LM5170-Q1 [TI]

符合 AEC-Q100 标准的多相双向电流控制器;
LM5170-Q1
型号: LM5170-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

符合 AEC-Q100 标准的多相双向电流控制器

控制器
文件: 总76页 (文件大小:3350K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM5170-Q1  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
LM5170-Q1 多相双向电流控制器  
1 特性  
2 应用  
• 符合面向汽车应用AEC-Q100 标准:  
双电池汽车系统  
超级电容或备用电池电源转换器  
可堆叠降压或升压转换器  
– 器件温度等1-40°C +125°C 环境工作温  
度范围  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C4B  
提供功能安全  
3 说明  
LM5170-Q1 控制器为汽车类 48V 12V 双电池系统  
的双通道双向转换器提供必要的高电压和精密元器件。  
该器件可按照 DIR 输入信号指定的方向调节高压和低  
压端口间的平均电流。电流调节水平可通过模拟或数字  
PWM 输入以编程方式设定。  
可帮助进行功能安全系统设计的文档  
• 高(HV) 端口和低(LV) 端口的最高额定电压分  
100V 65V  
1% 精密双向电流调节  
1% 精密通道电流监测  
5A 峰值半桥栅极驱动器  
双通道差分电流感测传感器和专用通道电流监测计可实  
1% 的典型电流精度。稳定的 5A 半桥栅极驱动器能  
够驱动功率不低于 500W/通道的并联金属氧化物半导  
体场效应晶体管 (MOSFET) 开关。同步整流器的二极  
管仿真模式可避免出现负向电流但也支持通过非连续  
操作模式提升轻载效率。通用保护特性包括逐周期电流  
限制、HV LV 端口过压保护、MOSFET 故障检测和  
过热保护。  
• 可编程或自适应死区时间控制  
• 可选择与外部时钟同步的可编程振荡器频率  
• 独立通道使能控制输入  
• 模拟和数字通道电流控制输入  
• 可编程逐周期峰值电流限制  
HV LV 端口过压保护  
• 二极管仿真可防止负电流  
• 可编程软启动计时器  
• 启动时执MOSFET 故障检测以及断路器控制  
• 多相操作实现增相/减相  
器件信息(1)  
封装尺寸标称值)  
器件型号  
LM5170-Q1  
封装  
TQFP (48)  
7.00mm × 7.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
HV-Port  
(48 V)  
LV-Port  
(12 V)  
+10 V Bias  
HO1 SW1LO1 PGND VCC  
CSA1  
CSB1  
VIN  
VINX  
IOUT1  
IOUT2  
RAMP1  
OVPA  
IPK  
OSC  
LM5170-Q1  
RAMP2  
SYNCOUT  
ISETD  
AGND  
OVPB  
SYNCIN  
ISETA  
DIR  
通道电流跟ISETA 命令  
EN1  
CSB2  
CSA2  
EN2  
HO2 SW2 LO2  
简化版应用电路  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSAQ6  
 
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
Table of Contents  
8.5 Programming............................................................ 39  
9 Application and Implementation..................................41  
9.1 Application Information............................................. 41  
9.2 Typical Application.................................................... 49  
10 Power Supply Recommendations..............................61  
11 Layout...........................................................................62  
11.1 Layout Guidelines................................................... 62  
11.2 Layout Examples.....................................................63  
12 Device and Documentation Support..........................66  
12.1 Device Support....................................................... 66  
12.2 接收文档更新通知................................................... 66  
12.3 支持资源..................................................................66  
12.4 Trademarks.............................................................66  
12.5 Electrostatic Discharge Caution..............................66  
12.6 术语表..................................................................... 66  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................2  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings............................................................... 6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................7  
7.5 Electrical Characteristics.............................................7  
7.6 Typical Characteristics..............................................12  
8 Detailed Description......................................................15  
8.1 Overview...................................................................15  
8.2 Functional Block Diagram.........................................16  
8.3 Feature Description...................................................17  
8.4 Device Functional Modes..........................................34  
Information.................................................................... 66  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (June 2020) to Revision D (August 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Changes from Revision B (June 2019) to Revision C (June 2020)  
Page  
• 向1 添加了功能安全要点................................................................................................................................ 1  
5 说明)  
创新型平均电流模式控制机制维持恒定回路增益允许使用单一 R-C 网络补偿升压和降压转换。振荡器频率最高  
可调节至 500kHz能够与外部时钟同步。连接两个 LM5170-Q1 控制器执行三相或四相操作或者将多个控制器  
与相移时钟同步来实现相位更多的操作进而实现多相并行操作。UVLO 引脚的低电平状态可禁用处于低电流关  
断模式下LM5170-Q1。  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
6 Pin Configuration and Functions  
CSA2  
CSB2  
NC  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
CSA1  
CSB1  
BRKG  
BRKS  
NC  
3
VINX  
NC  
4
5
VIN  
NC  
6
VCCA  
IPK  
7
8
RAMP2  
OVPA  
OPT  
RAMP1  
9
UVLO  
COMP2  
SS  
10  
11  
12  
nFAULT  
COMP1  
OVPB  
6-1. PHP Package 48-Pin TQFP Top View  
6-1. Pin Functions  
PIN  
NAME  
I/O(1)  
DESCRIPTION  
NO.  
1
CSA2  
CSB2  
NC  
I
I
CH-2 differential current sense inputs. The CSA2 pin connects to the CH-2 power inductor. The CSB2 pin  
connects to the circuit breaker or directly to the LV-Port if the circuit breaker is not used. The CH-2 current sense  
resistor is placed between these two pins.  
2
3
No Connect  
Internally connected to VIN pin through a cutoff switch. When the controller is shutdown, VINX is disconnected  
from VIN, opening the current leakage path. When the controller is enabled, VINX is connected to VIN and  
serves as the pullup supply for the RC ramp generators at the RAMP1 and RAMP2 pins. VINX also pulls up the  
OVPA pin through an internal 3-MΩresistor.  
4
VINX  
O
5
6
7
NC  
VIN  
NC  
No Connect  
The input pin connecting to the HV-Port line voltage. It supplies the BRKG pin through an internal 330-µA  
current source.  
I
No Connect  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM5170-Q1  
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
6-1. Pin Functions (continued)  
PIN  
NAME  
I/O(1)  
DESCRIPTION  
NO.  
The inverting input of the CH-2 PWM Comparator. An external RC circuit tied between VINX, RAMP2, and  
AGND forms the ramp generator producing a ramp signal proportional to the HV-Port voltage, thus achieving a  
voltage feedforward function. The RAMP2 capacitor voltage is reset to AGND at the end of every switching  
cycle.  
8
RAMP2  
OVPA  
I
Connected to the noninverting input of the HV-Port overvoltage comparator. An internal 3-MΩpullup resistor  
and an external resistor across the OVPA and AGND pins form a divider that senses the HV-Port voltage. When  
the OVPA pin voltage is above the 1.185-V threshold, the SS capacitor is discharged and held low until the  
overvoltage condition is removed.  
9
I
I
The UVLO pin serves as the master enable pin. When UVLO is pulled below 1.25 V, the entire LM5170-Q1 is in  
a low quiescent current shutdown mode. When UVLO is pulled above 1.25 V but below 2.5 V, the LM5170-Q1  
enters the initialization stage in which the nFAULT pin is first pulled up to 5 V, while the rest of the LM5170-Q1 is  
kept in the OFF state. When UVLO is pulled above the 2.5 V, the LM5170-Q1 enters a MOSFET failure  
detection stage. If no failure is detected, the circuit breaker gate driver (BRKS and BRKG) turns on, and the  
LM5170-Q1 enables the oscillator and RAMP generator, and stands by until the EN1 and EN2 commands  
enable the channel.  
10  
ULVO  
Output of the CH-2 transconductance (gm) error amplifier and the noninverting input of the CH-2 PWM  
comparator. A loop compensation network must be connected to this pin.  
11  
12  
13  
COMP2  
SS  
O
I
The soft-start programming pin. An external capacitor and an internal 25-μA current source set the ramp rate of  
the COMP pins voltage during soft start. If CH-2 is enabled after CH-1 completes soft start, the CH-2 turnon will  
not be controlled by the SS pin.  
CH-2 switch node. Connect to the CH-2 high-side MOSFET source, the low-side MOSFET drain, and the  
bootstrap capacitor return terminal.  
SW2  
I
14  
15  
16  
17  
18  
HB2  
HO2  
NC  
P
CH-2 high-side gate driver bootstrap supply input  
I/O CH-2 high-side gate driver output  
No Connect  
I/O CH-2 low-side gate driver output  
LO2  
PGND  
G
Power ground connection pin for the low-side gate drivers and external VCC bias supply  
VCC bias supply pin, powering the drivers. An external bias supply between 9 V to 12 V must be applied across  
the VCC and PGND pins.  
19  
VCC  
I/P  
20  
21  
22  
23  
LO1  
NC  
I/O CH-1 low-side gate driver output  
No Connect  
I/O CH-1 high-side gate driver output  
HO1  
HB1  
P
I
CH-1 high-side gate driver bootstrap supply input  
CH-1 switch node. Connect to the CH-1 high-side MOSFET source, the low-side MOSFET drain, and the  
bootstrap capacitor return terminal.  
24  
25  
26  
27  
SW1  
Connected to the noninverting input of the LV-Port overvoltage comparator. An internal 1-Mpullup resistor and  
an external resistor across the OVPB and AGND pins form the divider that senses the LV-Port voltage. When  
the converter operates in Boost mode the OVPB pin status is ignored. In Buck mode, when the OVPB pin  
voltage is above the 1.185-V threshold, the SS capacitor is discharged and held low until the overvoltage  
condition is removed.  
OVPB  
I
Output of the CH-1 trans-conductance (gm) error amplifier and the noninverting input of the CH-1 PWM  
comparator. A loop compensation network must be connected to this pin.  
COMP1  
nFAULT  
O
Fault flag pin or external shutdown pin. When a MOSFET drain-to-source short circuit failure is detected before  
start-up, the nFAULT pin is internally pulled low to report the short-circuit failure, and the LM5170-Q1 will remain  
I/O in a disabled state. The nFAULT pin can also be externally pulled low to shut down the LM5170-Q1, serving as a  
forced shutdown pin. In forced shutdown, all gate drivers turn off, and nFAULT is latched low until the UVLO pin  
is pulled below 1.25 V to release the latch and initiate a new start-up.  
The inverting input of the CH-1 PWM comparator. An external RC circuit tied between VINX, RAMP1, and  
AGND forms the ramp generator producing a ramp signal proportional to the HV-Port voltage, thus achieving a  
voltage feedforward function. The RAMP1 capacitor voltage is reset to AGND at the end of every switching  
28  
RAMP1  
I
cycle.  
Multiphase configuration pin. Tied to either VCCA or AGND, the OPT pin sets the phase lag of the SYNCOUT  
signal corresponding to 4 phase or 3 phase operation, respectively.  
29  
30  
OPT  
IPK  
I
I
A resistor connected between IPK and AGND sets the threshold for the cycle-by-cycle current limit comparator  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
LM5170-Q1  
www.ti.com.cn  
PIN  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
6-1. Pin Functions (continued)  
I/O(1)  
DESCRIPTION  
NO.  
NAME  
VCCA  
NC  
Analog bias supply pin. Connect VCCA to VCC through an external 25-resistor. A low-pass filter capacitor is  
31  
I/P  
required from the VCCA pin to AGND.  
32  
No Connect  
Connect to the common source of the circuit breaker MOSFET pair. When the circuit breaker function is  
disabled, simply connect to AGND through a 20-kΩresistor.  
33  
BRKS  
O
Connect to the gate pins of the circuit breaker MOSFET pair. Once the LM5170-Q1 is enabled, an internal 330-  
µA current source starts to charge the circuit breaker MOSFET gates. The BRKG to BRKS voltage is internally  
clamped at 12 V.  
34  
35  
BRKG  
CSB1  
O
I
CH-1 differential current sense inputs. The CSA1 pin connects to the CH-1 power inductor. The CSB1 pin  
connects to the circuit breaker, or directly to the LV-Port if the circuit breaker is not used. The CH-1 current  
sense resistor is placed between these two current sense pins. An internal 1-Mresistor is connected between  
the CSB1 and OVPB pins through an internal cutoff switch. During operation, the cutoff switch is closed and this  
internal resistor pulls up the OVPB pins. In shutdown mode, the internal resistor is disconnected by the cutoff  
switch.  
36  
CSA1  
I
CH-1 inductor current monitor pin. A current source proportional to the CH-1 inductor current flows out of this  
pin. Placing a terminating resistor and filter capacitor from IOUT1 to AGND produces a DC voltage representing  
the CH-1 DC current level. An internal 25-µA offset DC current source at the IOUT1 pin raises the active signal  
to be above the ground noise, thus improving the monitor noise immunity.  
37  
38  
IOUT1  
IOUT2  
O
O
CH-2 inductor current monitor pin. A current proportional to the CH-2 inductor current flows out of this pin.  
Placing a terminating resistor and filter capacitor from IOUT2 to AGND produces a DC voltage representing the  
CH-2 DC current level. An internal 25-µA offset DC current source at the IOUT2 pin raises the active signal  
above the ground noise, thus improving the monitor noise immunity.  
CH-1 enable pin. Pulling EN1 above 2.4 V turns off the SS pulldown and allows CH-1 to begin a soft-start  
sequence. Pulling EN1 below 1 V discharges the SS capacitor and holds it low. The high- and low-side gate  
drivers of both channels are held in the low state when SS is discharged.  
39  
40  
EN1  
I
I
Input for an external clock that overrides the free-running internal oscillator. The SYNCIN pin can be left open or  
grounded when it is not used.  
SYNCIN  
Clock output pin and fault check mode selector. SYNCOUT is connected to the downstream LM5170-Q1 in a 3-  
or 4-phase configuration. It also functions as a circuit breaker selection pin during start-up. Placing a 10-kΩ  
resistor from the SYNCOUT to AGND pins disables the fault check. feature. If no resistor is connected from  
SYNCOUT to AGND, the fault check is enabled.  
41  
SYNCOUT  
O
The PWM current programming pin. The inductor DC current level is proportional to the PWM duty cycle. Use  
either ISETA or ISETD but not both for channel current programming. When ISETD is not used, short ISETD to  
AGND.  
42  
43  
ISETD  
EN2  
I
I
CH-2 enable pin. Pulling EN2 above 2.4 V enables CH-2. Pulling EN2 below 1 V shuts down the HO2 and LO2  
drivers.  
Direction command input. Pulling DIR above 2 V sets the converter to the buck mode, which commands the  
current to flow from the HV-Port to LV-Port. Pulling DIR below 1 V sets the converter to the boost mode, which  
commands the current to flow from the LV-Port to HV-Port. If the DIR pin is left open, the LM5170-Q1 detects an  
invalid command and disables both channels with the MOSFET gate drivers in the low state.  
44  
45  
DIR  
I
The analog current programming pin. The inductor DC current is proportional to the ISETA voltage. Use either  
I, O ISETA or ISETD but not both for channel current programming. When ISETA is not used, connect a 100-pF to  
0.1-µF capacitor from ISETA to AGND.  
ISETA  
Analog ground reference. AGND must connect to PGND externally through a single point connection to improve  
the LM5170-Q1 noise immunity.  
46  
47  
48  
AGND  
OSC  
DT  
G
I
I
The internal oscillator frequency is programmed by a resistor between OSC and AGND.  
A resistor connected between DT and AGND sets the dead time between the high-side and low-side driver  
outputs. Tie the DT pin to VCCA to activate the internal adaptive dead time control.  
Exposed pad of the package. No internal electrical connections. Must be soldered to the large ground plane to  
reduce thermal resistance.  
EP  
(1) Note: G = Ground, I = Input, O = Output, P = Power  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM5170-Q1  
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
MAX  
UNIT  
VIN, VINX, to AGND  
95  
100  
95  
0.3  
VIN, VINX, to AGND 50-ns Transient  
VIN to VINX  
0.3  
5  
VIN to VINX 50-ns Transient  
SW1, SW2 to PGND  
100  
95  
SW1, SW2 to PGND (20-ns Transient)  
SW1, SW2 to PGND (50-ns Transient)  
HB1 to SW1, HB2 to SW2  
100  
16  
0.3  
0.3  
1.5  
0.3  
1.5  
0.3  
5  
14  
HO1 to SW1, HO2 to SW2  
HO1 to SW1, HO2 to SW2 (20-ns Transient)  
HB + 0.3  
Voltage  
V
LO1, LO2 to PGND  
VCC + 0.3  
LO1, LO2 to PGND (20-ns Transient)  
BRKG, BRKS, to PGND  
65  
65  
0.3  
14  
CSA1, CSB1, CSA2, CSB2 to PGND  
CSA1 to CSB1, CSA2 to CSB2  
BRKG to BRKS  
0.3  
0.3  
EN1, EN2, DIR, IOUT1, IOUT2, IPK, ISETA, ISETD, nFAULT,  
OSC, OVPA, OVPB, SYNCIN, SYNCOUT, UVLO, to AGND  
7
0.3  
0.3  
0.3  
PGND to AGND  
0.3  
14  
VCC to PGND, VCCA, DT, OPT, COMP1, COMP2, RAMP1,  
RAMP2, SS, to AGND  
TJ  
Operating junction temperature  
Storage temperature  
150  
150  
°C  
°C  
40  
55  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) For soldering specs, see www.ti.com/packaging.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
All pins  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM),  
Corner pins (1, 12, 13, 24, 25, 36, 37,  
and 48)  
per AEC Q100-011  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
6
NOM  
MAX  
85  
UNIT  
Buck mode  
Boost mode  
Buck mode  
Boost mode  
VIN, HV-Port  
LV-Port  
V
V
6
85  
0
60  
3(2)  
60  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
 
 
 
