata  
Murata  
TDK  
Würth  
Coilcraft  
Std  
PART NUMBER  
4.7 µF, 100 V, X7S, 1210  
4.7 µF, 80 V, X7R, 1210  
GRM31CR71H475MA12L  
CIN  
1
GRM32ER71K475KE14L  
GRM31CR71E106MA12L  
COUT  
1
10 µF, 25 V, X7R, 1206  
C3216X7R1E106M  
885012208069  
LF  
1
1
1
1
1
1
1
1
1
1
1
1
100 µH ±20%, 0.54 A, 375 mΩ maximum DCR, 6 × 6 × 3.5 mm  
402 kΩ, 1%, 0402  
LPS6235-104MRC  
RA  
Std  
RFB1  
RFB2  
RUV1  
RUV2  
RHYS  
RRT  
CA  
1 MΩ, 1%, 0402  
Std  
Std  
113 kΩ, 1%, 0402  
Std  
Std  
10 MΩ, 1%, 0603  
Std  
Std  
649 kΩ, 1%, 0402  
Std  
Std  
14 kΩ, 1%, 0402  
Std  
Std  
169 kΩ, 1%, 0402  
Std  
Std  
2.2 nF, 25 V, X7R, 0402  
Std  
Std  
CB  
100 pF, 50 V, NP0, 0402  
47 nF, 16 V, X7R, 0402  
Std  
Std  
CSS  
U1  
Std  
Std  
LM5166 Synchronous Buck Converter, VSON-10, 3 mm × 3 mm  
TI  
LM5166DRCR  
(1) See 第三方产品免责声明.  
版权 © 2016–2017, Texas Instruments Incorporated  
41  
 
