LM536005QDSXRQ1 [TI]

用于汽车应用的 3.5V 至 36V、650mA、2.1MHz 同步降压转换器 | DSX | 10 | -40 to 150;
LM536005QDSXRQ1
型号: LM536005QDSXRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于汽车应用的 3.5V 至 36V、650mA、2.1MHz 同步降压转换器 | DSX | 10 | -40 to 150

转换器
文件: 总47页 (文件大小:2708K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
LM53600/01-Q1 0.65-A/1-A, 36-V Synchronous, 2.1-MHz  
Automotive Step-Down DC/DC Converter  
1 Features  
3 Description  
Qualified for automotive applications  
The LM53600-Q1 and LM53601-Q1 synchronous  
buck regulator devices are optimized for automotive  
applications, providing an output voltage of 5 V, 3.3 V,  
or an adjustable output. Load current up to 650 mA  
is supported by the LM53600-Q1, while the LM53601-  
Q1 supports up to 1000 mA. Advanced high-speed  
circuitry allows the LM53600-Q1 and LM53601-Q1  
devices to regulate from an input of 18 V to an output  
of 3.3 V at a fixed frequency of 2.1 MHz. Innovative  
architecture allows the device to regulate a 3.3-V  
output from an input voltage of only 3.8 V. The input  
voltage range up to 36 V, with transient tolerance of  
up to 42 V, eases input surge protection design. An  
open drain reset output, with filtering and delayed  
release, provides a true indication of system status.  
This feature negates the requirement for an additional  
supervisory component, saving cost and board space.  
Seamless transitions between PWM and PFM modes,  
along with a quiescent current of only 23 µA, ensures  
high efficiency and superior transient response at all  
loads. Few external components are needed allowing  
the generation of compact PCB layout. While the  
LM53600-Q1 and LM53601-Q1 devices are Q1 rated,  
electrical characteristics are ensured across a junction  
temperature range of –40°C up to 150°C.  
AEC-Q100 qualified with the following results:  
– Device temperature grade 1: –40°C to 125°C  
ambient operating temperature range  
– Device HBM classification level 2  
– Device CDM classification level C5  
–40°C to 150°C junction temperature range  
(available)  
Wide operating input voltage: 3.55 V to 36 V (with  
transient to 42 V)  
Spread spectrum option available  
2.1-MHz fixed switching frequency  
Low quiescent current: 23 μA  
Shutdown current: 1.8 µA  
Adjustable, 3.3-V, or 5-V output  
Maximum current load: 650 mA for LM53600-Q1,  
1000 mA for LM53601-Q1  
Pin-selectable forced PWM mode  
RESET output with filter and delay release  
External frequency synchronization  
Internal compensation, soft start, current limit, and  
UVLO  
10-lead, 3-mm × 3-mm SON package with  
wettable and non-wettable flanks  
2 Applications  
Device Information  
Automotive camera applications  
Automotive driver assistance systems  
Automotive body applications  
PART NUMBER  
LM53600-Q1  
PACKAGE(1)  
BODY SIZE (NOM)  
WSON (10)  
3.00 mm x 3.00 mm  
LM53601-Q1  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
VPU  
RPU  
RESET  
EN  
AGND  
FB  
VSUPPLY  
LM53600  
LM53601  
VIN  
VCC  
CVCC  
SYNC/  
MODE  
BOOT  
SW  
CBOOT  
CIN  
L1  
GND  
COUT  
(DAP)  
Simplified Schematic – Fixed Output  
Automotive 11.2-mm x 12.7-mm Layout  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison.........................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................6  
7.6 System Characteristics............................................... 8  
7.7 Timing Requirements..................................................9  
7.8 Typical Characteristics..............................................10  
8 Detailed Description......................................................11  
8.1 Overview................................................................... 11  
8.2 Functional Block Diagram......................................... 11  
8.3 Feature Description...................................................12  
8.4 Device Functional Modes..........................................17  
9 Applications and Implementation................................18  
9.1 Application Information............................................. 18  
9.2 Typical Applications.................................................. 19  
9.3 Do's and Don't's........................................................ 26  
10 Power Supply Recommendations..............................28  
11 Layout...........................................................................29  
11.1 Layout Guidelines................................................... 29  
11.2 Layout Example...................................................... 31  
12 Device and Documentation Support..........................32  
12.1 Documentation Support.......................................... 32  
12.2 Receiving Notification of Documentation Updates..32  
12.3 Support Resources................................................. 32  
12.4 Trademarks.............................................................32  
12.5 Electrostatic Discharge Caution..............................32  
12.6 Glossary..................................................................32  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 33  
4 Revision History  
Changes from Revision C (April 2021) to Revision D (May 2021)  
Page  
Added non-wettable flank options.......................................................................................................................1  
Changes from Revision B (February 2016) to Revision C (April 2021)  
Page  
Updated the numbering format for tables, figures, and cross-references throughout the document. ................1  
Changes from Revision A (December 2015) to Revision B (February 2016)  
Page  
Updated tables in the Device Comparison Table ...............................................................................................3  
Removed last sentence in SYNC/MODE description in Pin Functions table in Pin Configuration and Functions  
............................................................................................................................................................................4  
Updated IB Parameter in Section 7.5 table.........................................................................................................6  
Changed RRESET MAX from "80" to "120" in Section 7.5 table...........................................................................6  
Changed Vout to Vout_3_3V, Vout_5V, and Vout_ADJ for 3.3-V, 5-V, and ADJ output voltage options in Section 7.6  
table....................................................................................................................................................................8  
Corrected references for SNAU190 and SNAU191 in Section 12.1.1 .............................................................32  
Changes from Revision * (June 2015) to Revision A (December 2015)  
Page  
Changed device status from product preview to production data.......................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
5 Device Comparison  
LM53600-Q1 Devices  
Spread  
Part Number(1)  
Output Voltage  
Package Qty (2)  
Wettable (WF)/Non-Wettable Flanks (non-  
WF)  
Spectrum  
LM53600AQDSXRQ1  
LM53600AQDSXTQ1  
LM536003QDSXRQ1  
LM536003QDSXTQ1  
LM536005QDSXRQ1  
LM536005QDSXTQ1  
LM53600MQDSXRQ1  
LM53600MQDSXTQ1  
LM53600NQDSXRQ1  
LM53600NQDSXTQ1  
LM53600LQDSXRQ1  
LM53600LQDSXTQ1  
Adjustable  
Adjustable  
3.3 V  
No  
3000  
250  
WF  
No  
WF  
No  
3000  
250  
WF  
3.3 V  
No  
WF  
5.0 V  
No  
3000  
250  
WF  
5.0 V  
No  
WF  
Adjustable  
Adjustable  
3.3 V  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
3000  
250  
WF  
WF  
3000  
250  
WF  
3.3 V  
WF  
5.0 V  
3000  
250  
WF  
5.0 V  
WF  
LM53600MQUDSXRQ1 Adjustable  
3000  
Non-WF  
(1) LM53600-Q1 devices have maximum recommended operating current of 650 mA.  
(2) See Package Option Addendum for tape and reel details as well as links used to order parts.  
LM53601-Q1 Devices  
Spread  
Part Number(1)  
Output Voltage  
Package Qty (2)  
Wettable (WF)/Non-Wettable Flanks (non-WF)  
Spectrum  
LM53601AQDSXRQ1  
LM53601AQDSXTQ1  
LM536013QDSXRQ1  
LM536013QDSXTQ1  
LM536015QDSXRQ1  
LM536015QDSXTQ1  
LM53601MQDSXRQ1  
LM53601MQDSXTQ1  
LM53601NQDSXRQ1  
LM53601NQDSXTQ1  
LM53601LQDSXRQ1  
LM53601LQDSXTQ1  
Adjustable  
Adjustable  
3.3 V  
No  
3000  
250  
WF  
No  
WF  
No  
3000  
250  
WF  
3.3 V  
No  
WF  
5.0 V  
No  
3000  
250  
WF  
5.0 V  
No  
WF  
Adjustable  
Adjustable  
3.3 V  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
3000  
250  
WF  
WF  
3000  
250  
WF  
3.3 V  
WF  
5.0 V  
3000  
250  
WF  
5.0 V  
WF  
LM536015QUDSXRQ1 5.0 V  
LM536013QUDSXRQ1 3.3 V  
LM53601MQUDSXRQ1 Adjustable  
3000  
3000  
3000  
Non-WF  
Non-WF  
Non-WF  
No  
Yes  
(1) LM53601-Q1 devices have maximum recommended operating current of 1000 mA.  
(2) See Package Option Addendum for tape and reel details as well as links used to order parts.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
 
 
 