 
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
NOM  
MAX  
12  
UNIT  
V
VVCC  
TJ  
External voltage applied to VCC  
Operating junction temperature(3)  
Oscillator frequency  
9
150  
°C  
40  
FOSC  
FEX_CLK  
tDT  
50  
500  
kHz  
kHz  
ns  
Synchronization to external clock frequency (minimal 50 kHz)  
Programmable dead time  
0.8 × FOSC  
1.2 × FOSC  
200  
15  
1
ISETD PWM frequency  
1000  
500  
kHz  
ns  
SYNCIN pulse width  
100  
(1) Recommended Operating Conditions are conditions under which the device is intended to be functional. For specifications and test  
conditions, see the 7.5.  
(2) Minimum input voltage in boost mode can be lower than 3 V after startup; but, is limited by the minimum off time.  
(3) High junction temperatures degrade operating lifetime. Operating lifetime is de-rated for junction temperature greater than 125°C.  
7.4 Thermal Information  
LM5170-Q1  
THERMAL METRIC(1)  
PHP (TQFP)  
48 PINS  
29.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
14.3  
5.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJT  
5.4  
ψJB  
RθJC(bot)  
0.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
FOSC = 100 kHz; VVCC = 10 V; VVIN = VHV-Port = 48 V and VLV-Port = 12 V, unless otherwise stated.(1)  
PARAMETER  
VIN SUPPLY (VIN, VINX)  
ISHUTDOWN VIN pin current in shutdown mode  
TEST CONDITIONS  
MIN(3)  
TYP(2)  
MAX(3)  
UNIT  
VUVLO = 0 V  
10  
µA  
VVCC > 9 V, VUVLO > 2.5 V, VEN1 = VEN2  
= 0 V  
ISTANDBY  
VIN pin current, no switching  
1
mA  
VIN to VINX disconnect switch  
VIN to VINX disconnect switch  
VUVLO < 1 V or VVCC < 7.5 V  
VUVLO > 2.6 V, VVCC > 9 V  
5
MΩ  
100  
Ω
VCC AND VCCA BIAS SUPPLIES  
VCCUVLO  
VCCHYS  
IVCC_SD  
IVCC_SB  
VCC undervoltage detection  
VVCC falling  
7.6  
8.1  
8
8.3  
8.9  
20  
V
V
VCC UVLO hysteresis  
VVCC rising  
8.5  
VCC sink current in shutdown mode  
VCC sink current in standby: no switching  
VUVLO = 0 V  
µA  
mA  
VUVLO > 2.6 V, VEN1 = VEN2 = 0 V  
10  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM5170-Q1  
 
 
 
 
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
FOSC = 100 kHz; VVCC = 10 V; VVIN = VHV-Port = 48 V and VLV-Port = 12 V, unless otherwise stated.(1)  
PARAMETER  
TEST CONDITIONS  
MIN(3)  
TYP(2)  
MAX(3)  
UNIT  
MASTER ON/OFF CONTROL (UVLO)  
VUVLO_TH  
IHYS  
UVLO release threshold  
UVLO hysteresis current  
UVLO voltage rising  
2.4  
21  
2.5  
25  
2.6  
29  
V
UVLO source current when VUVLO > 2.6  
V
µA  
VSD  
UVLO shutdown threshold (IC shutdown)  
UVLO shutdown release  
UVLO voltage falling  
1
1.25  
0.25  
2.5  
1
1.5  
V
V
UVLO voltage rising above VSD  
UVLO voltage falling  
0.15  
0.35  
tUVLO  
UVLO glitch filter time  
µs  
µA  
UVLO internal pulldown current  
CHANNEL ENABLE INPUTS EN1 AND EN2  
VIL  
VIH  
Enable input low state  
Disabled the driver outputs  
Enable the driver outputs  
1
1
V
V
Enable input high state  
2
Internal pulldown impedance  
EN glitch filter time (the rising and falling edges)  
EN1, EN2 internal pulldown resistor  
100  
2
kΩ  
µs  
DIRECTION COMMAND (DIR)  
Command for current flowing from LV-Port to  
VDIR  
Actively pulled low by external circuit  
Actively pulled high by external circuit  
V
V
HV-Port (boost mode 12 V to 48 V)  
Command for current flowing from HV-Port to  
LV-Port (buck mode 48 V to 12 V)  
2
Standby (invalid DIR command)  
DIR glitch filter  
DIR neither active high nor active low  
Both rising and falling edges  
1.5  
10  
V
µs  
ISET INPUT (ISETA, ISETD)  
Regulated DC current sense voltage to ISETA  
GISETA  
19.7  
20  
170  
20.3  
mV/V  
kΩ  
|VCSA VCSB| = 50 mV  
voltage  
ISETA internal pulldown resistor  
Conversion ratio of ISETA voltage to ISETD  
duty cycle  
ISETD frequency = 10 kHz, Duty =  
100%  
GISETD  
30.63  
2
31.25  
31.88  
1
mV / %  
VISETD _LO  
VISETD _HI  
ISETD PWM signal low-state voltage  
ISETD PWM signal high-state voltage  
ISETD internal pulldown resistor  
V
V
100  
100  
kΩ  
ISETD internal decoder filter resistor (tied to  
ISETA pin)  
kΩ  
OUTPUT CURRENT MONITOR (IOUT1, IOUT2)  
IOUT1 and IOUT2 versus channel current sense  
voltage, in buck mode  
GIOUT_BK1  
GIOUT_BST1  
GIOUT_BK2  
GIOUT_BST2  
4.9  
4.9  
5
5
5.1  
5.1  
|VCSA VCSB| = 50 mV, VDIR > 2 V  
|VCSA VCSB| = 50 mV, VDIR < 1 V  
μA/mV  
μA/mV  
μA/mV  
IOUT1 and IOUT2 versus channel current sense  
voltage, in boost mode  
IOUT1 and IOUT2 versus channel current sense  
voltage, in buck mode  
|VCSA VCSB| = 10 mV, VDIR > 2 V, TJ =  
25°C  
4.91  
5.18  
5.43  
IOUT1 and IOUT2 versus channel current sense  
voltage, in boost mode  
|VCSA VCSB| = 10 mV, VDIR < 1 V, TJ =  
25°C  
4.47  
22  
4.77  
25  
5.1  
28  
μA/mV  
IOUT1 and IOUT2 DC offset currents  
µA  
|VCSA VCSB| = 0 mV  
CURRENT SENSE AMPLIFIER (BOTH CHANNELS)  
Amplifier output to current sense voltage in buck  
GCS_BK1  
mode  
49.25  
49.25  
49  
50  
50  
52  
50.75  
50.75  
55  
V/V  
V/V  
V/V  
|VCSA VCSB| = 50 mV, VDIR > 2 V  
|VCSA VCSB| = 50 mV, VDIR < 1 V  
Amplifier output to current sense voltage in  
boost mode  
GCS_BST1  
Amplifier output to current sense voltage in buck  
|VCSA VCSB| = 10 mV, VDIR > 2 V, TJ =  
25°C  
GCS_BK2  
mode  
Amplifier output to current sense voltage in  
boost mode  
|VCSA VCSB| = 10 mV, VDIR < 1 V, TJ =  
25°C  
GCS_BST2  
45  
48  
10  
51  
V/V  
BWCS  
Amplifier bandwidth  
MHz  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
FOSC = 100 kHz; VVCC = 10 V; VVIN = VHV-Port = 48 V and VLV-Port = 12 V, unless otherwise stated.(1)  
PARAMETER  
TEST CONDITIONS  
MIN(3)  
TYP(2)  
MAX(3)  
UNIT  
TRANSCONDUCTION AMPLIFIER (COMP1, COMP2)  
Gm  
Transconductance  
1
2
mA/V  
mA  
ICOMP  
Output source current limit  
Output sink current limit  
Amplifier bandwidth  
VISETA = 2.5 V, |VCSA VCSB| = 10 mV  
VISETA = 0 V, |VCSA VCSB| = 50 mV  
mA  
2  
BWgm  
4
MHz  
PWM COMPARATOR  
COMP to output delay  
50  
1
ns  
V
COMP to PWM offset  
Minimum OFF time  
TOFF(min)  
150  
0.6  
200  
250  
15  
ns  
RAMP GENERATOR (RAMP1 AND RAMP2)  
RAMP discharge device RDS(on)  
Ω
Threshold voltage for valid ramp signal  
PEAK CURRENT LIMIT (IPK)  
V
IPK internal current source  
24.375  
35.8  
25  
46  
25.625  
58.9  
µA  
Current sense voltage versus cycle-by-cycle  
limit threshold voltage given at IPK pin, in buck  
mode  
IPKBuck  
mV/V  
RIPK = 40 kΩ, VDIR > 2 V  
RIPK = 40 kΩ, VDIR < 1 V  
Current sense voltage versus cycle-by-cycle  
limit threshold voltage given at IPK pin, in boost  
mode  
IPKBoost  
38.5  
1.15  
48  
62.25  
1.22  
mV/V  
OVERVOLTAGE PROTECTION (OVPA, OVPB)  
OVP threshold  
OVP voltage rising  
1.185  
100  
5
V
OVPHYS  
OVP hysteresis (falling edge)  
OVPA and OVPB glitch filter  
Internal OVPA pullup resistor  
mV  
µs  
ROVPA  
ROVPB  
VINX to OVPA impedance  
3
MΩ  
CSB1 to OVPB impedance, VUVLO > 2.6  
V
Internal OVPB pullup resistor  
1
MΩ  
OSCILLATOR (OSC)  
Oscillator frequency 1  
90  
100  
375  
110  
410  
kHz  
kHz  
V
ROSC = 40 kΩ, SYNCIN open  
ROSC = 10 kΩ, SYNCIN open  
Oscillator frequency 2  
OSC pin DC voltage  
335  
VOSC  
1.25  
SYNCIN  
VSYNIH  
SYNCIN input threshold for high state  
2
V
V
VSYNIL SYNC SYNCIN input threshold for low state  
Internal pulldown impedance  
Delay to establish synchronization  
SYNCOUT  
1
VSYNCIN = 2.5 V  
100  
200  
kΩ  
µs  
0.8 × FOSC < FSYNCIN < 1.2 × FOSC  
VSYNOH  
VSYNOL  
SYNCOUT high state  
SYNCOUT low state  
2.5  
V
V
0.4  
Sourcing current when SYNCOUT in high state VSYNCOUT = 2.5 V  
SYNCOUT pulse width  
1
300  
90  
mA  
ns  
240  
370  
VOPT > 2 V  
SYNCOUT phase delay configurations  
VOPT < 1 V  
Degree  
120  
Use circuit breaker function and fault  
detection at start-up  
OPEN  
10  
RSYNCOUT  
Circuit breaker signature  
kΩ  
Do not use circuit breaker function or  
disable fault detection at start-up  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM5170-Q1  
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
FOSC = 100 kHz; VVCC = 10 V; VVIN = VHV-Port = 48 V and VLV-Port = 12 V, unless otherwise stated.(1)  
PARAMETER  
BOOTSTRAP (HB1, HB2)  
VHB-UV Bootstrap undervoltage threshold  
VHB-UV-HYS Hysteresis  
TEST CONDITIONS  
MIN(3)  
TYP(2)  
MAX(3)  
UNIT  
5.7  
6.5  
0.5  
7.3  
50  
V
V
(VHB VSW) voltage rising  
IHB-LK  
Bootstrap quiescent current  
µA  
V
HB VSW = 10 V, VHO VSW = 0 V  
HIGH-SIDE GATE DRIVERS (HO1, HO2)  
VOLH  
VOHH  
HO low-state output voltage  
IHO = 100 mA  
0.1  
0.15  
5
V
V
HO high-state output voltage  
HO rise time (10% to 90% pulse magnitude)  
HO fall time (90% to 10% pulse magnitude)  
HO peak source current  
IHO = 100 mA, VOHH = VHB VHO  
CLD = 1000 pF  
ns  
ns  
A
CLD = 1000 pF  
4
IOHH  
IOLH  
4
V
V
HB VSW = 10 V  
HB VSW = 10 V  
HO peak sink current  
5
A
LOW-SIDE GATE DRIVERS (LO1, LO2)  
VOLL  
VOHL  
LO low-state output voltage  
ILO = 100 mA  
0.1  
0.15  
5
V
V
LO high-state output voltage  
LO rise time (10% to 90% pulse magnitude)  
LO fall time (90% to 10% pulse magnitude)  
LO peak source current  
ILO = 100 mA, VOHL = VVCC VLO  
CLD = 1000 pF  
ns  
ns  
A
CLD = 1000 pF  
4
IOHL  
IOLL  
4
LO peak sink current  
5
A
INTERLEAVE PHASE DELAY FROM CH-2 To CH-1 (OPT)  
VOPTL  
VOPTH  
OPT input low state  
OPT input high state  
1
V
V
2
HO2 on-time rising edge versus HO1 on-time  
rising edge, or LO2 on-time rising edge versus  
LO1 on-time rising edge  
VOPT > 2 V for 2, 4, 6, and 8 phases  
VOPT < 1 V for 3 phases  
175  
180  
240  
1
185  
245  
Degrees  
235  
Internal pulldown impedance  
MΩ  
DEAD TIME (DT)  
tDT  
LO falling edge to HO rising edge delay  
40  
40  
ns  
ns  
V
RDT = 7.5 kΩ  
RDT = 7.5 kΩ  
tDT  
HO falling edge to LO rising edge delay  
DC voltage level for programming  
VDT  
1.25  
DC voltage for adaptive dead time scheme only  
(short DT to VCCA)  
VDT  
VCCA  
1.5  
V
V
HO-SW or LO-GND voltage threshold to enable  
cross output for adaptive dead time scheme  
VVCC > 9 V, (VHB VSW) > 8 V, HO or  
LO voltage falling  
VADPT  
tADPT  
tADPT  
LO falling edge to HO rising edge delay  
HO falling edge to LO rising edge delay  
VDT = VVCC  
VDT = VVCC  
36  
41  
ns  
ns  
SOFT START (SS)  
ISS  
SS charging current source  
VSS = 0 V  
25  
1
µA  
V
SS PWM comparator noninverting  
input  
VSS-OFFS  
SS to PWM comparator offset  
RSS  
SS discharge device RDS(on)  
VSS = 2 V  
30  
VSS_LOW  
SS discharge completion threshold  
Once it is discharged by internal logic  
0.23  
V
DIODE EMULATION  
Current zero cross threshold  
Current sense voltage  
0
mV  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
FOSC = 100 kHz; VVCC = 10 V; VVIN = VHV-Port = 48 V and VLV-Port = 12 V, unless otherwise stated.(1)  
PARAMETER  
TEST CONDITIONS  
MIN(3)  
TYP(2)  
MAX(3)  
UNIT  
CKT BREAKER CONTROL (BRKG, BRKS)  
nFAULT = 5 V, VVIN = 24 V, VBRKS = 12  
V
IBRKG  
Sourcing current  
275  
9
330  
375  
14  
µA  
VBRK-CLP  
RBRK-SINK  
Voltage clamp  
nFAULT= 5 V, VVIN = 48 V, VBRKS = 12 V  
nFAULT = 0 V  
V
Sinking capability  
20  
BRKG to BRKS voltage threshold to indicate  
readiness for operation  
VREADY  
Rising edge  
6.5  
8.5  
V
nFAULT= 5 V, VVIN VBRKS = 0 V,  
IBRKG-LEAK BRKG leakage current  
10  
µA  
V
BRKG VBRKS = 10 V  
FAULT ALARM (nFAULT)  
In normal operation, no fault  
4
5
V
Internal pull-up impedance for normal operation  
30  
kΩ  
Internal pull-down FET RDS(on) after fault  
detected  
125  
1
External pull-down voltage threshold for IC  
shutdown  
V
tFAULT  
External pul-ldown glitch filter  
2
µs  
µs  
ms  
Delay time of nFAULT pull-down below 1 V to  
(VBRKG VBRKS) < 1.5 V  
td1_FAULT  
td2_FAULT  
5
3
Start-up fault detection duration  
VUVLO > 2.6 V, VVCC > 9 V  
THERMAL SHUTDOWN  
TSD  
Thermal shutdown  
Thermal shutdown hysteresis  
175  
25  
°C  
°C  
TSD-HYS  
(1) All minimum and maximum limits are specified by correlating the electrical characteristics to process and temperature variations and  
applying statistical process control.  
(2) Typical values correspond to TJ = 25°C.  
(3) Minimum and maximum limits apply over the 40°C to 125°C junction temperature range.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM5170-Q1  
 
