LM5181QNGURQ1 [TI]

具有 100V、0.75A 集成式 MOSFET 的汽车类 65V 输入电压非光电反激式直流/直流转换器 | NGU | 8 | -40 to 150;
LM5181QNGURQ1
型号: LM5181QNGURQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 100V、0.75A 集成式 MOSFET 的汽车类 65V 输入电压非光电反激式直流/直流转换器 | NGU | 8 | -40 to 150

光电 转换器
文件: 总33页 (文件大小:2113K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM5181-Q1  
ZHCSL48 APRIL 2020  
具有 100V0.75A 集成 MOSFET LM5181-Q1 65VIN PSR 反激式直流/  
直流转换器  
1 特性  
超低的 EMI 传导和辐射信号  
软开关可避免二极管反向恢复  
1
符合面向汽车 应用的 AEC-Q100 标准  
根据标准要求进行了优化CISPR 25 5 类  
器件温度等级 1-40℃ 至 125℃ 的环境温度范  
2 应用  
提供功能安全  
可帮助进行功能安全系统设计的可用文档  
专为可靠耐用的应用 设计  
AM 以下波段汽车车身电子装置  
汽车 HEV/EV 动力总成系统  
牵引逆变器IGBT SiC 栅极驱动器  
隔离式偏置电源  
4.5V 65V 的宽输入电压范围,启动后的工作  
电压低至 3.5V  
稳定可靠的解决方案,只有一个组件穿过隔离层  
±1.5% 的总输出稳压精度  
3 说明  
LM5181-Q1 是一款初级侧稳压 (PSR) 反激式转换器,  
4.5V 65V 的宽输入范围内具有高效率。隔离输  
出电压采样自初级侧反激式电压,因此,无需使用光耦  
合器、电压基准或变压器的第三绕组进行输出电压稳  
压。  
可选 VOUT 温度补偿  
6ms 内部或可编程软启动  
输入 UVLO 和热关断保护  
断续模式过流故障保护  
具有 –40°C +150°C 的结温范围  
通过集成技术减小解决方案尺寸,降低成本  
凭借高度的集成性,可实现简单可靠的高密度设计,其  
中只有一个组件穿过隔离层。通过采用边界导电模式  
(BCM) 开关,可实现紧凑的磁解决方案以及优于  
±1.5% 的负载和线路调节性能。集成的 100V 功率  
MOSFET 能够提供高达 4W 的输出功率并提高应对线  
路瞬变的余量。  
集成 100V0.4Ω 功率 MOSFET  
无需光耦合器或变压器辅助绕组即可进行 VOUT  
稳压  
内部环路补偿  
高效率 PSR 反激运行  
MOSFET BCM 模式下实现准谐振关断  
低输入静态电流  
LM5181-Q1 转换器符合汽车 AEC-Q100 1 级标准,并  
且采用引脚间距为 0.8mm 且具有可湿性侧面的 8 引脚  
WSON 封装。  
具有用于提升效率的外部偏置选项  
具有单输出和多输出实施手段  
使用 WEBENCH® 电源设计器创建定制稳压器设计  
器件信息(1)  
器件型号  
LM5181-Q1  
封装  
WSON (8)  
封装尺寸(标称值)  
4.00mm × 4.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
典型应用  
典型效率 (VOUT = 5V)  
90  
DFLY  
VIN = 4.5 V...65 V  
VOUT = 5 V  
T1  
85  
80  
75  
DZ  
COUT  
100 F  
3 : 1  
CIN  
DF  
VIN  
EN/UVLO  
2.2 F  
SW  
RFB  
LM5181-Q1  
158 kW  
70  
GND  
FB  
VIN = 12V  
VIN = 24V  
RSET  
TC  
VIN = 36V  
VIN = 48V  
VIN = 65V  
65  
60  
RSET  
SS/BIAS  
12.1 kW  
0
100  
200  
300 400  
Output Current (mA)  
500  
600  
700  
D002  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVSBN6  
 
 
 
 
LM5181-Q1  
ZHCSL48 APRIL 2020  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 Typical Applications ................................................ 16  
1
2
3
4
5
6
7
特性.......................................................................... 1  
9
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagram ......................................... 9  
8.3 Feature Description................................................... 9  
10 Power Supply Recommendations ..................... 22  
11 Layout................................................................... 23  
11.1 Layout Guidelines ................................................. 23  
11.2 Layout Examples................................................... 24  
12 器件和文档支持 ..................................................... 25  
12.1 器件支持................................................................ 25  
12.2 文档支持 ............................................................... 26  
12.3 接收文档更新通知 ................................................. 26  
12.4 支持资源................................................................ 26  
12.5 ....................................................................... 26  
12.6 静电放电警告......................................................... 27  
12.7 Glossary................................................................ 27  
13 机械、封装和可订购信息....................................... 27  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2020 4 月  
*
初始发行版  
5 说明 (续)  
LM5181-Q1 反激式转换器简化了隔离式直流/直流电源的实现,且可通过可选 功能 优化目标终端设备的性能。该  
器件通过一个电阻器来设置输出电压,同时使用可选的电阻器通过抵消反激式二极管的压降热系数来提高输出电压  
精度。其他 功能 包括内部固定或外部可编程软启动、可实现更高效率的可选偏置电源连接、用于可调节线路  
UVLO 的精密使能输入(带迟滞功能)、间断模式过载保护和带自动恢复功能的热关断保护。  
2
Copyright © 2020, Texas Instruments Incorporated  
 
 
LM5181-Q1  
www.ti.com.cn  
ZHCSL48 APRIL 2020  
6 Pin Configuration and Functions  
NGU Package  
8-Pin WSON With Wettable Flanks  
Top View  
8
7
6
5
GND  
SW  
FB  
1
RSET  
TC  
2
3
4
VIN  
EN/UVLO  
SS/BIAS  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NO.  
NAME  
Switch node that is internally connected to the drain of the N-channel power MOSFET. Connect  
to the primary-side switching terminal of the flyback transformer.  
1
SW  
P
I
Primary-side feedback pin. Connect a resistor from FB to SW. The ratio of the FB resistor to the  
resistor at the RSET pin sets the output voltage.  
2
3
FB  
Input supply connection. Source for internal bias regulators and input voltage sensing pin.  
Connect directly to the input supply of the converter with short, low impedance paths.  
VIN  
P/I  
Enable input and undervoltage lockout (UVLO) programming pin. If the EN/UVLO voltage is  
below 1.1 V, the converter is in shutdown mode with all functions disabled. If the EN/UVLO  
voltage is greater than 1.1 V and below 1.5 V, the converter is in standby mode with the internal  
regulator operational and no switching. If the EN/UVLO voltage is above 1.5 V, the start-up  
sequence begins.  
4
5
EN/UVLO  
SS/BIAS  
I
I
Soft start or bias input. Connect a capacitor from SS/BIAS to GND to adjust the output start-up  
time and input inrush current. If SS/BIAS is left open, the internal 6-ms soft-start timer is  
activated. Connect an external supply to SS/BIAS to supply bias to the internal voltage regulator  
and enable internal soft start.  
Temperature compensation pin. Tie a resistor from TC to RSET to compensate for the  
temperature coefficient of the forward voltage drop of the secondary diode, thus improving  
regulation at the secondary-side output.  
6
7
TC  
I
I
Reference resistor tied to GND to set the reference current for FB. Connect a 12.1-kresistor  
from RSET to GND.  
RSET  
8
-
GND  
DAP  
G
G
Analog and power ground. Ground connection of internal control circuits and power MOSFET.  
Die attach pad. Connect to PCB ground plane.  
(1) P = Power, G = Ground, I = Input, O = Output.  
Copyright © 2020, Texas Instruments Incorporated  
3
LM5181-Q1  
ZHCSL48 APRIL 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range of –40°C to 150°C (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–1.5  
–3  
MAX  
70  
UNIT  
VIN to GND  
EN/UVLO to GND  
TC to GND  
70  
6
Input voltage  
SS/BIAS to GND  
FB to GND  
14  
V
70.3  
0.3  
3
FB to VIN  
RSET to GND  
SW to GND  
100  
Output voltage  
V
SW to GND (20-ns transient)  
Operating junction temperature, TJ  
Storage temperature, Tstg  
–40  
–55  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002  
HBM ESD Classification Level 2  
±2000  
(1)  
V(ESD)  
Electrostatic discharge  
V
All pins except 1,  
4, 5, and 8  
Charged device model (CDM), per  
AEC Q100-011  
CDM ESD Classification Level C4B  
±500  
±750  
Pins 1, 4, 5, and 8  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of –40°C to 150°C (unless otherwise noted)  
MIN  
NOM  
MAX  
65  
UNIT  
V
VIN  
Input voltage  
4.5  
VSW  
SW voltage  
95  
V
VEN/UVLO  
VSS/BIAS  
TJ  
EN/UVLO voltage  
SS/BIAS voltage  
Operating junction temperature  
65  
V
13  
V
–40  
150  
°C  
7.4 Thermal Information  
LM5181-Q1  
THERMAL METRIC(1)  
NGU (WSON)  
8 PINS  
41.3  
UNIT  
RΘJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RΘJC(top)  
RΘJB  
34.7  
19.1  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ΨJB  
19.2  
RΘJC(bot)  
3.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2020, Texas Instruments Incorporated  
 