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
6 Pin Configuration and Functions  
1
2
3
4
5
SW  
GND 10  
1
2
3
4
5
SW  
GND 10  
SYNC/  
9
SYNC/  
MODE  
BOOT  
VCC  
FB  
BOOT  
VCC  
FB  
9
8
7
6
MODE  
DAP  
VIN  
EN  
8
7
6
DAP  
VIN  
EN  
RESET  
RESET  
AGND  
BIAS  
Fixed Version  
Adjustable Version  
Figure 6-1. DSX Package 10-Pin WSON Top View  
Table 6-1. Pin Functions  
PIN  
NAME  
TYPE(1)  
DESCRIPTION  
NO.  
1
SW  
P
I
Regulator switch node. Connect to output inductor.  
High side gate driver upper supply rail. Connect a 100-nF capacitor from SW pin to BOOT. An internal  
diode charges the capacitor while SW node is low.  
2
3
BOOT  
Internal 3-V regulator output. Used as supply to internal control circuits. Connect a high quality 1.0-μF  
capacitor from this pin to AGND for fixed versions or to GND for adjustable versions.  
VCC  
P
I/P  
I
FB (Fixed  
Versions)  
Fixed version only, this pin serves as feedback for output voltage as well as power source for VCC’s  
regulator. Connect to output node. Place 10-nF bypass capacitor immediately adjacent to this pin.  
4
FB (ADJ  
Version)  
ADJ version only, this pin serves as feedback for output voltage only. Connect to output through a  
voltage divider which determines output voltage set point.  
AGND (Fixed  
Version)  
G
P
Fixed versions only, this is the ground to which input signals and FB are compared.  
5
6
BIAS (ADJ  
Version)  
Power source for VCC’s regulator. Connect to output node. Place 10-nF bypass capacitor immediately  
adjacent to this pin.  
Open drain reset output. Connect to suitable voltage supply through a current limiting pull up resistor.  
High = regulator OK, Low = regulator fault. Will go low when EN = low. See Detailed Description.  
RESET  
O
7
8
EN  
I
I
Enable input to regulator. High = on, Low = off. Can be connected to Vin. Do not float.  
Input supply to regulator. Connect input bypass capacitors directly between this pin and GND.  
VIN  
This is a multifunction mode control input which is tolerant of voltages up to input voltage. With a valid  
synchronization signal at this pin, the device will switch in forced PWM mode at the external clock  
frequency and synchronize with it at the rising edge of the clock. See the Electrical Characteristics  
for synchronization signal specifications. With this input tied high, the device will switch at the internal  
clock frequency in forced PWM mode. With this input tied low, the device will switch at the internal  
clock frequency in AUTO mode with diode emulation at light load. Spread spectrum is disabled if there  
is a valid synchronization signal. Do not float.  
9
SYNC/MODE  
GND  
I
10  
G
Bypass to VIN immediately adjacent to this pin.  
DAP  
(EXPO  
SED  
Connect to ground – The sole function of the DAP interface is the thermal improvement of the device,  
Thermal a direct thermal connection to a ground plane is required. The DAP is not meant as an electrical  
interconnect. Electrical characteristics are not ensured.  
Thermal,  
GND  
PAD)  
(1) G = Ground, I = Input, O = Output, P = Power  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range of –40°C to 150°C (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
VIN to GND(1)  
42  
SW to GND(2)  
VIN+0.3  
3.6  
42  
BOOT to SW  
EN to GND (1)  
V
BIAS to GND: LM53600-Q1/LM53601-Q1-ADJ  
FB to GND : LM53600-Q1/LM53601-Q1 - 3.3 V, LM53600-Q1/LM53601-Q1 - 5.0 V  
FB to GND : LM53600-Q1/LM53601-Q1-ADJ  
RESET to GND  
16  
16  
5.5  
8
RESET sink current(3)  
8
mA  
V
SYNC/MODE to GND(1)  
–0.3  
–0.3  
–1  
42  
VCC  
3.6  
2
GND(4) to AGND (Fixed version only)  
Storage temperature, Tstg  
–40  
150  
°C  
(1) A maximum of 42 V can be sustained at this pin for a duration of ≤100 ms at a duty cycle of ≤1%.  
(2) A voltage of 2-V below GND and 2-V above VIN can appear on this pin for ≤200 ns with a duty cycle of ≤ 0.01%.  
(3) Do not exceed pin’s voltage rating.  
(4) This specification applies to voltage durations of 1 µs or less. The maximum D.C. voltage should not exceed ±0.3 V.  
7.2 ESD Ratings  
VALUE  
±2000  
±2000  
UNIT  
VIN, SW, CBOOT  
Human body model (HBM), per AEC Q100-002(1)  
EN, BIAS, RESET, FB, SYNC,  
PWM, VCC  
V(ESD)  
Electrostatic discharge  
V
Other pins  
±750  
±750  
Charged device model (CDM), per AEC Q100-011  
Corner pins (1, 5, 6, and 10)  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification  
7.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of –40°C to 150°C (unless otherwise noted)  
MIN  
3.8  
0
NOM  
MAX  
36  
UNIT  
Input voltage range after startup(1)  
Output voltage range  
V
5 V(2)  
5.5  
V
V
3.3 V(2)  
0
3.63  
6
Output adjustment range(3)for LM53600-Q1-ADJ (2), LM53601-Q1-ADJ(2)  
3.3  
0
LM53600-Q1  
650  
1000  
150  
Load current range  
LM53601-Q1  
mA  
°C  
0
Operating junction temperature(4)  
–40  
(1) An extended input voltage range to 3.55 V is possible; see Section 7.6. See input UVLO in Section 7.5 for startup conditions.  
(2) Output voltage should not be allowed to fall below 0 V during normal operation.  
(3) The LM53600-Q1 and LM53601-Q1 devices can operate outside of the listed range output voltage range. For output voltage outside of  
the listed range, contact Texas Instruments concerning alternate application circuit BOM and additional operational limitations such as  
higher IQ.  
(4) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
7.4 Thermal Information  
LM53600-Q1,  
LM53601-Q1  
THERMAL METRIC(1)  
UNIT  
DSX (WSON)  
10 PINS  
46.2  
Rθ JA  
Rθ JC  
Rθ JB  
φJT  
Junction -to-ambient thermal resistance  
Junction -to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
31.5  
Junction -to-board thermal resistance  
20.9  
Junction- to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
φJB  
21.0  
Rθ JC(bot)  
4.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
7.5 Electrical Characteristics  
Limits apply to the recommended operating junction temperature range of –40°C to 150°C, unless otherwise noted. Minimum  
and maximum limits are ensured through test, design or statistical correlation. Typical values represent the most likely  
parametric norm at Tj = 25°C, and are provided for reference purposes only. Unless otherwise stated the following conditions  
apply: Vin = 13.5 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VFB  
Initial output voltage accuracy Vin= 3.8 V to 36 V Tj=25°C, Open  
Loop  
–1%  
1%  
Vin= 3.8 V to 36 V, Open Loop  
–1.5%  
1.5%  
IQ  
Operating quiescent current;  
measured at VIN pin  
Vin= 13.5 V, Not switching Vbias= 5 V  
6.5  
Vin= 13.5 V, Not switching Vbias= 5 V,  
Tj= 85°C  
16  
80  
µA  
µA  
IB  
Bias current into BIAS pin for Vin= 13.5 V, Not switching Vbias= 5 V,  
adjustable versions and FB pin Mode = 0 V  
for fixed versions  
46  
1.8  
3.6  
ISD  
Shutdown quiescent current;  
measured at VIN pin  
EN = 0, VIN = 13.5 V Tj = 25°C  
EN = 0, VIN = 13.5 V Tj = 85°C  
Rising  
3
Vin_UVLO  
Minimum input voltage to  
operate  
3.2  
3.75  
V
V
Vin_UVLO _hyst  
Vreset_OV  
Minimum input voltage  
hysteresis  
Hysteresis  
0.2  
0.3  
0.35  
RESET upper threshold  
voltage  
Rising, % of Vout  
Falling, % Vout  
105%  
106.5%  
110%  
Vreset_UV  
RESET lower threshold  
voltage  
92%  
94%  
1%  
97%  
Vreset_guard  
Magnitude of RESET lower  
threshold difference from  
steady state output voltage  
Steady state output voltage and  
RESET threshold read at the same  
TJ, and VIN  
3.9%  
Vreset_hyst  
RESET hysteresis as a  
percent of output voltage set  
point  
Vreset_valid  
Minimum input voltage for  
proper RESET function  
50 µA pull-up to RESET pin, EN = 0  
V, Tj = 25°C  
1.5  
0.4  
0.4  
0.4  
V
V
50 µA pull-up to RESET pin, Vin =  
1.5 V, EN = 0 V, Tj = 25°C  
Low level RESET function  
output voltage  
0.5mA pull-up to RESET pin, Vin =  
13.5 V, EN = 0 V  
VOL  
1mA pull-up to RESET pin, Vin =  
13.5 V, EN = 3.3 V  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
 