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
7.6 Typical Characteristics  
VVIN = 48 V, VVCC = 10 V, VUVLO = 3.3 V, TJ = 25°C, unless otherwise stated.  
20  
15  
10  
5
18  
16  
14  
12  
10  
8
œ40°C  
25°C  
70  
150°C  
œ40°C  
25°C  
150°C  
14  
0
6
0
10  
20  
30  
40  
50  
60  
Input Voltage (V)  
80  
90 100  
4
6
8
10  
VCCA Voltage (V)  
12  
VUVLO = 0 V  
VUVLO = 0 V  
7-1. VIN Shutdown IQ  
7-2. VCCA Shutdown IQ  
7.95  
7.9  
8.8  
8.6  
8.4  
8.2  
8
7.85  
7.8  
7.75  
7.7  
7.8  
7.6  
Falling  
Rising  
7.65  
-50  
-25  
0
25  
Junction Temperature (°C)  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
Junction Temperature (°C)  
50  
75  
100  
125  
150  
7-3. VCCA Standby Current vs Temperature  
7-4. VCC UVLO Threshold vs Temperature  
105  
6
IOUT1 Gain  
IOUT2 Gain  
5.8  
104  
103  
102  
101  
100  
99  
5.6  
5.4  
5.2  
5
4.8  
4.6  
4.4  
4.2  
4
98  
-50  
-25  
0
25  
50  
75  
Junction Temperature (°C)  
100  
125  
150  
0
10  
20  
30  
40  
50  
60  
Current Sense Voltage (mV)  
70  
80  
90 100  
D001  
ROSC = 40.2 kΩ  
7-6. IOUT1/2 Current Monitor Accuracy vs VCS  
7-5. Oscillator Frequency vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
100  
50.75  
50.5  
80  
60  
40  
20  
50.25  
50  
49.75  
49.5  
49.25  
0
0
-50  
-25  
0
25  
50  
75  
Junction Temperature (°C)  
100  
125  
150  
1
2
3
Current Setting, VISETA (V)  
4
5
VISETA = 2.5 V  
7-7. Regulated VCS Voltage vs ISETA Voltage  
7-8. Regulated VCS Voltage vs Temperature  
600  
500  
400  
300  
200  
280  
278  
276  
274  
272  
100  
IOUT1 (mA)  
IOUT2 (mA)  
IOUT1  
IOUT2  
0
270  
-50  
0
20  
40 60  
Current Sense Voltage (mV)  
80  
100  
-25  
0
25  
50  
75  
Junction Temperature (°C)  
100  
125 150  
D001  
VCS = 50 mV  
7-9. IOUT1/2 Current Monitor vs VCS Voltage  
7-10. IOUT1/2 Current Monitor vs Temperature  
25.2  
25.1  
25  
1.19  
1.188  
1.186  
1.184  
1.182  
1.18  
24.9  
24.8  
24.7  
24.6  
24.5  
-50  
-25  
0
25  
50  
75  
Junction Temperature (°C)  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
Junction Temperature (°C)  
100  
125  
150  
7-12. OVP Reference Voltage vs Temperature  
7-11. IPK Current Source vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM5170-Q1  
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
3.1  
3.05  
3
1.01  
1.005  
1
0.995  
2.95  
2.9  
0.99  
-50  
-25  
0
25  
50  
75  
Junction Temperature (°C)  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
Junction Temperature (°C)  
100  
125  
150  
7-14. OVPB Pull-up Resistance vs Temperature  
7-13. OVPA Pull-up Resistance vs Temperature  
140  
80  
120  
100  
80  
60  
40  
20  
60  
40  
20  
RDT = 25 kW  
HO to LO  
LO to HO  
RDT = 7.5 kW  
0
-50  
0
-50  
-25  
0
25  
Junction Temperature (°C)  
50  
75  
100  
125  
150  
-25  
0
25  
Junction Temperature (°C)  
50  
75  
100  
125 150  
VDT = VVCC  
FSW = 100 kΩ  
7-16. Adaptive Dead Time vs Temperature  
7-15. Programmed Dead-Time vs Temperature  
14  
450  
12  
10  
8
390  
330  
270  
210  
6
4
2
0
0
10  
20  
30  
40  
50  
-50  
-25  
0
25  
50  
Junction Temperature (°C)  
75  
100  
125  
150  
VVIN - VCS1B (V)  
7-17. [VBRKG VBRKS] vs [VVIN VBRKG] Voltage  
7-18. Circuit Breaker Gate Current vs  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
8 Detailed Description  
8.1 Overview  
The LM5170-Q1 device is a high performance, dual-channel bidirectional current controller intended to manage  
current transfer between a Higher Voltage Port (HV-Port) and a Lower Voltage Port (LV-Port) like the 48-V and  
12-V ports of automotive dual battery systems. It integrates essential analog functions that enable the design of  
high power converters with a minimal number of external components. It regulates DC current in the direction  
designated by the DIR pin input signal. The current regulation level is programmed by the analog signal applied  
at the ISETA pin or the digital PWM signal at the ISETD pin. Independent enable signals activate each channel  
of the dual controller.  
The dual-channel differential current sense amplifiers and dedicated channel current monitors achieve typical  
accuracy of 1%. The robust 5-A half-bridge gate drivers are capable of controlling parallel MOSFET switches  
delivering 500 W or more per channel. The diode emulation mode of the buck or boost synchronous rectifiers  
enables discontinuous mode operation for improved efficiency under light load conditions, and it also prevents  
negative current. Versatile protection features include the cycle-by-cycle peak current limit, overvoltage  
protection of both 48-V and 12-V battery rails, detection and protection of MOSFET switch failures, and  
overtemperature protection.  
The LM5170-Q1 uses average current mode control which simplifies compensation by eliminating the right-half  
plane zero in the boost operating mode and by maintaining a constant loop gain regardless of the operating  
voltages and load level. The free-running oscillator is adjustable up to 500 kHz and can be synchronized to an  
external clock within ±20% of the free running oscillator frequency. Stackable multiphase parallel operation is  
achieved by connecting two LM5170-Q1 controllers in parallel for 3- or 4-phase operation, or by synchronizing  
multiple LM5170-Q1 controllers to external multiphase clocks for a higher number of phases. The UVLO pin  
provides master ON/OFF control that disables the LM5170-Q1 in a low quiescent current shutdown state when  
the pin is held low.  
Definition of IC Operation Modes:  
Shutdown Mode: When the UVLO pin is < 1.25 V, or VCC < 8 V, or nFAULT < 1.25 V, the LM5170-Q1 is in  
the shutdown mode with all gate drivers in the low state, all internal logic reset, and the VINX pin  
disconnected from the VIN pin. When UVLO < 1.25 V, the IC draws < 20 µA through the VIN and VCC pins.  
Initialization Mode: When the UVLO pin is > 1.5 V but < 2.5 V, and VCC > 8.5 V, and nFAULT > 2 V, the  
LM5170-Q1 establishes proper internal logic states and prepares for circuit operation.  
Standby Mode: When the UVLO pin is > 2.5 V, and VCC > 8.5 V, and nFAULT > 2 V, the LM5170-Q1 first  
performs fault detection for 2 to 3 ms, during which the external power MOSFETs are each checked for drain-  
to-source short-circuit conditions. If a fault is detected, the LM5170-Q1 returns to the shutdown mode and is  
latched in shutdown until reset through UVLO or VCC pins. If no failure is detected, the LM5170-Q1 is ready  
to operate. The circuit breaker MOSFETs are turned on and the oscillator and ramp generators are activated,  
but the four gate drive outputs remain off until the EN1 or EN2 initiate the power delivery mode.  
Power Delivery Mode: When the UVLO pin > 2.5 V, VCC > 8.5 V, nFAULT > 2 V, EN1 or EN2 > 2 V, DIR is  
valid (> 2 V or < 1 V), and ISETA > 0 V, the SS capacitor is released and the LM5170-Q1 regulates the DC  
current at the level set at the ISETA pin.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
8.2 Functional Block Diagram  
SYNCOUT  
OPT  
OSC  
SYNCIN  
VIN  
3.125V  
VIN  
VINX  
CLK1  
CLK2  
VCCA  
OSCILLATOR AND  
PHASE SPLITTER  
2.5V  
1.5V  
BIAS  
REGULATORS  
SD  
VINX  
1.185V  
25µA  
VCCUV  
ENABLE  
+
-
UVLO  
nFAULT  
2.5V  
1.5V  
CONTROL  
LOGIC  
RESET  
+
-
SD  
300uA  
DIR_GOOD  
CIRCUIT  
BREAKER  
CONTROL  
BRKG  
BRKS  
DIR  
VALIDATION  
DIR  
12V  
DIR  
VIN  
FLIP  
DETECT  
ISETA  
ISET  
SD  
3.125V  
25uA  
SS1  
100K  
FAILURE  
DETECT  
SS  
ISETD  
SS2  
DISABLE1  
100K  
FLIP  
DETECT  
OVER  
TEMP  
DIR  
DEAD TIME  
CONTROL  
VDT  
DT  
SD  
CSB1  
DIR  
3 MEG  
0
OVP  
VINX  
1 MEG  
-
-
OVPA  
OVPB  
IPK  
+
+
1
1.185V  
1.185V  
VCC  
8.5V  
PK LIMIT  
PROGRAM  
25uA  
+
-
VCC  
VIPK  
VCC_UV  
COMMON CONTROL  
AGND  
PGND  
DIR  
CSB1  
CH-1 CONTROL  
100uA/V  
25uA  
CSB1  
Gm=1 mA/V  
IOUT1  
+
-
-
+
ISET  
SS1  
CS AMP  
A=50  
CSA1  
HB1  
ERR AMP  
1V  
+
-
COMP1  
RAMP1  
-
+
VIPK  
PEAK  
LIMIT  
PWM  
COMP  
CLK1  
DISABLE1  
VDT  
PEAK  
HOLD  
ZERO  
CROSS  
DELAY  
LOGIC  
HO1  
SW1  
+
-
OVP  
0.6V  
LEVEL  
SHIFT  
DIR  
ADPT  
LOGIC  
SD  
EN1  
CLK1  
S
Q
VCC  
1-D1  
D1  
DISABLE1  
EN1  
VDT  
DISABLE1  
DELAY  
LOGIC  
LO1  
R
Q
DIR  
CH-2 CONTROL  
100uA/V  
25uA  
CSB2  
Gm=1 mA/V  
IOUT2  
+
-
-
+
ISET  
SS2  
CS AMP  
A=50  
CSA2  
HB2  
ERR AMP  
1V  
+
-
COMP2  
RAMP2  
-
+
VIPK  
PEAK  
LIMIT  
PWM  
COMP  
CLK2  
DISABLE2  
VDT  
PEAK  
HOLD  
ZERO  
CROSS  
DELAY  
LOGIC  
HO2  
SW2  
+
-
OVP  
SD  
0.6V  
LEVEL  
SHIFT  
DIR  
ADPT  
EN1  
LOGIC  
CLK2  
S
Q
VCC  
1-D2  
D2  
DISABLE2  
VDT  
DISABLE2  
DELAY  
LOGIC  
EN2  
LO2  
R
Q
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
8.3 Feature Description  
8.3.1 Bias Supply (VCC, VCCA)  
The LM5170-Q1 requires an external bias supply of 9 V to 12 V at the VCC and VCCA pins to function. If an  
external supply voltage is greater than 12 V, a 10-V LDO or switching regulator must be used to produce 10 V for  
VCC and VCCA. 8-1 shows typical connections of the bias supply. The VCC voltage is directly fed to the low-  
side MOSFET drivers. A 1-µF to 2.2-µF ceramic capacitor must be placed between the VCC and PGND pins to  
bypass the driver switching currents. The VCCA pin serves as the bias supply input for the internal logic and  
analog circuits for which the ground reference is the AGND pin. VCCA should be connected to VCC through a  
25- to 50-external resistor. A 0.1-µF to 1-µF bypass capacitor must be placed between the VCCA and AGND  
pins to filter out possible switching noise.  
The internal VCC undervoltage (UV) detection circuit monitors the VCC voltage. When the VCC voltage falls  
below 8 V on the falling edge, the LM5170-Q1 is held in the shutdown state. For normal operation, the VCC and  
VCCA voltages must be greater than 8.5 V on a rising edge.  
25  
Ext  
9~12 Vdc  
Ext >12 Vdc  
Driver  
VCCA  
AGND  
VCC  
10 V  
CVCCA  
Analog  
Circuit  
VCC  
UV  
LDO  
CVCC  
PGND  
LM5170-Q1  
8-1. VCC Bias Supply Connections  
8.3.2 Undervoltage Lockout (UVLO) and Master Enable or Disable  
The UVLO pin serves as the master enable or disable pin. To use the UVLO pin to program undervoltage lockout  
control for the HV-port, LV-port, or VCC rail, see 8.5.2 for details.  
There are two UVLO voltage thresholds. When the pin voltage is externally pulled below 1.25 V, the LM5170-Q1  
is in shutdown mode, in which all gate drivers are in the OFF state, all internal logic resets, the VINX pin is  
disconnected from VIN pin, and the IC draws less than 20 µA through the VIN, VCC and VCCA pins.  
When the VCC voltage is above the 8.5 V and the UVLO pin voltage is pulled higher than 1.5 V but lower than  
2.5 V, the LM5170-Q1 is in the initialization mode in which the nFAULT pin is pulled up to approximately 5 V, but  
the rest of the LM5170-Q1 remain off.  
When the UVLO pin is pulled higher than 2.5 V, which is the UVLO release threshold and the master enable  
threshold, the LM5170-Q1 starts the MOSFET failure detection in a period of 2 to 3 ms (see 8.3.16). If no  
failure is detected, BRKG pin starts to source a 330-µA current to charge the gates of the breaker MOSFETs.  
When the BRKG to BRKS voltage is above 8.5 V, the LM5170-Q1 enters standby mode. In standby mode, the  
VINX pin is internally connected to the VIN pin through an internal cutoff switch (see 8-2), and the internal 1-  
MΩOVPB pullup resistor is connected to the CSB1 pin through another internal cutoff switch (see 8-18). The  
oscillator and the RAMP1 and RAMP2 generators start to operate, and the SYNCOUT pin starts to send clock  
pulses at the oscillator frequency, and the LM5170-Q1 is ready to operate. The LO1, LO2, HO1, and HO2 drivers  
remain off until the EN1, EN2, and DIR inputs command them to operate.  
When a MOSFET gate-to-source short-circuit failure is detected, the LM5170-Q1 is latched off. The latch can  
only be reset by pulling the VCC pin below 8 V, or by pulling the UVLO pin below 1.25 V. For details, see 节  
8.3.16.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
8.3.3 High Voltage Input (VIN, VINX)  
8-2 shows the external and internal configuration for the VIN and VINX pins. Both are rated at 100 Vdc. The  
VIN pin should be connected either directly to the voltage rail of the HV-Port, or through a small RC filter  
consisting of 10- to 20-Ω resistor and 0.1-µF to 1-µF bypass capacitor. The internal 330-µA current source  
supplying the BRKG pin is supplied by the VIN pin.  
A cutoff switch connects and disconnects the VIN and VINX pins. When the UVLO pin voltage is greater than 2.5  
V, and when the VCC voltage is greater than 8.5 V, the switch is closed and the VINX and VIN pins are  
connected.  
The VINX pin serves as the supply pin for the RAMP generators (see 8-2 and 8.3.9 for details). It is also  
the high-side terminal of the internal 3-MegΩ pullup resistor for the OVPA pin (see 8.3.17 for details).  
Moreover, it serves as the HV-Port voltage sense for internal circuit use during operation.  
HV-Port (48 V)  
VIN  
VINX  
VINX  
3 Meg  
OVP  
OVPA  
AGND  
RAMP1  
RAMP2  
+
COMP  
1.185 V  
-
LM5170-Q1  
8-2. VIN and VINX Pins Configuration  
8.3.4 Current Sense Amplifier  
Each channel of the LM5170-Q1 has an independent bidirectional, high accuracy, and high-speed differential  
current sense amplifier. The differential current sense polarity is determined by the DIR command. The amplifier  
gain is 50, such that a smaller current sense resistor can be used to reduce power dissipation. The amplified  
current sense signal is used to perform the following functions:  
Applied to the inverting input of the error amplifier for current loop regulation.  
Used to reconstruct the channel current monitor signal at the IOUT1 and IOUT2 pins.  
Monitored by the cycle-by-cycle peak current limit comparator for instantaneous overcurrent protection.  
Sensed by the current zero cross detector to operate the synchronous rectifiers in diode emulation mode.  
The current sense resistor Rcs should be selected for 50-mV current sense voltage when the channel DC  
current reaches the rated level. The CS1A, CS1B, CS2A, and CS2B pins should be Kelvin connected for  
accurate sensing.  
It is very important that the current sense resistors are non-inductive. Otherwise the sensed current signals are  
distorted even if the parasitic inductance is only a few nH. Such inductance may not affect the current regulation  
during continuous conduction mode, but it does affect current zero cross detection, and hence the performance  
of diode emulation mode under light load. As a consequence, the synchronous rectifier gate pulse is truncated  
much earlier than the inductor current zero crossing, causing the body diode of the synchronous rectifier to  
conduct unnecessarily for a longer time. See the 8.3.15 for details.  
If the selected current sense resistor has parasitic inductance, see the 9.1 for methods to compensate for this  
condition and achieve optimal performance.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
8.3.5 Control Commands  
8.3.5.1 Channel Enable Commands (EN1, EN2)  
These pins are two state function pins. Always use CH-1 if only single-channel operation is required. Note that  
CH-2 can only be enabled when CH-1 is also enabled.  
1. When the EN1 pin voltage is pulled above 2 V (logic state of 1), the HO1 and LO1 outputs are enabled  
through soft start.  
2. When the EN1 pin voltage is pulled below 1 V (logic state of 0), CH-1 controller is disabled and both HO1  
and LO1 outputs are turned off.  
3. Similar behaviors for EN2, HO2 and LO2 of CH-2, except that the EN2 pin does not affect the SS pin. Refer  
to 8.3.10 for details.  
4. When the EN1 and EN2 pins are left open, an internal 100-kpulldown resistor sets them to the low state.  
5. The built-in 2-µs glitch filters prevent errant operation due to the noise on the EN1 and EN2 signals.  
8.3.5.2 Direction Command (DIR)  
This pin is a triple function pin.  
1. When the DIR pin is actively pulled above 2 V (logic state of 1), the LM5170-Q1 operates in buck mode, and  
current flows from the HV-Port to the LV-Port.  
2. When the DIR pin is actively pulled below 1 V (logic state of 0), the LM5170-Q1 operates in boost mode, and  
current flows from the LV-Port to the HV-Port.  
3. When the DIR pin is in the third state that is different from the above two, it is considered an invalid  
command and the LM5170-Q1 remains in standby mode regardless of the EN1 and EN2 states. This tri-  
state function prevents faulty operation when losing the DIR signal connection to the MCU.  
4. When DIR changes state between 1 and 0 dynamically during operation, the transition causes the SS pin to  
discharge first to below 0.23 V, then the SS pin pulldown is released and the LM5170-Q1 goes through a  
new soft-start process to produce the current in the new direction. This eliminates surge current during the  
direction change.  
5. The built-in 10-µs glitch filter prevents errant operation by noise on the DIR signal.  
8.3.5.3 Channel Current Setting Commands (ISETA or ISETD)  
The LM5170-Q1 accepts the current setting command in the form of either an analog voltage or a PWM signal.  
The analog voltage uses the ISETA pin, and the PWM signal uses the ISETD pin. There is an internal ISETD  
decoder that converts the PWM duty ratio at the ISETD pin to an analog voltage at the ISETA pin. Owing to  
possible ground noise impact, TI recommends users to remove EN1 signal to achieve no load (0 A).  
8-3 and 8-4 show the pin configurations for current programming with an analog voltage or a PWM signal.  
The channel DC current is expressed in terms of resulted differential current sense voltage VCS_dc. When ISETA  
is used, the ISETD pin can be left open or connected to AGND. When ISETD is used, place a ceramic capacitor  
CISETA between the ISETA pin and AGND. CISETA and the internal 100-kat the output of the ISETD decoder  
forms a low-pass RC filter to attenuate the ripple voltage on ISETA. However, the RC filter delays the ISETD  
dynamic change to be reflected on ISETA. To limit the delay not to exceed Tdelay_ISETD, the time constant of the  
RC filter should satisfy 方程1.  
Tdelay_ISETD  
100 kWìCISETA  
Ç
4
(1)  
Therefore, the maximum CISETA should be determined by 方程2:  
Tdelay_ISETD  
CISETA  
Ç
4ì100 kW  
(2)  
On the other hand, the time constant of the RC filter should be big enough for effective filtering. To attenuate the  
ripple by 40 dB, the RC filter corner frequency should be at least two decade below FISETD, that is, 方程3  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
1
Ç 0.01ìF  
ISETD  
2pì100 kWìCISETA  
(3)  
Therefore the minimum ISETD signal frequency should be determined by 方程4:  
1
400  
F
í
í
ISETD  
2pì1 kWìCISETA 2pì Tdelay_ISETD  
(4)  
For instance, if ISETA is required to settle down to the steady-state in 1 ms following an ISETD duty ratio step  
change, namely Tdelay_ISETD < 1 ms, the user should select CISETA < 2.5 nF, and FISETD > 64 kHz. If Tdelay_ISETD  
<
0.1 ms, then CISETA < 250 pF, and FISETD> 640 kHz. Note that the feedback loop property causes additional  
delay for the actual current to settle to the new regulation level.  
Current Level  
Command  
LM5170-Q1  
ISETA  
60.0  
50.0  
+
-
ISETD  
AGND  
0
2.5 3.0  
0
ISETA (V)  
8-3. Pin Configurations for Current Setting Using an Analog Voltage Signal  
Current Level  
Command  
62.5  
50.0  
LM5170-Q1  
ISETD  
ISETA  
FISETD=1~1000 kHz  
AGND  
CISETA  
100 pF~100 nF  
0
80% 100%  
ISETD Duty (%)  
0%  
8-4. Pin Configurations for Current Setting Using a PWM Signal  
The ISETA pin is directly connected to the noninverting input of the error amplifier. By ISETA programming, the  
channel DC current is determined by 方程5:  
VCS dc = 0.02ì V  
ISETA  
(5)  
Or by 方程6:  
VCS_dc_  
I_channel_dc =  
Rcs  
(6)  
(7)  
Or by 方程7:  
I_channel_dc =  
where  
0.02ì V  
Rcs  
ISETA  
Rcs is the channel current sensing resistor value.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
 