LM5181-Q1  
www.ti.com.cn  
ZHCSL48 APRIL 2020  
7.5 Electrical Characteristics  
Typical values correspond to TJ = 25°C. Minimum and maximum limits aaply over the full –40°C to 150°C junction  
temperature range unless otherwise indicated. VIN = 24 V and VEN/UVLO = 2 V unless otherwise stated.  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISHUTDOWN  
IACTIVE  
IACTIVE-BIAS  
VSD-FALLING  
VIN shutdown current  
VIN active current  
VEN/UVLO = 0 V  
3
260  
25  
µA  
µA  
µA  
V
VEN/UVLO = 2.5 V, VRSET = 1.8 V  
VSS/BIAS = 6 V  
350  
40  
VIN current with BIAS connected  
Shutdown threshold  
VEN/UVLO falling  
0.3  
ENABLE AND INPUT UVLO  
VSD-RISING  
VUV-RISING  
Standby threshold  
Enable threshold  
VEN/UVLO rising  
VEN/UVLO rising  
VEN/UVLO falling  
0.8  
1.5  
1
V
V
1.45  
0.04  
4.2  
1.53  
VUV-HYST  
Enable voltage hysteresis  
Enable current hysteresis  
0.05  
5
V
IUV-HYST  
FEEDBACK  
IRSET  
VEN/UVLO = 1.6 V  
5.5  
µA  
RSET current  
RRSET = 12.1 kΩ  
RRSET = 12.1 kΩ  
IFB = 80 µA  
100  
µA  
V
VRSET  
RSET regulation voltage  
FB to VIN voltage  
FB to VIN voltage  
1.191  
–40  
1.21  
1.224  
40  
VFB-VIN1  
VFB-VIN2  
mV  
mV  
IFB = 120 µA  
SWITCHING FREQUENCY  
FSW-MIN  
FSW-MAX  
tON-MIN  
Minimum switching frequency  
12  
350  
140  
kHz  
kHz  
ns  
Maximum switching frequency  
Minimum switch on-time  
DIODE THERMAL COMPENSATION  
VTC TC voltage  
POWER SWITCHES  
ITC = ±10 µA, TJ = 25°C  
ISW = 100 mA  
1.2  
0.4  
1.27  
V
RDS(on)  
MOSFET on-state resistance  
Ω
SOFT-START AND BIAS  
ISS  
tSS  
SS ext capacitor charging current  
5
6
µA  
ms  
Internal SS time  
VBIAS-UVLO-  
RISE  
BIAS enable voltage  
VSS/BIAS rising  
VSS/BIAS falling  
5.5  
5.75  
0.88  
V
VBIAS-UVLO-  
HYST  
BIAS UVLO hysteresis  
190  
mV  
CURRENT LIMIT  
ISW-PEAK  
Peak current limit threshold  
0.62  
0.75  
A
THERMAL SHUTDOWN  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
175  
6
°C  
°C  
TSD-HYS  
版权 © 2020, Texas Instruments Incorporated  
5
LM5181-Q1  
ZHCSL48 APRIL 2020  
www.ti.com.cn  
7.6 Typical Characteristics  
VIN = 24 V, VEN/UVLO = 2 V (unless otherwise stated).  
90  
85  
80  
75  
70  
5.2  
5.15  
5.1  
5.05  
5
4.95  
4.9  
VIN = 12V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 65V  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 65V  
65  
60  
4.85  
4.8  
0
100  
200  
300 400  
Output Current (mA)  
500  
600  
700  
0
100  
200  
300 400  
Output Current (mA)  
500  
600  
700  
D002  
D003  
See 21  
See 21  
1. Efficiency versus Load  
2. Output Voltage versus Load  
18  
15  
12  
9
VIN = 12 V  
VIN = 24 V  
VIN = 48 V  
SW 20V/DIV  
6
3
0
-50  
1 ms/DIV  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
D001  
See 21  
IOUT = 0.5 A  
3. Primary-side Switching Waveform in BCM  
4. Shutdown Quiescent Current versus Temperature  
290  
280  
270  
260  
250  
240  
35  
30  
25  
20  
15  
VIN = 12 V  
VIN = 24 V  
VIN = 48 V  
VIN = 12 V  
VIN = 24 V  
VIN = 48 V  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D002  
D003  
VSS/BIAS = 6 V  
5. Active Quiescent Current versus Temperature  
6. Active Quiescent Current with BIAS versus  
Temperature  
6
版权 © 2020, Texas Instruments Incorporated  
LM5181-Q1  
www.ti.com.cn  
ZHCSL48 APRIL 2020  
Typical Characteristics (接下页)  
VIN = 24 V, VEN/UVLO = 2 V (unless otherwise stated).  
102  
104  
102  
100  
98  
101  
100  
99  
98  
96  
0
10  
20  
30 40  
Input Voltage (V)  
50  
60  
70  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
D004  
D005  
7. RSET Current versus Input Voltage  
8. RSET Current versus Temperature  
1.8  
1.6  
1.4  
1.2  
1
1.54  
1.52  
1.5  
1.48  
1.46  
1.44  
1.42  
1.4  
VEN/UVLO Rising  
VEN/UVLO Falling  
0.8  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D006  
D007  
9. TC Voltage versus Temperature  
10. EN/UVLO Threshold Voltages versus Temperature  
5.3  
0.8  
5.2  
5.1  
5
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
4.9  
4.8  
4.7  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D008  
D009  
11. EN/UVLO Hysteresis Current versus Temperature  
12. MOSFET RDS(on) versus Temperature  
版权 © 2020, Texas Instruments Incorporated  
7
LM5181-Q1  
ZHCSL48 APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
VIN = 24 V, VEN/UVLO = 2 V (unless otherwise stated).  
1
160  
155  
150  
145  
140  
135  
130  
0.8  
0.6  
BCM / DCM  
FFM  
0.4  
0.2  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D010  
D011  
13. Switch Peak Current Limits versus Temperature  
14. Minimum Switch On-Time versus Temperature  
380  
13  
370  
360  
350  
340  
330  
320  
12.5  
12  
11.5  
11  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Junction Temperature (èC)  
Junction Temperature (èC)  
D012  
D013  
15. Minimum Switching Frequency versus Temperature  
16. Maximum Switching Frequency versus Temperature  
8
版权 © 2020, Texas Instruments Incorporated  
LM5181-Q1  
www.ti.com.cn  
ZHCSL48 APRIL 2020  
8 Detailed Description  
8.1 Overview  
The LM5181-Q1 primary-side regulated (PSR) flyback converter is a high-density, cost-effective solution for  
automotive and industrial systems requiring less than 4 W of isolated DC/DC power. This compact, easy-to-use  
flyback converter with low IQ can be applied over a wide input voltage range from 4.5 V to 65 V, with operation  
down to 3.5 V after start-up. Innovative frequency and current amplitude modulation enables high conversion  
efficiency across the entire load and line range. Primary-side regulation of the isolated output voltage using  
sampled values of the primary winding voltage eliminates the need for an opto-coupler or an auxiliary transformer  
winding for feedback. Regulation performance that rivals that of traditional opto-coupler solutions is achieved  
without the associated cost, solution size, and reliability concerns. The LM5181-Q1 converter services a wide  
range of applications including IGBT-based motor drives, factory automation, and medical equipment.  
8.2 Functional Block Diagram  
VOUT  
VIN  
DFLY  
NP : NS  
DZ  
COUT  
5 mA  
LM5181-Q1  
SS/BIAS  
BIAS  
REGULATOR  
CIN  
EN/UVLO  
Standby  
1.5 V  
1.45 V  
VDD  
VIN  
DF  
VDD UVLO  
Shutdown  
VIN  
SAMPLED  
FEEDBACK  
THERMAL  
SHUTDOWN  
1.1 V  
100-V Power  
MOSFET  
FB  
SW  
RSET  
COMP  
VDD  
gm  
VREF  
TRIMMED  
REFERENCE  
CONTROL  
LOGIC  
RTC  
RSET  
FB  
ILIM  
TC  
0.75 A  
TC  
REGULATION  
VDD  
RFB  
SS/BIAS  
GND  
Internal SS  
CSS  
8.3 Feature Description  
8.3.1 Integrated Power MOSFET  
The LM5181-Q1 is a flyback dc/dc converter with integrated 100-V, 0.75-A N-channel power MOSFET. During  
the MOSFET on-time, the transformer primary current increases from zero with a slope of VIN / LMAG (where LMAG  
is the transformer primary-referred magnetizing inductance) while the output capacitor supplies the load current.  
When the MOSFET is turned off by the control logic, the SW voltage VSW swings up to approximately VIN + (NPS  
× VOUT), where NPS = NP / NS is the primary-to-secondary turns ratio of the transformer. The magnetizing current  
flows in the secondary side through the flyback diode, charging the output capacitor and supplying current to the  
load. Duty cycle D is defined as tON / tSW, where tON is the MOSFET conduction time and tSW is the switching  
period.  
17 shows a typical schematic of the LM5181-Q1 PSR flyback circuit. Components denoted in red are optional  
depending on the application requirements.  
版权 © 2020, Texas Instruments Incorporated  
9
LM5181-Q1  
ZHCSL48 APRIL 2020  
www.ti.com.cn  
Feature Description (接下页)  
DFLY  
T1  
VIN  
VOUT  
DCLAMP  
COUT  
DOUT  
RUV1  
NP : NS  
DF  
CIN  
VIN  
EN/UVLO  
SW  
RUV2  
RFB  
LM5181  
GND  
FB  
RSET  
TC  
SS/BIAS  
RTC  
RSET  
CSS  
17. LM5181-Q1 Flyback Converter Schematic (Optional Components in Red)  
8.3.2 PSR Flyback Modes of Operation  
The LM5181-Q1 uses a variable-frequency, peak current-mode (VFPCM) control architecture with three possible  
modes of operation as illustrated in 18.  
Frequency  
foldback mode  
(FFM)  
Discontinuous conduction mode (DCM)  
Boundary conduction mode (BCM)  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
20  
40  
60  
80  
100  
% Total Rated Output Power  
18. Three Modes of Operation Illustrated by Variation of Switching Frequency With Load  
The LM5181-Q1 operates in boundary conduction mode (BCM) at heavy loads. The power MOSFET turns on  
when the current in the secondary winding reaches zero, and the MOSFET turns off when the peak primary  
current reaches the level dictated by the output of the internal error amplifier. As the load is decreased, the  
frequency increases to maintain BCM operation. The duty cycle of the flyback converter is given 公式 1.  
10  
版权 © 2020, Texas Instruments Incorporated  
 