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
Limits apply to the recommended operating junction temperature range of –40°C to 150°C, unless otherwise noted. Minimum  
and maximum limits are ensured through test, design or statistical correlation. Typical values represent the most likely  
parametric norm at Tj = 25°C, and are provided for reference purposes only. Unless otherwise stated the following conditions  
apply: Vin = 13.5 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN = 13.5 V, Center frequency with  
spread spectrum, PWM operation  
1.89  
2.1  
2.4  
VIN = 13.5 V, Without spread  
spectrum, PWM operation  
1.89  
2.1  
1.0  
2.4  
Fsw  
Switching frequency  
MHz  
VIN = 36 V, 3.3-V fixed output device  
and adjustable devices regardless of  
output voltage  
VIN = 36 V, 5-V fixed output device  
Output setting + 1 V < VIN < 18 V  
High state input < 5.5 V and > 2.3 V  
1.5  
2.1  
FSYNC  
DSYNC  
Sync frequency range  
1.9  
25%  
1.5  
2.3  
MHz  
Sync input duty cycle range  
75%  
SYNC/MODE input high  
(MODE=FPWM)  
SYNC/MODE input threshold  
voltage  
VSYNC/MODE  
SYNC/MODE input low (MODE =  
AUTO with diode emulation)  
0.4  
1
V
SYNC/MODE input hysteresis  
0.185  
FSSS  
FPSS  
Frequency span of spread  
spectrum operation(2)  
±4%  
Spread spectrum pattern  
frequency(2)  
30  
Hz  
Vin = 13.5 V, VSYNC/MODE = 3.3 V  
VIN = VSYNC/MODE = 13.5 V  
1
5
ISYNC/MODE  
SYNC/MODE leakage current  
µA  
µs  
To FPWM Mode 20 mA load, VIN  
13.5 V  
=
100  
Mode change transition time  
tMODE  
(2)  
To AUTO Mode 20-mA load, VIN  
13.5 V  
=
60  
1.35  
1.83  
LM53600-Q1 Duty cycle approaches  
0%  
1.0  
1.5  
1.65  
2.1  
High side switch current limit  
IL_HS  
A
(1)  
LM53601-Q1 Duty cycle approaches  
0%  
LM53600-Q1  
LM53601-Q1  
0.65  
1.0  
0.78  
1.2  
0.93  
1.43  
IL_LS  
IL_ZC  
Low side switch current limit  
A
A
Zero-cross current limit  
MODE/SYNC = Low  
–0.01  
LM53600-Q1  
–0.7  
–0.7  
220  
200  
-
Negative current limit MODE/  
SYNC = High  
IL_NEG  
A
LM53601-Q1  
High side MOSFET Rdson  
Low side MOSFET Rdson  
mΩ  
Rdson  
VEN  
Power switch on-resistance  
Enable input threshold voltage Enable rising  
- rising  
1.7  
2.0  
V
VEN_HYST  
VEN_WAKE  
IEN  
Enable threshold hysteresis  
Enable Wake-up threshold  
0.40  
0.4  
-
0.55  
V
V
Enable pin input current  
VIN = VEN = 13.5 V  
2.7  
3.05  
3.15  
2.7  
µA  
VIN = 13.5 V, Vbias= 0 V  
VIN = 13.5 V, Vbias= 3.3 V  
VCC rising  
Vcc  
Internal Vcc voltage  
V
V
Vcc_UVLO  
Internal Vcc input under  
voltage lock-out  
Vcc_UVLO_hyst  
Input under voltage lock-out  
hysteresis  
Hysteresis below Vcc_uvlo  
190  
mV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM53600-Q1 LM53601-Q1  
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
Limits apply to the recommended operating junction temperature range of –40°C to 150°C, unless otherwise noted. Minimum  
and maximum limits are ensured through test, design or statistical correlation. Typical values represent the most likely  
parametric norm at Tj = 25°C, and are provided for reference purposes only. Unless otherwise stated the following conditions  
apply: Vin = 13.5 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IFB  
Input current from FB to  
AGND  
LM53600-Q1-ADJ, FB = 1 V  
20  
nA  
Tj = 25°C  
0.993  
0.985  
1
1
1.007  
1.015  
120  
Reference voltage for ADJ  
option only  
Vref  
V
RRESET  
TSD  
Rdson of RESET output  
50  
Ω
Thermal shutdown rising  
threshold(2)  
151  
140  
167  
185  
TSDF  
Thermal shutdown falling  
threshold(2)  
157  
10  
°C  
TSD_hyst  
Thermal shutdown  
hysteresis(2)  
Fsw = 2.1 MHz  
76%  
Dmax  
Maximum switch duty cycle(2)  
While in frequency fold back  
96%  
(1) High side current limit is a function of duty factor. Current limit value is highest at small duty factor and less at higher duty factors.  
(2) Ensured by design, statistical analysis and production testing of correlated parameters; not tested in production.  
7.6 System Characteristics  
The following specifications are ensured by design provided that the component values in the typical application circuit  
are used. These parameters are not ensured by production testing. Limits apply to the recommended operating junction  
temperature range of –40°C to 150°C, unless otherwise noted. Minimum and Maximum limits are ensured through test,  
design or statistical correlation. Typical values represent the most likely parametric norm at Tj = 25°C, and are provided for  
reference purposes only. Unless otherwise stated the following conditions apply: Vin = 13.5 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
3.55  
3.8  
UNIT  
Minimum input voltage for full  
functionality at 500-mA load, after  
start-up  
VOUT = 3.3 V  
Vin_min  
V
Minimum input voltage for full  
functionality at 100% of max rated  
load, after start-up  
VOUT = 3.3 V  
V
V
VIN = 4.0 V to 36 V, IOUT = Maximum  
recommended load current  
3.23  
3.23  
4.9  
3.3  
3.33  
5
3.37  
3.39  
Vout_3_3V  
Output voltage for 3.3-V option  
Output voltage for 5-V option  
VIN = 3.8 V to 36 V, IOUT=100 µA to  
100 mA, typical value in Auto Mode  
VIN = 5.8 V to 36 V, IOUT = Maximum  
recommended load current  
5.1  
Vout_5V  
V
VIN = 5.5 V to 36 V, IOUT=100 µA to  
100 mA, typical value in Auto Mode  
4.9  
5.05  
5.125  
+2%  
VIN = VOUT + 0.6 V to 36 V, IOUT  
100 mA, FPWM mode  
=
–2%  
–2%  
Vout_ADJ  
Output voltage ADJ option  
VIN = VOUT + 0.6 V to 36 V, IOUT=100  
µA to 100 mA, Auto mode  
+2.5%  
VIN = VOUT + 1 V to 36 V, IOUT = 0 A  
to 1 A, TJ = 125°C, FPWM mode  
Load regulation for ADJ option(1)  
–1%  
(2)  
IQ_VIN  
Input current to VIN node of DC/DC  
utilizing the LM53600-Q1/LM53601-  
Q1  
VIN = 13.5 V, VOUT = 3.3 V, IOUT = 0  
A
23  
30  
µA  
V
VIN = 13.5 V, VOUT = 5 V, IOUT = 0 A  
Minimum input to output voltage  
differential to maintain regulation  
accuracy, without inductor DCR drop  
VOUT=3.3 V, IOUT=1000 mA, +2/–3%  
output accuracy  
VDROP1  
0.6  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
 
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
The following specifications are ensured by design provided that the component values in the typical application circuit  
are used. These parameters are not ensured by production testing. Limits apply to the recommended operating junction  
temperature range of –40°C to 150°C, unless otherwise noted. Minimum and Maximum limits are ensured through test,  
design or statistical correlation. Typical values represent the most likely parametric norm at Tj = 25°C, and are provided for  
reference purposes only. Unless otherwise stated the following conditions apply: Vin = 13.5 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Minimum input to output voltage  
differential to maintain FSW ≥ 1.85  
MHz, without inductor DCR drop  
VOUT = 3.3 V, IOUT=1000 mA, FSW  
1.85 MHz, 2% regulation accuracy  
=
VDROP2  
2.0  
V
VIN = 13.5 V, VOUT = 5.0 V, IOUT = 1  
A
85%  
80%  
86%  
83%  
VIN = 13.5 V, VOUT = 3.3 V, IOUT = 1  
A
Typical Efficiency without inductor  
loss  
Efficiency  
VIN = 13.5 V, VOUT = 5.0 V, IOUT  
0.65 A  
=
VIN = 13.5 V, VOUT = 3.3 V, IOUT  
0.65 A  
=
(1) 125°C is worst case temperature for load regulation. Layout is critical since adjustable option does not have an AGND terminal.  
(2) See Section 8.3.7 in Section 8 for the meaning of this specification and how it can be calculated.  
7.7 Timing Requirements  
Limits apply to the recommended operating junction temperature range of –40°C to 150°C, unless otherwise noted. Minimum  
and Maximum limits are ensured through test, design or statistical correlation. Typical values represent the most likely  
parametric norm at Tj = 25°C, and are provided for reference purposes only. Unless otherwise stated the following conditions  
apply: Vin = 13.5 V.  
MIN  
NOM  
50  
90  
6
MAX  
80.5  
125  
8
UNIT  
ton  
Minimum switch on time(1)  
Minimum switch off time(1)  
Delay time to RESET high signal  
VIN = 18 V, IOUT = 500 mA  
IOUT = 500 mA  
ns  
toff  
treset_act  
4
ms  
µs  
treset_filter Glitch filter time constant for RESET function  
24  
3
tSS  
tEN  
tW  
Soft-start time  
Time from first SW node  
pulse to Vref at 90%, VIN  
≥4.2 V  
1.3  
4.5  
ms  
Turn-on delay(2)  
Time from EN high until first  
SW node pulse. VIN = 13.5,  
Cvcc = 1 µF  
0.7  
4.5  
ms  
ms  
Short circuit wait time (Hiccup time)  
(1) See Section 8  
(2) Ensured by design, statistical analysis and production testing of correlated parameters; not tested in production.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
 
 
 
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
7.8 Typical Characteristics  
VIN = 13.5 V, TA = 25°C (unless otherwise noted). Specified temperatures are ambient.  
75  
72  
69  
66  
63  
60  
57  
54  
51  
48  
45  
95  
93  
91  
89  
87  
85  
83  
81  
79  
77  
75  
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
D013  
D014  
Device Type = 3.3-V Fixed Output  
Input Voltage = 20 V  
Device Type = 1 A  
Output = 4.85 V  
5-V Fixed Output In Dropout  
Load = 500 mA  
Load = 500 mA  
Figure 7-1. Minimum On-Time vs Temperature  
Figure 7-2. Minimum Off-Time vs Temperature  
108  
107  
106  
105  
104  
103  
102  
101  
100  
100  
99  
98  
97  
96  
95  
94  
Rising  
Falling  
Margin  
93  
92  
Rising  
Falling  
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
D015  
D016  
Margin is the difference between the falling RESET threshold  
and actual regulation voltage which includes the effects of  
temperature.  
Figure 7-3. Upper RESET Threshold  
Figure 7-4. Lower Reset Threshold  
101  
100.8  
100.6  
100.4  
100.2  
100  
1.9  
1.8  
1.7  
Rising  
Falling  
1.6  
99.8  
99.6  
99.4  
99.2  
99  
1.5  
1.4  
1.3  
-40 -20  
0
20  
40  
60  
80 100 120 140  
-40 -20  
0
20  
40  
60  
80 100 120 140  
Temperature (èC)  
Temperature (èC)  
D017  
D018  
Figure 7-5. Normalized VFB vs Temperature  
Figure 7-6. EN Threshold vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The LM53600-Q1 and LM53601-Q1 devices are wide-input voltage range, low quiescent current, high-  
performance regulators with internal compensation designed specifically for the automotive market. These  
devices are designed to minimize end product cost and size while operating in demanding automotive  
environments. Normal operating frequency is 2.1 MHz allowing the use of small passive components. State  
of the art current limit allows the use of inductors that are smaller than those typically used in a 650mA or  
1000mA regulator. 2.1MHz is above the AM band, allowing significant saving in input filtering. This part has a  
low unloaded current consumption eliminating the need for an external back-up LDO. The low shutdown current  
and high maximum operating voltage of the LM53600-Q1 and LM53601-Q1 devices also allows the elimination  
of an external load switch. To further reduce system cost, an advanced reset output is provided, which can often  
eliminate the use of an external reset or supervisory device.  
The LM53600-Q1 and LM53601-Q1 devices are AEC Q1 qualified, and also have electrical characteristics  
ensured up to a maximum junction temperature of 150°C.  
8.2 Functional Block Diagram  
VCC  
VIN  
Int. Reg.  
Bias  
EN  
BOOT  
HS Current  
Sense  
Voltage  
Reference  
Error  
Amplifier  
FB  
COMP  
Control Logic  
Driver  
SW  
+
-
+
-
LS Current  
Sense  
RESET  
OSC  
Control  
SYNC/MODE  
AGND  
GND  
Figure 8-1. Fixed Versions  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
 