 
 
 
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
When using ISETD, the produced VISETA by the internal decoder is equal to the product of the effective duty ratio  
of the ISETD PWM signal (DISETD) and the 3.125-V internal reference voltage. The channel current is  
determined by 方程8:  
IV  
= 3.125 V ìDISETD  
ISETA  
(8)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LM5170-Q1  
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
Or by 方程9:  
VCS dc = 0.0625 VìDISETD  
(9)  
Or by 方程10:  
0.0625 V ìDISETD  
Rcs  
I_channel_dc =  
(10)  
8.3.6 Channel Current Monitor (IOUT1, IOUT2)  
The LM5170-Q1 monitors the real time inductor current in each channel at the IOUT1 and IOUT2 pins. The  
channel current is converted to a small current source scaled by the factors seen in 方程11 and 方程12:  
VCSI  
IOUT1=  
IOUT2 =  
+ 25 mA  
+ 25 mA  
200 W  
(11)  
(12)  
VCS2  
200 W  
where  
VCS1 and VCS2 are the real time current sense voltage of CH-1 and CH-2, respectively  
the 25 µA is a DC offset current superimposed on to the IOUT signals (refer to 8-5).  
The DC offset current is introduced to raise the no-load signal above the possible ground noise floor. Because  
the monitor signal is in the form of current, an accurate reading can be obtained across a termination resistor  
even if the resistor is located far from the LM5170-Q1 but close to the MCU, thus rejecting potential ground  
differences between the LM5170-Q1 and the MCU. 8-6 shows a typical channel current monitor through a  
9.09-Ktermination resistor and a 10-nF to 100-nF ceramic capacitor in parallel. The RC network converts the  
current monitor signal into a DC voltage proportional to the channel DC current. For example, when the current  
sense voltage DC component is 50 mVdc, namely VCS_dc = 50 mV, the termination RC network will produce a  
DC voltage of 2.5 V. Note that the maximum IOUT pin voltage is internally clamped to approximately 4 V.  
275  
25  
0
50  
0
V_CS (mV)  
8-5. Channel Monitor Current Source vs Current Sense Voltage  
To MCU  
Monitor  
LM5170-Q1  
IOUT2  
9.09 k  
10~100 nF  
IOUT1  
9.09 k  
10~100 nF  
AGND  
MCU Local  
GND  
Ground  
Impedance  
8-6. Channel Current Monitor  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
 
 
 
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
8.3.7 Cycle-by-Cycle Peak Current Limit (IPK)  
The internal 25-µA current source and a single external resistor RIPK establishes a voltage at the IPK pin to  
program the cycle-by-cycle current limit threshold. To set the inductor peak current limit value to IPK, RIPK should  
satisfy 方程13:  
RcsìIPK  
1.1mA  
RIPK  
=
(13)  
IPK should be greater than the inductor peak current at full load, and lower than the inductors rated saturation  
current Isat  
.
Note that when the IPK pin voltage is greater than 4.5 V, either owing to a very large RIPK value or the pin being  
open or some other reason, an internal monitor circuit will shut down the switching, preventing the LM5170-Q1  
from operating with erroneous peak current limit threshold.  
8.3.8 Error Amplifier  
Each channel of the LM5170-Q1 has an independent gm error amplifier. The output of the error amplifier is  
connected to the COMP pin, allowing the loop compensation network to be applied between the COMP pins and  
AGND.  
The LM5170-Q1 control loop is the inner current loop of the bidirectional converter system, of which the outer  
voltage loop can either be controlled by an MCU, a DSP, an FPGA, and so forth, or by an analog circuit.  
Because the LM5170-Q1 employs the averaged current mode control scheme, the inner loop is basically a first  
order system. As seen in 8-7, a Type-II compensation network consisting of RCOMP, CCOMP, and CHF is  
adequate to stabilize the LM5170-Q1 inner current loop. Refer to 9.1 for details of the compensation network  
selection criteria.  
8.3.9 Ramp Generator  
Refer to 8-7 for the circuit block diagram of the ramp generator, gm error amplifier, PWM comparator, and  
soft-start control circuit. The VINX pin serves as the supply pin for the ramp generator. Each ramp generator  
consists of an external RC circuit (RRAMP and CRAMP) and an internal pulldown switch controlled by the clock  
signal.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
HV-Port (48 V)  
VIN  
Shutdown  
VINX  
RRAMP1  
RAMP1  
CLK1  
CRAMP1  
-
PWM  
1 V  
To Driver Logic  
COMP1  
+
RCOMP1  
25 µA  
Gm AMP  
SS  
From Current  
Sense Amp  
CHF1  
-
Gm  
CCOMP1  
CSS  
ISET  
+
AGND  
COMP2  
RRAMP2  
To CH2 PWM  
RAMP2  
CLK2  
CRAMP2  
LM5170-Q1  
8-7. Error Amplifier, Ramp Generator, Soft Start, and PWM Comparator  
When the LM5170-Q1 is enabled, CRAMP1/2 is charged by the VINX pin through RRAMP1/2 at the beginning of  
each switching cycle. The internal pulldown FET discharges CRAMP1/2 at the end of the cycle within a 200-ns  
internal, then the pulldown is released, and CRAMP1/2 repeats the charging and discharging cycles. In general the  
RAMP RC time constant is much greater than the period of a switching cycle. Therefore, the RAMP pin voltages  
are sawtooth signals with a slope proportional to the HV-Port voltage. In this way the RAMP signals convey the  
line voltage info. Being directly used by the PWM comparators to determine the instantaneous switching duty  
cycles, the RAMP signals fulfill the line voltage feedforward function and enable the LM5170-Q1 to have a fast  
response to line transients.  
Note  
TI recommends users to select appropriate RRAMP and CRAMP values by the following equation such  
that the RAMP pins reach the peak value of approximately 5 V each cycle when VIN is at 48 V.  
9.6  
RRAMP  
=
F
sw ìCRAMP  
(14)  
For instance, if Fsw = 100 kHz, and CRAMP1 = CRAMP2 = 1 nF, a resistor of approximately 96 kΩ should be  
selected for RRAMP1 and RRAMP2  
.
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
Because CRAMP1/2 must be fully discharged every cycle through the 15-Ω channel resistor of the pulldown FET  
within the 150-ns minimum discharging interval, CRAMP1/2 should be limited to be less than 2.5 nF nominal at  
room temperature.  
There is also a valid RAMP signal detection circuit for each channel to prevent the channel from errantly running  
into the maximum duty cycle if RAMP goes away. It detects the peak voltage of the RAMP signal. If the peak  
voltage is less than 0.6 V in consecutive cycles, it is considered an invalid RAMP and the channel will stop  
switching by turning both HO and LO off until the RAMP signal recovers. This 0.6-V voltage threshold defines the  
minimum operating voltage of the HV-Port to be approximately 5.76 V.  
8.3.10 Soft Start  
The soft-start feature helps the converter to gradually reach the steady-state operating point, thus reducing start-  
up stresses and surge currents. With the LM5170-Q1, there are two ways to implement the soft start.  
8.3.10.1 Soft-Start Control by the SS Pin  
Place a ceramic capacitor CSS between the SS pin and AGND to program the soft-start time. When the EN1  
voltage is < 1 V, an internal pulldown switch holds the SS pin at AGND. When the EN1 pin voltage is > 2 V, the  
SS pulldown is released, and CSS is charged up slowly by the internal 25-µA current source, as shown in 8-7.  
The slow ramping SS voltage clamps the COMP1 and COMP2 pins through two separate clamp circuits. Once  
the SS voltage exceeds the 1-V offset voltage, the PWM duty cycle starts to increase gradually from zero.  
When EN1 is pulled below 1 V, CSS is discharged by the internal pulldown FET. Once this pulldown FET is  
turned on, it remains on until the SS voltage falls below 0.23 V, which is the threshold voltage indicating the  
completion of SS discharge.  
Note that the EN2 pin does not affect the SS pin. When EN1 and EN2 are enabled together, the CH-2 output will  
follow CH-1 by going through the same soft-start process. If EN2 is enabled at a later time and CH-1 has already  
completed soft start, CH-2 will not be affected by the SS pin. This allows the CH-2 current to ramp up quickly to  
supply the increased load current. However, when SS is pulled low, both CH-1 and CH-2 are affected at the  
same time.  
8.3.10.2 Soft Start by MCU Through the ISET Pin  
The MCU can control the soft start by gradually ramping up the ISETA voltage, or the ISETD PWM duty ratio,  
whichever is applicable. When ISETA or ISETD is used to control the soft start, CSS should be properly selected  
to a value such that it does not interfere with the ISETA/D soft start.  
8.3.10.3 The SS Pin as the Restart Timer  
The SS pin also fulfills the function of a restart timer in an OVP event or following a DIR command change:  
(1) Restart Timer in OVP: When OVPA or OVPB catches an overvoltage event (refer to 8.3.17), CSS is  
discharged immediately by the internal pulldown FET, and this FET remains ON as long as the overvoltage  
condition persists. When the overvoltage condition is removed and after the SS voltage is discharged to below  
0.23 V, the SS pulldown is released, setting off a new soft-start cycle. The circuit may run in retry or hiccup mode  
if the overvoltage condition reappears. The retry frequency is determined by the SS capacitor as well as the  
nature of the overvoltage condition.  
(2) Restart Timer: When DIR dynamically flips its state from 0 to 1, or 1 to 0 during operation, CSS is first  
discharged to 0.23 V by the internal pulldown FET, then the pulldown is released to set off a new soft-start cycle  
to gradually build up the channel current in the new direction. In this way, the channel current overshoot is  
eliminated.  
8.3.11 Gate Drive Outputs, Dead Time Programming and Adaptive Dead Time (HO1, HO2, LO1, LO2, DT)  
Each channel of the LM5170-Q1 has a robust 5-A (peak) half bridge driver to drive external N-channel power  
MOSFETs. As shown in 8-8, the low-side drive is directly powered by VCC, and the high-side driver by the  
bootstrap capacitor CBT. During the on-time of the low-side driver, the SW pin is pulled down to PGND and CBT  
is charged by VCC through the boot diode DBT. TI recommends selecting a 0.1-µF or larger ceramic capacitor  
for CBT, and an ultra-fast diode of 1 A and 100-V ratings for DBT. TI also strongly recommends users to add a 2-  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LM5170-Q1  
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
Ω to 5-Ω resistor (RBT) in series with DBT to limit the surge charging current and improve the noise immunity of  
the high-side driver.  
DBT  
RBT  
2  
HB  
VCC  
VCCA  
AGND  
CBT  
HO  
SW  
Driver  
Driver  
External  
10-V Supply  
LO  
Internal  
Logic  
Circuit  
PGND  
LM5170-Q1  
8-8. Bootstrap Circuit for High-Side Bias Supply  
During start-up in buck mode, CBT may not be charged initially; the LM5170-Q1 then holds off the high-side  
driver outputs (HO1 and HO2) and sends LO pulses of 200-ns width in consecutive cycles to pre-charge CBT.  
When the boot voltage is greater than the 6.5-V boot UV threshold, the high-side drivers output PWM signals at  
the HO1 and HO2 pins for normal switching action.  
During start-up in boost mode, CBT is naturally charged by the normal turnon of the low side MOSFET, therefore  
there is no such 200-ns pre-charge pulse at the LO pins.  
To prevent shoot-through between the high-side and low-side power MOSFETs on the same half bridge leg, two  
types of dead time schemes can be chosen with the DT pin: the programmable dead time or built-in adaptive  
dead time.  
To program the dead time, place a resistor RDT across the DT and AGND pins as shown in 8-9.  
The dead time tDT as depicted in 8-10 is determined by 方程15:  
ns  
tDT = RDT ì 4  
+16 ns  
kW  
(15)  
Note that this equation is valid for programming tDT between 20 ns and 250 ns. When the power MOSFET is  
connected to the gate drive, its gate input capacitance CISS becomes a load of the gate drive output, and the HO  
and LO slew rate are reduced, leading to a reduced effective tDT between the high- and low-side MOSFETs. The  
user should evaluate the effective tDT to make sure it is adequate to prevent shoot-through between the high-  
and low-side MOSFETs.  
When the DT programmability is not used, simply connect the DT pin to VCC as shown in 8-11, to activate the  
built-in adaptive dead time. The adaptive dead time is implemented by real time monitoring of a drivers output  
(either HO or LO) by the other driver (LO or HO) of the same half bridge switch leg, as shown in 8-11 and 图  
8-12. Only when a drivers output voltage falls below 1.25 V does the other driver starts turnon. The  
effectiveness of adaptive dead time is greatly reduced if a series gate resistor is used, or if the PCB traces of the  
gate drive have excessive impedance due to poor layout design.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
HV-Port (48 V)  
RBT1/2  
DBT1/2  
VCC  
LM5170-Q1  
HB1/2  
CBT1/2  
HO1/2  
SW1/2  
DLY  
Logic  
Driver  
Adapt Logic  
Level Shift  
Level  
Shift  
FROM  
PWM  
VCC  
LO1/2  
DLY  
Logic  
Driver  
AGND  
DT  
RDT  
PGND  
8-9. Dead Time Programming With DT Pin (Only One Channel is Shown)  
HO  
tDT  
tDT  
LO  
8-10. Gate Drive Dead Time (Only One Channel is Shown)  
HV-Port (48V)  
RBT1/2  
DBT1/2  
VCC  
LM5170-Q1  
HB1/2  
CBT1/2  
HO1/2  
SW1/2  
DLY  
Logic  
Driver  
Adapt Logic  
Level Shift  
Level  
Shift  
VCC  
FROM  
PWM  
LO1/2  
DLY  
Logic  
Driver  
PGND  
AGND  
DT  
8-11. Dead Time Programming With DT Pin (Only One Channel is Shown)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LM5170-Q1  
 