 
 
LM5181-Q1  
www.ti.com.cn  
ZHCSL48 APRIL 2020  
Feature Description (接下页)  
V
+ VD N  
(
)
OUT  
PS  
D =  
V
+ V  
+ VD N  
(
)
IN  
OUT  
PS  
where  
VD is the forward voltage drop of the flyback diode as its current approaches zero  
(1)  
The output power in BCM is given by 公式 2, where the applicable switching frequency and peak primary current  
in BCM are specified by 公式 3 and 公式 4, respectively.  
2
LMAG IPRI-PK(BCM)  
POUT(BCM)  
=
FSW(BCM)  
2
(2)  
1
FSW(BCM)  
=
LMAG  
LMAG  
NPS V  
IPRI-PK(BCM)  
+
÷
÷
V
+ VD  
OUT  
(
)
IN  
«
(3)  
(4)  
2V  
(
+ VD I  
OUT  
)
OUT  
IPRI-PK(BCM)  
=
V D  
IN  
As the load decreases, the LM5181-Q1 clamps the maximum switching frequency to 350 kHz, and the converter  
enters discontinuous conduction mode (DCM). The power delivered to the output in DCM is proportional to the  
peak primary current squared as given by 公式 5 and 公式 6. Thus, as the load decreases, the peak current  
reduces to maintain regulation at 350-kHz switching frequency.  
2
LMAG IPRI-PK(DCM)  
POUT(DCM)  
=
FSW(DCM)  
2
(5)  
2IOUT V  
+ VD  
(
)
OUT  
IPRI-PK(DCM)  
=
LMAG FSW(DCM)  
(6)  
(7)  
LMAG IPRI-PK(DCM) FSW(DCM)  
DDCM  
=
V
IN  
At even lighter loads, the primary-side peak current set by the internal error amplifier decreases to a minimum  
level of 0.15 A, or 20% of its 0.75-A peak value, and the MOSFET off-time extends to maintain the output load  
requirement. The system operates in frequency foldback mode (FFM), and the switching frequency decreases as  
the load current is reduced. Other than a fault condition, the lowest frequency of operation of the LM5181-Q1 is  
12 kHz, which sets a minimum load requirement of approximately 0.5% full load.  
8.3.3 Setting the Output Voltage  
To minimize output voltage regulation error, the LM5181-Q1 senses the reflected secondary voltage when the  
secondary current reaches zero. The feedback (FB) resistor, which is connected between SW and FB as shown  
in 17, is determined using 公式 8.  
RSET  
RFB = V  
+ VD N  
(
)
OUT  
PS  
VREF  
where  
RSET is nominally 12.1 kΩ  
(8)  
11  
版权 © 2020, Texas Instruments Incorporated  
 
 
 
 
 