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
BIAS VCC  
VIN  
Int. Reg.  
Bias  
EN  
BOOT  
HS Current  
Sense  
Voltage  
Reference  
Error  
Amplifier  
COMP  
Control Logic  
Driver  
SW  
+
-
+
-
FB  
LS Current  
Sense  
RESET  
OSC  
Control  
SYNC/MODE  
GND  
Figure 8-2. Adjustable Versions  
8.3 Feature Description  
8.3.1 Control Scheme  
The control scheme of the LM53600-Q1 and LM53601-Q1 devices allows this part to operate under a wide  
range of conditions with a low number of external components. Peak current mode control allows a wide  
range of input voltages and output capacitance values, while maintaining a constant switching frequency. Stable  
operation is maintained while output capacitance is changed during operation as well. This allows use in  
systems that require high performance during load transients and which have load switches which remove loads  
as system operating state changes. Short minimum on- and off-times ensure constant frequency regulation over  
a wide range of conversion ratios. These on- and off- times allow for a duty factor window of 13% to 77% at  
2.1-MHz switching frequency.  
This architecture uses frequency foldback in order to achieve low dropout voltage maintaining output regulation  
as the input voltage falls close to output voltage. The frequency foldback is smooth and continuous, and  
activated as off-time approaches its minimum. Under these conditions, the LM53600-Q1 and LM53601-Q1  
devices operate much like a constant off-time converter allowing maximum duty cycle to reach 97%, which  
allows output voltage regulation with 600-mV dropout.  
If input voltage exceeds approximately 21 V, frequency is reduced smoothly as a function of input voltage.  
This frequency reduction allows output voltage regulation and current mode control to operate with duty factor  
below 13%. Since current mode control continues at high input voltage insensitivity to output capacitance is  
maintained. This form of fold back will not be active if input voltage is below 18 V, insuring constant frequency  
operation over normal automotive operating conditions.  
High input voltage foldback has two settings; see FSW under 36-V input conditions for detail. Since adjustable  
output voltage versions fold back under high input voltage conditions as though output voltage were 3.3 V, larger  
inductance and output capacitance is required if an adjustable device is used with output voltage above 4.2  
V. If a 4.7-µH inductor is used in system with greater 4.2-V output using an adjustable device, the converter  
remains stable but may not achieve full output current when operating at high input voltages, such as 36 V, due  
to excessive inductor current ripple.  
As load current is reduced, the LM53600-Q1 and LM53601-Q1 devices transition to light load mode if SYNC/  
MODE is low. In this mode, diode emulation is used to reduce RMS inductor current and switching frequency is  
reduced. Also, fixed voltage versions do not need a voltage divider connected to FB saving additional power. As  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
a result, only 23 µA (typical, while converting 13.5 V to 3.3 V) is consumed to regulate output voltage if output is  
unloaded. Average output voltage increases slightly while lightly loaded.  
8.3.2 Soft-Start Function  
Soft-start time is fixed internally at about 3.0 ms. Soft-start is achieved by ramping the internal reference. The  
LM53600-Q1 and LM53601-Q1 devices operate correctly even if there is a voltage present on output before  
activation of the LM53600-Q1 or LM53601-Q1.  
8.3.3 Current Limit  
The LM53600-Q1 and LM53601-Q1 devices use two current limits which allow the use of smaller inductors than  
systems utilizing a single current limit. A coarse high side or peak current limit is provided to protect against  
faults and saturated inductors. High side current limit limits the duration of high sides FET's on period during  
a given clock cycle. A precision valley current limit prevents excessive average output current from the Buck  
converter of the LM53600-Q1 and LM53601-Q1 devices. A new switching cycle is not initiated until inductor  
current drops below the valley current limit. This scheme allows use of inductors with saturation current rated  
less than twice the rated operating current of the LM53600-Q1 or LM53601-Q1.  
Vout  
Peak  
Valley  
Figure 8-3. Current Limit Operation  
Figure 8-3 shows the response of the LM53600-Q1 or LM53601-Q1 device to a short circuit: Peak current limit  
prevents excessive peak current while valley current limit prevents excessive average inductor current. After a  
small number of cycles, hiccup mode is activated.  
8.3.4 Hiccup Mode  
In order to prevent excessive heating and power consumption under sustained short circuit conditions, a hiccup  
mode is included. If an over current condition is maintained, the LM53600-Q1 or LM53601-Q1 device shuts  
off its output and waits for tW (approximately 4.5 ms), after which the LM53600-Q1 or LM53601-Q1 restarts  
operation beginning by activating soft start.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
Vout  
Figure 8-4. Hiccup Operation  
Figure 8-4 shows hiccup mode operation: The switch node of the LM53600-Q1 LM53601-Q1 is high impedance  
after a short circuit or over current persists for a short duration. Periodically, the LM53600-Q1 or LM53601-Q1  
attempts to restart. If the short has been removed before one of these restart attempts, the LM53600-Q1 or  
LM53601-Q1 operates normally.  
8.3.5 RESET Function  
While the reset function of the LM53600-Q1 and LM53601-Q1 devices resembles a standard power good  
function, its functionality is designed to replace a discrete reset IC, reducing BOM cost. There are three major  
differences between the reset function and the normal power good function seen in most regulators:  
A delay has been added for release of reset. See waveforms below.  
RESET output signals a fault (pulls its output to ground) while the part is disabled.  
RESET continues to operate with input voltage as low as 1.5 V. Below this input voltage, RESET output may  
be high impedance.  
Input Voltage  
Output Voltage  
Input Voltage  
treset_filter  
treset_filter  
ttreset_act  
t
ttreset_act  
t
treset_filter  
treset_filter  
ttreset_act  
t
Vreset_OV  
Vreset_hyst  
treset_filter  
Vreset_UV  
Vin_UVLO (rising)  
Vin_UVLO œ Vin_UVLO_hyst  
Vreset_valid  
GND  
3.3 V  
LM53600/01  
RESET  
RESET may not  
be valid if input is  
below Vreset_valid  
Small glitches  
do not reset  
timer  
Small glitches do not  
cause RESET to  
signal a fault  
RESET may not  
be valid if input is  
below Vreset_valid  
Startup  
delay  
Soft start  
complete  
OV activates  
RESET  
RESET continues to  
operate below Vin_UVLO  
Figure 8-5. Reset Output Function Operation  
The following table summarizes conditions that cause a fault to be flagged by RESET . Once a fault is flagged,  
RESET will not be released (become high impedance) until either there is no fault for treset_act or VIN drops  
below Vreset_valid  
.
Table showing conditions that cause RESET to signal a fault (pull low).  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
FAULT CONDITION ENDS (AFTER WHICH Treset_act MUST PASS  
BEFORE RESET OUTPUT IS RELEASED)  
FAULT CONDITION INITIATED  
FB below Vreset_UV for longer than treset_filt  
FB above Vreset_OV for longer than treset_filt  
Junction temperature exceeds TSD  
EN low  
FB above Vreset_UV + Vreset_hyst for longer than treset_filt  
FB below Vreset_OV - Vreset_hyst for longer than treset_filt  
Junction temperature falls below TSD – TSD_hyst  
tEN passes after EN becomes high(1)  
VIN falls below Vin_UVLO - Vin_UVLO _hyst or VCC pin falls below  
Vcc_UVLO - Vcc_UVLO_hyst  
Voltage on VIN exceeds Vin_UVLO and VCC exceed Vcc_UVLO  
(1) As an additional safety feature, RESET remains low until approximately 1ms after soft start ends even if all other conditions in this  
table are met and treset_act has passed. Lockout during soft start does not require treset_act to pass before RESET is released.  
The threshold voltage for the RESET function is specified taking advantage of the availability of the LM53600-Q1  
internal feedback threshold to the RESET circuit. This allows a maximum threshold of 97% of selected output  
voltage to be specified at the same time as 95.7% of actual operating point. The net result is a more accurate  
reset function while expanding the system allowance for transient response without the need for extremely  
accurate internal circuitry. See output voltage error stack up comparison, below.  
System with  
external reset IC  
System using the LM53600/01's  
internal reset function  
SMPS upper limit  
+5%  
LM53600/01 max  
reference value  
-1.5%  
1.5%  
SMPS nominal  
output voltage  
0%  
1.5% LM53600/01  
-1.5%  
accuracy  
LM53600/01 min  
reference value  
-1.5%  
-3.5%  
Available margin for ripple  
and transient response  
-4.5%  
Available margin for ripple  
and transient response  
Offset between  
reference voltage  
and nominal  
SMPS lower limit,  
RESET should not trip  
above this voltage  
-5.5%  
-7%  
-5%  
-6.5%  
-8%  
threshold voltage  
1.5%  
Nominal external  
reset IC threshold  
1%  
1% Reset threshold accuracy with  
respect to LM53600/01 reference voltage  
-1%  
Nominal threshold  
setting if reference  
is 1.5% low  
1.5% Reset IC  
-1.5%  
accuracy  
RESET must trip  
Figure 8-6. Reset Threshold Voltage Stack Up  
8.3.6 Forced PWM Operation  
When constant frequency operation is more important than light load efficiency, the SYNC/MODE input of the  
LM53600-Q1 and LM53601-Q1 devices should be pulled high, or a valid synchronization input be provided.  
Once activated, this feature ensures that the switching frequency will stay above the AM frequency band, while  
operating between the minimum and maximum duty cycle limits. Essentially, the diode emulation feature is  
turned off in this mode. This means that the device will remain in CCM under light loads. Under conditions where  
the device must reduce the on-time or off-time below the ensured minimum to maintain regulation, the frequency  
will reduce to maintain the effective duty cycle required for regulation. This occurs for very high and very low  
input/output voltage ratios.  
This feature may be activated and deactivated while the part is regulating without removing the load. This feature  
activates and deactivates gradually, over approximately 40 µs, preventing perturbation of output voltage. When  
in FPWM mode, a limited reverse current is allowed through the inductor allowing power to pass from the  
regulators output to its input.  
Note that while FPWM is activated, larger currents pass through the inductor, if lightly loaded, than in auto mode.  
This may result in more EMI, though at a predictable frequency. Once loads are heavy enough to necessitate  
CCM operation, FPWM mode has no measurable effect on regulator operation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
8.3.7 Auto Mode Operation and IQ_VIN  
If SYNC/MODE is held low for a period greater than a few microseconds, the LM53600-Q1 and LM53601-Q1  
devices will enable automatic power saving light load operation and diode emulation. In this mode, if peak  
current needed to regulate output voltage drops below a selected value, the clock of the LM53600-Q1 or  
LM53601-Q1 device slows to maintain regulation. The gain of this clock slowing circuit is low to maintain stability.  
Output voltage with no load is approximately 1% higher than with a load high enough to allow full frequency  
operation.  
IQ_VIN is the current consumed by a converter utilizing a LM53600-Q1 or LM53601-Q1 device while regulating  
without a load. While operating without a load, the LM53600-Q1 or LM53601-Q1 is only powering itself. The  
LM53600-Q1 and LM53601-Q1 device draws power from two sources, its VIN pin, IQ, and either its FB pin for  
fixed versions or BIAS pin for adjustable versions, IB. Since BIAS or FB is connected to the circuit’s output,  
the power consumed is converted from input power with an effective efficiency, ηeff, of ~80%. Here, effective  
efficiency is the added input power needed when lightly loading the converter of the LM53600-Q1 and LM53601-  
Q1 devices is divided by the corresponding additional load. This allows unloaded current to be calculated as  
follows:  
Output Voltage  
IQ_ VIN = IQ +IEN + I +I  
(
)
B
div  
heff ìInput Voltage  
(1)  
where  
IQ_VIN is the current consumed by the Buck converter utilizing the LM53600-Q1 or LM53601-Q1 while  
unloaded.  
IQ is the current drawn by the LM53600-Q1 or LM53601-Q1 from its VIN terminal. See IQ in section 7.6.  
IEN is current drawn by the LM53600-Q1 or LM53601-Q1 from its EN terminal. Include this current if EN is  
connected to VIN. See IEN in section 7.6. Note that this current drops to a very low value if connected to a  
voltage less than 5 V.  
IB is bias/feedback current drawn by the LM53600-Q1 or LM53601-Q1 while the Buck converter utilizing it is  
unloaded. See IB in section 7.6.  
Idiv is the current drawn by the feedback voltage divider used to set output voltage for adjustable devices.  
This current is zero for fixed output voltage devices.  
ηeff is the light load efficiency of the Buck converter with IQ_VIN removed from the Buck converter’s input  
current. 0.8 is a conservative value that can be used under normal operating conditions  
Note that the EN pin consumes a few microamperes when tied to high; see IEN. Add IEN to IQ as shown in the  
above equation if EN is tied to VIN. If EN is tied to a voltage less than 5 V, virtually no current is consumed  
allowing EN to be used as a UVL once a voltage divider is added.  
8.3.8 SYNC Operation  
Often it is desirable to synchronize the operation of multiple regulators in a single system. This technique  
results in better defined EMI and can reduce the need for capacitance on some power rails. The LM53600-Q1  
and LM53601-Q1 devices provide a SYNC/MODE input, which allows synchronization with an external clock.  
The LM53600-Q1/LM53601-Q1 implements an in-phase locking scheme – the rising edge of the clock signal  
provided to the input of the LM53600-Q1 or LM53601-Q1 device corresponds to turning on the high side  
device within the LM53600-Q1 or LM53601-Q1. This function is implemented using phase locking over a limited  
frequency range eliminating large glitches upon initial application of an external clock. The clock fed into the  
LM53600-Q1 or LM53601-Q1 device replaces the internal free running clock but does not affect frequency  
fold-back operation. Output voltage will continue to be well regulated with duty factors outside of the normal 15%  
through 77% range though at reduced frequency.  
The device remains in FPWM mode and operates in CCM for light loads when synchronization input is provided.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
8.3.9 Spread Spectrum  
The spread spectrum is a factory option. In order to find which parts have spread spectrum enabled, see Section  
5.  
The purpose of the spread spectrum is to eliminate peak emissions at specific frequencies by spreading  
emissions across a wider range of frequencies than a part with fixed frequency operation. In most systems  
containing the LM53600-Q1 and LM53601-Q1 devices, low frequency conducted emissions from the first few  
harmonics of the switching frequency can be easily filtered. A more difficult design criterion is reduction of  
emissions at higher harmonics which fall in the FM band. These harmonics often couple to the environment  
through electric fields around the switch node. The LM53600-Q1 and LM53601-Q1 devices use a ±4% spread  
of frequencies which spread energy smoothly across the FM band but is small enough to limit sub-harmonic  
emissions below its switching frequency. Peak emissions at the part’s switching frequency are only reduced by  
slightly less than 1 dB, while peaks in the FM band are typically reduced by more than 6dB.  
The LM53600-Q1 and LM53601-Q1 devices use a cycle to cycle frequency hopping method based on a linear  
feedback shift register (LFSR). Intelligent pseudo random generator limits cycle to cycle frequency changes to  
limit output ripple. Pseudo random pattern repeats by approximately 7 Hz which is below the audio band.  
The spread spectrum is only available while the clock of the LM53600-Q1 and LM53601-Q1 devices is free  
running at its natural frequency. Any of the following conditions overrides spread spectrum, turning it off:  
1. An external clock is applied to the SYNC/MODE terminal.  
2. The clock is slowed due to operation low input voltage – this is operation in dropout.  
3. The clock is slowed due to high input voltage – input voltage above approximately 21 V disables spread  
spectrum.  
4. The clock is slowed under light load in Auto mode – this is normally not seen above 200 mA of load. In  
FPWM mode, spread spectrum is active even if there is no load.  
8.4 Device Functional Modes  
8.4.1 Shutdown  
The LM53600-Q1 and LM53601-Q1 devices shut down most internal circuitry and both high side and low side  
power switches connected to its switch node under any of the following conditions:  
1. EN is below VEN  
2. VIN is below Vin_UVLO  
3. Junction temperature exceeds TSD  
Note that the above conditions have hysteresis. Also, RESET remains active to a very low input voltage,  
Vreset_valid  
.
8.4.2 FPWM Operation  
If SYNC/MODE is above VSYNC/MODE high or a valid synchronizing is applied to SYNC/MODE, constant  
frequency operation is maintained across load. This requires negative current be allowed in the inductor if load is  
light. If a large negative load is present, operation is halted by a reverse current limit, IL-NEG  
.
8.4.3 Auto Mode Operation  
If SYNC/MODE is below VSYNC/MODE low, reverse current in the inductor is not allowed – this feature is called  
diode emulation. While load is heavy, operation is the same as in FPWM operation. If load is light, switching  
frequency is reduced saving energy and allowing regulation to be maintained. Note that while under loads  
which require moderate reduction of frequency, pulses often are seen if small groups, often called burst mode  
operation, which can increase output ripple. Under this condition, output ripple can be reduced by increasing  
output capacitance.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
9 Applications and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The LM53600-Q1 and LM53601-Q1 are step-down DC–DC converters, typically used to convert a higher DC  
voltage to a lower DC voltage with a maximum output current of either 1 A or 650 mA. The following design  
procedure can be used to select components for the LM53600-Q1 or LM53601-Q1. Alternately, the WEBENCH®  
Design Tool may be used to generate a complete design. This tool utilizes an iterative design procedure and  
has access to a comprehensive database of components. This allows the tool to create an optimized design and  
allows the user to experiment with various design options.  
Figure 9-1 shows the minimum required application circuit for the fixed output voltage versions, while Figure 9-2  
shows the connections for complete processor control of the LM53601-Q1. Please refer to these figures while  
following the design procedures. Table 9-2 provides an example of typical design requirements.  
VPU  
RPU  
RESET  
EN  
AGND  
FB  
CBIAS  
0.01 µF  
LM53600  
LM53601  
VSUPPLY  
VIN  
VCC  
(Fixed output  
voltage)  
CVCC  
1 µF  
SYNC/  
MODE  
BOOT  
SW  
CBOOT  
0.1 µF  
CIN_HF  
0.1 µF  
CIN  
(Includes  
Filter)  
GND  
L1  
4.7 µH  
10 µF  
COUT (includes load)  
20 µF  
(DAP)  
Figure 9-1. Off Battery, Automotive, Fixed Output Voltage, Buck, 2.1 MHz, Spread Spectrum  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
 
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
VPU  
RPU  
RESET  
EN  
BIAS  
FB  
CBIAS  
0.01 µF  
RFBT  
RFBB  
VSUPPLY  
LM53600  
LM53601  
(Adjustable)  
VIN  
VCC  
CVCC  
1 µF  
SYNC/  
MODE  
BOOT  
SW  
CBOOT  
0.1 µF  
CIN_HF  
0.1 µF  
CIN  
(Includes  
Filter)  
GND  
L1  
4.7 µH (4.2 V output)  
6.8 µH (> 4.2 V output)  
10 µF  
COUT (includes load)  
20 µF (4.2 V output)  
30 µF (> 4.2 V output)  
(DAP)  
Figure 9-2. Off Battery, Automotive, Adjustable Output Voltage, Buck, 2.1 MHz, Spread Spectrum  
9.2 Typical Applications  
9.2.1 Off-Battery 5-V, 1-A Output Automotive Converter with Spread Spectrum  
VPU  
LM53601LQDSXRQ1  
100k  
AGND  
RESET  
FB  
EN  
CBIAS  
0.01 µF  
VBATT (6 V to 18 V, 42 V Max)  
VIN  
VCC  
CVCC  
1 µF  
SYNC/  
MODE  
CBOOT  
0.1 µF  
BOOT  
SW  
Typically  
part of load  
CIN_HF  
0.1 µF  
CIN2  
4.7µF  
CIN1  
4.7µF  
GND  
L1  
4.7 µH  
COUT2  
10 µF  
COUT1  
10 µF  
(DAP)  
Figure 9-3. Typical LM53601LQDSXRQ1 Application Schematic  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
 
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
9.2.1.1 Design Requirements  
For this design example, use the parameters listed in Table 9-1 as the input parameters.  
Table 9-1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
VALUE  
COMMENT  
This converter will run continuously up to 36 V  
Fixed option used  
6 V to 18 V with excursions to 42 V  
Output voltage  
5 V  
Output current range  
Light load mode  
Spread spectrum  
No Load to 1 A  
Switchable  
Enabled  
Factory option  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Inductor Selection  
The LM53600-Q1 and LM53601-Q1 devices run in current mode and has internal compensation. This  
compensation is stable with inductance between 4 µH and 10 µH. For most applications, 4.7 µH should be  
used with fixed 5-V and 3.3-V versions of the LM53600-Q1 and LM53601-Q1 devices. The output inductor is  
limited by current ripple while operating at high input voltage to a minimum rating of 4.7 µH for 3.3 V and  
5-V fixed output devices. Since adjustable devices operate at the same frequency under high input voltage  
conditions as devices set to deliver 3.3 V, inductor current ripple at high input voltages can become excessive  
while using a 4.7µH while using an adjustable device that is delivering output voltage above 4.2 V. 6.8 µH is  
recommended if an adjustable device is used to produce output voltage above 4.2 V. Not exceeding 6.8 µH is  
recommended since use of large inductance causes poor transient load response. For the LM53601-Q1 (1-A  
output), a saturation rating of about 2 A is recommended since this is the maximum current limit rating. Likewise,  
a saturation current rating of about 1.5 A is recommended for the LM53600-Q1. See IL_HS in the data sheet.  
Table 9-2. Output Inductor  
RECOMMENDED  
MINIMUM SATURATION  
CURRENT(2)  
RECOMMENDED  
PART TYPE  
COMMENT  
INDUCTANCE RATING(1)  
LM53601-Q1 3.3 V  
and 5 V  
4.7 µH  
about 2 A  
about 2 A  
about 2 A  
about 1.5 A  
about 1.5 A  
about 1.5 A  
6.8 µH works in systems with less demanding transient load  
requirements  
LM53601-Q1 ADJ set 4.7 µH  
to ≤ 4.2-V output  
LM53601-Q1 ADJ set 6.8 µH  
to > 4.2-V output  
LM53600-Q1 3.3 V  
and 5 V  
4.7 µH  
LM53600-Q1 ADJ set 4.7 µH  
to ≤ 4.2-V output  
Up to 10 µH works in systems with less demanding transient  
load requirements  
LM53600-Q1 ADJ set 6.8 µH  
to > 4.2-V output  
(1) The values shown in this table are standard inductance ratings. The LM53600-Q1/LM53601-Q1 tolerates reduced inductance due to  
DC current and temperature.  
(2) The LM53600-Q1/LM53601-Q1 tolerates partial saturation of inductors (reduction of ~40% reduction of inductance of the current value  
listed due to saturation. Partial saturation may reduce maximum current available at maximum voltage).  
9.2.1.2.2 Output Capacitor Selection  
The current mode control scheme of the LM53600-Q1 and LM53601-Q1 devices allows operation over a wide  
range of output capacitance. A minimum of 10 µF is needed to ensure stability. Capacitance above 20 µF  
is recommended to ensure load transient response typically desired in systems. 40 µF is recommended for  
applications with demanding load transient requirements and for which Auto mode ripple is important. 40 µF also  
aids devices with output voltage below 4-V transition into high voltage mode. Capacitance above 400 µF can  
cause excessive current to be drawn during start up so is not recommended. These capacitance values include  
load capacitance – only 10 µF is needed near to the LM53600-Q1 and LM53601-Q1 devices. Output capacitors  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
 
 
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
should have low ESR to reduce output ripple. These capacitors should have at least X7R rating and should be of  
automotive grade if used in automotive applications.  
Table 9-3. Output Capacitor  
RECOMMENDED  
LM53600-Q1 AND LM53601-Q1  
TYPE AND SYSTEM NEED  
MINIMUM  
TOTAL OUTPUT  
CAPACITANCE  
COMMENTS  
LM53600-Q1 5 V  
20 µF  
Approximately 200-mV/A step load response with 1-µs rise/fall time.  
Approximately 200-mV/A step load response with 1-µs rise/fall time.  
LM53601-Q1 5 V with typical  
system requirements  
20 µF  
40 µF  
LM53601-Q1 5V in high  
performance systems  
Approximately 150-mV/A step load, approximately 20-mV maximum Auto mode  
ripple  
LM53600-Q1/LM53601-Q1 3.3 V  
and adjustable parts with less  
than 4.2-V output setting with  
typical system requirements  
Approximately 200-mV/A step load response with 1µs rise/fall time, up to 60 mV of  
ripple during transition into high voltage mode and in Auto mode.  
20 µF  
LM53600-Q1/LM53601-Q1 3.3 V  
and adjustable parts with less  
than 4.2 V in high performance  
systems  
Approximately 150-mV/A step load, approximately 30-mV maximum Auto mode  
ripple, and 15-mV maximum HV mode transition ripple.  
40 µF  
40 µF  
LM53600-Q1 ADJ set to greater  
than 4.2-V output  
Larger capacitance is necessitated by higher inductance needed.  
9.2.1.2.3 Input Capacitor Selection  
Input capacitors serve two important functions: The first is to reduce input voltage ripple into the LM53601-Q1  
and the input filter of the system. The second is to reduce high frequency noise. These two functions are  
implemented most effectively with separate capacitors, see Table 9-4.  
Table 9-4. Input Capacitor  
RECOMMENDED  
CAPACITOR  
COMMENT  
VALUE  
This capacitor is used to suppress high frequency noise originating during switching events. It is  
important to place capacitor as close to the LM53600-Q1 and LM53601-Q1 devices as design rules  
allow. Position is more important than exact capacity. Once high frequency propagates into a system,  
it can be hard to suppress or filter. Since this capacitor will be exposed to battery voltage in systems  
that operate directly off of battery, 50 V or greater rating is recommended.  
CIN_HF  
0.1 µF  
10 µF  
This capacitance is used to suppress input ripple and transients due to output load transients. If  
CIN is too small, input voltage may dip during load transients resetting the system if the system is  
operated under low voltage conditions. 10 µF is intended to include all capacitance in the LM53600-  
Q1/LM53601-Q1’s input node. 4.7 µF adjacent to the LM53600-Q1 and LM53601-Q1 devices is  
recommended. Since this capacitor will be exposed to battery voltage in systems that operate directly  
off of battery, 50 V or greater rating is recommended.  
CIN  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
Table 9-5 shows recommended capacitor values other than input and output capacitors.  
Table 9-5. Other Capacitors  
MINIMUM  
VALUE  
CAPACITOR  
CBOOT  
COMMENT  
0.1 µF  
While a voltage rating of only 5 V is necessary, using a higher voltage rating is recommended.  
While a voltage rating of only 5 V is necessary, 16-V capacitors have a low voltage coefficient.  
This capacitor should be rated to survive output voltage.  
CVCC  
CBIAS  
1 µF  
0.01 µF  
Note that performance of converters utilizing an adjustable version of the LM53600-Q1 and LM53601-Q1  
devices may be enhanced by adding CFF, a capacitor in parallel with RFBT. 100 pF is recommended.  
9.2.1.2.4 FB Voltage Divider for Adjustable Versions  
The adjustable version of the LM53600RB-Q1 and LM53601RB-Q1 devices regulates output voltage to a level  
that results in the FB node being Vref which is approximately 1.0 V; see Section 7.5 Output voltage given a  
specific feedback divider can be calculated using the following equation:  
RFBB + RFBT  
RFBB  
Output Voltage = Vref  
ì
(2)  
See typical applications schematic for adjustable versions of the LM53600-Q1 and LM53601-Q1 devices. Since  
the value of RFBT is typically set by board leakage considerations, the above equation can be solved for RFBB  
the remaining unknown:  
,
V
ìRFBT  
ref  
RFBB  
=
Output Voltage - V  
ref  
(3)  
Note that typically, 100 kΩ is used for RFBT  
.
9.2.1.2.5 RPU - RESET Pull Up Resistor  
While RESET is rated to sink up to 8 mA, under low, 1.5-V input voltage conditions, a low output level is only  
ensured with loads of 50 µA. If accurate RESET output is needed with 1.5-V input voltage, 100 kΩ should be  
used to pull up to 5 V, or a 66-kΩ resistor should be used when pulling up to a 3.3-V supply. If input voltage  
is above 3.8 V, values as low as 10 kΩ or 6.6 kΩ can be used to pull up to 5 V or 3.3 V, respectively. Other  
considerations, such as power consumption may increase any of the values listed above.  
9.2.1.3 Application Curves  
The following characteristics apply only to the circuit shown in Figure 9-3. These parameters are not tested and represent  
typical performance only. Unless otherwise stated, the following conditions apply: VIN = 13.5 V, TA = 25°C.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
100  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
60  
Input Voltage  
8 V  
Input Voltage  
8 V  
13.5 V  
13.5 V  
18 V  
36 V  
18 V  
36 V  
60  
0
0.005 0.01  
0.1  
Output Current (A)  
1
0.2  
0.4 0.6  
Output Current (A)  
0.8  
1
D002  
D001  
Device Type = 1 A Mode = Auto  
5-V Fixed Output  
Device type = 1 A  
Mode = High  
5-V Fixed Output  
Figure 9-5. Efficiency  
Figure 9-4. Efficiency  
5.1  
800  
600  
400  
200  
0
5.05  
5
4.95  
Ambient  
25 èC  
FPWM Mode  
Auto Mode  
125 èC  
4.9  
0
0.2  
0.4 0.6  
Output Current (A)  
0.8  
1
0
0.2  
0.4 0.6  
Output Current (A)  
0.8  
1
D005  
D007  
Device Type = 1 A  
5-V Fixed Output  
Device Type = 1 A  
5-V Fixed Output  
92-mΩ Inductor  
Output = 4.85 V  
Figure 9-6. Load Regulation  
Figure 9-7. Dropout Voltage  
1.8  
1.6  
1.4  
1.2  
1
2.5  
2
1.5  
1
0.8  
0.6  
0.4  
0.2  
0
0.5  
0
Ambient  
25 èC  
125 èC  
0
0.2  
0.4 0.6  
Output Current (A)  
0.8  
1
0
5
10  
15  
20  
25  
Input Voltage (V)  
30  
35  
40  
D009  
D011  
Device Type = 1 A  
5-V Fixed Output  
92-mΩ inductor  
Device Type = 1 A  
5-V Fixed Output  
Load = 500 mA  
Spread Spectrum  
Frequency drops to 1.85MHz  
Figure 9-8. Entry into Dropout  
Figure 9-9. Frequency vs. Input Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LM53600-Q1 LM53601-Q1  
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
SW (2 V/DIV)  
SW (2 V/DIV)  
Time (1 ms/DIV)  
Time (200 ns/DIV)  
D019  
D020  
Device Type = 1 A  
Load = 10 mA  
5-V Fixed Output  
Mode = Auto  
Device Type = 1 A  
Mode = Auto  
5-V Fixed Output  
Load = 500 mA  
Figure 9-10. SW Node Operation  
Figure 9-11. SW Node Operation  
9.2.2 Off-Battery 3.3 V, 1 A Output Automotive Converter with Spread Spectrum  
VPU  
LM53601NQDSXRQ1  
100k  
AGND  
RESET  
FB  
EN  
CBIAS  
0.01 µF  
VBATT (4 V to 18 V, 42 V Max)  
VIN  
VCC  
CVCC  
1 µF  
Typically part  
of load  
SYNC/  
MODE  
CBOOT  
0.1 µF  
BOOT  
SW  
CIN_HF  
0.1 µF  
CIN2  
CIN1  
4.7µF  
4.7µF  
GND  
L1  
4.7 µH  
COUT1  
10 µF  
CLOAD  
22 µF  
COUT2  
10 µF  
(DAP)  
Figure 9-12. Typical LM53601NQDSXRQ1 Application Schematic  
9.2.2.1 Design Requirements  
For this design example, use the parameters in Table 9-6 as the input parameters.  
Table 9-6. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
VALUE  
COMMENT  
4 V to 18 V with excursions to 42 V This converter will run continuously up to 36 V  
Output voltage  
3.3 V  
Fixed option used  
Factory option  
Output current range  
Light load mode  
Spread spectrum  
No load to 1 A  
Switchable  
Enabled  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
9.2.2.2 Design Procedure  
The same detailed design procedure as shown starting in section 7.1.2.1 is used to create the schematic  
for this example. The most important difference is that the LM53601NQDSXRQ1 is used in place of the  
LM53601LQDSXRQ1. In addition, more output capacitance is recommended for this option. Most output  
capacitance will be part of the load and be used as input bypassing for the load.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LM53600-Q1 LM53601-Q1  
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
9.2.2.3 Application Curves  
The following characteristics apply only to the circuit shown in Figure 9-12. These parameters are not tested and represent  
typical performance only. Unless otherwise stated, the following conditions apply: VIN = 13.5 V, TA = 25°C.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
Input Voltage  
8 V  
13.5 V  
18 V  
36 V  
Input Voltage  
8 V  
13.5 V  
18 V  
36 V  
0
0.2  
0.4 0.6  
Output Current (A)  
0.8  
1
0.005 0.01  
0.1  
Output Current (A)  
1
D003  
D004  
Device Type = 1 A  
Mode = FPWM  
3.3-V Fixed Output  
Device Type = 1 A  
Mode = Auto  
3.3-V Fixed Output  
Figure 9-13. Efficiency  
Figure 9-14. Efficiency  
3.366  
3.333  
3.3  
800  
600  
400  
200  
3.267  
Ambient  
25 èC  
125 èC  
FPWM Mode  
Auto Mode  
3.234  
0
0
0
0.2  
0.4 0.6  
Output Current (A)  
0.8  
1
0.2  
0.4 0.6  
Output Current (A)  
0.8  
1
D006  
D008  
Device Type = 1 A  
3.3-V Fixed Output  
Device Type = 1 A Output = 3.2 V  
3.3-V Fixed Output  
92-mΩ Inductor  
Figure 9-15. Load Regulation  
Figure 9-16. Dropout Voltage  
1.8  
1.6  
1.4  
1.2  
1
2.5  
2
1.5  
1
0.8  
0.6  
0.4  
0.2  
0
0.5  
0
Ambient  
25 èC  
125 èC  
0
0.2  
0.4 0.6  
Output Current (A)  
0.8  
1
0
5
10  
15  
20  
Input Voltage (V)  
25  
30  
35  
40  
D010  
D012  
Device Type = 1 A  
92-mΩ Inductor  
3.3-V Fixed Output  
Frequency Drops to 1.85 MHz  
Device Type = 1 A  
3.3-V Fixed Output  
Spread Spectrum  
Load = 500 mA  
Figure 9-17. Entry into Dropout  
Figure 9-18. Frequency vs. Input Voltage  
9.3 Do's and Don't's  
Don't: Exceed the Section 7.1.  
Don't: Exceed the Section 7.2.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
Don't: Exceed the Section 7.3.  
Don't: Allow the EN, FPWM or SYNC input to float.  
Don't: Allow the output voltage to exceed the input voltage, nor go below ground.  
Don't: Use the thermal data given in the Thermal Information table to design your application.  
Do: Follow all of the guidelines and/or suggestions found in this data sheet, before committing your design to  
production. TI Application Engineers are ready to help critique your design and PCB layout to help make your  
project a success.  
Do: Refer to the helpful documents found in Table 11-1 and Table 11-2.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LM53600-Q1 LM53601-Q1  
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
10 Power Supply Recommendations  
The LM53600-Q1 and LM53601-Q1 devices are designed for automotive direct off battery applications needing  
minimal protection. Protection recommended includes reverse battery protection and EMI/ESD filtering. The  
LM53600-Q1 and LM53601-Q1 devices are able to continue regulating during load dump with peak voltage less  
than 42 V, double battery (jump start) conditions down to input voltage as low as VDROP above the selected  
output voltage. In addition, the LM53600-Q1 and LM53601-Q1 devices continue to operate though may be out of  
regulation with input voltage as low as 3.8 V. This allows the LM53600-Q1 and LM53601-Q1 devices to operate  
through cranking in all but the most demanding systems.  
If the regulator is connected to the input supply through long wires or PCB traces, special care is required to  
achieve good performance. The parasitic inductance and resistance of the input cables can have an adverse  
effect on the operation of the regulator. The parasitic inductance, in combination with the low ESR ceramic input  
capacitors, can form an under-damped resonant circuit. This circuit may cause over-voltage transients at the VIN  
pin, each time the input supply is cycled on and off. The parasitic resistance will cause the voltage at the VIN  
pin to dip when the load on the regulator is switched on, or exhibits a transient. If the regulator is operating close  
to the minimum input voltage, this dip may cause the device to shutdown and/or reset. The best way to solve  
these kinds of issues is to reduce the distance from the input supply to the regulator and/or use an aluminum or  
tantalum input capacitor in parallel with the ceramics. The moderate ESR of these types of capacitors will help to  
damp the input resonant circuit and reduce any voltage overshoots. A value in the range of 20 µF to 100 µF is  
usually sufficient to provide input damping and help to hold the input voltage steady during large load transients.  
Sometimes, for other system considerations, an input filter is used in front of the regulator. This can lead  
to instability, as well as some of the effects mentioned above, unless it is designed carefully. The Simple  
Success with Conducted EMI for DC–DC Converters User's Guide (SNVA489) provides helpful suggestions  
when designing an input filter for any switching regulator  
In some cases, a Transient Voltage Suppressor (TVS) is used on the input of regulators. One class of this device  
has a snap-back V-I characteristic (thyristor type). The use of a device with this type of characteristic is not  
recommend. When the TVS fires, the clamping voltage drops to a very low value. If this holding voltage is less  
than the output voltage of the regulator, the output capacitors will be discharged through the regulator back to  
the input. This uncontrolled current flow could damage the regulator.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
The following list is in order of importance starting with the most important item:-  
Place high frequency input bypass capacitor, Cinhf, as close to the LM53600-Q1 and LM53601-Q1 devices  
as possible.  
Connect AGND and GND to the DAP immediately adjacent to the LM53600-Q1 and LM53601-Q1 devices.  
Do not interrupt the ground plain under the loop containing the VIN and GND pins and Cinhf of the LM53600-  
Q1 and LM53601-Q1 devices.  
The boot capacitor, CBOOT, should be close to the LM53601-Q1 and the loop from the SW pin, through the  
boot capacitor and into the BOOT pin should be kept as small as possible.  
Keep the SW node as small as possible. It should be wide enough to carry the converter’s full current without  
significant drop.  
4.7 µF of bypassing should be close to the input of the LM53600-Q1 and LM53601-Q1 devices.  
Place CVCC, the VCC pin’s bypass, and CBIAS, the bypass for FB for fixed voltage devices and BIAS for  
adjustable devices as close to the LM53600-Q1 and LM53601-Q1 devices as possible.  
The first output the trace from the output inductor to the output node should run by an output capacitor before  
joining the rest of the output node.  
Keep 10 µF close to the output (output inductor and GND) of the LM53600-Q1 and LM53601-Q1 devices.  
Clear the layer beneath the SW node.  
Table 11-1. PCB Layout Resources  
TITLE  
LINK  
AN-1149 Layout Guidelines for Switching Power Supplies  
AN-1229 Simple Switcher PCB Layout Guidelines  
Constructing Your Power Supply- Layout Considerations  
SNVA021  
SNVA054  
SLUP230  
SNVA721 Low Radiated EMI Layout Made SIMPLE with LM4360x  
SNVA721  
and LM4600x  
VIN  
CIN  
SW  
GND  
Figure 11-1. Current Loops with Fast Transients  
11.1.1 Ground and Thermal Plane Considerations  
As mentioned above, it is recommended to use one of the middle layers as a solid ground plane. A ground  
plane provides shielding for sensitive circuits and traces. It also provides a quiet reference potential for the  
control circuitry. The AGND and PGND pins should be connected to the ground plane using vias right next to  
the bypass capacitors. PGND pins are connected to the source of the internal low side MOSFET switch. They  
should be connected directly to the grounds of the input and output capacitors. The PGND net contains noise  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
 
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
at the switching frequency and may bounce due to load variations. The PGND trace, as well as PVIN and SW  
traces, should be constrained to one side of the ground plane. The other side of the ground plane contains much  
less noise and should be used for sensitive routes.  
It is recommended to provide adequate device heat sinking by utilizing the exposed pad (EP) of the IC as the  
primary thermal path. Use a minimum 4 by 4 array of 10 mil thermal vias to connect the EP to the system ground  
plane for heat sinking. The vias should be evenly distributed under the exposed pad. Use as much copper as  
possible for system ground plane on the top and bottom layers for the best heat dissipation. It is recommended  
to use a four-layer board with the copper thickness, starting from the top, as: 2 oz / 1 oz / 1 oz / 2 oz. A  
four-layer board with enough copper thickness and proper layout provides low current conduction impedance,  
proper shielding and lower thermal resistance.  
Table 11-2. Resources for Thermal PCB Design  
TITLE  
LINK  
AN-2020 Thermal Design By Insight, Not Hindsight  
SNVA419  
AN-1520 A Guide to Board Layout for Best Thermal Resistance for  
SNVA183  
SPRA953  
SNVA719  
Exposed Pad Packages  
SPRA953B Semiconductor and IC Package Thermal Metrics  
SNVA719 Thermal Design made Simple with LM43603 and  
LM43602  
SLMA002 PowerPADThermally Enhanced Package  
SLMA004 PowerPAD Made Easy  
SLMA002  
SLMA004  
SBVA025  
SBVA025 Using New Thermal Metrics  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
11.2 Layout Example  
Figure 11-2. Fixed Output Version  
Figure 11-2 shows an example layout for a fixed output version of the LM53600-Q1 and LM53601-Q1 similar  
to the one used in the Rev A EVM. Note that the via next to CBIAS connects on the back side of the board to  
VOUT near CO1. This layout shows 10 µF of output capacitance and 4.7 µF of input capacitance. An additional  
>10 µF of output capacitance and about 4.7 µF of input capacitance is assumed to be elsewhere in the system.  
A solid, unbroken ground plane is under this entire circuit except immediately below the SW node.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation request the following:  
AN-1149 Layout Guidelines for Switching Power Supplies (SNVA021)  
Low Radiated EMI Layout Made SIMPLE with LM4360x and LM4600x (SNVA721)  
Constructing Your Power Supply – Layout Considerations (SLUP230)  
AN-1229 Simple Switcher PCB Layout Guidelines (SNVA054)  
Using New Thermal Metrics (SBVA025)  
PowerPAD Made Easy (SLMA004)  
PowerPADThermally Enhanced Package (SLMA002)  
Thermal Design made Simple with LM43603 and LM43602 (SNVA719)  
Semiconductor and IC Package Thermal Metrics (SPRA953)  
AN-2020 Thermal Design By Insight, Not Hindsight (SNVA419)  
AN-1520 A Guide to Board Layout for Best Thermal Resistance for Exposed Pad Packages (SNVA183)  
Simple Success with Conducted EMI for DC-DC Converters User's Guide (SNVA489)  
EVM User's Guide for Adjustable Versions of the LM53600-Q1 and LM53601-Q1 (SNAU190)  
EVM User's Guide for Fixed Versions of the LM53600-Q1 and LM53601-Q1 (SNAU191)  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Trademarks  
PowerPADare trademarks of TI.  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
 
 
 
 
 
 
 
LM53600-Q1, LM53601-Q1  
SNAS660D – JUNE 2015 – REVISED MAY 2021  
www.ti.com  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LM53600-Q1 LM53601-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-May-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM536003QDSXRQ1  
LM536003QDSXTQ1  
LM536005QDSXRQ1  
LM536005QDSXTQ1  
LM53600AQDSXRQ1  
LM53600AQDSXTQ1  
LM53600LQDSXRQ1  
LM53600LQDSXTQ1  
LM53600MQDSXRQ1  
LM53600MQDSXTQ1  
LM53600MQUDSXRQ1  
LM53600NQDSXRQ1  
LM53600NQDSXTQ1  
LM536013QDSXRQ1  
LM536013QDSXTQ1  
LM536013QUDSXRQ1  
LM536015QDSXRQ1  
LM536015QDSXTQ1  
LM536015QUDSXRQ1  
LM53601AQDSXRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
53603  
53603  
53605  
53605  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
5360A  
5360A  
5360L  
5360L  
5360M  
5360M  
360MU  
5360N  
5360N  
53613  
53613  
3613U  
53615  
53615  
3615U  
5361A  
3000 RoHS & Green  
3000 RoHS & Green  
250  
3000 RoHS & Green  
250 RoHS & Green  
RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
250  
RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-May-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM53601AQDSXTQ1  
LM53601LQDSXRQ1  
LM53601LQDSXTQ1  
LM53601MQDSXRQ1  
LM53601MQDSXTQ1  
LM53601MQUDSXRQ1  
LM53601NQDSXRQ1  
LM53601NQDSXTQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
10  
10  
10  
10  
10  
10  
10  
10  
250  
RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
5361A  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
5361L  
5361L  
5361M  
5361M  
361MU  
5361N  
5361N  
3000 RoHS & Green  
3000 RoHS & Green  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-May-2021  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM536003QDSXRQ1  
LM536003QDSXTQ1  
LM536005QDSXRQ1  
LM536005QDSXTQ1  
LM53600AQDSXRQ1  
LM53600AQDSXTQ1  
LM53600LQDSXRQ1  
LM53600LQDSXTQ1  
LM53600MQDSXRQ1  
LM53600MQDSXTQ1  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
3000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
180.0  
330.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
LM53600MQUDSXRQ1 WSON  
3000  
3000  
250  
LM53600NQDSXRQ1  
LM53600NQDSXTQ1  
LM536013QDSXRQ1  
LM536013QDSXTQ1  
LM536013QUDSXRQ1  
LM536015QDSXRQ1  
LM536015QDSXTQ1  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
3000  
250  
3000  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2021  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM536015QUDSXRQ1  
LM53601AQDSXRQ1  
LM53601AQDSXTQ1  
LM53601LQDSXRQ1  
LM53601LQDSXTQ1  
LM53601MQDSXRQ1  
LM53601MQDSXTQ1  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
3000  
3000  
250  
330.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
3000  
250  
LM53601MQUDSXRQ1 WSON  
3000  
3000  
250  
LM53601NQDSXRQ1  
LM53601NQDSXTQ1  
WSON  
WSON  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM536003QDSXRQ1  
LM536003QDSXTQ1  
LM536005QDSXRQ1  
LM536005QDSXTQ1  
LM53600AQDSXRQ1  
LM53600AQDSXTQ1  
LM53600LQDSXRQ1  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
10  
10  
10  
10  
10  
10  
10  
3000  
250  
367.0  
213.0  
367.0  
213.0  
367.0  
213.0  
367.0  
367.0  
191.0  
367.0  
191.0  
367.0  
191.0  
367.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
38.0  
3000  
250  
3000  
250  
3000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2021  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM53600LQDSXTQ1  
LM53600MQDSXRQ1  
LM53600MQDSXTQ1  
LM53600MQUDSXRQ1  
LM53600NQDSXRQ1  
LM53600NQDSXTQ1  
LM536013QDSXRQ1  
LM536013QDSXTQ1  
LM536013QUDSXRQ1  
LM536015QDSXRQ1  
LM536015QDSXTQ1  
LM536015QUDSXRQ1  
LM53601AQDSXRQ1  
LM53601AQDSXTQ1  
LM53601LQDSXRQ1  
LM53601LQDSXTQ1  
LM53601MQDSXRQ1  
LM53601MQDSXTQ1  
LM53601MQUDSXRQ1  
LM53601NQDSXRQ1  
LM53601NQDSXTQ1  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
DSX  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
250  
3000  
250  
213.0  
367.0  
213.0  
367.0  
367.0  
213.0  
367.0  
213.0  
367.0  
367.0  
213.0  
367.0  
367.0  
213.0  
367.0  
213.0  
367.0  
213.0  
367.0  
367.0  
213.0  
191.0  
367.0  
191.0  
367.0  
367.0  
191.0  
367.0  
191.0  
367.0  
367.0  
191.0  
367.0  
367.0  
191.0  
367.0  
191.0  
367.0  
191.0  
367.0  
367.0  
191.0  
35.0  
38.0  
35.0  
38.0  
38.0  
35.0  
38.0  
35.0  
38.0  
38.0  
35.0  
38.0  
38.0  
35.0  
38.0  
35.0  
38.0  
35.0  
38.0  
38.0  
35.0  
3000  
3000  
250  
3000  
250  
3000  
3000  
250  
3000  
3000  
250  
3000  
250  
3000  
250  
3000  
3000  
250  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
DSX 10  
3 x 3, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226665/A  
www.ti.com  
PACKAGE OUTLINE  
DSX0010A  
WSON - 0.8 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.05  
2.95  
B
A
PIN 1 INDEX AREA  
3.05  
2.95  
0.1 MIN  
(0.05)  
SECTION A-A  
SCALE 30.000  
SECTION A-A  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
4X (0.25)  
EXPOSED  
THERMAL PAD  
5
6
11  
2X  
2
A
A
2.4 0.1  
10  
1
8X 0.5  
0.3  
0.2  
10X  
0.1  
0.05  
C A B  
C
0.5  
0.3  
PIN 1 ID  
(OPTIONAL)  
10X  
4221651/C 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSX0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.25)  
11  
SYMM  
(2.4)  
(3.4)  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
4X (0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED  
EXPOSED  
METAL  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221651/C 10/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSX0010A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
METAL  
TYP  
10X (0.6)  
11  
1
10  
(1.53)  
2X  
(1.06)  
10X (0.25)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4221651/C 10/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DSX0010C  
WSON - 0.8 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.05  
2.95  
B
A
PIN 1 INDEX AREA  
3.05  
2.95  
0.8  
0.7  
C
SEATING PLANE  
0.05 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
4X (0.25)  
EXPOSED  
THERMAL PAD  
5
6
11  
2X  
2
2.4 0.1  
10  
1
8X 0.5  
0.3  
0.2  
10X  
0.1  
0.05  
C A B  
C
PIN 1 ID  
(OPTIONAL)  
0.5  
0.3  
10X  
4226664/A 03/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSX0010C  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.25)  
11  
SYMM  
(2.4)  
(3.4)  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
4X (0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED  
EXPOSED  
METAL  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4226664/A 03/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSX0010C  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
METAL  
TYP  
10X (0.6)  
11  
1
10  
(1.53)  
2X  
(1.06)  
10X (0.25)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4226664/A 03/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

LM536005QDSXTQ1

用于汽车应用的 3.5V 至 36V、650mA、2.1MHz 同步降压转换器 | DSX | 10 | -40 to 150
TI

LM53600AQDSXRQ1

用于汽车应用的 3.5V 至 36V、650mA、2.1MHz 同步降压转换器 | DSX | 10 | -40 to 150
TI

LM53600AQDSXTQ1

用于汽车应用的 3.5V 至 36V、650mA、2.1MHz 同步降压转换器 | DSX | 10 | -40 to 150
TI

LM53600LQDSXRQ1

用于汽车应用的 3.5V 至 36V、650mA、2.1MHz 同步降压转换器 | DSX | 10 | -40 to 150
TI

LM53600LQDSXTQ1

用于汽车应用的 3.5V 至 36V、650mA、2.1MHz 同步降压转换器 | DSX | 10 | -40 to 150
TI

LM53600MQDSXRQ1

用于汽车应用的 3.5V 至 36V、650mA、2.1MHz 同步降压转换器 | DSX | 10 | -40 to 150
TI

LM53600MQDSXTQ1

用于汽车应用的 3.5V 至 36V、650mA、2.1MHz 同步降压转换器 | DSX | 10 | -40 to 150
TI

LM53600MQUDSXRQ1

LM53600/01-Q1 0.65-A/1-A, 36-V Synchronous, 2.1-MHz Automotive Step-Down DC/DC Converter
TI

LM53600NQDSXRQ1

用于汽车应用的 3.5V 至 36V、650mA、2.1MHz 同步降压转换器 | DSX | 10 | -40 to 150
TI

LM53600NQDSXTQ1

用于汽车应用的 3.5V 至 36V、650mA、2.1MHz 同步降压转换器 | DSX | 10 | -40 to 150
TI

LM53601-Q1

LM5360x-Q1 5-V, 3.3-V, and Adjustable Synchronous-Buck 1-A Regulator for Automotive Applications
TI

LM536013QDSXRQ1

用于汽车应用的 3.5V 至 36V、1A 同步 2.1MHz 降压转换器 | DSX | 10 | -40 to 150
TI