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
1.5 V  
Adaptive  
tDT  
HO  
LO  
1.5 V  
8-12. Adaptive Dead Time (Only One Channel is Shown)  
8.3.12 PWM Comparator  
Each channel of the LM5170-Q1 has a pulse width modulator (PWM) employing a high-speed comparator. It  
compares the RAMP pin signal and the COMP pin signal to produce the PWM duty cycle. Note that the COMP  
signal passes through a 1-V DC offset before it is applied to the PWM comparator, as shown in 8-7. Owing to  
this DC offset, the duty cycle can reduce to zero when the COMP pin or SS pin is pulled lower than 1 V. The  
maximum duty cycle is limited by the 200-ns minimum off-time. Note that the programmed dead time may  
reduce the maximum duty cycle because it is additional to the minimum off-time. Therefore, the available  
maximum duty cycle, for both buck and boost mode operation, is determined by 方程16.  
DMAX = 1- (200 ns + tDT )ìFsw  
(16)  
where  
tDT is the dead time given by (15) or the adaptive dead time, whichever applicable.  
This maximum duty cycle limits the minimum voltage step-down ratio in buck mode operation, and the maximum  
step-up ratio in boost mode operation.  
Note that the maximum COMP voltage is clamped at approximately 1.5 V higher than the RAMP peak voltage.  
This prevents the COMP voltage from moving too far above the RAMP voltage which could cause longer  
recovery time during a large scale upward step load response.  
8.3.13 Oscillator (OSC)  
The LM5170-Q1 oscillator frequency is set by the external resistor ROSC connected between the OSC pin and  
AGND, as shown in 8-13. The OSC pin must never be left open whether or not an external clock is present.  
To set a desired oscillator frequency FOSC, ROSC is approximately determined by 方程17:  
40 kW ì100 kHz  
FOSC  
ROSC  
=
(17)  
ROSC must be placed as close as possible to the OSC and AGND pins. Take the tolerance of the external  
resistor and the frequency tolerance indicated in 7.5 into account when determining the worst case operating  
frequency.  
The LM5170-Q1 also includes a Phase-Locked Loop (PLL) circuit to manage multiphase interleaving phase  
angle as well as the synchronization to the external clock applied at the SYNCIN pin. When no external clock is  
present, the converter operates at the oscillator frequency given by 方程式 17. If an external clock signal of a  
frequency within ± 20% of FSW is applied (see 8.3.14), the converter will switch at the frequency of the  
external clock FEX_CLK, namely 方程18:  
FOSC  
(in Standalone)  
À
Œ
FSW  
=
Ã
F
(in Synchronization)  
EX_CLK  
Œ
Õ
(18)  
Two internal clock signals CLK1 and CLK2 are produced to control the interleaving operation of CH-1 and CH-2,  
respectively. The third clock signal is output at the SYNCOUT pin. All these three clock signals run at the same  
frequency of FSW. The phase angles among these three clock signals are controlled by the state of the OPT pin.  
See 8.4.1 for details.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
 
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
SYNCIN  
CLK1  
SYNCOUT  
CLK2  
SYNCOUT  
CLK1  
CLK2  
10 k  
OSC  
AGND  
OPT  
OSC and  
Phase Splitter  
ENABLE  
Interleaving  
Control  
LM5170-Q1  
8-13. Oscillator and Interleaving Clock Programming  
8.3.14 Synchronization to an External Clock (SYNCIN, SYNCOUT)  
The LM5170-Q1 can synchronize to an external clock if FEX_CLK is within ±20% of FOSC. The SYNCIN clock  
pulse width should be in the range of 100 ns to 500 ns, with a high voltage level > 2 V and low voltage level < 1  
V.  
FEX_CLK can be adjusted dynamically. However the LM5170-Q1 PLL takes approximately 500 µs to settle down  
to the newly asserted frequency. During the PLL transient, the instantaneous FSW may temporarily drop by 25%.  
To avoid overstress during the transient, TI recommends the user to reduce the load current to less than 50% by  
lowering the ISETA voltage or ISETD duty, or to simply turn off the dual-channels by setting EN1 = EN2 = 0  
when making an the external clock change.  
8.3.15 Diode Emulation  
The LM5170-Q1 has a built-in diode emulation function. Each channel has a real time current zero crossing  
detector to monitor instantaneous VCS. When VCS is detected to cross zero, the LM5170-Q1 turns off the gate  
drive of the synchronous rectifier to prevent negative current. In this way, the negative current is prevented and  
the light load efficiency is improved. 8-14 shows key waveforms of a typical operation transiting into the diode  
emulation mode.  
CLK  
Main FET  
Turn-ON  
Sync FET  
Turn-ON  
Diode Emulation  
Inductor  
Current  
0 A  
8-14. Diode Emulation Operation  
To obtain optimal diode emulation performance, it requires the VCS signal to be accurate in real time. Any signal  
distortion caused by parasitic inductances in the current sense resistor or sensing traces may lead to erroneous  
zero crossing detection and cause non-optimal diode emulation operation, and the sync FET may be turned off  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LM5170-Q1  
 
 
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
while the current is still high in the positive direction. See 9.1 for coping with current sense parasitic  
inductances for optimal diode emulation operation.  
8.3.16 Power MOSFET Failure Detection and Failure Protection (nFAULT, BRKG, BRKS)  
The LM5170-Q1 includes a circuit to detect a MOSFET switch short-circuit failure during start-up. If a MOSFET  
drain and source are found shorted, the LM5170-Q1 pulls down the nFAULT pin to flag the fault, and the  
controller remains in an OFF state. This feature prevents the LM5170-Q1 from starting with a short-circuit-failed  
MOSFET, thereby preventing catastrophic failures.  
The LM5170-Q1 also integrates a control circuit to control the circuit breaker. As shown in 8-15, the circuit  
breaker consists of a pair of back-to-back MOSFETs. When the breaker is off, the current path between the HV-  
Port and LV-Port is cut-off so as to prevent possible catastrophic failures.  
Note  
The failure detection function must be deactivated if the circuit breaker is not present, or if the circuit  
breaker FETs are not controlled by the LM5170-Q1.  
8.3.16.1 Failure Detection Selection at the SYNCOUT Pin  
Depending on application preference, the failure detection function can be activated or deactivated by the  
SYNCOUT pin. During start-up, the LM5170-Q1 first detects the external resistor attached to the SYNCOUT pin.  
To enable the failure detection function, do not place resistor between the SYNCOUT and AGND pins (refer to 图  
8-15 or 8-16).  
To disable the failure detection function, place a 10-kresistor between the SYNCOUT and AGND pins, as  
shown in 8-17, and the LM5170-Q1 skips the 2- to 3-ms interval of MOSFET failure detection. Instead, it will  
activate the standby mode in approximately 300 µs after VCC is above 8.5 V and UVLO is greater than 2.5 V. If  
the circuit breaker is not present or not controlled by the LM5170-Q1, do not leave the BRKG and BRKS pins  
floating, but terminate the BRKG and BRKS pins with 20-kresistors as shown in 8-17.  
8.3.16.2 Nominal Circuit Breaker Function  
If the failure detection function is enabled, which also implies the circuit breaker being controlled by the LM5170-  
Q1, the LM5170-Q1 will perform a MOSFET failure detection during start-up. The detection starts after the UVLO  
is pulled higher than 2.5 V and VCC above 8.5 V. The detection operation lasts for 2 to 3 ms. During the  
detection, the LM5170-Q1 checks the high-side and low-side MOSFETs of both channels as well as the circuit  
breaker MOSFETs to see if any of them has drain-to-source shorted. If no failure is detected, a 330-µA current  
source at the BRKG pin is turned on to charge up the breaker MOSFET gates. When the BRKG to BRKS  
voltage rises above 8.5 V, the LM5170-Q1 enters standby mode, waiting for the EN1 and EN2 commands to  
operate in power delivery mode. The voltage across BRKG and BRKS is internally clamped to 12 V, preventing  
overvoltage stress on the breaker MOSFET gates.  
If a failure of any MOSFET is detected, the LM5170-Q1 immediately pulls the nFAULT pin low, and keeps the  
LM5170-Q1 in a latched shutdown mode, thereby preventing catastrophic failure.  
The nFAULT pin can also be externally pulled low during normal operation and the LM5170-Q1 immediately  
turns off the circuit breaker and stays in a latched shutdown. There is a 2-µs glitch filter at the nFAULT pin to  
prevent errant shutdown by possible noises at the nFAULT pin.  
To release the nFAULT shutdown latch, it requires the UVLO pin to be externally forced below 1.25 V, or VCC is  
below 8 V.  
8-15 and 8-16 show two ways to use the circuit breaker function. A TVS is recommended to prevent surge  
voltage when the circuit breaker is turned off during operation.  
The BRKG 330-µA current source is powered by the VIN pin, or the HV-Port. Therefore, the differential voltage  
between the HV-Port and LV-Port should be greater than 10 V to ensure that BRKG to BRKS voltage can  
establish > 8.5 V and allow the LM5170-Q1 to enter power delivery mode. The BRKG to BRKS voltage is  
internally clamped to 12 V if the differential voltage of the two ports is greater.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
The load dump transient at the LV-Port may raise the rail voltage and reduce the differential voltage of the two  
ports to below 10 V. To maintain the circuit breaker to be closed during the transient, TI recommends adding a 1-  
nF to 10-nF capacitor across BRKG and BRKS to hold the gate voltage during the transient.  
Note that the BRKG 330-µA current source will always be turned on once the LM5170 starts up. If the failure  
detection mode is deactivated, the LM5170-Q1 will also skip checking the BRKG to BRKS votlage condition.  
Therefore, the circuit breaker can still be controlled by the LM5170-Q1 even if the failure detection is  
deactivated. If the steady-state differential voltage between the HV-Port and LV-Port is less than 10 V during  
power up, TI does not recommend the user to activate the failure detection function. Also, if the differential  
voltage is less than 8 V, TI recommends not to use the circuit breaker function of the LM5170-Q1 at all.  
HV-Port  
LV-Port  
Lm  
Rcs  
VIN  
HO SW  
LO  
CSA  
CSB  
BRKGBRKS  
nFAULT  
To MCU  
or  
SYNCOUT  
System  
Monitor  
OPEN  
LM5170-Q1  
8-15. Controlling Dual-Channel Circuit Breaker for MOSFET Failure Protection  
HV-Port  
LV-Port  
Lm  
Rcs  
To SYNCIN of  
the Next  
LM5170-Q1  
VIN  
HO SW  
LO  
CSA  
CSB  
BRKG  
BRKS  
SYNCOUT  
OPEN  
To MCU or  
System  
Monitor  
nFAULT  
LM5170-Q1  
8-16. Controlling System Level Circuit Breaker for MOSFET Failure Protection  
HV-Port  
LV-Port  
Lm  
Rcs  
20 k  
20 k  
VIN  
HO SW  
LO  
CSA  
CSB  
BRKG BRKS  
nFAULT  
From MCU  
or System  
Monitor  
SYNCOUT  
10 k  
LM5170-Q1  
8-17. Circuit Breaker Function Disabled  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LM5170-Q1  
 
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
8.3.17 Overvoltage Protection (OVPA, OVPB)  
As shown in 8-18 and 8-19, the LM5170-Q1 includes the overvoltage protection function for both HV-Port  
and LV-Port. Use the OVPA pin for the HV-Port protection, and the OVPB pin for the LV-Port protection. It should  
be pointed out that the OVPB protection function is disabled during the boost operation mode, while the OVPA  
function is always enabled in both buck or boost operation modes.  
8.3.17.1 HV-V- Port OVP (OVPA)  
A dedicated comparator monitors the HV-Port voltage through a resistor divider. The divider consists of an  
internal 3-Megpullup resistor between the VINX and OVPA pins, and an external pulldown resistor between  
the OVPA pin and AGND. When the OVPA pin voltage exceeds the 1.185-V threshold, both HOs and LOs are  
turned off. At the same time CSS is discharged, preparing for the restart through soft start when the OV alarm is  
removed. See 8.3.10 for details.  
8.3.17.2 LV-Port OVP (OVPB)  
A dedicated comparator monitors the LV-Port voltage through a resistor divider. The divider consists of the  
internal 1-Megpullup resistor between the CSB1 and OVPB pins, and an external pulldown resistor between  
the OVPB pin and AGND. When the OVPB pin voltage exceeds the 1.185-V threshold, both HOs and LOs are  
turned off. At the same time the SS capacitor is discharged, preparing to restart through soft start when the OV  
alarm is removed. See 8.3.10 for details.  
Note the hysteresis voltage of both OVPA and OVPB comparators is approximately 100 mV. There are 5-µs  
built-in glitch filters for both OVPA and OVPB comparators. In addition, a small capacitor can be considered to  
place from the OVP pins to AGND. All these will help prevent errant operation by possible noises on the OVPA  
and OVPB signals.  
HV-Port (48 V)  
LV-Port (12 V)  
Converter Stage  
CSA1  
CSB1  
VIN  
20 k  
BRKG  
BRKS  
Current  
Sense  
VINX  
20 k  
To Ramp  
Generator  
3 Meg  
1 Meg  
DIR  
0
1
OVP  
OVPA  
OVPB  
HV Sense,  
To MCU  
LV Sense,  
To MCU  
+
COMP  
+
COMP  
1.185 V  
ROVPB  
COVPB  
COVPA  
ROVPA  
-
-
1.185 V  
AGND  
SS  
SS  
SYNCOUT  
10 k  
CSS  
LM5170-Q1  
8-18. Overvoltage Protection: When Circuit Breaker Function is Not Used  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
HV-Port  
LV-Port  
Converter Stage  
CSA1  
CSB1  
BRKG  
BRKS  
VIN  
Current  
Sense  
VINX  
To Ramp  
Generator  
3 Meg  
1 Meg  
DIR  
0
1
OVP  
OVPA  
OVPB  
HV Sense,  
To MCU  
LV Sense,  
To MCU  
+
COMP  
+
COMP  
1.185 V  
ROVPB  
COVPB  
COVPA  
ROVPA  
-
-
1.185 V  
AGND  
SS  
SS  
SYNCOUT  
Open  
CSS  
LM5170-Q1  
8-19. Overvoltage Protection: When Circuit Breaker Function is Used  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LM5170-Q1  
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
8.4 Device Functional Modes  
8.4.1 Multiphase Configurations (SYNCOUT, OPT)  
There are various options to make multiphase configurations.  
8.4.1.1 Multiphase in Star Configuration  
Each LM5170 synchronizes to an external clock, and the clock signals should have appropriate phase delays  
among them for proper multiphase interleaving operation. The interleave angle between the two phases of each  
LM5170-Q1 can be programmed to 180° or 240° by the OPT pin.8-1 summarizes the settings of the external  
clocks and the OPT pin state for multiphase configurations.  
8-1. Multiphase Configurations With Individual External Clock  
PHASE SHIFT  
BETWEEN EXTERNAL  
CLOCKS FOR  
NUMBER OF LM5170-  
Q1 CONTROLLERS  
NEEDED  
NUMBER  
OF PHASES  
OPT LOGIC  
STATE(1)  
CH-2 PHASE  
LAGGING VS CH-1  
NUMBER OF EXTERNAL  
CLOCKS NEEDED  
MULTIPHASE  
INTERLEAVING  
2
3
180°  
120°  
1
0
1
1
1
1
180°  
240°  
180°  
180°  
180°  
180°  
1
2
2
3
4
N
1 or 0  
2
2
3
4
N
4
90°  
6
60° or 120°  
45°  
8
2xN  
(180° / N)  
(1) OPT State = 0 when the pin connects to AGND, and 1 when the pin voltage is > 2.5 V.  
EN1 EN2  
VCCA  
EN1 EN2  
VCCA  
OPT  
0 Deg  
SYNCIN  
120 Deg  
SYNCOUT  
SYNCIN  
OPT  
240 Deg  
SYNCOUT  
U1  
U2  
DIR  
OSC  
OSC  
DIR  
ISETD  
AGND  
AGND  
ISETD  
MCU  
EN1 EN2  
SYNCIN  
VCCA  
OPT  
SYNCOUT  
U3  
DIR  
OSC  
ISETD  
AGND  
8-20. Example of Six Phase Star Configuration  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
 
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
8.4.1.2 Configuration of 2, 3, or 4 Phases in Master-Slave Daisy-Chain Configurations  
This can be used to achieve 1, 2, 3, or 4 phases without using an external clock. 8-2 summarizes the OPT  
settings for the daisy-chain multiphase configurations. 8-21 shows the daisy-chain connections for multiphase  
configurations.  
8-2. Multiphase Configurations With Built-In Daisy-Chain Master-Slave Configuration  
NUMBER OF LM5170-  
Q1 CONTROLLERS  
NEEDED  
NUMBER  
OF PHASES  
CH-2 PHASE  
LAGGING VS CH-1 LAGGING VS CH-1  
SYNCOUT PHASE  
NUMBER OF EXTERNAL  
CLOCKS NEEDED  
OPT LOGIC STATE(1)  
2
3
4
1
0
1
180°  
240°  
180°  
90°  
120°  
90°  
1
2
2
0 or 1  
0 or 1  
0 or 1  
(1) OPT State = 0 when the pin connects to AGND, and 1 when the pin voltage is > 2.5 V.  
MCU  
EN1 EN2  
SYNCIN  
EN1 EN2  
SYNCIN  
VCCA  
OPT  
VCCA  
OPT  
SYNCOUT  
AGND  
OSC  
SYNCOUT  
AGND  
OSC  
U1  
U2  
OPT=1" 90 Degree Phase Delay  
OPT=0" 120 Degree Phase Delay  
8-21. Three or Four Phases Interchangeable Configuration  
8.4.1.3 Configuration of 6 or 8 Phases in Master-Slave Daisy-Chain Configurations  
To configure 6 or 8 phases, it requires two daisy chains shown in 8-22 through 8-25. Note that two phase-  
shifted external clock signals are required for proper interleaving operation. When external clock signals are not  
available, the 6-phase can be configured in 120° interleaving, and 8-phase in 90° interleaving by daisy chain  
(refer to 8-23 and 8-25), in which two phases of the system are synchronized in phase.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LM5170-Q1  
 