 
LM5181-Q1  
ZHCSL48 APRIL 2020  
www.ti.com.cn  
Feature Description (接下页)  
8.3.3.1 Diode Thermal Compensation  
The LM5181-Q1 employs a unique thermal compensation circuit that adjusts the feedback setpoint based on the  
thermal coefficient of the forward voltage drop of the flyback diode. Even though the output voltage is measured  
when the secondary current is effectively zero, there is still a non-zero forward voltage drop associated with the  
flyback diode. Select the thermal compensation resistor using 公式 9.  
RFB kW  
»
ÿ
3
RTC kW =  
»
ÿ
NPS  
TCDiode mV èC  
» ÿ  
(9)  
The temperature coefficient of the diode voltage drop may not be explicitly provided in the diode data sheet, so  
the effective value can be estimated based on the measured output voltage shift overtemperature when the TC  
resistor is not installed.  
8.3.4 Control Loop Error Amplifier  
The inputs of the error amplifier include a level-shifted version of the FB voltage and an internal 1.21-V reference  
set by the resistor at RSET. A type-2 internal compensation network stabilizes the converter. In BCM operation  
when the output voltage is in regulation, an on-time interval is initiated when the secondary current reaches zero.  
The power MOSFET is subsequently turned off when an amplified version of the peak primary current exceeds  
the error amplifier output.  
8.3.5 Precision Enable  
The precision EN/UVLO input supports adjustable input undervoltage lockout (UVLO) with hysteresis for  
application specific power-up and power-down requirements. EN/UVLO connects to a comparator with a 1.5-V  
reference voltage and 50-mV hysteresis. An external logic signal can be used to drive the EN/UVLO input to  
toggle the output on and off for system sequencing or protection. The simplest way to enable the LM5181-Q1 is  
to connect EN/UVLO directly to VIN. This allows the LM5181-Q1 to start up when VIN is within its valid operating  
range. However, many applications benefit from using a resistor divider RUV1 and RUV2 as shown in 19 to  
establish a precision UVLO level.  
LM5181  
VCC  
VIN  
5 A  
RUV1  
EN/UVLO  
+
RUV2  
UVLO  
Comparator  
1.5 V  
1.45 V  
19. Programmable Input Voltage UVLO With Hysteresis  
Use 公式 10 and 公式 11 to calculate the input UVLO voltages turnon and turnoff voltages, respectively.  
12  
版权 © 2020, Texas Instruments Incorporated  
 
 
LM5181-Q1  
www.ti.com.cn  
ZHCSL48 APRIL 2020  
Feature Description (接下页)  
÷
RUV1  
RUV2  
V
= VUV-RISING 1+  
IN(on)  
«
where  
VUV-RISING and VUV-FALLING are the UVLO comparator thresholds  
IUV-HYST is the hysteresis current  
(10)  
(11)  
÷
RUV1  
RUV2  
V
= VUV-FALLING 1+  
-IUV-HYST RUV1  
IN(off)  
«
where  
VUV-RISING and VUV-FALLING are the UVLO comparator thresholds  
IUV-HYST is the hysteresis current  
The LM5181-Q1 also provides a low-IQ shutdown mode when the EN/UVLO voltage is pulled below a base-  
emitter voltage drop (approximately 0.6 V at room temperature). If the EN/UVLO voltage is below this hard  
shutdown threshold, the internal LDO regulator powers off, and the internal bias-supply rail collapses, shutting  
down the bias currents of the LM5181-Q1. The LM5181-Q1 operates in standby mode when the EN/UVLO  
voltage is between the hard shutdown and precision-enable thresholds.  
8.3.6 Configurable Soft Start  
The LM5181-Q1 has a flexible and easy-to-use soft-start control pin, SS/BIAS. The soft-start feature prevents  
inrush current impacting the LM5181-Q1 and the input supply when power is first applied. This is achieved by  
controlling the voltage at the output of the internal error amplifier. Soft start is achieved by slowly ramping up the  
target regulation voltage when the device is first enabled or powered up. Selectable and adjustable start-up  
timing options include a 6-ms internally-fixed soft start and an externally-programmable soft start.  
The simplest way to use the LM5181-Q1 is to leave SS/BIAS open. The LM5181-Q1 employs an internal soft-  
start control ramp and starts up to the regulated output voltage in 6 ms.  
However, in applications with a large amount of output capacitance, higher VOUT or other special requirements,  
the soft-start time can be extended by connecting an external capacitor CSS from SS/BIAS to GND. A longer soft-  
start time further reduces the supply current needed to charge the output capacitors while sourcing the required  
load current. When the EN/UVLO voltage exceeds the UVLO rising threshold and a delay of 20 µs expires, an  
internal current source ISS of 5 µA charges CSS and generates a ramp to control the primary current amplitude.  
Calculate the soft-start capacitance for a desired soft-start time, tSS, using 公式 12.  
CSS nF = 5 t  
ms  
»
»
ÿ
ÿ
SS  
(12)  
CSS is discharged by an internal FET when switching is disabled by EN/UVLO or thermal shutdown.  
版权 © 2020, Texas Instruments Incorporated  
13  
 
LM5181-Q1  
ZHCSL48 APRIL 2020  
www.ti.com.cn  
Feature Description (接下页)  
8.3.7 External Bias Supply  
DFLY  
T1  
VIN  
VOUT  
DCLAMP  
COUT  
DOUT  
RUV1  
NP : NS  
DF  
CIN  
VIN  
EN/UVLO  
SW  
RUV2  
RFB  
LM5181  
GND  
FB  
DBIAS1  
RSET  
TC  
SS/BIAS  
DBIAS2  
12 V  
CBIAS  
22 nF  
RSET  
NP : NAUX  
20. External Bias Supply Using Transformer Auxiliary Winding  
The LM5181-Q1 has an external bias supply feature that reduces input quiescent current and increases  
efficiency. When the voltage at SS/BIAS exceeds a rising threshold of 5.5 V, bias power for the internal LDO  
regulator can be derived from an external voltage source or from a transformer auxiliary winding as shown in 图  
20. With a bias supply connected, the LM5181-Q1 then uses its internal soft-start ramp to control the primary  
current during start-up.  
When using a transformer auxiliary winding for bias power, the total leakage current related to diodes DBIAS1 and  
DBIAS2 in 20 should be less than 1 µA across the full operating temperature range.  
8.3.8 Minimum On-Time and Off-Time  
When the internal power MOSFET is turned off, the leakage inductance of the transformer resonates with the  
SW node parasitic capacitance. The resultant ringing behavior can be excessive with large transformer leakage  
inductance and can corrupt the secondary zero-current detection. To prevent such a situation, a minimum switch  
off-time, designated as tOFF-MIN, of a maximum of 360 ns is set internally to ensure proper functionality. This sets  
a lower limit for the transformer magnetizing inductance as discussed in Detailed Design Procedure.  
Furthermore, noise effects as a result of power MOSFET turnon can impact the internal current sense circuit  
measurement. To mitigate this effect, the LM5181-Q1 provides a blanking time after the MOSFET turns on. This  
blanking time forces a minimum on-time, tON-MIN, of 140 ns.  
8.3.9 Overcurrent Protection  
In case of an overcurrent condition on the isolated output or outputs, the output voltage drops lower than the  
regulation level since the maximum power delivered is limited by the peak current capability on the primary side.  
The peak primary current is maintained at 0.75 A (plus an amount related to the 100-ns propagation delay of the  
current limit comparator) until the output decreases to the secondary diode voltage drop to impact the reflected  
signal on the primary side. At this point, the LM5181-Q1 assumes the output cannot be recovered and re-  
calibrates its switching frequency to 9 kHz until the overload condition is removed. The LM5181-Q1 responds  
with similar behavior to an output short circuit condition.  
For a given input voltage, 公式 13 gives the maximum output current prior to the engagement of overcurrent  
protection, where η is the efficiency. The typical threshold value for ISW-PEAK from the Specifications is 0.75 A.  
14  
版权 © 2020, Texas Instruments Incorporated  
 