 
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
8.2.5.2 Detailed Design Procedure  
The component selection procedure for this design is quite similar to that of COT designs 1 and 2.  
8.2.5.2.1 Peak Current Limit Setting – RILIM  
Leave the ILIM pin open circuit to select the 500-mA peak current limit setting for a rated output current of 300  
mA. See 3.  
8.2.5.2.2 Switching Frequency – RRT  
Using 公式 4, select a standard 1% resistor value of 169 kΩ to set a switching frequency of 400 kHz.  
8.2.5.2.3 Inductor – LF  
Choosing a 100-μH inductor in this design results in 150-mA peak-to-peak ripple current at an input voltage of 24  
V, equivalent to 50% of the 300-mA rated load current. A larger ripple current design results in improved light-  
load efficiency. The peak inductor current at maximum input voltage of 65 V is 424 mA, which is sufficiently  
below the LM5166 peak current limit of 500 mA. Select an inductor with saturation current rating well above the  
peak current limit setting, and allow for derating of the saturation current at the highest expected operating  
temperature.  
8.2.5.2.4 Input and Output Capacitors – CIN, COUT  
Choose a 4.7-µF, 80-V or 100-V ceramic input capacitor with 1210 footprint. Such a capacitor is typically  
available in X7S or X7R dielectric. Based on 公式 24, select a 10-µF, 25-V ceramic output capacitor with X7R  
dielectric and 1206 footprint.  
8.2.5.2.5 Feedback Resistors – RFB1, RFB2  
Select RFB1 of 1 MΩ to minimize quiescent current and improve light-load efficiency in this application. With the  
desired output voltage setpoint of 12 V and VFB = 1.223 V, calculate the resistance of RFB2 using 公式 15 as  
113.5 kΩ. Choose the closest available standard value of 113 kΩ for RFB2. See Adjustable Output Voltage (FB)  
for more detail.  
8.2.5.2.6 Ripple Generation Network – RA, CA, CB  
Select the ripple injection circuit components RA and CA values using 公式 10 and 公式 11. Choose capacitor CB  
using 公式 12 based on a target transient response settling time of 300 µs.  
8.2.5.2.7 Undervoltage Lockout Setpoint – RUV1, RUV2, RHYS  
Adjust the undervoltage lockout (UVLO) using an externally-connected resistor divider network of RUV1, RUV2, and  
RHYS. The UVLO has two thresholds, one for power up when the input voltage is rising and one for power down  
or brownouts when the input voltage is falling. The EN rising threshold for the LM5166 is 1.22 V.  
Rearranging 公式 16 and 公式 17, the expressions to calculate RUV2 and RHYS are as follows:  
VEN(on)  
RUV2  
=
RUV1  
V
- VEN(on)  
IN(on)  
(32)  
(33)  
VEN(off)  
- VEN(off)  
RHYS  
=
RUV1 -RUV2  
V
IN(off)  
Choose RUV1 as 10 Mto minimize input quiescent current. Given the desired input voltage UVLO thresholds of  
20 V and 18 V, calculate the resistance of RUV2 and RHYS as 649 kand 14 k, respectively. See Precision  
Enable (EN) and Hysteresis (HYS) for more detail.  
8.2.5.2.8 Soft Start – CSS  
Install a 47-nF capacitor from SS to GND for a soft-start time of 6 ms.  
42  
版权 © 2016–2017, Texas Instruments Incorporated  
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
8.2.5.3 Application Curves  
Unless otherwise stated, application curves were taken at TA = 25°C.  
100  
VOUT 20 mV/DIV  
90  
80  
70  
60  
50  
40  
30  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 65V  
IOUT 100 mA/DIV  
200 ms/DIV  
Time Scale: 200 µs/Div  
CH3: VOUT, 20 mV/Div  
CH4: IOUT, 0.1 A/Div  
0.1  
1
10  
100  
300  
Load (mA)  
86. Load Transient Waveforms, 100 mA to 300 mA  
85. Converter Efficiency  
VOUT 2 V/DIV  
VIN 10 V/DIV  
VOUT 2 V/DIV  
IOUT 100 mA/DIV  
VIN 10 V/DIV  
2 ms/DIV  
IOUT 100 mA/DIV  
2 ms/DIV  
Time Scale: 2 ms/Div  
CH2: VIN, 10 V/Div  
CH3: VOUT, 2 V/Div  
CH4: IL, 0.1 A/Div  
Time Scale: 2 ms/Div  
CH2: VIN, 10 V/Div  
CH3: VOUT, 2 V/Div  
CH4: IOUT, 0.1 A/Div  
88. Shutdowm Waveforms  
87. Start-up Waveforms  
版权 © 2016–2017, Texas Instruments Incorporated  
43  
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
9 Power Supply Recommendations  
The LM5166 is designed to operate from an input voltage supply range between 3 V and 65 V. This input supply  
should be able to withstand the maximum input current and maintain a voltage above 3 V. Ensure that the  
impedance of the input supply rail is low enough that an input current transient does not cause a high enough  
drop at the LM5166 supply voltage to create a false UVLO fault triggering and system reset. If the input supply is  
placed more than a few inches from the LM5166 converter, additional bulk capacitance may be required in  
addition to the ceramic bypass capacitors. A 10-μF electrolytic capacitor is a typical choice for this function,  
whereby the capacitor ESR provides a level of damping against input filter resonances. A typical ESR of 0.5 Ω  
provides enough damping for most input circuit configurations.  
10 Layout  
The performance of any switching converter depends as much upon PCB layout as it does the component  
selection. The following guidelines are provided to assist with designing a PCB with the best power conversion  
performance, thermal performance, and minimized generation of unwanted EMI.  
10.1 Layout Guidelines  
PCB layout is a critical portion of good power supply design. There are several paths that conduct high slew-rate  
currents or voltages that can interact with stray inductance or parasitic capacitance to generate noise and EMI or  
degrade the power supply performance.  
1. To help eliminate these problems, bypass the VIN pin to GND with a low-ESR ceramic bypass capacitor with  
a high-quality dielectric. Place CIN as close as possible to the LM5166 VIN and GND pins. Grounding for  
both the input and output capacitors should consist of localized top-side planes that connect to the GND pin  
and GND PAD.  
2. Minimize the loop area formed by the input capacitor connections to the VIN and GND pins.  
3. Locate the inductor close to the SW pin. Minimize the area of the SW trace or plane to prevent excessive  
capacitive coupling.  
4. Tie the GND pin directly to the power pad under the device and to a heat-sinking PCB ground plane.  
5. Use a ground plane in one of the middle layers as noise shielding and heat dissipation path.  
6. Have a single-point ground connection to the plane. Route the ground connections for the feedback, soft-  
start, and enable components to the ground plane. This prevents any switched or load currents from flowing  
in analog ground traces. If not properly handled, poor grounding results in degraded load regulation or erratic  
output voltage ripple behavior.  
7. Make VIN, VOUT and ground bus connections as wide as possible. This reduces any voltage drops on the  
input or output paths of the converter and maximizes efficiency.  
8. Minimize trace length to the FB pin. Place both feedback resistors, RFB1 and RFB2, close to the FB pin. Place  
CFF (if needed) directly in parallel with RFB1. If output setpoint accuracy at the load is important, connect the  
VOUT sense at the load. Route the VOUT sense path away from noisy nodes and preferably through a layer on  
the other side of a shielding layer.  
9. The RT pin is sensitive to noise. Thus, locate the RRT resistor as close as possible to the device and route  
with minimal lengths of trace. The parasitic capacitance from RT to GND must not exceed 20 pF.  
10. Provide adequate heat sinking for the LM5166 to keep the junction temperature below 150°C. For operation  
at full rated load, the top-side ground plane is an important heat-dissipating area. Use an array of heat-  
sinking vias to connect the exposed pad to the PCB ground plane. If the PCB has multiple copper layers,  
these thermal vias must also be connected to inner layer heat-spreading ground planes.  
10.1.1 Compact PCB Layout for EMI Reduction  
Radiated EMI generated by high di/dt components relates to pulsing currents in switching converters. The larger  
area covered by the path of a pulsing current, the more electromagnetic emission is generated. The key to  
minimizing radiated EMI is to identify the pulsing current path and minimize the area of that path.  
The critical switching loop of the buck converter power stage in terms of EMI is denoted in 89. The topological  
architecture of a buck converter means that a particularly high di/dt current path exists in the loop comprising the  
input capacitor and the integrated MOSFETs of the LM5166, and it becomes mandatory to reduce the parasitic  
inductance of this loop by minimizing the effective loop area.  
44  
版权 © 2016–2017, Texas Instruments Incorporated  
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
Layout Guidelines (接下页)  
VIN  
CIN  
VIN  
2
LM5166  
High  
di/dt  
loop  
High-side  
PMOS  
gate driver  
Q1  
LF  
SW  
VOUT  
1
COUT  
Q2  
Low-side  
NMOS  
gate driver  
GND  
10  
GND  
89. DC-DC Buck Converter With Power Stage Circuit Switching Loops  
The input capacitor provides the primary path for the high di/dt components of the high-side MOSFET's current.  
Placing a ceramic capacitor as close as possible to the VIN and GND pins is the key to EMI reduction. Keep the  
trace connecting SW to the inductor as short as possible and just wide enough to carry the load current without  
excessive heating. Use short, thick traces or copper pours (shapes) for current conduction path to minimize  
parasitic resistance. Place the output capacitor close to the VOUT side of the inductor, and connect the capacitor's  
return terminal to the GND pin and exposed PAD of the LM5166.  
10.1.2 Feedback Resistors  
For the adjustable output voltage version of the LM5166, reduce noise sensitivity of the output voltage feedback  
path by placing the resistor divider close to the FB pin, rather than close to the load. This reduces the trace  
length of FB signal and noise coupling. The FB pin is the input to the feedback comparator, and as such is a high  
impedance node sensitive to noise. The output node is a low impedance node, so the trace from VOUT to the  
resistor divider can be long if a short path is not available.  
Route the voltage sense trace from the load to the feedback resistor divider, keeping away from the SW node,  
the inductor and VIN to avoid contaminating the feedback signal with switch noise, while also minimizing the trace  
length. This is most important when high feedback resistances, greater than 100 kΩ, are used to set the output  
voltage. Also, route the voltage sense trace on a different layer from the inductor, SW node and VIN, such that  
there is a ground plane that separates the feedback trace from the inductor and SW node copper polygon. This  
provides further shielding for the voltage feedback path from switching noise sources  
版权 © 2016–2017, Texas Instruments Incorporated  
45  
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
10.2 Layout Example  
90 shows an example layout for the PCB top layer of a 4-layer board with essential components placed on the  
top side. The bottom layer features optional Type 3 ripple generation components (RA and CA), and RUV1, RUV2  
and RHYS resistors.  
,
LF  
Vias to Type 3 Ripple  
Generation Network  
(Optional)  
VOUT  
connection  
VIN  
connection  
CIN  
COUT  
RFB2 RFB1 CFF  
CB  
RESR  
Place ceramic  
input cap close  
to VIN and GND  
RILIM  
CSS  
RRT  
Place SS cap  
close to pin  
GND  
connection  
Place FB resistors very  
close to FB & GND pins  
Thermal vias under  
LM5166 PAD  
90. LM5166 Single-Sided PCB Layout Example  
46  
版权 © 2016–2017, Texas Instruments Incorporated  
 
LM5166  
www.ti.com.cn  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.1.2 开发支持  
LM5166 快速入门计算器  
LM5166 仿真模型  
如需 TI 的参考设计库,请访问 TIDesigns  
如需 TI WEBENCH 设计环境,请访问 WEBENCH® 设计中心  
11.1.3 使用 WEBENCH® 工具创建定制设计  
请单击此处,使用LM5166 器件并借助 WEBENCH® 电源设计器创建定制设计。  
1. 在开始阶段键入输出电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化关键设计参数,如效率、封装和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他解决方案进行比较。  
WEBENCH Power Designer 提供一份定制原理图以及罗列实时价格和组件可用性的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案导出至常用 CAD 格式  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com/WEBENCH。  
11.2 文档支持  
LM5166EVM-C50A EVM 用户指南》(SNVU485)  
LM5166EVM-C33A EVM 用户指南》(SNVU544)  
《低 IQ 同步降压转换器支持智能场传感器 应用》(SLYT671)  
《低 EMI 降压转换器为具有 BLE 连接的多变量传感器发送器供电》(SLYT693)  
《为您的 COT 降压转换器选择理想的纹波生成网络》(SNVA776)  
TI 参考设计:  
TIDA-01395 具有宽输入电压转换器和电池量表且适用于智能恒温器的 24V 交流电源级 (TIDUCW0)  
TIDA-01358 具有宽输入电压转换器和备用电池且适用于智能恒温器的 24V 交流电源级 (TIDUCE1)  
TIPD215 带自适应电源管理、功率低于 1W 的四通道模拟输出模块参考设计 (TIDUCV5)  
TIDA-00666 具有低功耗 Bluetooth® 连接且由 4 20mA 电流回路供电的场发射器 (TIDUC27)  
Industrial Strength 博客:  
为工业应用中的智能传感器发送器 供电  
Industrial Strength 设计 1 部分  
楼宇自动化趋势:预测性维护  
楼宇自动化趋势:用于改善用户舒适度的互联传感器  
白皮书:  
《评估适用于具有成本效益的严苛应用的宽 VIN、低 EMI 同步降压 电路》(SLYY104)  
AN-2162:轻松解决直流/直流转换器的传导 EMI 问题》(SNVA489)  
《汽车启动仿真器用户指南》(SLVU984)  
《使用新的热指标》(SBVA025)  
《半导体和 IC 封装热指标》(SPRA953)  
版权 © 2016–2017, Texas Instruments Incorporated  
47  
LM5166  
ZHCSFV4B DECEMBER 2016REVISED JUNE 2017  
www.ti.com.cn  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至德州仪器 TI.com.cn 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可  
收到任意产品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。要获得这份数据表的浏览器版本,请查阅左侧导航栏。  
48  
版权 © 2016–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM5166DRCR  
LM5166DRCT  
LM5166XDRCR  
LM5166XDRCT  
LM5166YDRCR  
LM5166YDRCT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
5166  
5166  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
5166X  
5166X  
5166Y  
5166Y  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
22-Nov-2022  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM5166DRCR  
LM5166DRCR  
LM5166DRCT  
LM5166DRCT  
LM5166XDRCR  
LM5166XDRCR  
LM5166XDRCT  
LM5166XDRCT  
LM5166YDRCR  
LM5166YDRCR  
LM5166YDRCT  
LM5166YDRCT  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
3000  
3000  
250  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
180.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
250  
3000  
3000  
250  
250  
3000  
3000  
250  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM5166DRCR  
LM5166DRCR  
LM5166DRCT  
LM5166DRCT  
LM5166XDRCR  
LM5166XDRCR  
LM5166XDRCT  
LM5166XDRCT  
LM5166YDRCR  
LM5166YDRCR  
LM5166YDRCT  
LM5166YDRCT  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
3000  
3000  
250  
367.0  
346.0  
210.0  
210.0  
335.0  
367.0  
182.0  
210.0  
367.0  
335.0  
182.0  
210.0  
367.0  
346.0  
185.0  
185.0  
335.0  
367.0  
182.0  
185.0  
367.0  
335.0  
182.0  
185.0  
35.0  
33.0  
35.0  
35.0  
25.0  
35.0  
20.0  
35.0  
35.0  
25.0  
20.0  
35.0  
250  
3000  
3000  
250  
250  
3000  
3000  
250  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LM5168