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
EN1 EN2  
EN1 EN2  
SYNCIN  
VCCA  
OPT  
VCCA  
OPT  
0 Deg  
SYNCIN  
SYNCOUT  
OSC  
SYNCOUT  
AGND  
OSC  
AGND  
U1  
U2  
MCU  
120 Degree Phase Delay  
Channel  
U1-CH1  
U3-CH2  
U2-CH1  
U3-CH1  
U1-CH2  
U2-CH2  
Phase Angle  
0 deg  
60 (420) deg  
120 deg  
180 deg  
EN1 EN2  
VCCA  
SYNCIN  
OPT  
OSC  
240 deg  
300 deg  
SYNCOUT  
AGND  
U3  
8-22. Six Phases 60° Interleaving Configuration  
EN1 EN2  
SYNCIN  
EN1 EN2  
SYNCIN  
VCCA  
OPT  
VCCA  
OPT  
0 Deg  
OSC  
SYNCOUT  
AGND  
OSC  
SYNCOUT  
AGND  
U1  
U2  
MCU  
120 Degree Phase Delay  
Channel  
U1-CH1  
U2-CH1  
U3-CH1  
U1-CH2  
U2-CH2  
U3-CH2  
Phase Angle  
0 deg  
120 deg  
240 deg  
240 deg  
0 deg  
EN1 EN2  
VCCA  
SYNCIN  
OPT  
OSC  
SYNCOUT  
120 deg  
AGND  
U3  
8-23. Six Phases 120° Interleaving Configuration  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
EN1 EN2  
SYNCIN  
EN1 EN2  
VCCA  
VCCA  
OPT  
0 Deg  
SYNCIN  
OPT  
OSC  
OSC  
SYNCOUT  
SYNCOUT  
AGND  
AGND  
U1  
U2  
MCU  
90 Degree Phase Delay  
EN1 EN2  
VCCA  
EN1 EN2  
VCCA  
OPT  
SYNCIN  
OPT  
OSC  
SYNCIN  
SYNCOUT  
SYNCOUT  
AGND  
OSC  
AGND  
U3  
135 Degree Phase Delay  
8-24. Eight Phases 45° Interleaving Configuration  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: LM5170-Q1  
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
EN1 EN2  
EN1 EN2  
SYNCIN  
VCCA  
VCCA  
OPT  
0 Deg  
SYNCIN  
OPT  
OSC  
SYNCOUT  
AGND  
OSC  
SYNCOUT  
AGND  
U1  
U2  
MCU  
90 Degree Phase Delay  
EN1 EN2  
VCCA  
EN1 EN2  
SYNCIN  
VCCA  
OPT  
SYNCIN  
OPT  
OSC  
SYNCOUT  
SYNCOUT  
AGND  
OSC  
AGND  
U3  
U4  
270 Degree Phase Delay  
8-25. Eight Phases 90° Interleaving Configuration  
8.4.2 Multiphase Total Current Monitoring  
To minimize the number to signal lines, multichannel monitors can be combined into a total current monitor. 图  
8-26 shows an example of total current monitor of a three phase system in which the unused fourth phase  
monitor (U2-IOUT2) is grounded.  
LM5170-Q1  
IOUT1  
IOUT2  
U2  
3-Phase  
Total Current  
Monitor  
AGND  
LM5170-Q1  
IOUT1  
No Load: 0.23 V  
Max Load: 2.48 V  
IOUT2  
U1  
3.01 kΩ  
10~100 nF  
AGND  
MCU Local  
GND  
Ground  
Impedance  
8-26. 3-Phase Total Current Monitor  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
8.5 Programming  
8.5.1 Dynamic Dead Time Adjustment  
In addition to a fixed dead time programming by RDT, the dead time can be dynamically adjusted either by  
applying an analog voltage or a PWM signal as shown in 8-27. Varying the analog voltage or the duty ratio of  
the PWM signal will adjust the DT programming. For analog adjustment, a single stage RC filter is recommended  
to filter out any possible noise. For PWM adjustment, a two-stage RC filter is recommended to minimize the  
ripple voltage resulted on the DT pin.  
RADJ1  
10 K  
RADJ2  
10 k  
LM5170-Q1  
DT Adjust by  
Analog Voltage  
DT  
VADJ  
CADJ1  
0.1 uF  
RDT  
AGND  
Time  
(a) Adjustment by Analog Voltage  
RADJ1  
10 K  
RADJ2  
4.99 k  
LM5170-Q1  
RADJ3  
4.99 k  
DT Adjust by  
PWM  
DT  
VHI  
CADJ2  
0.1 uF  
CADJ1  
0.1 uF  
VLO  
RDT  
AGND  
DADJ  
FADJ=10~100 kHz  
(b) Dynamic Dead Time Adjustment  
8-27. Dynamic Dead Time Adjustment  
When an analog voltage is applied, the resulted dead time is determined by 方程19:  
-1  
«
÷
0.8ì VADJ  
RDT RADJ1 +RAJD2 RADJ1 +RADJ2 ◊  
1
1
ns  
tDT(VADJ) =  
+
-
ì 4  
+16 ns  
kW  
(19)  
where  
VADJ is the analog voltage used to adjust the dead time  
When a PWM signal is applied, the resulted dead time is determined by 方程20:  
-1  
0.8ì » VHI - VLO ìDADJ + VLO  
ÿ
(
)
1
1
ns  
«
÷
÷
tDT(DADJ) =  
+
-
ì 4  
+16 ns  
RDT RADJ1 + RAJD2 + RAJD3  
RADJ1 + RADJ2 + RADJ3  
kW  
(20)  
where  
VHI and VLO are the high and low voltage levels of the PWM signal, respectively,  
DADJ is the duty factor of the PWM signal.  
8.5.2 Optional UVLO Programming  
The UVLO pin is the LM5170-Q1s master enable pin. It can be directly controlled by an external control unit  
like an MCU.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: LM5170-Q1  
 
 
 
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
Nevertheless, the UVLO pin can also fulfill the undervoltage lockout function of a particular power rail. The rail  
can be either the HV-Port, or the LV-Port, or VCC. Use a resistor divider to set the UVLO threshold, as shown in  
8-28. The divider should satisfy 方程21:  
RUVLO2  
ì VUVLO = 2.5 V  
RUVLO1 + RUVLO2  
(21)  
The UVLO hysteresis is accomplished with an internal 25-μA current source. When UVLO > 2.5 V, the current  
source is activated to instantly raise the voltage at the UVLO pin. When the UVLO pin voltage falls below the  
2.5-V threshold the current source is turned off, causing the voltage at the UVLO pin to fall. The UVLO  
hysteresis is determined by 方程22:  
VHYS = RUVLO1 ì 25 mA  
(22)  
An optional ceramic capacitor CUVLO can be placed in parallel with RUVLO2 to improve the noise immunity. CUVLO  
is usually between 1 nF to 10 nF. A large CUVLO may cause excessive delay to respond to a real UVLO event.  
If 方程式 22 does not provide adequate hysteresis voltage, the user can add RUVLO3 as shown in 8-29. The  
hysteresis voltage is thus given by 方程23:  
»
ÿ
Ÿ
÷
RUVLO1  
VHYS = RUVLO1 + RUVLO3 ì 1+  
ì 25 mA  
«
RUVLO2 ◊  
Ÿ
(23)  
HV-Port,  
or LV-Port,  
or VCC  
25 µA  
RUVLO1  
MASTER  
ENABLE  
UVLO  
AGND  
+
-
ENABLE  
2.5 V  
1.5 V  
CUVLO  
RUVLO2  
+
-
RESET  
LM5170-Q1  
8-28. UVLO Programming  
HV-Port,  
or LV-Port,  
or VCC  
25 µA  
RUVLO1  
MASTER  
ENABLE  
RUVLO3  
UVLO  
+
-
ENABLE  
2.5 V  
AGND  
CUVLO  
RUVLO2  
+
-
RESET  
1.5 V  
LM5170-Q1  
8-29. UVLO With Additional Hysteresis Programming  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
 
 
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
9 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The LM5170-Q1 is suitable for the bidirectional DC-DC converters for the automotive 48-V and 12-V dual battery  
systems, and battery backup systems. It can also create stackable, high power, unidirectional buck or boost  
converters with balanced power sharing among multiphases.  
9.1.1 Typical Key Waveforms  
The following describes the typical power up sequence of the LM5170-Q1 bidirectional converter in a 48-V to 12-  
V dual battery system.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
9.1.1.1 Typical Power-Up Sequence  
9-1 shows key waveforms of power-up sequence.  
Initializ  
-ation  
Shutdown  
Standby  
Power Delivery  
MODE  
10 V  
VCC  
0 V  
UVLO=2.5 V  
UVLO  
UVLO=1.5 V  
Fault Detection Interval  
nFAULT  
I(BRKG)  
8.5 V  
VGS_BRK  
0 V  
INTERNAL(PWR_GD)  
VIN  
0 V  
VINX  
OSCILLATOR  
DIR  
ISET  
EN1,2  
1.0 V  
SS  
••••••  
••••••  
••••••  
••••••  
HO1  
LO1  
HO2  
LO2  
9-1. Typical Turnon Sequence Key Waveforms  
9.1.1.2 One to Eight Phase Programming  
9-2 and 9-1 show a typical logic control signals and external clock requirements to run an eight phase  
system  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
9-1. Multiphase Programming  
1Φ  
0
2Φ  
0
3Φ  
4Φ  
6Φ  
0
8Φ  
1
A7  
A6  
0
0
0
0
0
0
0
1
A5  
0
0
0
0
1
1
A4  
0
0
0
0
1
1
A3  
0
0
0
1
1
1
A2  
0
0
1
1
1
1
A1  
0
1
1
1
1
1
A0  
1
1
1
1
1
1
OPT (B0)  
1
1
0
1
1
1
SYNC  
(C0)  
0°  
0°  
C1  
60°  
45°  
B0  
A3  
A2  
A1  
A0  
EN1 EN2  
SYNCIN  
EN1 EN2  
0 Deg  
VCCA  
OPT  
VCCA  
OPT  
C0  
SYNCIN  
SYNCOUT  
SYNCOUT  
DIR  
ISETD  
DIR  
OSC  
OSC  
ISETD  
AGND  
AGND  
MCU  
A7  
A6  
A5  
A4  
C1  
EN1 EN2  
SYNCIN  
EN1 EN2  
SYNCIN  
VCCA  
OPT  
VCCA  
OPT  
SYNCOUT  
SYNCOUT  
DIR  
DIR  
OSC  
OSC  
ISETD  
ISETD  
AGND  
AGND  
9-2. Eight Phase Configuration  
9.1.2 Inner Current Loop Small Signal Models  
The following describes the inner current loop that is controlled by the LM5170-Q1. The outer voltage loop  
should be managed by the MCU, or by an external analog circuit. The interface signals between the inner  
current loop and outer voltage loop are basically the DIR and ISET signals, of which the DIR signal controls the  
current direction, and the ISET signal carries the error information of the outer voltage loop.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
9.1.2.1 Small Signal Model  
9-3 shows the current loop block diagram. The power plant transfer function from the error voltage (Vea) to  
the channel inductor current (iLm) is determined by the following, regardless the current flow direction.  
ILm  
HV-Port  
LV-Port  
Lm  
Rcs  
V12  
V48  
DIR  
1
50X  
1
DIR  
0
0
D
(1-D)  
D
Vea  
PWM  
œ
Gm  
+
ISETA  
+
COMP  
œ
Ramp  
Generator  
RCOMP  
CCOMP  
CHF  
RAMP  
Type II Compensator  
Vramp  
KFFV48  
9-3. Control Loop Block Diagram  
Ù
i
1
1
Lm  
H(s) =  
=
ì
Ù
Vea  
Lm  
KFF ì(RCS + RS )  
sì  
+1  
RCS + RS  
(24)  
where  
Lm is the power inductor,  
RCS the current sense resistor,  
RS the equivalent total resistance along the current path excluding RCS  
,
KFF the ramp generator coefficient. When the RAMP signal is generated per 方程14 , KFF = 0.104.  
9.1.2.2 Inner Current Loop Compensation  
方程式 24 indicates that the power plant is basically a first-order system. A Type-II compensator as shown in 图  
9-3 is adequate to stabilize the loop for both buck and boost mode operations.  
Assuming the output impedance of the gm amplifier is RGM, the gain from the inductor to the output of gm  
amplifier is determined by 方程25:  
Ù
Vea  
G(s) =  
= 50ìRCS ìGmì R  
II ZCOMP(s)  
[
]
GM  
Ù
i
Lm  
(25)  
where  
the coefficient 50 is the current sense amplifier gain;  
Gm is the transconductance of the gm error amplifier, which is 1 mA/V;  
ZCOMP(s) is the equivalent impedance of the compensation network seen at the COMP pin (see 方程26)  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
1+ sìRCOMP ìCCOMP  
1
ZCOMP(s) =  
ì
CHF + CCOMP  
÷
CHF ìCCOMP  
sì 1+ sìRCOMP ì  
CHF + CCOMP ◊  
«
(26)  
Usually CHF is << CCOMP. Thus 方程26 can be simplified to 方程27:  
1+ sìRCOMP ìCCOMP  
1
ZCOMP(s) =  
ì
CCOMP sì 1+ sìRCOMP ìCHF  
(
)
(27)  
Because RGM is > 5 MegΩ, and the frequency range for loop compensation is usually above a few kHz, the  
effects of RGM on the loop gain in the interested frequency range becomes negligible. Therefore, substituting 方  
28 into 方程25, and neglecting RGM, one can get the following:  
Ù
Vea 50ìRCS ìGm 1+ sìRCOMP ìCCOMP  
G(s) =  
=
ì
Ù
CCOMP  
sì(1+ sìRCOMP ìCHF )  
i
Lm  
(28)  
(29)  
The total open-loop gain of the inner current loop is the product of H(s) and G(s):  
Gtotal(s) = H(s)ì G(s)  
Or:  
50ìRCS ìGm  
Lm  
1+ sìRCOMP ìCCOMP  
sì(1+ sìRCOMP ìCHF  
1
Gtotal(s) =  
ì
ì
KFF ì(RCS + RS )ìCCOMP  
)
sì  
+1  
RCS + RS  
(30)  
The poles and zeros of the total loop transfer function are determined by:  
fp1 = 0  
(31)  
(32)  
(33)  
(34)  
(RCS + RS )  
fp2  
=
2pìLm  
1
fp3  
=
2pìRCOMP ìCHF  
1
fz =  
2pìRCOMP ìCCOMP  
To tailor the total inner current loop gain to cross over at fCO, select the components of the compensation  
network according to the following guidelines, then fine tune the network for optimal loop performance.  
1. The zero fz is placed at the power stage pole fp2,  
2. The pole fp3 is placed at approximately two decade higher then fCO  
3. The total open-loop gain is set to unity at fCO, namely,  
,
H(2iì pì fCO )ìG(2iì pì fCO ) = 1  
(35)  
Therefore, the compensation components can be derived from the above equations, as shown in 方程36.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: LM5170-Q1  
 