LM5181-Q1  
www.ti.com.cn  
ZHCSL48 APRIL 2020  
Feature Description (接下页)  
ISW-PEAK  
h
2
IOUT(max)  
=
«
÷
VOUT  
1
+
V
NPS  
IN  
(13)  
A failsafe current limit set at 1.2 A, or 1.6 times the nominal peak current limit, provides redundant fault protection  
in case of transformer short circuit or saturation effects. This initiates a 7.5-ms hiccup interval after eight  
overcurrent events.  
8.3.10 Thermal Shutdown  
Thermal shutdown is an integrated self-protection to limit junction temperature and prevent damage related to  
overheating. Thermal shutdown turns off the device when the junction temperature exceeds 175°C to prevent  
further power dissipation and temperature rise. Junction temperature decreases after shutdown, and the  
LM5181-Q1 restarts when the junction temperature falls to 169°C.  
8.4 Device Functional Modes  
8.4.1 Shutdown Mode  
EN/UVLO facilitates ON and OFF control for the LM5181-Q1. When VEN/UVLO is below approximately 0.6 V, the  
device is in shutdown mode. Both the internal LDO and the switching regulator are off. The quiescent current in  
shutdown mode drops to 3 μA at VIN = 24 V. The LM5181-Q1 also employs internal bias rail undervoltage  
protection. If the internal bias supply voltage is below its UV threshold, the converter remains off.  
8.4.2 Standby Mode  
The internal bias rail LDO regulator has a lower enable threshold than the converter itself. When VEN/UVLO is  
above 0.6 V and below the precision-enable threshold (1.5 V typically), the internal LDO is on and regulating.  
The precision enable circuitry is turned on once the internal VCC is above its UV threshold. The switching action  
and voltage regulation are not enabled until VEN/UVLO rises above the precision enable threshold.  
8.4.3 Active Mode  
The LM5181-Q1 is in active mode when VEN/UVLO is above the precision-enable threshold and the internal bias  
rail is above its UV threshold. The LM5181-Q1 operates in one of three modes depending on the load current  
requirement:  
1. Boundary conduction mode (BCM) at heavy loads  
2. Discontinuous conduction mode (DCM) at medium loads  
3. Frequency foldback mode (FFM) at light loads  
Refer to the PSR Flyback Modes of Operation section for more details.  
版权 © 2020, Texas Instruments Incorporated  
15  
LM5181-Q1  
ZHCSL48 APRIL 2020  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LM5181-Q1 requires only a few external components to convert from a wide range of supply voltages to one  
or more isolated output rails. To expedite and streamline the process of designing of a LM5181-Q1-based  
converter, a comprehensive LM5181-Q1 quick-start calculator is available for download to assist the designer  
with component selection for a given application. WEBENCH® online software is also available to generate  
complete designs, leveraging iterative design procedures and access to comprehensive component databases.  
The following sections discuss the design procedure for both single- and dual-output implementations using  
specific circuit design examples.  
As mentioned previously, the LM5181-Q1 also integrates several optional features to meet system design  
requirements, including precision enable, input UVLO, programmable soft start, output voltage thermal  
compensation, and external bias supply connection. Each application incorporates these features as needed for  
a more comprehensive design.  
The application circuits detailed in the Typical Applications show LM5181-Q1 configuration options suitable for  
several application use cases.  
9.2 Typical Applications  
For step-by-step design procedures, circuit schematics, bill of materials, PCB files, simulation and test results of LM5181-powered  
implementations, refer to the TI reference designs library.  
9.2.1 Design 1: Wide VIN, Low IQ PSR Flyback Converter Rated at 5 V, 0.5 A  
The schematic diagram of a 5-V, 0.5-A PSR flyback converter is given in 21.  
DFLY  
VIN = 10 V...65 V  
T1  
VOUT = 5 V  
IOUT = 0.5 A  
DCLAMP  
24 V  
COUT  
DOUT  
RUV1  
5.6 V  
47 F  
536 kW  
3 : 1  
CIN  
DF  
VIN  
EN/UVLO  
44 mH  
2.2 F  
SW  
FB  
RUV2  
RFB  
LM5181  
100 kW  
158 kW  
GND  
RSET  
TC  
SS/BIAS  
RTC  
RSET  
CSS  
130 kW  
12.1 kW  
47 nF  
21. Schematic for Design 1 With VIN(nom) = 24 V, VOUT = 5 V, IOUT = 0.5 A  
16  
版权 © 2020, Texas Instruments Incorporated  
 
 
LM5181-Q1  
www.ti.com.cn  
ZHCSL48 APRIL 2020  
9.2.1.1 Design Requirements  
The required input, output, and performance parameters for this application example are shown in 1.  
1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
VALUE  
10 V to 65 V  
9.5 V on, 6.5 V off  
5 V  
Input UVLO thresholds  
Output voltage  
Rated load current, VIN = 24 V  
Output voltage regulation  
Output voltage ripple  
0.5 A  
±1.5%  
< 100 mV  
The target full-load efficiency is 87.5% based on a nominal input voltage of 24 V and an isolated output voltage  
of 5 V. The LM5181-Q1 is chosen to deliver a fixed 5-V output voltage set by resistor RFB connected between the  
SW and FB pins. The input voltage turnon and turnoff thresholds are established by RUV1 and RUV2. The required  
components are listed in 2. Transformers for other designs are listed in 3.  
2. List of Components for Design 1  
REF DES QTY SPECIFICATION  
VENDOR  
AVX  
PART NUMBER  
12061C225K4T2A  
CGA6N3X7R2A225K230AB  
GCJ32DR72A225KA01L  
HMK325B7225KMHP  
CGA6P1X7S1A476M250AC  
GRM32ER71A476KE15L  
LMK325B7476MM-TR  
Std  
2.2 µF, 100 V, X7R, 1206, ceramic  
TDK  
CIN  
1
2.2 µF, 100 V, X7R, 1210, ceramic, AEC-Q200  
Murata  
Taiyo Yuden  
TDK  
47 µF, 10 V, X7S, 1210, ceramic, AEC-Q200  
47 µF, 10 V, X7R, 1210, ceramic  
COUT  
1
Murata  
Taiyo Yuden  
Std  
CSS  
1
1
1
1
1
1
1
1
1
1
1
1
47 nF, 16 V, X7R, 0402  
DCLAMP  
DF  
Zener, 24 V, 1 W, PowerDI-123, AEC-Q101  
Switching diode, 75 V, 0.25 A, SOD-323  
Schottky diode, 40 V, 2 A, SOD-123  
Zener, 5.6 V, 5%, SOD-523, AEC-Q101  
158 kΩ, 1%, 0402  
DFLZ24Q-7  
CMDD4448  
FSV340FP  
BZX585-C5V6  
Std  
Diodes Inc.  
Central Semi  
Onsemi  
DFLY  
DOUT  
RFB  
Nexperia  
Std  
RSET  
RTC  
RUV1  
RUV2  
T1  
12.1 kΩ, 1%, 0402  
Std  
Std  
130 kΩ, 1%, 0402  
Std  
Std  
536 kΩ, 1%, 0603  
Std  
Std  
100 kΩ, 1%, 0402  
Std  
Std  
44 µH, 1.4 A, 3 : 1, 8.2 × 8.6 × 9.6 mm  
LM5181-Q1 PSR flyback converter, AEC-Q100, VSON-8  
Würth Electronik  
Texas Instruments  
750318633  
U1  
LM5181QNGURQ1  
3. Magnetic Components for Various Output Voltages  
OUTPUT VOLTAGE (RANGE) TURNS RATIO  
LMAG, ISAT  
DIMENSIONS  
VENDOR  
PART NUMBER  
750319117  
3.3 V (up to 4 V)  
4 : 1  
40 µH, 1 A  
5 V (4 V to 5.5 V)  
12 V (5.5 V to 16 V)  
24 V (16 V to 32 V)  
48 V (32 V to 50 V)  
15 V and –7.5 V dual  
3 : 1  
750318633  
1 : 1  
750318737  
44 µH, 1 A  
30 µH, 1 A  
8.6 × 8.26 × 9.65 mm Würth Electronik  
1 : 2  
750318738  
750319118  
750319119  
1 : 3  
1 : 1.5 : 0.8  
版权 © 2020, Texas Instruments Incorporated  
17  
 