LM5169/LM5168 0.65-A/0.3-A, 120-V, Step-Down Converter with Fly-Buck™ Converter Capability
TI

LM5168-Q1

LM5169/LM5168 0.65-A/0.3-A, 120-V, Step-Down Converter with Fly-Buck™ Converter Capability
TI

LM5168FDDAR

LM5169/LM5168 0.65-A/0.3-A, 120-V, Step-Down Converter with Fly-Buck™ Converter Capability
TI

LM5168FQDDARQ1

LM5169-Q1/LM5168-Q1 0.65-A/0.3-A, 120-V, Step-Down Converter with Fly-Buck™ Converter Capability
TI

LM5168PDDAR

LM5169/LM5168 0.65-A/0.3-A, 120-V, Step-Down Converter with Fly-Buck™ Converter Capability
TI

LM5168PQDDARQ1

LM5169-Q1/LM5168-Q1 0.65-A/0.3-A, 120-V, Step-Down Converter with Fly-Buck™ Converter Capability
TI

LM5169

LM5169/LM5168 0.65-A/0.3-A, 120-V, Step-Down Converter with Fly-Buck™ Converter Capability
TI

LM5169-Q1

LM5169-Q1/LM5168-Q1 0.65-A/0.3-A, 120-V, Step-Down Converter with Fly-Buck™ Converter Capability
TI

LM5169FDDAR

LM5169/LM5168 0.65-A/0.3-A, 120-V, Step-Down Converter with Fly-Buck™ Converter Capability
TI

LM5169FQDDARQ1

LM5169-Q1/LM5168-Q1 0.65-A/0.3-A, 120-V, Step-Down Converter with Fly-Buck™ Converter Capability
TI

LM5169PDDAR

LM5169/LM5168 0.65-A/0.3-A, 120-V, Step-Down Converter with Fly-Buck™ Converter Capability
TI

LM5169PQDDARQ1

LM5169-Q1/LM5168-Q1 0.65-A/0.3-A, 120-V, Step-Down Converter with Fly-Buck™ Converter Capability
TI