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
À
Œ
Œ
KFF  
1
R
=
=
ì 2i ì p ì fCO ì Lm + (RCS + RS )  
Œ
Œ
Ã
Œ
Œ
Œ
Œ
Õ
COMP  
50 ì RCS ì Gm ì H(2i ì p ì fCO  
)
50 ì RCS ì Gm  
Lm  
CCOMP  
=
(RCS + RS ) ì RCOMP  
CCOMP  
CHF  
=
100  
(36)  
9.1.3 Compensating for the Non-Ideal Current Sense Resistor  
TI strongly recommends employing a non-inductive resistor for RCS. Even a few nH of inductance will cause the  
current sense signal to be remarkably distorted, as shown in 9-4. The adversary consequences include  
reduced peak current limit than actually programmed and false current zero-crossing detection well above 0 A.  
The former may reduce the available maximum current to be delivered; and the latter will terminate the sync FET  
gate early and the body diode is used to conduct the remaining current, thereby reducing the efficiency as well  
as the accuracies of the channel DC current regulation and IOUT monitors under light load.  
When the current sense resistor has some parasitic inductance, it is necessary to compensate the effects of  
inductance with an RC circuit, as shown in 9-5. The user should place a 1-Ω resistor in each of the current  
sense signal path, and the selection of CCS should satisfy 方程式 37, assuming the inductance of the current  
sense resistor is LCS  
:
LCS  
CCS  
=
2 WìRCS  
(37)  
For instance, if RCS =1 mΩ, LCS = 1 nH, the required compensation capacitor CCS should be approximately 0.5  
µF.  
Note that selecting CCS greater than the value given by 方程式 37 would over compensate the inductance and  
consequently defer the current zero crossing detection point to a negative current. Excessively larger capacitor  
should not be used to prevent malfunction of the controller.  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
Main FET  
Vgs  
0
IL  
Inductor Current  
0
dIL  
dt  
LCS  
False 0-  
Crossing  
VCS  
0
Sync FET  
Vgs  
0
time  
Body Diode Used  
9-4. Effects of Parasitic Inductance on the Current Sense Signal and Zero Crossing Detection  
Lcs1 Rcs1  
ILm1  
LV-Port  
Lm1  
V12  
+
1W  
1W  
CCS1  
œ
CSA1 CSB1  
LM5170-Q1  
CSA2 CSB2  
CCS2  
1W  
1W  
Lm2  
Lcs2 Rcs2  
ILm2  
9-5. Compensation Network to Compensate the Current Sense Resistors Parasitic Inductance  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
9.1.4 Outer Voltage Loop Control  
The LM5170-Q1 serves as a current regulator that regulates the DC component of the power inductor current to  
the value programmed at the ISETA pin. To regulate the output voltage, an outer voltage loop should be  
employed. The outer voltage loop can be implemented with an analog circuit (see 9-6) or a digital circuit like  
an MCU (see 9-7). The error voltage signal of the output voltage loop is the ISET command for the inner  
current loop.TI advises that the outer voltage loop crossover frequency should be one decade below that of the  
inner current loop crossover frequency fCO. Refer to the LM5170-Q1 Design Calculator for the loop  
compensation guidance.  
ILm  
HV-Port(48 V)  
LV-Port (12 V)  
Lm  
Rcs  
1
1
0
DIR  
0
DIR  
D
(1-D)  
D
Gm  
Vea  
PWM  
œ
+
ISETA  
+
œ
COMP  
Vramp  
kFF  
FF Ramp  
Generator  
½ LM5170-Q1  
œ
ISET  
œ
+
+
REF  
DIR  
REF  
48 V Error Amp  
12 V Error Amp  
DIR  
EN  
EN  
BST SS  
BK SS  
9-6. Analog Outer Voltage Loop Control  
HV-Port (48 V)  
LV-Port (12 V)  
Lm  
Rcs  
1
1
0
DIR  
0
DIR  
D
(1-D)  
D
Gm  
Vea  
PWM  
œ
+
ISETA  
+
œ
COMP  
Vramp  
kFF  
FF Ramp  
Generator  
½ LM5170-Q1  
DIR  
ISET  
ADC  
œ
PID  
Microcontroller  
Vout Set  
+
9-7. Digital Outer Voltage Loop Control  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
9.2 Typical Application  
9.2.1 60-A, Dual-Phase, 48-V to 12-V Bidirectional Converter  
A typical application example is a 60-A, dual-phase bidirectional converter as shown in 9-8. The HV-Port  
voltage range is 32 V to 70 V and the LV-Port 0 V to 23 V. Each phase is able to deliver 30-Adc current through  
the inductor.  
Lm1  
RCS1  
4.7 µH  
CHB1  
1 m  
+
+
QH1  
C1  
C2  
0.22 µF  
LV-Port  
-
HV-Port  
-
100 µF  
470 µF  
QL2  
VCC  
DHB1  
RHB1  
RVIN  
PGND  
PGND  
10 ꢀ  
2 ꢀ  
PGND  
22  
24  
23  
20  
18  
36  
35  
CVIN  
1 µF  
VCC  
6
VIN  
BRKG 34  
BRKS 33  
PGND  
RBRKG  
RBRKS  
10 kꢀ  
19 VCC  
+
CVCC  
+10Vdc  
-
RVCCA  
10 kꢀ  
2.2 µF  
24.9 ꢀ  
31 VCCA  
29 OPT  
VINX  
4
RRAMP1  
C5  
1 µF  
95.3 kꢀ  
PGND  
RAMP1 28  
CRAMP1  
1 nF  
RRAMP2  
46 AGND  
47 OSC  
ROSC  
95.3 kꢀ  
RAMP2  
8
CRAMP2  
1 nF  
40.2 kꢀ  
42 ISETD  
40 SYNCIN  
CCOMP1  
RCOMP1  
634 ꢀ  
634 ꢀ  
PGND  
AGND  
COMP1 26  
RSYNCO  
LM5170-Q1  
41 SYNCOUT  
15 nF  
CHF1  
1 nF  
10 kꢀ  
AGND  
CCOMP2  
10 UVLO  
39 EN1  
RCOMP2  
CMMD AND  
MONITOR  
COMP2 11  
CHF2  
1 nF  
15 nF  
43 EN2  
ENABLE  
DIR  
RDT  
10 kꢀ  
44 DIR  
DT 48  
SS 12  
45 ISETA  
27 nFAULT  
37 IOUT1  
ISETA  
10 nF  
51.1 kꢀ  
54.9 kꢀ  
CSS  
ROVPA  
ROVPB  
RIPK  
OVPA  
9
IOUT1  
IOUT2  
CIOUT1  
10 nF  
OVPB 25  
IPK 30  
RIOUT1  
9.09 kꢀ  
40.2 kꢀ  
38 IOUT2  
CIOUT2  
10 nF  
RIOUT2  
AGND  
9.09 kꢀ  
15  
13  
14  
17  
1
2
AGND  
VCC  
DHB2  
RHB2  
2 ꢀ  
CHB2  
QH2  
Lm2  
0.22 µF  
RCS2  
4.7 µH  
1 mꢀ  
QL2  
C10  
470 µF  
C8  
100 µF  
PGND  
PGND  
PGND  
9-8. Schematic of the Example Dual-Phase Bidirectional Converter  
9.2.1.1 Design Requirements  
9-2 lists the design parameters for this example.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
9-2. Design Parameters  
PARAMETER  
VLV_min  
VLV_reg  
VLV_max  
VHV_min  
VHV_reg  
VHV_max  
FSW  
EXAMPLE VALUE  
NOTE  
6 V  
14 V  
LV-Port minimum operating voltage  
LV-Port nominal voltage  
23 V  
LV-Port maximum operating voltage  
HV-Port minimum operating voltage  
HV-Port nominal operating voltage  
HV-Port maximum operating voltage  
Switching frequency  
32 V  
50 V  
70 V  
100 kHz  
30 A  
Imax  
Maximum channel DC current, bidirectional  
Total bidirectional DC at the LV-Port  
Itotal  
60 A  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Determining the Duty Cycle  
Obviously, the duty cycles are determined by 方程38 through 方程41:  
VLV_reg  
14 V  
DBK_min  
=
=
= 0.2  
VHV max 70 V  
(38)  
(39)  
(40)  
(41)  
VLV_reg  
14 V  
DBK_max  
=
=
= 0.438  
VHV min 32 V  
VHV_reg - VLV_max  
50 V - 23 V  
50 V  
DBST_min  
=
=
= 0.54  
VHV_reg  
VHV_reg - VLV_min  
50 V - 6 V  
50 V  
DBST_max  
=
=
= 0.88  
VHV_reg  
9.2.1.2.2 Oscillator Programming  
To operate the converter at the desired switching frequency FSW, select the ROSC by satisfying 方程式 17,  
namely,  
40 kW ì100 kHz  
100 kHz  
ROSC  
=
= 40 kW  
(42)  
Choose the closest standard resistor, that is, ROSC =40.2 kΩ.  
9.2.1.2.3 Power Inductor, RMS and Peak Currents  
The inductor current has a triangle waveform, as shown in 9-4. TI recommends selecting an inductor such  
that its peak-to-peak ripple current is less than 80% of the channel inductor full load DC current. Therefore, the  
inductor should satisfy 方程43:  
VLV_reg ì 1-D  
(
)
BK _min  
14 V ì(1- 0.2)  
0.8ì30 A ì100 kHz  
Lm  
í
=
= 4.67 mH  
80%ìImaxìF  
sw  
(43)  
Select Lm = 4.7 µH.  
Then, the actual inductor peak to peak inductor current is determined by 方程44:  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
 
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
VLV_reg ì(1- DBK_min  
)
14 V ì(1- 0.2)  
4.7 mHì100 kHz  
Ipk-pk  
=
=
= 23.83 A  
Lm ìF  
sw  
(44)  
(45)  
The peak inductor current is determined by 方程45:  
Ipk-pk  
23.83  
2
Ipeak = Imax  
+
= 30 A +  
= 41.9 A  
2
Select an inductor that has a saturation current Isat at least 20% greater than Ipeak to ensure full power with  
adequate margin. In this example, TI recommends selecting an inductor of Isat > 49 A.  
The power inductors full load Root Mean Square (RMS) current ILM_RMS determines its conduction losses. The  
RMS current is given by 方程46:  
1
ILm_RMS = Im2 ax  
+
ìIp2k-pk = 30.8 A  
12  
(46)  
9.2.1.2.4 Current Sense (RCS  
)
To achieve the highest regulation accuracy over wider load range, the user should target to create 50-mV of VCS  
at full current. Therefore, RCS should be selected as 方程47:  
50 mV 50 mV  
=
RCS  
Ç
= 1.667 mW  
Imax  
30 A  
(47)  
Ideally, a 1.5-mcurrent sense resistor should be chosen for this example. However, owing to availability, a  
standard non-inductive 1-mcurrent sense resistor is selected, namely,  
RCS = 1.0 mW  
(48)  
Because RCS conducts the same current as the power inductor, its power dissipation is also determined by  
ILm_RMS  
.
If the selected RCS has parasitic inductance (assuming it is 1 nH), it should be compensated, and the  
compensation capacitor CCS should satisfy 方程37.  
LCS  
2 WìRCS 2 Wì1 mW  
1 nH  
CCS  
=
=
= 0.5 mF  
(49)  
Select the closest standard capacitor, CCS = 0.47 µF.  
For optimal performance, it is good practice to add a 100-pF ceramic capacitor at each current sense pin to filter  
out common-mode noise, as shown in 9-9.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: LM5170-Q1  
 
 
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
ILm1  
Lcs1 Rcs1  
LV-Port  
Lm1  
V12  
+
-
1W  
1W  
CCS1  
100 pF  
100 pF  
CSA1 CSB1  
LM5170-Q1  
CSA2 CSB2  
100 pF  
100 pF  
CCS2  
1W  
1W  
Lm2  
ILm2  
Lcs2 Rcs2  
9-9. Current Sense With Compensation to Cancel the Effects of Parasitic Inductances  
9.2.1.2.5 Current Setting Limits (ISETA or ISETD)  
TI recommends setting a hard limit of the maximum current programming signal such that the converter cannot  
be over driven by an errant current programming signal. Assume the converter is allowed up to 10% overloading  
current. Refer to 方程式 7, the analog current setting signal ISETA should be limited by the following voltage  
level:  
110%ìImaxìRCS  
0.02  
110%ì30 Aì1mW  
0.02  
V
Ç
=
= 1.65 V  
ISETA_max  
(50)  
Refer to 方程10, the PWM current setting signal ISETD should be limited by the following duty cycle:  
110%ìImaxìRCS  
0.0625 V  
110%ì30 Aì1mW  
0.0625 V  
D
Ç
=
= 52.8%  
ISETD_max  
(51)  
9.2.1.2.6 Peak Current Limit  
One purpose of the peak current limit is to protect the power inductor from saturation. Select RIPK such that the  
peak current limit threshold is 5~10% greater than Ipeak. According to 方程13, one gets:  
RCS ì105%ìIpeak  
1.1mA  
1 mWì105%ì 41.9 A  
1.1 mA  
RIPK  
=
=
= 40 kW  
(52)  
Select RIPK = 40.2 k, which results in a nominal inductor peak current limit of 44.2 A per channel.  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
9.2.1.2.7 Power MOSFETS  
The power MOSFETs must be chosen with a VDS rating capable of withstanding the maximum HV-port voltage  
plus transient spikes (ringing). In this example, the maximum HV-rail voltage is 70 V. Selecting the 80 V rated  
MOSFETs will allow 10-V transient spikes.  
When the voltage rating is determined, select the MOSFETs by making tradeoffs between the MOSFET Rds(ON)  
and total gate charge Qg to balance the conduction and switching losses. For high power applications, parallel  
MOSFETs to share total power and reduce the dissipation on any individual MOSFET, hence relieving the  
thermal stress. The conduction losses in each MOSFET is determined by 方程53.  
1.8ìRds(ON)  
PQ_cond  
=
ìIQ2 _RMS  
N
(53)  
where  
N is the number of MOSFETs in parallel  
1.8 is the approximate temperature coefficient of the Rds(ON) at 125 °C  
and the total RMS switch current IQ_RMS is approximately determined by 方程54  
IQ_RMS  
ö Dmax ìImax = Dmax ìImax  
(54)  
where  
Dmax is the maximum duty cycle, either in the buck mode or boost mode.  
The switching transient rise and fall times are approximately determined by:  
Nì Qg  
Dtrise  
ö
4 A  
(55)  
(56)  
NìQg  
Dtfall  
ö
5 A  
And the switching losses of each of the paralleled MOSFETs are approximately determined by:  
Ipeak  
N
1
2
1
2
PQ_sw  
=
ìCoss ì VH2V ìF  
+
ì
ì VHV ì(Dtrise + Dtfall)ìF  
sw  
sw  
(57)  
where  
Coss is the MOSFETs output capacitance.  
The power MOSFET usually requires a gate-to-source resistor of 10 kΩ to 100 kΩ to mitigate the effects of a  
failed gate drive. When using parallel MOSFETs, a good practice is to use 1- to 2-Ω gate resistor for each  
MOSFET, as shown in 9-10.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
HV-Port  
To Inductor  
100 K  
100 K  
100 K  
100 K  
1  
1 ꢀ  
1 ꢀ  
1 ꢀ  
HO  
SW  
LO  
PGND  
LM5170-Q1  
9-10. Paralleled MOSFET Configuration  
If the dead time is not optimal, the body diode of the power synchronous rectifier MOSFET will cause losses in  
reverse recovery. Assuming the reverse recovery charge of the power MOSFET is Qrr, the reverse recovery  
losses are thus determined by 方程58:  
PQ_rr = Qrr ì VHV_max ìF  
sw  
(58)  
To reduce the reverse recovery losses, an optional Schottky diode can be placed in parallel with the power  
MOSFETs. The diode should have the same voltage rating as the MOSFET, and it must be placed directly  
across the MOSFETs drain and source. The peak repetitive forward current rating should be greater than Ipeak  
,
and the continuous forward current rating should be greater than the following 方程59:  
ISD_avg = Ipeak ì tDT ìF  
sw  
(59)  
9.2.1.2.8 Bias Supply  
The LM5170-Q1 requires an external 10- to 12-V VCC bias supply to operate. If not available in the system, the  
user can generate it from the LV-port using a buck-boost or SEPIC converter, or from the HV-port using a buck  
converter. Refer to the Texas Instruments LM25118-Q1 and LM5118-Q1 to implement a buck-boost converter, or  
LM5001-Q1 to implement a SEPIC converter, or the LM5160-Q1 and LM5161-Q1 to implement a buck converter.  
The total load current of the bias supply is mainly determined by the total MOSFET gate charge Qg. Assume the  
system employs multiple LM5170-Q1s to implement M number of phases, and each phase uses N number of  
MOSFETs in parallel as one switch. There are 2× N MOSFETs per phase to drive. Then the total current to drive  
these MOSFETs through VCC bias supply is determined by 方程60.  
IVCC = 2ìMìNìQg ìF + Mì5 mA  
sw  
(60)  
where  
5 mA is the worst case maximum current used by the control logic circuit of each phase.  
In an example of a four-phase system employing two parallelled MOSFETs for one switch, where M = 4, N = 2,  
Qg = 100 nC, and Fsw = 100 KHz, the bias supply should be able to support at least the following total load  
current:  
IVCC í 2ì 4ì 2ì100 nCì100 kHz + 4ì5 mA = 180 mA  
(61)  
In an example of an eight-phase system employing the same parallel MOSFETs for one switch, the bias supply  
should be able to support the following total load current:  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
 