 
 
LM5181-Q1  
ZHCSL48 APRIL 2020  
www.ti.com.cn  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LM5181-Q1 device with WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2.1.2.2 Custom Design With Excel Quickstart Tool  
Select components based on the converter specifications using the LM5181-Q1 quick-start calculator.  
9.2.1.2.3 Flyback Transformer – T1  
Choose a turns ratio based on an approximate 60% max duty cycle at minimum input voltage using 公式 14,  
rounding up or down as needed.  
V
DMAX  
0.6  
10V  
IN(min)  
NPS  
=
=
= 3  
1-DMAX VOUT + VD 1- 0.6 5V + 0.3V  
(14)  
Select a magnetizing inductance based on the minimum off-time constraint using 公式 15. Choose a value of 44  
µH and a saturation current of minimum 1 A for this application.  
V
+ VD NPS tOFF-MIN  
)
ISW-PEAK(FFM)  
5V + 0.3V 3360ns  
(
(
)
0.15A  
OUT  
LMAG  
í
=
= 38H  
(15)  
Note that a higher magnetizing inductance provides a larger operating range for BCM and FFM, but the leakage  
inductance can increase based on a higher number of primary turns, NP. The primary and secondary winding  
RMS currents are given by 公式 16 and 公式 17, respectively.  
D
IPRI-RMS  
=
IPRI-PK  
3
(16)  
2IOUT IPRI-PK NPS  
ISEC-RMS  
=
3
(17)  
Find the maximum output current for a given turns ratio using 公式 18, where the typical value for ISW-PEAK is the  
0.75-A switch current peak threshold. Iterate by increasing the turns ratio if the output current capability is too low  
at minimum input voltage.  
0.42A at V = 12V  
À
IN  
ISW-PEAK  
h
2
0.85 0.75A  
Œ
IOUT(max)  
=
=
=
Ã
2
«
÷
÷
VOUT  
1
5V  
1
0.6A at V = 24V  
Œ
Õ
IN  
+
+
«
V
NPS  
V
3
IN  
IN  
(18)  
18  
版权 © 2020, Texas Instruments Incorporated  
 
 
 
 
 
LM5181-Q1  
www.ti.com.cn  
ZHCSL48 APRIL 2020  
9.2.1.2.4 Flyback Diode – DFLY  
The flyback diode reverse voltage is given by 公式 19.  
V
65V  
3
IN(max)  
VD-REV  
í
+ VOUT  
=
+ 5V ö 27V  
NPS  
(19)  
Select a 40-V, 3-A Schottky diode for this application to account for inevitable diode voltage overshoot and  
ringing related to the resonance of transformer leakage inductance and diode parasitic capacitance. Connect an  
appropriate RC snubber circuit (for example, 100 Ω and 22 pF) across the flyback diode if needed.  
In general, choose a flyback diode with current rating greater than the maximum peak secondary winding current  
of NPS × ISW-PEAK. As mentioned in the Layout section, place adequate copper at the cathode of the diode to  
improve its thermal performance and prevent overheating during high ambient temperature or overload  
conditions. Beware of the high leakage current typical of a Schottky diode at elevated operating temperatures.  
9.2.1.2.5 Zener Clamp Circuit – DF, DCLAMP  
Connect a diode-Zener clamping circuit across the primary winding to limit the peak switch-node voltage after  
MOSFET turnoff below the maximum level of 95 V, as given by 公式 20.  
VDZ(clamp) < VSW(max) - V  
IN(max)  
(20)  
Choosing the zener, DCLAMP, with clamp voltage of approximately 1.5 times the reflected output voltage, as  
specified by 公式 21, provides a balance between the maximum SW voltage excursion and the leakage  
inductance demagnetization time.  
VDZ(clamp) = 1.5NPS V  
+ VD = 1.535V + 0.3V ö 24V  
(
)
(
)
OUT  
(21)  
Select an ultra-fast switching diode or Schottky diode for DF with rated voltage greater than the maximum input  
voltage and with low forward recovery voltage drop.  
9.2.1.2.6 Output Capacitor – COUT  
The output capacitor determines the voltage ripple at the converter output, limits the voltage excursion during a  
load transient, and sets the dominant pole of the converter's small-signal response. For a flyback converter  
specifically, the output capacitor supplies the load current when the main switch is on, therefore, the output  
voltage ripple is a function of load current and duty cycle.  
Select an output capacitance using 公式 22 to limit the ripple voltage amplitude to less than 1% of the output  
voltage at minimum input voltage.  
2
2
2
2
44H0.75A  
LMAG ISW-PEAK  
(
)
1+ D  
2
1+ 0.6  
COUT  
í
=
= 32F  
«
÷
«
÷
2∂ DVOUT VOUT  
250mV 5V  
2
(22)  
Mindful of the voltage coefficient of ceramic capacitors, select a 47-µF, 10-V capacitor in 1210 case size with  
X7S or better dielectric. 公式 23 gives the output capacitor RMS ripple current.  
2NPS IPRI-PK  
ICOUT-RMS = IOUT  
-1  
3 IOUT  
(23)  
9.2.1.2.7 Input Capacitor – CIN  
Select an input capacitance using 公式 24 to limit the ripple voltage amplitude to less than 5% of the input  
voltage when operating at nominal input voltage.  
2
D
IPRI-PK D1-  
÷
2
«
CIN  
í
2FSW ∂ DV  
IN  
(24)  
19  
版权 © 2020, Texas Instruments Incorporated  
 
 
 
 
 
 
LM5181-Q1  
ZHCSL48 APRIL 2020  
www.ti.com.cn  
Substituting the input current at full load, switching frequency, peak primary current, and peak-to-peak ripple  
specification gives CIN greater than 1 μF. Mindful of the voltage coefficient of ceramic capacitors, select a 2.2-µF,  
100-V ceramic input capacitor with X7R dielectric in 1210 case size. 公式 25 gives the input capacitor RMS ripple  
current.  
D IPRI-PK  
4
ICIN-RMS  
=
-1  
2
3 D  
(25)  
9.2.1.2.8 Feedback Resistor – RFB  
Select a feedback resistor, designated RFB, of 158 kΩ based on the secondary winding voltage at the end of the  
flyback conduction interval (the sum of the 5-V output voltage and the Schottky diode forward voltage drop)  
reflected by the transformer turns ratio of 3 : 1. The forward voltage drop of the flyback diode is 0.3 V as its  
current approaches zero.  
V
+ VD N  
5V + 0.3V 3  
(
)
0.1mA  
(
)
OUT  
PS  
RFB  
=
=
= 158 kW  
0.1mA  
(26)  
9.2.1.2.9 Thermal Compensation Resistor – RTC  
Select a resistor for output voltage thermal compensation, designated RTC, based on 公式 27.  
RFB kW  
»
ÿ
3
158  
3
3
RTC kW =  
=
= 130 kW  
»
ÿ
NPS  
TCDiode mV èC  
1.2  
»
ÿ
(27)  
9.2.1.2.10 UVLO Resistors – RUV1, RUV2  
Given VIN(on) and VIN(off) as the input voltage turn-on and turn-off thresholds of 9.5 V and 6.5 V, respectively,  
select the upper and lower UVLO resistors using the following expressions:  
VUV-FALLING  
VUV-RISING  
IUV-HYST  
1.45 V  
1.5 V  
5 A  
V
- V  
IN(off)  
9.5 V ∂  
- 6.5 V  
IN(on)  
RUV1  
=
=
= 536kW  
(28)  
(29)  
VUV-RISING  
1.5 V  
9.5 V -1.5 V  
RUV2 = RUV1  
= 536 kW ∂  
= 100 kW  
V
- VUV-RISING  
IN(on)  
Calculate the actual input turn-on and turn-off voltage thresholds as follows:  
÷
RUV1  
RUV2  
÷
536 kW  
100kW  
V
= VUV-RISING 1+  
= 1.5V 1+  
= 9.54V  
IN(on)  
«
«
(30)  
(31)  
RUV1  
RUV2  
÷
536kW  
100kW  
V
= VUV-FALLING 1+  
-IUV-HYST RUV1 = 1.45V 1+  
- 5A 536kW = 6.54V  
÷
IN(off)  
«
«
9.2.1.2.11 Soft-Start Capacitor – CSS  
Connect an external soft-start capacitor for a specific soft-start time. In this example, select a soft-start  
capacitance of 47 nF based on 公式 12 to achieve a soft-start time of 8 ms.  
For technical solutions, industry trends, and insights for designing and managing power supplies, please refer to TI's Power Management  
technical articles.  
20  
版权 © 2020, Texas Instruments Incorporated  
 
 
LM5181-Q1  
www.ti.com.cn  
ZHCSL48 APRIL 2020  
9.2.2 Application Curves  
Unless otherwise stated, application performance curves were taken at TA = 25°C.  
5.2  
5.15  
5.1  
90  
85  
80  
75  
70  
65  
60  
5.05  
5
4.95  
4.9  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 65V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 48V  
VIN = 65V  
4.85  
4.8  
0
100  
200  
300 400  
Output Current (mA)  
500  
600  
700  
0
100  
200  
300 400  
Output Current (mA)  
500  
600  
700  
D003  
D002  
23. Load Regulation (Linear Scale)  
22. Efficiency (Linear Scale)  
SW 20V/DIV  
VDFLY 5V/DIV  
1 ms/DIV  
1 ms/DIV  
VIN = 24 V  
IOUT = 0.5 A  
VIN = 24 V  
IOUT = 0.5 A  
25. Flyback Diode Voltage  
24. Switch Node Voltage  
Average detector  
Peak detector  
Peak detector  
Average detector  
Start 150 kHz  
Stop 30 MHz  
Start 30 MHz  
Stop 108 MHz  
VIN = 24 V  
IOUT = 0.5 A  
LIN = 4.7 µH  
CIN = 10 µF  
VIN = 24 V  
IOUT = 0.5 A  
LIN = 4.7 µH  
CIN = 10 µF  
150 kHz to 30 MHz  
30 MHz to 108 MHz  
26. CISPR 25 Class 5 Conducted EMI Plot  
27. CISPR 25 Class 5 Conducted EMI Plot  
版权 © 2020, Texas Instruments Incorporated  
21  
LM5181-Q1  
ZHCSL48 APRIL 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
The LM5181-Q1 PSR flyback DC/DC converter operates over a wide input voltage range from 4.5 V to 65 V. The  
characteristics of the input supply must be compatible with the Specifications. In addition, the input supply must  
be capable of delivering the required input current to the fully-loaded regulator. Estimate the average input  
current with 公式 32.  
VOUT IOUT  
IIN  
=
V ∂ h  
IN  
where  
η is the efficiency  
(32)  
If the converter is connected to an input supply through long wires or PCB traces with a large impedance, special  
care is required to achieve stable performance. The parasitic inductance and resistance of the input cables can  
have an adverse affect on converter operation. The parasitic inductance in combination with the low-ESR  
ceramic input capacitors form an underdamped resonant circuit. This circuit can cause overvoltage transients at  
VIN each time the input supply is cycled ON and OFF. The parasitic resistance causes the input voltage to dip  
during a load transient. If the regulator is operating close to the minimum input voltage, this dip can cause false  
UVLO fault triggering and a system reset. The best way to solve such issues is to reduce the distance from the  
input supply to the regulator and use an aluminum electrolytic input capacitor in parallel with the ceramics. The  
moderate ESR of the electrolytic capacitors helps to damp the input resonant circuit and reduce any voltage  
overshoots. A capacitance in the range of 10 µF to 47 µF is usually sufficient to provide input damping and helps  
to hold the input voltage steady during large load transients. A typical ESR of 0.25 Ω provides enough damping  
for most input circuit configurations.  
An EMI input filter is often used in front of the regulator that, unless carefully designed, can lead to instability as  
well as some of the effects mentioned above. The application report Simple Success with Conducted EMI for  
DC-DC Converters provides helpful suggestions when designing an input filter for any switching regulator.  
22  
版权 © 2020, Texas Instruments Incorporated  
 
LM5181-Q1  
www.ti.com.cn  
ZHCSL48 APRIL 2020  
11 Layout  
The performance of any switching converter depends as much upon PCB layout as it does the component  
selection. The following guidelines are provided to assist with designing a PCB with the best power conversion  
performance, thermal performance, and minimized generation of unwanted EMI. 28 and 29 provide layout  
examples for single-output and dual-output designs, respectively.  
11.1 Layout Guidelines  
PCB layout is a critical for good power supply design. There are several paths that conduct high slew-rate  
currents or voltages that can interact with transformer leakage inductance or parasitic capacitance to generate  
noise and EMI or degrade the performance of the power supply.  
1. Bypass the VIN pin to GND with a low-ESR ceramic capacitor, preferably of X7R or X7S dielectric. Place CIN  
as close as possible to the LM5181-Q1 VIN and GND pins. Ground return paths for the input capacitor or  
capacitors must consist of localized top-side planes that connect to the GND pin and exposed PAD.  
2. Minimize the loop area formed by the input capacitor connections and the VIN and GND pins.  
3. Locate the transformer close to the SW pin. Minimize the area of the SW trace or plane to prevent excessive  
e-field or capacitive coupling.  
4. Minimize the loop area formed by the diode-Zener clamp circuit connections and the primary winding  
terminals of the transformer.  
5. Minimize the loop area formed by the flyback rectifying diode, output capacitor, and the secondary winding  
terminals of the transformer.  
6. Connect adequate copper at the cathode of the flyback diode to prevent overheating during overload or high  
ambient temperature conditions.  
7. Tie the GND pin directly to the power pad under the device and to a heat-sinking PCB ground plane.  
8. Use a ground plane in one of the middle layers as a noise shielding and heat dissipation path.  
9. Have a single-point ground connection to the plane. Route the return connections for the reference resistor,  
soft-start, and enable components directly to the GND pin. This prevents any switched or load currents from  
flowing in analog ground traces. If not properly handled, poor grounding results in degraded load regulation  
or erratic output voltage ripple behavior.  
10. Make VIN+, VOUT+, and ground bus connections short and wide. This reduces any voltage drops on the input  
or output paths of the converter and maximizes efficiency.  
11. Minimize trace length to the FB pin. Locate the feedback resistor close to the FB pin.  
12. Locate components RSET, RTC, and CSS as close as possible to their respective pins. Route with minimal  
trace lengths.  
13. Place a capacitor between input and output return connections to route common-mode noise currents  
directly back to their source.  
14. Provide adequate heatsinking for the LM5181-Q1 to keep the junction temperature below 150°C. For  
operation at full rated load, the top-side ground plane is an important heat-dissipating area. Use an array of  
heat-sinking vias to connect the exposed PAD to the PCB ground plane. If the PCB has multiple copper  
layers, connect these thermal vias to inner-layer ground planes. The connection to VOUT+ provides  
heatsinking for the flyback diode.  
版权 © 2020, Texas Instruments Incorporated  
23  
LM5181-Q1  
ZHCSL48 APRIL 2020  
www.ti.com.cn  
11.2 Layout Examples  
Place the input capacitor close  
to the VIN pin and connect to  
the GND plane under the IC  
Keep the DZ clamp and RC snubber  
components close to the primary winding pins  
Use adequate heatsinking  
copper connected to the  
cathode of the flyback  
diode (VOUT)  
Locate the converter IC close  
to the transformer and connect  
to the GND plane as shown  
Keep the secondary  
winding, flyback diode  
and output capacitor  
loop as tight as possible  
Locate the RSET, TC and FB resistors and  
the SS capacitor close to their respective pins  
Place the Y-cap close to the transformer so that common-mode  
currents from the secondary to the primary side return in a tight loop  
28. Single-Output PCB Layout  
Place the ceramic input  
capacitor close to the IC to  
minimize the switching loop area  
Locate the converter IC close  
to the transformer and connect  
to the GND plane as shown  
Minimize the area of the  
secondary winding,  
flyback diode and output  
capacitor switching loops  
Maintain the appropriate primary-  
to-secondary clearance distance  
Place the RSET, TC, FB and SS small-signal  
components near their respective pins  
29. Dual-Output PCB Layout  
24  
版权 © 2020, Texas Instruments Incorporated  
LM5181-Q1  
www.ti.com.cn  
ZHCSL48 APRIL 2020  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.1.2 开发支持  
凭借4 中的输入电压范围和电流特性,TI PSR 反激式直流/直流转换器系列器件可提供灵活性、可扩展性和经  
优化的解决方案尺寸,适用于各种 这些领域的严格功耗要求。通过采用尺寸为 4mm × 4mm、引脚间距为 0.8mm  
8 引脚 WSON 封装,此类转换器可提供具有高功率密度、较少组件数的隔离式直流/直流解决方案。  
4. PSR 反激式直流/直流转换器系列  
最高负载电流(VOUT = 12VNPS = 1)  
PSR 反激式  
直流/直流转换器  
输入电压范围  
峰值开关电流  
VIN = 4.5V  
90mA  
VIN = 13.5V  
180mA  
360mA  
360mA  
600mA  
1A  
VIN = 24V  
225mA  
450mA  
450mA  
750mA  
1.25A  
LM5181-Q1  
LM5180-Q1  
LM25180-Q1  
LM25183-Q1  
LM25184-Q1  
4.5V 65V  
4.5V 65V  
4.5V 42V  
4.5V 42V  
4.5V 42V  
0.75A  
1.5A  
1.5A  
2.5A  
4.1A  
180mA  
180mA  
300mA  
500mA  
有关开发支持,请参阅以下文档:  
LM5181-Q1 快速入门计算器  
LM5181-Q1 仿真模型  
有关 TI 的参考设计库,请访问 TIDesigns  
有关 TI WEBENCH 设计环境,请访问 WEBENCH® 设计中心。  
如需查看该产品的相关器件,请参阅 LM5180-Q1 产品页面。  
TI Designs:  
具有集成开关 PSR 反激式控制器的隔离式 IGBT 栅极驱动电源参考设计  
适用于伺服驱动器的紧凑型、高效、24V 输入辅助电源参考设计  
适用于电源隔离型超紧凑模拟输出模块的参考设计  
具有 3 IGBT/SiC 偏置电源解决方案的 HEV/EV 牵引逆变器功率级参考设计  
用于 IGBT/SiC 栅极驱动器且具有功率级的 4.5V 65V 输入、紧凑型偏置电源参考设计  
通道至通道隔离式模拟输入模块参考设计  
具有热敏二极管和感应 FET SiC/IGBT 隔离式栅极驱动器参考设计  
适用于 5G 电信整流器且效率超过 95% 1kW 模拟控制交流/直流参考设计  
3.5W 汽车类双路输出 PSR 反激式稳压器参考设计  
TI 技术文章:  
《反激式转换器:双路输出优于单路输出》  
《为服务器 PSU 选择辅助电源的常见挑战》  
《在节省费用的同时最大程度地提高 PoE PD 效率》  
版权 © 2020, Texas Instruments Incorporated  
25  
 
LM5181-Q1  
ZHCSL48 APRIL 2020  
www.ti.com.cn  
12.1.3 使用 WEBENCH® 工具创建定制设计方案  
单击此处,使用 LM5181-Q1 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
LM5180EVM-S05 EVM 用户指南》(SNVU592)  
LM5180EVM-DUAL EVM 用户指南》(SNVU609)  
LM25184EVM-S12 EVM 用户指南》 (SNVU680)  
《无辅助 PSR 反激式转换器如何提高 PLC 可靠性和密度》 (SLYT779)  
《为何在双电池 mHEV 系统中使用 PSR 反激式隔离转换器》 (SLYT791)  
IC 封装 特性 可提高严苛汽车和通信设备系统的可靠性》 (SNVA804)  
《适用于 mHEV 应用的 PSR 反激式直流/直流转换器变压器设计 》 (SNVA805)  
《反激式变压器设计在效率和 EMI 方面的注意事项》 (SLUP338)  
《反激式 SMPS 设计内幕揭秘》 (SLUP261)  
白皮书:  
《评估适用于成本驱动型严苛应用的宽 VIN、低 EMI 同步降压 电路》 (SLYY104)  
《电源的传导 EMI 规格概述》 (SLYY136)  
《电源的辐射 EMI 规格概述》 (SLYY142)  
《汽车启动仿真器用户指南》 (SLVU984)  
12.3 接收文档更新通知  
要接收文档更新通知,请转至 TI.com.cn 上的器件产品文件夹进行设置。单击右上角的通知我 进行注册,即可接收  
产品信息更改每周摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
26  
版权 © 2020, Texas Instruments Incorporated  
LM5181-Q1  
www.ti.com.cn  
ZHCSL48 APRIL 2020  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面具有机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2020, Texas Instruments Incorporated  
27  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM5181QNGURQ1  
ACTIVE  
WSON  
NGU  
8
4500 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
-40 to 150  
LM5181Q  
NGUQ1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM5181QNGURQ1  
WSON  
NGU  
8
4500  
330.0  
12.4  
4.3  
4.3  
1.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WSON NGU  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 38.0  
LM5181QNGURQ1  
8
4500  
Pack Materials-Page 2  
MECHANICAL DATA  
NGU0008B  
SDC08B (Rev A)  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

LM520A

WARM WHITE LAMP LED
SEOUL

LM520A_1

WARM WHITE LAMP LED
SEOUL

LM520Z

GREEN OVAL LAMP LED
SEOUL

LM521

INFRARED LAMP LED
SEOUL

LM522

SIZE 1 ARINC 404 RF CONNECTOR FOR ECS CABLE 432101 AND 532101
ETC

LM530Z

GREEN OVAL LAMP LED
SEOUL

LM531

INFRARED LAMP LED
SEOUL

LM53600-Q1

用于汽车应用的 3.5V 至 36V、650mA、2.1MHz 同步降压转换器
TI

LM53600-Q1_15

LM5360x-Q1 5-V, 3.3-V, and Adjustable Synchronous-Buck 1-A Regulator for Automotive Applications
TI

LM53600-Q1_V01

LM53600/01-Q1 0.65-A/1-A, 36-V Synchronous, 2.1-MHz Automotive Step-Down DC/DC Converter
TI

LM536003QDSXRQ1

用于汽车应用的 3.5V 至 36V、650mA、2.1MHz 同步降压转换器 | DSX | 10 | -40 to 150
TI

LM536003QDSXTQ1

用于汽车应用的 3.5V 至 36V、650mA、2.1MHz 同步降压转换器 | DSX | 10 | -40 to 150
TI