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
IVCC_8ph = 2ì8ì2ì100 nCì100 kHz + 8ì5 mA = 360 mA  
(62)  
The VCC AC bypass ceramic capacitor CVCC = 1 to approximately 2.2 µF, rated at least 16 V, must be placed  
close to the VCC and PGND pins. Similarly, a ceramic capacitor CVCCA = 1 µF, rated at least 16 V, must be  
placed close to the VCCA and AGND pins. Place a 24-Ωresistor between VCC and VCCA pins.  
9.2.1.2.9 Boot Strap  
Select a ceramic capacitor CHB1 = CHB2 = 0.1 to approximately 0.22 µF, placed close to the HB and SW pins.  
The fast switching diode of the forward current rated at 1-A and reverse voltage not lower than VHV_max should  
be selected as the boot strap diode, through which the boot capacitor CHB1 or CHB2 is charged by VCC. To  
reduce the noise caused by the fast charging current, a 2-Ω to 5-Ω current limiting resistor must be placed in  
series with each boot diode.  
9.2.1.2.10 RAMP Generators  
According to 方程14, the ramp generator should be selected such that a peak voltage of 5 V is produced each  
cycle when the HV-port voltage is 48 V.  
Select CRAMP1 = CRAMP2 = 1 nF. Therefore,  
9.6  
9.6  
RRAMP  
=
=
= 96 kW  
F
ì CRAMP 100 kHzì1 nF  
sw  
(63)  
Choose the closest standard resistor value, namely:  
RRAMP1 = RRAMP2 = 95.3 k.  
For optimal performance, CRAMP1 and CRAMP2 should be ceramic capacitors with tolerance not greater than 10%.  
Capacitors of the 5% or 1% C0G and NPO types are preferred.  
9.2.1.2.11 OVP  
As shown in 8-18 and 8-19, the HV-Port and LV-Port overvoltage protection thresholds can be  
programmed by ROVPA and ROVPB, respectively. These resistor values are determined by 方程式 64 and 方程式  
65.  
1.185 V  
1.185 V  
ROVPA  
=
ì3000 kW =  
ì1000 kW =  
ì3000 kW = 51.66 kW  
ì1000 kW = 54.3 kW  
VHV_max -1.185 V  
70 V -1.185 V  
(64)  
(65)  
1.185 V  
1.185 V  
ROVPB  
=
VLV_max -1.185 V  
23 V -1.185 V  
Select the closest standard resistor values. In this example, ROVPA = 51.1 kΩ, and ROVPB = 54.9 kΩ.  
9.2.1.2.12 Dead Time  
To use the built-in adaptive dead time, the DT pin must be connected to VCCA pin.  
To program the dead time, follow 方程式 15 to select the resistor RDT. To dynamically adjust the dead time with  
an external analog voltage signal, follow 方程式 19. To dynamically adjust the dead time with an external PWM  
signal, follow 方程20.  
In the example circuit, the nominal dead time is selected to be 55 ns. According to 方程式 15, the programming  
resistor should be:  
ns  
tDT = RDT ì 4  
+16 ns  
kW  
(66)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
tDT -16 ns  
kW 55 ns -16 ns  
kW  
ns  
RDT  
=
ì1  
=
ì1  
= 9.75 kW  
4
ns  
4
(67)  
Select the standard value, RDT = 10 kΩ.  
9.2.1.2.13 IOUT Monitors  
TI recommends making the following selections:  
RIOUT1 = RIOUT2 = 9.09 kΩ  
(68)  
(69)  
CIOUT1 = CIOUT2 = 0.01 µF  
Then the monitors' delay is determined by the following time constant:  
tIOUT = RIOUT1ìCCIOUT1 = 9.09 kWì0.01mF = 90.9 ms  
(70)  
At full load, the DC component of the monitor voltage is determined by:  
I
maxìRCS  
200 W  
30 Aì1mW  
200 W  
V
IOUT1 = V  
=
+ 25 mA ìRIOUT1  
=
+ 25 mA ì9.09 kW = 1.591V  
IOUT2  
«
÷
«
÷
(71)  
Because the inductor ripple current is 23.8 A, according to 方程11, the IOUT peak to peak ripple current is:  
Ipk-pk ìRCS  
200 W  
23.8 Aì1mW  
200 W  
DIOUT1=  
=
= 119 mA  
(72)  
(73)  
The RC filter corner frequency is thus given by:  
1
1
F
=
=
= 1.75 kHz  
IOUT  
6.28ìRIOUT ìCIOUT 6.28ì9.09 kWì10 nF  
The resulting peak-to-peak monitor ripple voltage is approximately determined by:  
«
÷
F
100kHz  
1.75kHz  
sw  
-log  
-log  
«
÷
F
IOUT ◊  
DV  
= DIOUT1ìRIOUT ì10  
= 119 mA ì9.09 kW ì10  
= 19 mV  
IOUT  
(74)  
Which is approximately 1.1% peak-to-peak ripple on top of the full load DC monitor voltage. Increasing CIOUT  
value will further attenuate the ripple voltage, but also cause longer monitor delays.  
9.2.1.2.14 UVLO Pin Usage  
The example circuit uses the UVLO pin as the master enable pin of the LM5170-Q1. However, the UVLO pin can  
also fulfill the function of undervoltage lockout, either the 48-V rail UVLO, or 12-V rail UVLO, or VCC UVLO.  
Assume the user implements the 48-V rail UVLO, and the low-side resistor RUVLO2 = 10 kΩ, the 48 V UVLO  
release threshold VUVLO = 24 V, and UVLO hysteresis is VHYS =2.4 V. Referring to 8-29 and 方程式 21, one  
can find that RUVLO1 is given by:  
VUVLO- 2.5 V  
2.5 V  
24 V - 2.5 V  
2.5 V  
RUVLO1  
=
ìRUVLO2  
=
ì10 kW = 86 kW  
(75)  
The final selection should select the closest standard resistor of RUVLO1 = 86.6 kΩ.  
And RUVLO3 should satisfy 方程23, namely,  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
VHYS  
2.4 V  
-RUVLO1  
- 86.6 kW  
25 mA  
25 mA  
RUVLO3  
=
=
= 0.973 kW  
RUVLO1  
86.6 kW  
1+  
1+  
10 kW  
RUVLO2  
(76)  
Select the closest standard resistor, RUVLO1 = 976 Ω.  
If the user chooses to add the capacitor CUVLO = 1 nF, it leads to a delay time constant of 10 µs to filter possible  
noise at the at the UVLO pin.  
9.2.1.2.15 VIN Pin Configuration  
The VIN pin must always be connected to the HV voltage rail. It is good practice to add a small RC filter to  
improve the VIN noise immunity, as shown in 9-11. Usually the filter resistor selection is 10 to 20 Ω, and the  
bypass capacitor is 0.1 µF to 1.0 µF.  
HV-Port  
RVIN  
10  
VIN  
CVIN  
AGND  
0.1~1.0 µF  
LM5170-Q1  
9-11. VIN Pin Configuration  
9.2.1.2.16 Loop Compensation  
Assuming the total resistance along the current path including the external power cables, PCB current tracks,  
and battery internal impedances is 50 mΩ, according to 方程式 36, the compensation network for the inner  
current loop is determined by:  
À
Œ
Œ
KFF  
0.104  
Œ
RCOMP  
=
ì 2i ì p ì fCO ì Lm + (RCS + RS )=  
ì 2i ì p ì10 kHz ì 4.7 H + 51 m= 0.623 kꢁ  
= 147 nF  
50 ì Rcs ì Gm  
50 ì 1 mì 1 mA/V  
Œ
Œ
Ã
Œ
Œ
Œ
Œ
Lm  
4.7 H  
CCOMP  
=
=
(RCS + RS ) ì RCOMP  
(50 m+ 1 m) ì 0.623 kꢁ  
CCOMP  
CHF  
=
= 1.47 nF  
100  
Œ
Õ
(77)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: LM5170-Q1  
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
Selecting the closest standard values for the compensation network, namely,  
RCOMP1 = RCOMP2 = 634 Ω  
CCOMP1 = CCOMP2 = 150 nF  
CHF1 = CHF2 = 1 nF  
These initial component selections produce a total loop phase margin of 90°, which is larger than necessary.  
Fine tune the loop compensation by reselecting CCOMP1 = CCOMP2 = 15 nF, then the phase margin is 45° for an  
optimal dynamic performance.  
9-12 shows the Bode Plots of the power plant, the compensation gain, and the resulting total open loop.  
60  
Power Plant  
40  
Compensation  
Total Loop  
20  
0
- 20  
- 40  
3
4
5
6
100  
1ì10  
1ì10  
1ì10  
1ì10  
180  
150  
120  
90  
60  
30  
0
3
4
5
6
100  
1ì10  
1ì10  
Frequency (Hz)  
9-12. Bode Plots of the Example Converter  
1ì10  
1ì10  
9.2.1.2.17 Soft Start  
Soft start can be programmed with a ceramic capacitor CSS. Note that CSS also determines the retry frequency  
when the converter is an under overvoltage condition (OVPA or OVPB). Because the soft start completes when  
the SS pin voltage reaches approximately 5 V, the capacitor CSS can be chosen by 方程78 to limit the full load  
start-up time within ΔTSS = 2 ms:  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
25 mA ì DTSS  
5 V  
25 mA ì 2 ms  
5 V  
CSS  
=
=
= 10 nF  
(78)  
Select the closest standard ceramic capacitor, that is, CSS = 10 nF.  
9.2.1.2.18 ISET Pins  
To control the current setting by an analog voltage, ground the ISETD pin. To control the current setting by a  
PWM signal, there are two options to choose.  
The first option is to use the built-in ISETD-to-ISETA decoder as shown in 8-4. The PWM duty cycle to ISETA  
voltage conversion ratio satisfies 方程8. The selection of CISETA and FISETD should be constrained by 方程1  
and 方程式 4. The advantages of this option include convenience and current control accuracy. The drawback is  
the delay it may cause.  
Another option is to use an external two-stage RC filter to convert the PWM ISETD signal to a DC voltage  
feeding the ISETA pin as shown in 9-13. To achieve the same ISETA ripple voltage, this option only requires  
CISETA =1.5 nF, and the delay time of this two-stage filter is only 10% of the built-in decoder, or 15 µs versus the  
built-in decoders 150 µs. The drawback of this option is the conversion errors if the PWM signal voltage levels  
are not well regulated. This option is more suitable for operation under a closed digital outer voltage loop  
because the ISETD to ISETA conversion error can be readily compensated by the closed outer voltage loop.  
ISETD  
10 k  
10 kꢀ  
LM5170-Q1  
ISETA  
PWM  
1.5 nF  
1.5 nF  
ISETD  
AGND  
9-13. Two-Stage RC Filter to Convert the PWM into an Analog Voltage at the ISETA Pin  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
9.2.1.3 Application Curves  
9-14. Channel Inductor Current and IOUT  
9-15. Diode Emulation Prevents Negative  
Tracking ISETA Command  
Current  
9-16. Channel Inductor Current and Monitor  
9-17. Start-Up Sequence Following UVLO  
Responses to Dynamic DIR Change  
Enable  
9-18. nFAULT Shutdown Latch  
9-19. Boot Capacitor Pre-Charge During Start-  
Up in Buck Mode  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
9-20. Dual-Channel Interleaving Operation: Buck  
9-21. Dual-Channel Interleaving Operation:  
Mode  
Boost Mode  
9-22. LV-Port OVP: Buck Mode  
9-23. HV-Port OVP: Boost Mode  
10 Power Supply Recommendations  
The LM5170-Q1-based converter is designed to operate with two differential voltage rails like the 48-V and 12-V  
dual battery system, or a storage system having a battery on one end and the Super-Cap on the other end.  
When operating with bench power supplies, each supply should be capable of sourcing and sinking the  
maximum operating current. This may require to parallel an Electronic load (E-Load) with the bench power  
supply (PS) to emulate the batteries, as shown in 10-1.  
It can also be used with a voltage source on one end and a load on the other end if the outer voltage control loop  
is closed. The outer voltage loop can be implemented either with digital means like an MCU or with analog  
circuit, as shown in 9-6 and 9-7.  
V12  
V48  
LM5170-Q1  
Bi-Directional  
Converter  
+
-
+
-
RTN  
RTN  
E-Load  
E-Load  
PS  
PS  
Copyright © 2016, Texas Instruments Incorporated  
10-1. Emulated Dual Battery System With Bench Power Supplies and E-Loads  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
11 Layout  
11.1 Layout Guidelines  
Careful PCB layout is critical to achieve low EMI and stable power supply operation as well as optimal efficiency.  
Make the high frequency current loops as small as possible, and follow these guidelines of good layout  
practices:  
1. For high power board design, use at least a 4-layer PCB of 2-oz or thicker copper planes. Make the first  
inner layer a ground plane that is adjacent to the top layer on which the power components are installed, and  
use the second inner layer for the critical control signals including the current sense, gate drive, commands,  
and so forth. The ground plane between the signal and top layers helps shield switching noises on the top  
layer away from affecting the control signals.  
2. Optimize the component placements and orientations before routing any traces. Place the power  
components such that the power flow from port to port is direct, straight and short. Avoid making the power  
flow path zigzag on the board.  
3. Identify the high frequency AC current loops. In the bidirectional converter, the AC current loop of each  
channel is along the path of the HV-port rail capacitors, high-side MOSFET, low-side MOSFET, and back to  
the HV-port rail capacitorsreturn. Place these components such that the current flow path is short, direct  
and the special area enclosed by the loop is minimized.  
4. Place the power circuit symmetrically between CH-1 and CH-2. Split the HV-port rail capacitors and LV-port  
rail capacitors evenly between CH-1 and CH-2.  
5. If more than one LM5170-Q1 is used on the same PCB for multi phases, place the circuits of each LM5170-  
Q1 in the similar pattern.  
6. Use adequate copper for the power circuit, so as to minimize the conductions losses on high-current PCB  
tracks. Adequate copper can also help dissipate the heat generated by the power components, especially  
the power inductors, power MOSFETs, and current sense resistors. However, pay attention to the polygon of  
the switch node, which connects the high-side MOSFET source, low-side MOSFET drain, power inductor,  
and the controller SW pin. The switch node polygon sees high dv/dt during switching operation. To minimize  
the EMI emission by the switch node polygon, make its size sufficient but not excessive to conduct the  
switched current.  
7. Use appropriate number of via holes to conduct current to, and heat through, the inner layers.  
8. Always separate the power ground from the analog ground, and make a single point connection of the power  
ground, analog ground, and the EP pad, at the location of the PGND pin.  
9. Minimize current-sensing errors by routing each pair of CSA and CSB traces using a kelvin-sensing directly  
across the current sense resistors. The pair of traces must be routed closely side by side for good noise  
immunity.  
10. Route sensitive analog signals of the CS, IOUT, COMP, OVPA, and OVPB pins away from the high-speed  
switching nodes (HB, HO, LO, and SW).  
11. Route the paired gate drive traces, namely the pairs of HO1 and SW1, HO2 and SW2, LO1 and return, and  
LO2 and return, closely side by side. Route CH-1 gate drive traces in symmetry with CH-2s.  
12. Place the IC setting, programming and controlling components as close as possible to the corresponding  
pins, including the following component: ROSC, RDT, RIPK, CRAMP1, CRAMP2, ROVPA, ROVPB, CISETA, CCOMP1  
,
RCOMP2, CCOMP1, CCOPM2, CHF1, and CHF2  
.
13. Place the bypass capacitors as close as possible to the corresponding pins, including CVIN, CVCC, CVCCA  
CHB1, CHB2, COPVA, COVPB, as well as the 100-pF current sense common-mode bypassing capacitors.  
14. Flood each layer with copper to take up the empty areas for optimal thermal performance.  
15. Apply heat sink to components as necessary according to the system requirements.  
,
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
11.2 Layout Examples  
The following figures are some examples illustrating these layout guidelines. For the detailed PCB layout artwork  
of the LM5170-Q1 Evaluation Module (LM5170EVM-BIDIR), please refer to the LM5170-Q1 EVM User's Guide  
(SNVU543).  
GND  
GND  
L
CH-1 AC  
Loop  
LV(+12 V)  
HV(+48 V)  
RCS  
D
LV(+12 V)  
Circuit  
Breaker  
S
G
TVS  
GND  
GND  
LV(+12 V)  
G
S
D
RCS  
HV(+48 V)  
GND  
CH-2 AC  
Loop  
LM5170-Q1  
Controller  
L
11-1. A Layout Example of Dual-Channel Power Circuit Placement  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: LM5170-Q1  
 
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
L
CH-1  
HV(+48 V)  
D
HO1  
SW1  
LO1  
S
G
GND  
GND  
PGND  
PGND  
LO2  
SW2  
HO2  
G
S
D
HV(+48 V)  
L
CH-2  
11-2. A Layout Example of MOSFET Gate Drive Routing  
RCS  
To LM5170-Q1  
(a) Kelvin Contact of Resistor without Sense Pins  
RCS  
To LM5170-Q1  
(b) Kelvin Contact of Resistor with Sense Pins  
11-3. A Layout Example of Current Sense Routing  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
To AGND  
From VCC  
To CH-1  
Current  
Sense  
From OPT  
From nFAULT  
From UVLO  
SW1  
HB1  
HO1  
NC  
IOUT1  
IOUT2  
EN1  
To CH-1  
MOSFETs  
SYNCIN  
SYNCOUT  
ISETD  
EN2  
LO1  
VCC  
PGND  
LO2  
NC  
LM5170-Q1 EP  
To +10V Supply  
DIR  
To CH-2  
MOSFETs  
ISETA  
AGND  
OSC  
HO2  
HB2  
SW2  
DT  
Single Point  
Ground  
Connection  
To CH-2  
Current  
Sense  
To AGND  
11-4. A Layout Example of LM5170-Q1 Critical Signal Routing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: LM5170-Q1  
LM5170-Q1  
www.ti.com.cn  
ZHCSFO3D NOVEMBER 2016 REVISED AUGUST 2021  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
For development support, see the following:  
LM25118-Q1  
LM5118-Q1  
LM5001-Q1  
LM5160-Q1  
LM5161-Q1  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: LM5170-Q1  
 
 
 
 
 
 
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM5170QPHPRQ1  
LM5170QPHPTQ1  
ACTIVE  
ACTIVE  
HTQFP  
HTQFP  
PHP  
PHP  
48  
48  
1000 RoHS & Green  
250 RoHS & Green  
Call TI  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 150  
-40 to 150  
LM5170Q1  
LM5170Q1  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Dec-2021  
OTHER QUALIFIED VERSIONS OF LM5170-Q1 :  
Catalog : LM5170  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM5170QPHPRQ1  
HTQFP  
PHP  
48  
1000  
330.0  
16.4  
9.6  
9.6  
1.5  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTQFP PHP 48  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
LM5170QPHPRQ1  
1000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
PHP 48  
7 x 7, 0.5 mm pitch  
TQFP - 1.2 mm max height  
QUAD FLATPACK  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226443/A  
www.ti.com  
PACKAGE OUTLINE  
TM  
PHP0048C  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
7.2  
6.8  
B
NOTE 3  
37  
48  
PIN 1 ID  
1
36  
7.2  
6.8  
9.2  
TYP  
8.8  
NOTE 3  
12  
25  
13  
24  
A
0.27  
48X  
44X 0.5  
0.17  
0.08  
C A B  
4X 5.5  
1.2 MAX  
C
SEATING PLANE  
SEE DETAIL A  
0.08  
(0.13)  
TYP  
13  
24  
12  
25  
0.25  
(1)  
GAGE PLANE  
4.6  
3.6  
49  
0.75  
0.45  
0.15  
0.05  
0 -7  
A
16  
36  
DETAIL A  
TYPICAL  
1
48  
37  
4X (0.115)NOTE5  
4.6  
3.6  
4226381/A 11/2020  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MS-026.  
5. Feature may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
TM  
PHP0048C  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
6.5)  
NOTE 10  
(4.6)  
SYMM  
48  
37  
SOLDER MASK  
DEFINED PAD  
48X (1.6)  
1
36  
48X (0.3)  
SYMM  
49  
(4.6)  
(1.1 TYP)  
(8.5)  
44X (0.5)  
12  
25  
(R0.05) TYP  
(
0.2) TYP  
VIA  
METAL COVERED  
BY SOLDER MASK  
13  
24  
(1.1 TYP)  
SEE DETAILS  
(8.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4226381/A 11/2020  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package,  
Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
10. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
TM  
PHP0048C  
PowerPAD TQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(4.6)  
BASED ON  
0.125 THICK STENCIL  
SEE TABLE FOR  
SYMM  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
48  
37  
48X (1.6)  
1
36  
48X (0.3)  
(8.5)  
(4.6)  
SYMM  
49  
BASED ON  
0.125 THICK  
STENCIL  
44X (0.5)  
12  
25  
(R0.05) TYP  
METAL COVERED  
BY SOLDER MASK  
24  
13  
(8.5)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
5.14 X 5.14  
4.6 X 4.6 (SHOWN)  
4.2 X 4.2  
0.125  
0.150  
0.175  
3.89 X 3.89  
4226381/A 11/2020  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY