LM57TQPWRQ1 [TI]

具有电阻可编程温度开关的汽车级、±0.7°C 温度传感器 | PW | 8 | -50 to 125;
LM57TQPWRQ1
型号: LM57TQPWRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电阻可编程温度开关的汽车级、±0.7°C 温度传感器 | PW | 8 | -50 to 125

开关 温度传感 传感器 温度传感器
文件: 总37页 (文件大小:896K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LM57-Q1  
ZHCSDV7 JULY 2015  
LM57-Q1 电阻可编程温度开关和模拟温度传感器  
1 特性  
3 说明  
1
符合汽车级应用要求。关于商用器件,请参见  
LM57 数据表  
LM57-Q1 器件是一款具有模拟温度传感器输出的精密  
双路输出温度开关,适用于宽温度范围的应用(例如汽  
车级)。 跳变温度 (TTRIP) 可从 –40°C 160°CVTEMP  
AB 类模拟电压输出,该电压输出与温度成正比,负  
温度系数 (NTC) 可编程。 两个外部 1% 电阻设置  
具有符合 AEC-Q100 的下列结果:  
温度 0 级扩展:50°C +160°C 的工作温度  
范围,甚至可高达 170°C  
温度 0 级:-50°C +150°C 的工作温度范围  
温度 1 级:-50°C +125°C 的工作温度范围  
T
TRIP VTEMP 斜率。 数字和模拟输出具有保护功  
能,并且可监视系统过热事件。  
人体模型 (HBM) 静电放电 (ESD) 组件分类等级  
2
内置的热滞后功能 (THYST) 可防止数字输出发生振荡。  
TOVER TOVER 数字输出将在芯片温度超过 TTRIP 时置  
充电器件模型 (CDM) ESD 组件分类等级 C5  
为有效,在芯片温度低于 TTRIP THYST 的差值时置为  
无效。  
可通过外部电阻在 40°C +150°C 温度范围内设  
置跳变温度,  
精度为 ±2.3°C  
TOVER 为高电平有效,并且采用推挽结构。 TOVER 为  
电阻容差不会引入误差  
低电平有效,并且采用开漏结构。 将 TOVER TRIP-  
TEST 相连,可在输出发生跳变后将其锁存。 将  
TRIP-TEST 强制为低电平可将输出清零。 将 TRIP-  
TEST 驱动为高电平会将数字输出置为有效。 处理器  
可检查 TOVER TOVER 的状态,从而确认它们是否已  
切换至激活状态。 这样一来,便可以在系统装配后现  
场验证比较器和输出电路的功能。 当 TRIP-TEST 为  
高电平时,VTEMP 引脚为跳变基准电压。 系统随后可  
使用该电压计算 LM57-Q1 的阈值。  
推挽和开漏开关输出  
宽工作温度范围:50°C 160°C  
超线性模拟 VTEMP 温度传感器输出,50°C 至  
+150°C 温度范围内的精度为  
±1.3°C  
具有短路保护的模拟和数字输出  
数字输出具有锁存功能  
TRIP-TEST 引脚支持系统内测试  
低功耗特性最大程度减少自发热,使其低于 0.02°C  
器件信息 (1) (2)  
2 应用范围  
器件型号  
LM57 -Q1  
封装  
TSSOP (8)  
封装尺寸(标称值)  
汽车用  
3.00mm × 6.40mm  
井下设备和航空电子设备  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
(2) 关于器件比较,请参见 Device Comparison Table 。  
LM57-Q1 过热报警  
温度传递函数  
V
DD  
Supply  
(+2.4V to +5.5V)  
3,500  
J2 (-5.166mV/°C)  
J3 (-7.752mV/°C)  
J4 (-10.339mV/°C)  
J5 (-12.924mV/°C)  
3,000  
2,500  
2,000  
1,500  
1,000  
500  
V
DD  
Analog  
V
TEMP  
ADC Input  
LM57  
Microcontroller  
SENSE1  
T
OVER  
SENSE2  
Digital In  
T
OVER  
TRIP TEST  
GND  
Digital Out  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
TEMPERTURE (ƒC)  
C101  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNIS191  
 
 
 
 
 
LM57-Q1  
ZHCSDV7 JULY 2015  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 23  
Application and Implementation ........................ 26  
8.1 Application Information............................................ 26  
8.2 Typical Application .................................................. 26  
Power Supply Recommendations...................... 28  
1
2
3
4
5
6
特性.......................................................................... 1  
8
9
应用范围................................................................... 1  
说明.......................................................................... 1  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics.......................................... 9  
6.7 Typical Characteristics ........................................... 10  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
10 Layout................................................................... 28  
10.1 Layout Guidelines ................................................. 28  
10.2 Layout Example .................................................... 29  
10.3 Temperature Considerations................................. 29  
11 器件和文档支持 ..................................................... 30  
11.1 文档支持 ............................................................... 30  
11.2 社区资源................................................................ 30  
11.3 ....................................................................... 30  
11.4 静电放电警告......................................................... 30  
11.5 Glossary................................................................ 30  
12 机械、封装和可订购信息....................................... 30  
7
Changes from Revision Initial Release (July 2015) to Revision A  
Page  
已更改 特性要点汽车级说明并添加了汽车级和 ESD 分类说明 .............................................................................................. 1  
2
Copyright © 2015, Texas Instruments Incorporated  
LM57-Q1  
www.ti.com.cn  
ZHCSDV7 JULY 2015  
4 Device Comparison Table  
VTEMP  
ACCURACY  
TRIP POINT  
ACCURACY  
ORDER NUMBER  
PACKAGE  
GRADE (TEMP RANGE)  
HYSTERESIS  
5°C  
WSON/SD/NGR Commercial (-50°C to  
(1)  
LM57BISD-5, LM57BISDX-5  
±0.8°C  
±0.8°C  
±1.3°C  
±1.3°C  
±1.3°C  
±1.3°C  
±1.5°C  
±1.5°C  
±2.3°C  
±2.3°C  
±2.3°C  
±2.3°C  
/DFN (8)  
WSON/SD/NGR Commercial (-50°C to  
/DFN (8) 150°C)  
WSON/SD/NGR Commercial (-50°C to  
/DFN (8) 150°C)  
WSON/SD/NGR Commercial (-50°C to  
150°C)  
(1)  
(1)  
LM57BISD-10, LM57BISDX-10  
10°C  
(1)  
LM57CISD-5, LM57CISD-5  
5°C  
LM57CISD-10, LM57CISDX-10  
10°C  
/DFN (8)  
150°C)  
Commercial (-50°C to  
150°C)  
(1)  
LM57FPW, LM57FPWR  
PW/TSSOP (8)  
5°C  
Commercial (-50°C to  
150°C)  
(1)  
LM57TPW, LM57TPWR  
PW/TSSOP (8)  
10°C  
Automotive Grade 0  
LM57FSPWQ1, LM57FSPWRQ1  
LM57TSPWQ1, LM57TSPWRQ1  
PW/TSSOP (8) Extended (-50°C to  
160°C)  
±1.3°C  
±1.3°C  
±2.3°C  
±2.3°C  
5°C  
Automotive Grade 0  
PW/TSSOP (8) Extended (-50°C to  
160°C)  
10°C  
Automotive Grade 0  
PW/TSSOP (8)  
LM57FEPWQ1, LM57FEPWRQ1  
LM57TEPWQ1, LM57TEPWRQ1  
LM57FQPWQ1, LM57FQPWRQ1  
LM57TQPWQ1, LM57TQPWRQ1  
±1.3°C  
±1.3°C  
±1.3°C  
±1.3°C  
±2.3°C  
±2.3°C  
±2.3°C  
±2.3°C  
5°C  
Standard (-50°C to 150°C)  
Automotive Grade 0  
PW/TSSOP (8)  
10°C  
5°C  
Standard (-50°C to 150°C)  
Automotive Grade 1  
PW/TSSOP (8)  
Standard (-50°C to 125°C)  
Automotive Grade 1  
PW/TSSOP (8)  
10°C  
Standard (-50°C to 125°C)  
(1) For Commercial grade device complete datasheet see LM57.  
Copyright © 2015, Texas Instruments Incorporated  
3
 
LM57-Q1  
ZHCSDV7 JULY 2015  
www.ti.com.cn  
5 Pin Configuration and Functions  
TSSOP/PW Package  
8-Pin  
Top View  
GND  
1
2
3
4
8
7
6
5
V
TEMP  
SENSE1  
SENSE2  
T
T
OVER  
OVER  
LM57  
TRIP TEST  
V
DD  
Pin Functions  
PIN  
TYPE  
EQUIVALENT CIRCUIT  
DESCRIPTION  
NAME  
GND  
NO.  
1
Ground  
Power supply ground  
VDD  
Trip-point resistor sense. One of two sense pins which selects the  
temperature at which TOVER and TOVER will assert.  
SENSE1  
2
GND  
GND  
VDD  
Trip-point resistor sense. One of two sense pins which selects the  
temperature at which TOVER and TOVER will assert.  
SENSE2  
3
4
GND  
GND  
VDD  
Power  
Supply voltage  
V
DD  
TRIP TEST pin. Active High input.  
If TRIP TEST = 0 (default), then the VTEMP output has the analog  
temperature sensor output voltage.  
If TRIP TEST = 1, then TOVER and TOVER outputs are asserted and VTEMP  
VTRIP, the temperature trip voltage.  
TRIP  
TEST  
Digital  
Input  
5
6
=
1 PA  
Tie this pin to ground if not used.  
GND  
Overtemperature switch output  
Active low, open-drain (see LM57-Q1 VTEMP Voltage-to-Temperature  
Equations regarding required pullup resistor.)  
Asserted when the measured temperature exceeds the Trip Point  
Temperature or if TRIP TEST = 1  
Digital  
Output  
TOVER  
GND  
This pin may be left open if not used.  
V
DD  
Overtemperature switch output  
Active high, push-pull  
Asserted when the measured temperature exceeds the trip point  
temperature or if TRIP TEST = 1  
Digital  
Output  
TOVER  
7
This pin may be left open if not used.  
GND  
4
Copyright © 2015, Texas Instruments Incorporated  
LM57-Q1  
www.ti.com.cn  
ZHCSDV7 JULY 2015  
Pin Functions (continued)  
PIN  
TYPE  
EQUIVALENT CIRCUIT  
DESCRIPTION  
NAME  
NO.  
V
DD  
V
SENSE  
VTEMP analog voltage output  
Analog  
Output  
If TRIP TEST = 0, then VTEMP = VTS, temperature sensor output voltage  
If TRIP TEST = 1, then VTEMP = VTRIP, temperature trip voltage  
This pin may be left open if not used.  
VTEMP  
8
GND  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1) (2)  
MIN  
0.3  
0.3  
0.3  
MAX  
UNIT  
V
Supply voltage  
6
Voltage at TOVER  
6
V
Voltage at TOVER , VTEMP, TRIP-TEST, SENSE1, and SENSE2  
Current at any pin  
(VDD + 0.3 V)  
V
5
mA  
°C  
°C  
Storage temperature for LM57FSPWQ1 and LM57TSPWQ1  
Storage temperature for all LM57-Q1 except LM57FSPWQ1 and LM57TSPWQ1  
65  
65  
175  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Soldering process must comply with Reflow Temperature Profile specifications. Refer to www.ti.com/packaging.  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
(1)  
Human-body model (HBM), per AEC Q100-002  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN NOM  
MAX  
UNIT  
FOR ALL PARTS GRADE 0 AND GRADE 1 EXCEPT GRADE 0 EXTENDED (LM57FSPWQ1 and LM57TSPWQ1)  
Supply voltage  
2.4  
50  
-50  
5.5  
150  
125  
V
Free air temperature range (TMIN TA TMAX  
)
LM57FEPWQ1, and LM57TEPWQ1  
LM57FQPWQ1, LM57TQPWQ1  
°C  
°C  
GRADE 0 EXTENDED (LM57FSPWQ1 AND LM57TSPWQ1)  
Supply voltage  
2.4  
5.5  
V
Free air temperature range (TMIN TA TMAX  
)
Temperature Profile for LM57-Q1 Automotive Grade 0  
Extended High Temperature Operational Life Test  
(1)  
(HTOL) - Hours of Operation:  
50  
170  
°C  
1700 hours at TJ = TC = 160°C  
10 hours at TJ = TC = 170°C  
(1) Except for HTOL testing, which was conducted as described, all other testing was to AEC-Q100 Grade 0 flow. Full details on reliability  
testing are available upon request.  
Copyright © 2015, Texas Instruments Incorporated  
5
LM57-Q1  
ZHCSDV7 JULY 2015  
www.ti.com.cn  
6.4 Thermal Information  
LM57-Q1  
(1)  
THERMAL METRIC  
PW (TSSOP)  
UNIT  
8 PINS  
183  
66  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
111  
8
ψJT  
ψJB  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
110  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
Unless otherwise noted, these specifications apply for VDD = 2.4 to 5.5 V and over free air temperature range. These limits do  
not include DC load regulation. These stated accuracy limits are with reference to the values in Table 1.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TRIP POINT ACCURACY FOR ALL LM57-Q1 EXCEPT LM57FSPWQ1 AND LM57TSPWQ1  
J2  
J3  
TA = 41°C to  
52°C  
VDD = 2.4 V to 5.5  
V
±2.3  
±2.3  
±2.3  
°C  
°C  
°C  
TA  
=
52°C to  
VDD = 2.4 V to 5.5  
V
97°C  
Trip Point Accuracy  
(Includes 1% set-resistor  
tolerance)  
TA = 97°C to  
119°C  
VDD = 2.4 V to 5.5  
V
J4  
J5  
TA = 119°C to  
free air  
temperature max  
VDD = 2.4 V to 5.5  
V
±2.3  
°C  
TRIP POINT ACCURACY FOR LM57-Q1 AUTOMOTIVE GRADE 0 EXTENDED (LM57FSPWQ1 and LM57TSPWQ1)  
TA = 41°C to  
52°C  
J2  
TA = 52°C to  
J3  
97°C  
VDD = 2.4 V to 5.5  
V
±2.3  
±2.5  
Trip point accuracy  
(Includes 1% set-resistor  
tolerance)  
TA = 97°C to  
119°C  
J4  
J5  
J5  
°C  
TA = 119°C to  
160°C  
TA = 150°C to  
160°C  
VDD = 2.4 V to 5.5  
V
6
Copyright © 2015, Texas Instruments Incorporated  
 
LM57-Q1  
www.ti.com.cn  
ZHCSDV7 JULY 2015  
Electrical Characteristics (continued)  
Unless otherwise noted, these specifications apply for VDD = 2.4 to 5.5 V and over free air temperature range. These limits do  
not include DC load regulation. These stated accuracy limits are with reference to the values in Table 1.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VTEMP ANALOG TEMPERATURE SENSOR OUTPUT ACCURACY FOR ALL LM57-Q1 EXCEPT LM57FSPWQ1 and LM57TSPWQ1  
TA = 50°C to  
free air  
temperature max  
VDD = 2.4 V to 5.5  
V
J2  
J3  
±1.3  
°C  
°C  
TA = 50°C to  
free air  
temperature max  
VDD = 2.4 V to 5.5  
V
±1.3  
±1.3  
±1.3  
±1.3  
±1.3  
±1.3  
±1.3  
±1.3  
TA  
=
20°C to  
VDD = 2.4 V to 5.5  
V
50°C  
TA  
=
0°C to free  
VDD = 2.7 V to 5.5  
V
VTEMP Accuracy  
J4  
air temperature  
max  
°C  
(These stated accuracy  
limits are with reference to  
the values in Table 1,  
LM57-Q1 VTEMP  
TA = 50°C to  
0°C  
VDD = 3.1 V to 5.5  
V
TA  
free air  
temperature max  
= 60°C to  
Temperature-to-Voltage.)  
VDD = 2.4 V to 5.5  
V
TA  
=
20°C to  
VDD = 2.9 V to 5.5  
V
50°C  
J5  
°C  
TA  
=
0°C to free  
VDD = 3.2 V to 5.5  
V
air temperature  
max  
TA = 50°C to  
0°C  
VDD = 4 V to 5.5  
V
VTEMP ANALOG TEMPERATURE SENSOR OUTPUT ACCURACY FOR LM57-Q1 AUTOMOTIVE GRADE 0 EXTENDED (LM57FSPWQ1  
and LM57TSPWQ1)  
TA = 150°C to  
160°C  
±1.5  
VDD = 2.4 V to 5.5  
V
J2  
J3  
°C  
°C  
TA = –50°C to  
150°C  
±1.3  
±1.5  
TA = 150°C to  
160°C  
VDD = 2.4 V to 5.5  
V
TA = –50°C to  
150°C  
±1.3  
±1.3  
TA  
=
20°C to  
VDD = 2.4 V to 5.5  
V
50°C  
TA  
150°C  
=
0°C to  
±1.3  
±1.5  
±1.3  
VTEMP accuracy  
VDD = 2.7 V to 5.5  
V
(These stated accuracy  
limits are with reference to  
the values in Table 1,  
LM57-Q1 VTEMP  
J4  
°C  
TA = 150°C to  
160°C  
TA = –50°C to  
0°C  
VDD = 3.1 V to 5.5  
V
temperature-to-voltage.)  
TA = 150°C to  
160°C  
±1.5  
VDD = 2.4 V to 5.5  
V
TA  
150°C  
=
60°C to  
20°C to  
0°C to  
±1.3  
±1.3  
TA  
50°C  
=
VDD = 2.9 V to 5.5  
V
J5  
°C  
TA  
=
VDD = 3.2 V to 5.5  
V
±1.3  
±1.3  
150°C  
TA = –50°C to  
0°C  
VDD = 4 V to 5.5  
V
Copyright © 2015, Texas Instruments Incorporated  
7
LM57-Q1  
ZHCSDV7 JULY 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
Unless otherwise noted, these specifications apply for VDD = 2.4 to 5.5 V and over free air temperature range. These limits do  
not include DC load regulation. These stated accuracy limits are with reference to the values in Table 1.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OTHER TEMPERATURE SENSOR SPECIFICATIONS  
J2: 50°C to 52°C  
J3: 52°C to 97°C  
J4: 97°C to 119°C  
J5: 119°C to 160°C  
5.166  
7.752  
10.339  
12.924  
0.18  
VTEMP sensor gain  
mV/°C  
mV  
μV/V  
dB  
Line regulation DC: supply-  
Temp = 90°C  
58  
(1)  
to-VTEMP  
84  
Source 240 µA, (VDD – VTEMP) 200 mV; TA  
= 50°C to 150°C  
1  
mV  
Load regulation: VTEMP  
output  
Sink 300 µA, VTEMP 360 mV; TA = 50°C  
to 150°C  
(2)  
1
Source or sink = 100 µA; TA = 50°C to 150°C  
1
1100  
24  
Maximum Load  
capacitance: VTEMP output  
No output series resistor required; (See VTEMP  
Capacitive Loads )  
pF  
µA  
µA  
for all LM57-Q1 for TA 150°C  
28  
29  
TA = 150°C to 160°C for LM57FSPWQ1 and  
LM57TSPWQ1  
Supply current: quiescent  
24  
IS  
(3)  
TA = 170°C for LM57FSPWQ1 and  
LM57TSPWQ1  
26  
µA  
TRIP-TEST INPUT  
VIH  
VIL  
IIH  
Logic 1 threshold voltage  
VDD – 0.5  
V
V
Logic 0 threshold voltage  
Logic 1 input current  
Logic 0 input leakage  
0.5  
3
1.4  
µA  
IIL  
TA = 50°C to 150°C  
0.001  
1
µA  
(4)  
current  
TOVER (PUSH-PULL, ACTIVE-HIGH) OUTPUT  
Source 600 µA  
VDD – 0.2  
Logic 1 push-pull output  
voltage  
VOH  
V
V
Source 1.2 mA  
Sink 600 µA  
Sink 1.2 mA  
VDD – 0.45  
0.2  
VOL  
Logic 0 output voltage  
0.45  
TOVER (OPEN-DRAIN, ACTIVE-LOW) OUTPUT  
Sink 600 µA  
Sink 1.2 mA  
0.2  
VOL  
IOH  
Logic 0 output voltage  
Logic 1 output leakage  
V
0.45  
Temperature = 30°C;  
0.001  
1
µA  
(4)  
current  
(1) Line regulation (DC) is calculated by subtracting the output voltage at the highest supply voltage from the output voltage at the lowest  
supply voltage. The typical DC line regulation specification does not include the output voltage shift discussed in VTEMP Voltage Shift .  
(2) Source currents are flowing out of the LM57-Q1. Sink currents are flowing into the LM57-Q1. Load Regulation is calculated by  
measuring VTEMP at 0 μA and subtracting the value with the conditions specified.  
(3) Supply current refers to the quiescent current of the LM57-Q1 only and does not include any load current  
(4) This current is leakage current only and is therefore highest at high temperatures. Prototype test indicate that the leakage is well below  
1 μA over the full temperature range. This 1 μA specification reflects the limitations of measuring leakage at room temperature. For this  
reason only, the leakage current is not specified at a lower value.  
8
Copyright © 2015, Texas Instruments Incorporated  
LM57-Q1  
www.ti.com.cn  
ZHCSDV7 JULY 2015  
Electrical Characteristics (continued)  
Unless otherwise noted, these specifications apply for VDD = 2.4 to 5.5 V and over free air temperature range. These limits do  
not include DC load regulation. These stated accuracy limits are with reference to the values in Table 1.  
PARAMETER  
HYSTERESIS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
5°C hysteresis option (all LM57F for TA  
150°C)  
4.7  
9.6  
4.6  
9.4  
5
10  
5
5.4  
10.6  
5.4  
°C  
°C  
°C  
°C  
10°C hysteresis option (all LM57T for TA  
150°C)  
THYST  
Hysteresis temperature  
5°C hysteresis option (LM57FSPWQ1); TA  
150°C to 160°C  
=
10°C hysteresis option (LM57TSPWQ1); TA  
150°C to 160°C  
=
10  
10.6  
6.6 Switching Characteristics  
Unless otherwise noted, these specifications apply for VDD = 2.4 to 5.5 V over the free air temperature range.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Maximum time from power on  
to digital output enabled  
tEN  
1.5  
ms  
Maximum time from power on  
to analog temperature  
(VTEMP) valid  
tVTEMP  
1.5  
ms  
V
DD  
1.3V  
t
EN  
T
Enabled  
Enabled  
OVER  
T
OVER  
Figure 1. Definition of tEN  
V
DD  
t
VTEMP  
Valid  
V
TEMP  
Figure 2. Definition of tVTEMP  
Copyright © 2015, Texas Instruments Incorporated  
9
LM57-Q1  
ZHCSDV7 JULY 2015  
www.ti.com.cn  
6.7 Typical Characteristics  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
30  
29  
28  
27  
26  
T = 150°C  
V
V
= 5.5V  
= 2.4V  
T = 30°C  
25  
V
= 3.5V  
DD  
DD  
24  
23  
T = -40°C  
DD  
22  
21  
20  
-50 -30 -10 10 30 50 70 90 110 130 150  
2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6  
TEMPERATURE (°C)  
V
(V)  
DD  
Figure 4. Supply Current vs Temperature  
Figure 3. Supply Current vs Supply Voltage  
3.0  
2.8  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-1.6  
-1.8  
-2.0  
-2.2  
-2.4  
-2.6  
-2.8  
-3.0  
V
= 2.4V  
= 2.7V  
DD  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
V
DD  
Overhead =  
400 mV  
Overhead =  
100 mV  
V
= 3.3V  
= 5.0V  
DD  
DD  
V
Overhead =  
200 mV  
0.4  
0.2  
0.0  
1000 12001400 1600  
0
200 400 600 800  
0
100 200 300 400 500 600 700  
LOAD (PA)  
LOAD (PA)  
Figure 6. Load Regulation: Change In VTEMP vs Sink Current  
Figure 5. Load Regulation: Change In VTEMP vs Source  
Current Overhead Is Vdd-Vtemp  
950  
949  
948  
10.2  
HYST J5  
10.1  
10.0  
HYST J4  
HYST J3  
HYST J2  
9.9  
|
|
5.2  
5.1  
5.0  
4.9  
947  
946  
HYST J3  
HYST J4  
HYST J5  
HYST J2  
945  
2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6  
VDD  
2.4 2.8 3.2 3.6  
4
4.4 4.8 5.2 5.6  
(V)  
V
DD  
Figure 7. Line Regulation: VTEMP vs Supply Voltage  
Figure 8. Line Regulation: Hysteresis vs Supply Voltage  
30°C  
10  
Copyright © 2015, Texas Instruments Incorporated  
LM57-Q1  
www.ti.com.cn  
ZHCSDV7 JULY 2015  
Typical Characteristics (continued)  
3
2
1
10.2  
10.1  
10.0  
9.9  
HYST J5  
HYST J4  
HYST J3  
HYST J2  
Tover  
0
|
|
|
|
3
5.2  
5.1  
5.0  
4.9  
HYST J5  
HYST J3  
2
Vtemp  
1
HYST J4  
HYST J2  
0
-1  
0
1
2
3
4
5
6
7
8
9
-50 -30 -10 10 30 50 70 90 110 130 150  
TEMPERATURE (oC)  
TIME (ms)  
Figure 9. Start-Up Response  
Figure 10. Hysteresis vs Temperature  
2.0  
MAX LImit  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
MIN Limit  
0
25  
50  
75  
100 125 150 175  
±50 ±25  
DUT Temperature (ƒC)  
C102  
Conditions: J2, VDD=5V  
Figure 11. J2 Accuracy Specification Over Temperature  
Copyright © 2015, Texas Instruments Incorporated  
11  
LM57-Q1  
ZHCSDV7 JULY 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LM57-Q1 is a precision, dual-output, temperature switch with analog temperature sensor output. The trip  
temperature (TTRIP) is selected from 256 possible values by using two external 1% resistors. The VTEMP class AB  
analog output provides a voltage that is proportional to temperature. The LM57-Q1 includes an internal reference  
DAC, analog temperature sensor and analog comparator. The reference DAC is connected to one of the  
comparator inputs. The reference DAC output voltage (VTRIP) is controlled by the value of resistance applied to  
the SENSE pins. The resistance value sets one of 16 "logic" levels at the SENSE pins. These "logic" levels are  
then decoded and applied to the DAC input, thus the actual resistance tolerance does not directly affect the  
threshold level accuracy. The result of the reference DAC voltage and the temperature sensor output comparison  
is provided on two output pins TOVER and TOVER  
.
The VTEMP output has a programmable gain. The output gain has 4 possible settings as described in Figure 12.  
The gain setting is dependent on the trip point selected by resistance applied to the SENSE pins.  
Built-in temperature hysteresis (THYST) prevents the digital outputs from oscillating. The TOVER and TOVER will  
activate when the die temperature exceeds TTRIP and will release when the temperature falls below a  
temperature equal to TTRIP minus THYST. TOVER is active-high with a push-pull structure. TOVER , is active-low with  
an open-drain structure. There are two different hysteresis options available that are factory preset. The preset  
hysteresis can be selected by purchasing the proper order number as described in Device Comparison Table .  
Driving the TRIP-TEST high will activate the digital outputs. A processor can check the logic level of the TOVER or  
TOVER , confirming that they changed to their active state. This allows for system production testing verification  
that the comparator and output circuitry are functional after system assembly. When the TRIP-TEST pin is high,  
the trip-level reference voltage appears at the VTEMP pin. Tying TOVER to TRIP-TEST will latch the output after it  
trips. It can be cleared by forcing TRIP-TEST low or powering off the LM57-Q1.  
7.2 Functional Block Diagram  
V
DD  
= 2.4V to 5.5V  
TRIP TEST  
SENSE1  
LM57  
SENSE2  
V
TRIP  
T
OVER  
DAC  
GAIN  
+
-
TEMP SENSOR  
(negative temp  
coefficient)  
V
DD  
TRIP  
TEST = 1  
TRIP  
TEST = 0  
T
OVER  
V
TEMP  
GND  
12  
Copyright © 2015, Texas Instruments Incorporated  
LM57-Q1  
www.ti.com.cn  
ZHCSDV7 JULY 2015  
7.3 Feature Description  
7.3.1 LM57-Q1 VTEMP Temperature-to-Voltage Transfer Function  
The value of the RSENSE resistors select a trip point and a corresponding VTEMP gain (J2, J3, J4, or J5).The trip  
point range associated with a given gain is shown in bold green or bold red italics in Table 1. Temperatures  
above 150°C apply to the LM57FSPWQ1 and LM57TSPWQ1 only and are highlighted in red and italics in  
Table 1. The VTEMP gain is selected by the RSENSE resistors. VTEMP is valid over the entire temperature range.  
The VTEMP gain is selected by the RSENSE resistors. VTEMP is valid over the entire temperature range.  
3,500  
J2 (-5.166mV/°C)  
J3 (-7.752mV/°C)  
J4 (-10.339mV/°C)  
J5 (-12.924mV/°C)  
3,000  
2,500  
2,000  
1,500  
1,000  
500  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
TEMPERTURE (ƒC)  
C101  
Figure 12. Temperature Transfer Characteristics  
(1)  
Table 1. LM57-Q1 VTEMP Temperature to Voltage  
VTEMP VOLTAGE (mV)  
Temperature (°C)  
J2 (-5.166 mV/°C)  
1352.56  
1347.60  
1342.64  
1337.67  
1332.70  
1327.73  
1322.76  
1317.78  
1312.81  
1307.82  
1302.84  
1297.86  
1292.87  
1287.88  
1282.88  
1277.89  
1272.89  
J3 (–7.752 mV/°C)  
2028.80  
2021.35  
2013.90  
2006.44  
1998.98  
1991.52  
1984.05  
1976.58  
1969.11  
1961.63  
1954.15  
1946.66  
1939.17  
1931.68  
1924.18  
1916.68  
1909.17  
J4 (–10.339 mV/°C)  
2705.20  
2695.26  
2685.32  
2675.38  
2665.43  
2655.47  
2645.51  
2635.54  
2625.57  
2615.60  
2605.62  
2595.63  
2585.64  
2575.64  
2565.64  
2555.63  
2545.62  
J5 (–12.924 mV/°C)  
3381.40  
3368.98  
3356.55  
3344.12  
3331.68  
3319.23  
3306.78  
3294.32  
3281.85  
3269.38  
3256.90  
3244.41  
3231.92  
3219.42  
3206.92  
3194.41  
3181.89  
–50  
–49  
–48  
–47  
–46  
–45  
–44  
–43  
–42  
–41  
–40  
–39  
–38  
–37  
–36  
–35  
–34  
(1) The RSENSE resistors select a trip point and a corresponding VTEMP gain (J2, J3, J4, or J5). The trip point range associated with a given  
gain is shown in bold green or red on this table. Temperatures above 150°C apply to the LM57FSPWQ1 and LM57TSPWQ1 only and  
are italicized and highlighted in red. The VTEMP gain is selected by the RSENSE resistors. VTEMP is valid over the entire temperature  
range.  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
LM57-Q1  
ZHCSDV7 JULY 2015  
www.ti.com.cn  
Feature Description (continued)  
(1)  
Table 1. LM57-Q1 VTEMP Temperature to Voltage  
(continued)  
VTEMP VOLTAGE (mV)  
J3 (–7.752 mV/°C) J4 (–10.339 mV/°C)  
Temperature (°C)  
J2 (-5.166 mV/°C)  
1267.88  
J5 (–12.924 mV/°C)  
–33  
–32  
–31  
–30  
–29  
–28  
–27  
–26  
–25  
–24  
–23  
–22  
–21  
–20  
–19  
–18  
–17  
–16  
–15  
–14  
–13  
–12  
–11  
–10  
–9  
1901.66  
1894.15  
1886.63  
1879.11  
1871.59  
1864.06  
1856.53  
1848.99  
1841.45  
1833.91  
1826.36  
1818.81  
1811.26  
1803.70  
1796.13  
1788.57  
1781.00  
1773.42  
1765.85  
1758.26  
1750.68  
1743.09  
1735.50  
1727.90  
1720.30  
1712.69  
1705.09  
1697.47  
1689.86  
1682.24  
1674.61  
1666.99  
1659.35  
1651.72  
1644.08  
1636.44  
1628.79  
1621.14  
1613.48  
1605.83  
1598.16  
1590.50  
1582.83  
1575.15  
1567.48  
2535.60  
2525.58  
2515.56  
2505.52  
2495.49  
2485.44  
2475.40  
2465.34  
2455.29  
2445.23  
2435.16  
2425.09  
2415.01  
2404.93  
2394.84  
2384.74  
2374.65  
2364.54  
2354.44  
2344.32  
2334.20  
2324.08  
2313.95  
2303.82  
2293.68  
2283.54  
2273.39  
2263.24  
2253.08  
2242.91  
2232.74  
2222.57  
2212.39  
2202.21  
2192.02  
2181.82  
2171.62  
2161.42  
2151.21  
2141.00  
2130.78  
2120.55  
2110.32  
2100.09  
2089.85  
3169.37  
3156.84  
3144.30  
3131.76  
3119.21  
3106.66  
3094.10  
3081.53  
3068.96  
3056.38  
3043.79  
3031.20  
3018.60  
3006.00  
2993.38  
2980.77  
2968.14  
2955.51  
2942.87  
2930.23  
2917.58  
2904.93  
2892.26  
2879.60  
2866.92  
2854.24  
2841.55  
2828.86  
2816.16  
2803.45  
2790.74  
2778.02  
2765.30  
2752.57  
2739.83  
2727.08  
2714.33  
2701.58  
2688.82  
2676.05  
2663.27  
2650.49  
2637.70  
2624.91  
2612.10  
1262.88  
1257.87  
1252.86  
1247.85  
1242.84  
1237.82  
1232.80  
1227.78  
1222.75  
1217.73  
1212.70  
1207.67  
1202.63  
1197.59  
1192.55  
1187.51  
1182.46  
1177.42  
1172.37  
1167.31  
1162.26  
1157.20  
1152.14  
1147.07  
1142.01  
1136.94  
1131.87  
1126.79  
1121.72  
1116.64  
1111.56  
1106.47  
1101.39  
1096.30  
1091.20  
1086.11  
1081.01  
1075.91  
1070.81  
1065.71  
1060.60  
1055.49  
1050.38  
1045.26  
–8  
–7  
–6  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
6
7
8
9
10  
11  
14  
Copyright © 2015, Texas Instruments Incorporated  
LM57-Q1  
www.ti.com.cn  
ZHCSDV7 JULY 2015  
Feature Description (continued)  
(1)  
Table 1. LM57-Q1 VTEMP Temperature to Voltage  
(continued)  
VTEMP VOLTAGE (mV)  
J3 (–7.752 mV/°C) J4 (–10.339 mV/°C)  
Temperature (°C)  
J2 (-5.166 mV/°C)  
1040.14  
J5 (–12.924 mV/°C)  
2599.30  
2586.48  
2573.66  
2560.84  
2548.01  
2535.17  
2522.32  
2509.47  
2496.61  
2483.75  
2470.88  
2458.00  
2445.12  
2432.23  
2419.34  
2406.43  
2393.53  
2380.61  
2367.69  
2354.76  
2341.83  
2328.89  
2315.94  
2302.99  
2290.03  
2277.07  
2264.10  
2251.12  
2238.14  
2225.15  
2212.15  
2199.15  
2186.14  
2173.12  
2160.10  
2147.07  
2134.04  
2121.00  
2107.95  
2094.90  
2081.84  
2068.77  
2055.70  
2042.62  
2029.54  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
1559.80  
1552.11  
1544.42  
1536.73  
1529.03  
1521.33  
1513.63  
1505.92  
1498.21  
1490.49  
1482.77  
1475.05  
1467.32  
1459.59  
1451.86  
1444.12  
1436.38  
1428.63  
1420.88  
1413.13  
1405.37  
1397.61  
1389.84  
1382.07  
1374.30  
1366.52  
1358.74  
1350.96  
1343.17  
1335.38  
1327.58  
1319.78  
1311.98  
1304.17  
1296.36  
1288.54  
1280.72  
1272.90  
1265.07  
1257.24  
1249.41  
1241.57  
1233.73  
1225.88  
1218.03  
2079.60  
2069.35  
2059.10  
2048.84  
2038.57  
2028.30  
2018.03  
2007.75  
1997.46  
1987.17  
1976.88  
1966.58  
1956.27  
1945.96  
1935.64  
1925.32  
1915.00  
1904.67  
1894.33  
1883.99  
1873.64  
1863.29  
1852.94  
1842.57  
1832.21  
1821.84  
1811.46  
1801.08  
1790.69  
1780.30  
1769.90  
1759.50  
1749.09  
1738.68  
1728.26  
1717.84  
1707.41  
1696.98  
1686.54  
1676.10  
1665.65  
1655.20  
1644.74  
1634.28  
1623.81  
1035.02  
1029.90  
1024.77  
1019.65  
1014.51  
1009.38  
1004.25  
999.11  
993.97  
988.82  
983.68  
978.53  
973.38  
968.22  
963.07  
957.91  
952.74  
947.58  
942.41  
937.24  
932.07  
926.90  
921.72  
916.54  
911.36  
906.17  
900.98  
895.79  
890.60  
885.41  
880.21  
875.01  
869.81  
864.60  
859.39  
854.18  
848.97  
843.75  
838.53  
833.31  
828.09  
822.86  
817.63  
812.40  
Copyright © 2015, Texas Instruments Incorporated  
15  
LM57-Q1  
ZHCSDV7 JULY 2015  
www.ti.com.cn  
Feature Description (continued)  
(1)  
Table 1. LM57-Q1 VTEMP Temperature to Voltage  
(continued)  
VTEMP VOLTAGE (mV)  
J3 (–7.752 mV/°C) J4 (–10.339 mV/°C)  
Temperature (°C)  
J2 (-5.166 mV/°C)  
807.17  
J5 (–12.924 mV/°C)  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
1210.18  
1202.32  
1194.46  
1186.60  
1178.73  
1170.86  
1162.98  
1155.10  
1147.22  
1139.33  
1131.44  
1123.54  
1115.64  
1107.74  
1099.83  
1091.92  
1084.01  
1076.09  
1068.17  
1060.24  
1052.31  
1044.38  
1036.44  
1028.50  
1020.55  
1012.60  
1004.65  
996.69  
1613.34  
1602.86  
1592.38  
1581.89  
1571.40  
1560.90  
1550.40  
1539.89  
1529.37  
1518.86  
1508.33  
1497.80  
1487.27  
1476.73  
1466.19  
1455.64  
1445.08  
1434.53  
1423.96  
1413.39  
1402.82  
1392.24  
1381.65  
1371.07  
1360.47  
1349.87  
1339.27  
1328.66  
1318.04  
1307.42  
1296.80  
1286.17  
1275.53  
1264.89  
1254.25  
1243.60  
1232.94  
1222.28  
1211.61  
1200.94  
1190.27  
1179.59  
1168.90  
1158.21  
1147.52  
2016.44  
2003.35  
1990.24  
1977.13  
1964.02  
1950.89  
1937.76  
1924.63  
1911.49  
1898.34  
1885.19  
1872.02  
1858.86  
1845.68  
1832.50  
1819.32  
1806.13  
1792.93  
1779.72  
1766.51  
1753.30  
1740.07  
1726.84  
1713.61  
1700.36  
1687.11  
1673.86  
1660.60  
1647.33  
1634.05  
1620.77  
1607.49  
1594.19  
1580.89  
1567.59  
1554.28  
1540.96  
1527.63  
1514.30  
1500.97  
1487.62  
1474.27  
1460.92  
1447.55  
1434.18  
801.93  
796.69  
791.45  
786.20  
780.96  
775.71  
770.46  
765.20  
759.94  
754.68  
749.42  
744.16  
738.89  
733.62  
728.35  
723.07  
717.79  
712.51  
707.23  
701.94  
696.65  
691.36  
686.07  
680.77  
675.48  
670.17  
664.87  
659.56  
654.25  
648.94  
643.63  
638.31  
632.99  
627.67  
622.35  
617.02  
611.69  
606.36  
601.02  
595.69  
590.34  
585.00  
579.66  
574.31  
988.73  
980.77  
972.80  
964.83  
956.85  
948.87  
940.89  
932.90  
924.91  
916.92  
908.92  
900.91  
892.91  
884.90  
876.88  
868.87  
860.84  
16  
Copyright © 2015, Texas Instruments Incorporated  
LM57-Q1  
www.ti.com.cn  
ZHCSDV7 JULY 2015  
Feature Description (continued)  
(1)  
Table 1. LM57-Q1 VTEMP Temperature to Voltage  
(continued)  
VTEMP VOLTAGE (mV)  
J3 (–7.752 mV/°C) J4 (–10.339 mV/°C)  
Temperature (°C)  
J2 (-5.166 mV/°C)  
568.96  
J5 (–12.924 mV/°C)  
1420.81  
1407.43  
1394.04  
1380.65  
1367.24  
1353.84  
1340.42  
1327.01  
1313.58  
1300.15  
1286.71  
1273.26  
1259.81  
1246.36  
1232.89  
1219.42  
1205.95  
1192.46  
1178.98  
1165.48  
1151.98  
1138.47  
1124.96  
1111.44  
1097.91  
1084.38  
1070.84  
1057.29  
1043.74  
1030.18  
1016.62  
1003.05  
989.47  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
852.82  
844.79  
836.76  
828.72  
820.68  
812.63  
804.59  
796.53  
788.48  
780.42  
772.35  
764.29  
756.21  
748.14  
740.06  
731.98  
723.89  
715.80  
707.70  
699.61  
691.50  
683.40  
675.29  
667.18  
659.06  
650.94  
642.81  
634.68  
626.55  
618.41  
610.27  
602.13  
593.98  
585.83  
577.67  
569.51  
561.35  
553.18  
545.01  
536.84  
528.66  
520.48  
512.29  
504.10  
495.91  
1136.81  
1126.11  
1115.40  
1104.68  
1093.96  
1083.23  
1072.50  
1061.77  
1051.02  
1040.28  
1029.53  
1018.77  
1008.01  
997.24  
986.47  
975.69  
964.91  
954.12  
943.33  
932.53  
921.73  
910.92  
900.11  
889.29  
878.47  
867.64  
856.81  
845.97  
835.13  
824.28  
813.43  
802.57  
791.71  
780.84  
769.97  
759.09  
748.20  
737.32  
726.42  
715.52  
704.62  
693.71  
682.80  
671.88  
660.95  
563.61  
558.25  
552.89  
547.53  
542.17  
536.80  
531.43  
526.06  
520.69  
515.31  
509.93  
504.55  
499.17  
493.78  
488.39  
483.00  
477.61  
472.21  
466.81  
461.41  
456.00  
450.60  
445.19  
439.78  
434.36  
428.94  
423.52  
418.10  
412.67  
407.25  
401.82  
396.38  
390.95  
385.51  
380.07  
374.63  
369.18  
363.73  
358.28  
352.83  
347.37  
341.91  
336.45  
330.99  
975.89  
962.30  
948.70  
935.10  
921.49  
907.87  
894.25  
880.62  
866.99  
853.35  
839.70  
826.05  
Copyright © 2015, Texas Instruments Incorporated  
17  
LM57-Q1  
ZHCSDV7 JULY 2015  
www.ti.com.cn  
Feature Description (continued)  
(1)  
Table 1. LM57-Q1 VTEMP Temperature to Voltage  
(continued)  
VTEMP VOLTAGE (mV)  
J3 (–7.752 mV/°C) J4 (–10.339 mV/°C)  
Temperature (°C)  
J2 (-5.166 mV/°C)  
325.52  
J5 (–12.924 mV/°C)  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
487.71  
479.51  
471.30  
463.09  
454.88  
446.66  
438.44  
430.22  
421.99  
413.76  
405.52  
397.28  
389.04  
380.79  
372.54  
364.28  
356.02  
347.76  
339.50  
331.23  
322.95  
314.67  
306.39  
298.11  
289.82  
281.52  
273.23  
264.92  
256.62  
650.03  
639.09  
628.15  
617.21  
606.26  
595.30  
584.35  
573.38  
562.41  
551.44  
540.46  
529.47  
518.48  
507.49  
496.49  
485.48  
474.47  
463.46  
452.44  
441.41  
430.38  
419.35  
408.31  
397.26  
386.21  
375.15  
364.09  
353.03  
341.96  
812.39  
798.73  
785.05  
771.38  
757.69  
744.00  
730.30  
716.60  
702.89  
689.17  
675.45  
661.72  
647.99  
634.25  
620.50  
606.75  
592.98  
579.22  
565.45  
551.67  
537.88  
524.09  
510.29  
494.59  
480.52  
466.44  
452.36  
438.27  
424.17  
320.05  
314.58  
309.10  
303.63  
298.15  
292.66  
287.18  
281.69  
276.20  
270.71  
265.22  
259.72  
254.22  
248.71  
243.21  
237.70  
232.19  
226.68  
221.16  
215.64  
210.12  
204.60  
199.07  
193.54  
188.01  
182.48  
176.94  
171.40  
18  
Copyright © 2015, Texas Instruments Incorporated  
 
LM57-Q1  
www.ti.com.cn  
ZHCSDV7 JULY 2015  
7.3.1.1 LM57-Q1 VTEMP Voltage-to-Temperature Equations  
VTEMP= a (T-30)2+ b (T-30) + c  
where  
VTEMP is in mV and T is in °C  
(1)  
 b  b2  4a(c VTEMP  
)
T   
 30qC  
2a  
where  
T is in °C and VTEMP is in mV  
(2)  
Table 2. LM57-Q1 VTEMP Voltage-to-Temperature Equations Coefficients  
Trip-Point  
Region  
LM57-Q1 Trip Point Range  
a
b
c
J2  
J3  
J4  
J5  
41°C to 52°C  
52°C to 97°C  
– 0.00129  
– 0.00191  
– 0.00253  
– 0.00316  
5.166  
7.752  
947.6  
1420.9  
1894.3  
2367.7  
97°C to 119°C  
119°C to 160°C  
10.339  
12.924  
7.3.2 RSENSE  
The LM57-Q1 uses the voltage at the two SENSE pins to set the trip point for the temperature switch. It is  
possible to drive the two SENSE pins with a voltage equal to the value generated by the resistor and the internal  
current-source and have the same switch point. Thus one can use an external DAC to drive each SENSE pin,  
allowing for the temperature trip point to be set dynamically by the system processor. Table 3 shows the RSENSE  
value and its corresponding generated SENSE pin voltage (the center value).  
Table 3. RSENSE Values (k) vs SENSE Pin Voltage (mV)  
SENSE Pin Voltage (mV)  
RSENSE (k)  
Center Value  
976  
825  
698  
590  
499  
412  
340  
280  
226  
178  
140  
105  
75  
1875  
1585  
1341  
1134  
959  
792  
653  
538  
434  
342  
269  
202  
146  
87  
46.4  
22.6  
0.01  
43  
0
Copyright © 2015, Texas Instruments Incorporated  
19  
 
LM57-Q1  
ZHCSDV7 JULY 2015  
www.ti.com.cn  
7.3.3 Resistor Selection  
(1)  
Table 4. Trip Point (°C) vs Sense Resistor (RSENSE) Values ()  
RSENSE2  
(2)  
(2)  
(2)  
J2  
825 kΩ  
J3  
J4  
280 kΩ  
J5  
976 kΩ  
698 kΩ  
590 kΩ  
30.38  
31.81  
33.24  
34.67  
36.10  
37.53  
38.95  
40.38  
41.81  
43.23  
44.65  
46.07  
47.50  
48.92  
50.33  
51.75  
499 kΩ  
52.73  
53.68  
54.62  
55.56  
56.50  
57.44  
58.39  
59.33  
60.27  
61.21  
62.15  
63.08  
64.02  
64.96  
65.90  
66.84  
412 kΩ  
67.77  
68.71  
69.65  
70.59  
71.52  
72.46  
73.40  
74.33  
75.27  
76.20  
77.14  
78.07  
79.01  
79.94  
80.87  
81.81  
340 kΩ  
82.74  
83.67  
84.60  
85.53  
86.46  
87.40  
88.33  
89.26  
90.19  
91.12  
92.05  
92.99  
93.92  
94.84  
95.77  
96.70  
226 kΩ  
178 kΩ  
119.62  
120.18  
120.73  
121.28  
121.84  
122.39  
122.94  
123.50  
124.05  
124.60  
125.15  
125.71  
126.26  
126.81  
127.36  
127.91  
140 kΩ  
128.46  
129.01  
129.56  
130.12  
130.67  
131.22  
131.77  
132.32  
132.87  
133.43  
133.98  
134.53  
135.08  
135.63  
136.18  
136.73  
105 kΩ  
137.28  
137.83  
138.38  
138.93  
139.49  
140.04  
140.59  
141.14  
141.69  
142.24  
142.79  
143.34  
143.89  
144.44  
144.99  
145.54  
75 kΩ  
46.4 kΩ  
976 kΩ  
825 kΩ  
698 kΩ  
590 kΩ  
499 kΩ  
412 kΩ  
340 kΩ  
280 kΩ  
226 kΩ  
178 kΩ  
140 kΩ  
105 kΩ  
75 kΩ  
–40.68  
–39.13  
–37.57  
–36.03  
–34.49  
–32.95  
–31.41  
–29.88  
–28.34  
–26.83  
–25.32  
–23.80  
–22.29  
–20.77  
–19.26  
–17.75  
–16.26  
–14.76  
–13.27  
–11.78  
–10.29  
–8.81  
–7.32  
–5.83  
–4.35  
–2.88  
–1.42  
0.04  
7.33  
97.47  
98.17  
108.61  
109.30  
110.00  
110.70  
111.39  
112.09  
112.79  
113.48  
114.18  
114.87  
115.57  
116.26  
116.95  
117.65  
118.34  
119.04  
146.08  
146.62  
147.16  
147.71  
148.25  
148.80  
149.34  
149.88  
150.43  
150.97  
151.51  
152.06  
152.60  
153.14  
153.68  
154.23  
154.77  
155.31  
155.85  
156.39  
156.93  
157.46  
158.00  
158.54  
159.08  
159.62  
160.16  
8.79  
10.24  
11.70  
13.15  
14.60  
16.05  
17.49  
18.93  
20.36  
21.79  
23.22  
24.65  
26.08  
27.51  
28.94  
98.86  
99.56  
100.25  
100.95  
101.64  
102.34  
103.03  
103.73  
104.42  
105.11  
105.81  
106.50  
107.19  
107.89  
RSENSE1  
1.50  
46.4 kΩ  
22.6 kΩ  
0.01 kΩ  
2.96  
4.42  
5.88  
(1) Temperatures above 150°C apply to the LM57FSPWQ1 and LM57TSPWQ1 only and are italicized.  
(2) There are four gains corresponding to each of the four Temperature Trip Point Ranges:  
J2 (-5.166 mV/°C) is the temperature sensor output gain used for Temperature Trip Points 40.68°C to 51.8°C.  
J3 (-7.752 mV/°C) is for Trip Points 52°C to 97°C.  
J4 (-10.339 mV/°C) for 97°C to 119°C.  
J5 (-12.924 mV/°C) for 119°C to 160°C.  
20  
Copyright © 2015, Texas Instruments Incorporated  
LM57-Q1  
www.ti.com.cn  
ZHCSDV7 JULY 2015  
(1)  
Table 5. VTEMP (mV) at the Trip Point vs Sense Resistor (RSENSE) Value ()  
RSENSE2  
(2)  
(2)  
(2)  
(2)  
J2  
825 kΩ  
J3  
J4  
280 kΩ  
J5  
976 kΩ  
1306.23  
1298.50  
1290.72  
1283.03  
1275.33  
1267.64  
1259.94  
1252.25  
1244.55  
1236.99  
1229.38  
1221.76  
1214.15  
1206.53  
1198.92  
1191.30  
698 kΩ  
590 kΩ  
945.63  
938.23  
930.83  
923.43  
916.02  
908.62  
901.22  
893.82  
886.42  
879.02  
871.61  
864.21  
856.81  
849.41  
842.01  
834.62  
499 kΩ  
1243.67  
1236.27  
1228.88  
1221.48  
1214.09  
1206.69  
1199.30  
1191.90  
1184.50  
1177.11  
1169.71  
1162.32  
1154.92  
1147.53  
1140.13  
1132.74  
412 kΩ  
1125.34  
1117.93  
1110.52  
1103.10  
1095.69  
1088.28  
1080.87  
1073.45  
1066.04  
1058.63  
1051.22  
1043.80  
1036.39  
1028.98  
1021.57  
1014.15  
340 kΩ  
1006.75  
999.34  
991.92  
984.51  
977.09  
969.66  
962.22  
954.78  
947.35  
939.91  
932.48  
925.04  
917.61  
910.17  
902.74  
895.30  
226 kΩ  
178 kΩ  
1184.05  
1176.57  
1169.10  
1161.63  
1154.16  
1146.68  
1139.21  
1131.74  
1124.27  
1116.79  
1109.32  
1101.85  
1094.38  
1086.90  
1079.43  
1072.04  
140 kΩ  
105 kΩ  
944.83  
937.33  
929.83  
922.33  
914.83  
907.33  
899.83  
892.33  
884.83  
877.33  
869.82  
862.32  
854.82  
847.32  
839.82  
832.32  
75 kΩ  
824.96  
817.53  
810.09  
802.66  
795.22  
787.78  
780.35  
772.91  
765.48  
758.04  
750.61  
743.17  
735.74  
728.30  
720.86  
713.43  
46.4 kΩ  
705.99  
698.60  
691.20  
683.81  
676.41  
669.02  
661.62  
654.22  
646.83  
639.43  
632.04  
976 kΩ  
1183.77  
1176.23  
1168.70  
1161.16  
1153.62  
1146.09  
1138.55  
1131.02  
1123.48  
1116.05  
1108.61  
1101.18  
1093.74  
1086.30  
1078.87  
1071.43  
1064.00  
1056.56  
1049.13  
1041.69  
1034.26  
1026.82  
1019.38  
1011.99  
1004.62  
997.26  
1185.27  
1177.83  
1170.40  
1162.96  
1155.52  
1148.09  
1140.65  
1133.22  
1125.78  
1118.35  
1110.91  
1103.48  
1096.04  
1088.60  
1081.17  
1073.73  
1066.00  
1058.52  
1051.03  
1043.55  
1036.07  
1028.59  
1021.10  
1013.62  
1006.14  
998.66  
1064.59  
1057.10  
1049.62  
1042.13  
1034.65  
1027.16  
1019.67  
1012.19  
1004.70  
997.22  
825 kΩ  
698 kΩ  
590 kΩ  
499 kΩ  
412 kΩ  
340 kΩ  
280 kΩ  
226 kΩ  
178 kΩ  
140 kΩ  
105 kΩ  
75 kΩ  
RSENSE1  
989.89  
991.17  
989.73  
982.53  
983.69  
982.25  
975.16  
976.21  
974.76  
46.4 kΩ  
22.6 kΩ  
0.01 kΩ  
967.80  
968.73  
967.28  
960.43  
961.24  
959.79  
953.07  
953.76  
952.31  
(1) Items italicized and highlighted in red apply to the LM57FSPWQ1 and LM57TSPWQ1 only.  
(2) There are four gains corresponding to each of the four Temperature Trip Point Ranges:  
J2 (-5.166 mV/°C) is the temperature sensor output gain used for Temperature Trip Points 40.68°C to 51.8°C.  
J3 (-7.752 mV/°C) is for Trip Points 52°C to 97°C.  
J4 (-10.339 mV/°C) for 97°C to 119°C.  
J5 (-12.924 mV/°C) for 119°C to 160°C.  
Copyright © 2015, Texas Instruments Incorporated  
21  
LM57-Q1  
ZHCSDV7 JULY 2015  
www.ti.com.cn  
7.3.4 TOVER and TOVER Digital Outputs  
The TOVER active high, push-pull output and the TOVER Active Low, Open-Drain Output both assert at the same  
time whenever the Die Temperature reaches the Trip Point. They also assert simultaneously whenever the TRIP  
TEST pin is set high. Both outputs de-assert when the die temperature goes below the (Temperature Trip Point)  
- (Hysteresis). These two types of digital outputs enable the user the flexibility to choose the type of output that is  
most suitable for his design.  
Either the TOVER or the TOVER Digital Output pins can be left open if not used.  
The TOVER Active Low, Open-Drain Digital Output, if used, requires a pullup resistor between this pin and VDD  
.
7.3.4.1 TOVER and TOVER Noise Immunity  
The LM57-Q1 has some noise immunity to a premature trigger due to noise on the power supply. With the die  
temperature at 1°C below the trip point, there are no premature triggers for a square wave injected into the  
power supply with a magnitude of 100 mVPP over a frequency range of 100 Hz to 2 MHz. Above the frequency a  
premature trigger may occur.  
With the die temperature at 2°C below the trip point, and a magnitude of 200 mVPP, there are no premature  
triggers from 100 Hz to 300 kHz. Above that frequency a premature trigger may occur.  
Therefore if the supply line is noisy, it is recommended that a local supply decoupling capacitor be used to  
reduce that noise.  
7.3.5 Trip Test Digital Input  
The TRIP TEST pin provides a means to test the digital outputs by causing them to assert, regardless of  
temperature.  
In addition, when the TRIP TEST pin is pulled high the VTEMP pin will be at the VTRIP voltage.  
7.3.6 VTEMP Analog Temperature Sensor Output  
The VTEMP push-pull output provides the ability to sink and source significant current. This is beneficial when, for  
example, driving dynamic loads like an input stage on an analog-to-digital converter (ADC). In these applications  
the source current is required to quickly charge the input capacitor of the ADC. See the Typical Application  
section for more discussion of this topic. The LM57-Q1 is ideal for this and other applications which require  
strong source or sink current.  
7.3.6.1 VTEMP Noise Considerations  
A load capacitor on VTEMP can help to filter noise.  
For noisy environments, TI recommends a 100 nF supply decoupling capacitor placed closed across VDD and  
GND pins of LM57-Q1.  
22  
Copyright © 2015, Texas Instruments Incorporated  
LM57-Q1  
www.ti.com.cn  
ZHCSDV7 JULY 2015  
7.3.6.2 VTEMP Capacitive Loads  
The VTEMP Output handles capacitive loading well. In an extremely noisy environment, or when driving a switched  
sampling input on an ADC, it may be necessary to add some filtering to minimize noise coupling. Without any  
precautions, the VTEMP can drive a capacitive load less than or equal to 1100 pF as shown in Figure 13. For  
capacitive loads greater than 1100 pF, a series resistor is required on the output, as shown in Figure 14, to  
maintain stable conditions.  
V
DD  
V
DD  
R
S
V
TEMP  
V
TEMP  
LM57  
LM57  
GND  
GND  
C
LOAD  
d 1100 pF  
C
LOAD  
> 1100 pF  
Figure 13. LM57-Q1 With No Isolation Resistor  
Required  
Figure 14. LM57-Q1 With Series Resistor for  
Capacitive Loading Greater than 1100 pF  
Table 6. CLOAD and RS Values of Figure 14  
CLOAD  
1.1 to 99 nF  
100 to 999 nF  
1 μF  
Minimum RS  
3 kΩ  
1.5 kΩ  
750 Ω  
7.3.6.3 VTEMP Voltage Shift  
The LM57-Q1 is very linear over temperature and supply voltage range. Due to the intrinsic behavior of an  
NMOS/PMOS rail-to-rail buffer, a slight shift in the output can occur when the supply voltage is ramped over the  
operating range of the device. The location of the shift is determined by the relative levels of VDD and VTEMP. The  
shift typically occurs when VDD VTEMP = 1 V.  
This slight shift (a few millivolts) takes place over a wide change (approximately 200 mV) in VDD or VTEMP. Since  
the shift takes place over a wide temperature change of 5°C to 20°C, VTEMP is always monotonic. The accuracy  
specifications in the Electrical Characteristics table already includes this possible shift.  
7.4 Device Functional Modes  
The LM57-Q1 has several modes of operation as detailed in the following drawings.  
V
DD  
SENSE1  
SENSE2  
T
OVER  
Asserts when T  
DIE  
> T  
TRIP  
See text  
LM57  
TRIP TEST  
GND  
Figure 15. Temperature Switch Using Push-Pull Output  
Copyright © 2015, Texas Instruments Incorporated  
23  
 
LM57-Q1  
ZHCSDV7 JULY 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
V
DD  
100k  
SENSE1  
SENSE2  
T
OVER  
Asserts when T  
DIE  
> T  
TRIP  
LM57  
See text  
TRIP TEST  
GND  
Figure 16. Temperature Switch Using Open-Drain Output  
As shown in Figure 17 the LM57-Q1 has a TRIP Test input simplifying in situ board conductivity testing. Forcing  
TRIP TEST pin "HIGH" will drive the TOVER pin "LOW" and the TOVER pin "HIGH".  
V
DD  
100k  
T
OVER  
TRIP TEST  
LM57  
T
OVER  
GND  
Figure 17. Trip Test Digital Output Test Circuit  
In the circuit shown in Figure 18 when TOVER goes active high, it drives trip test high. Trip test high causes TOVER  
to stay high. It is therefore latched. To release the latch, power down, then power up. The LM57-Q1 always  
comes up in a released condition.  
V
DD  
T
OVER  
TRIP TEST  
LM57  
T
OVER  
GND  
Figure 18. Simple Latch Circuit  
24  
Copyright © 2015, Texas Instruments Incorporated  
 
 
LM57-Q1  
www.ti.com.cn  
ZHCSDV7 JULY 2015  
Device Functional Modes (continued)  
The TRIP TEST pin, normally used to check the operation of the TOVER and TOVER pins, may be used to latch the  
outputs whenever the temperature exceeds the programmed limit and causes the digital outputs to assert. As  
shown in Figure 19, when TOVER goes high, the TRIP TEST input is also pulled high and causes TOVER output to  
latch high and the TOVER output to latch low. Momentarily switching the TRIP TEST input low will reset the LM57-  
Q1 to normal operation. The resistor limits the current out of the TOVER output pin.  
V
DD  
100k  
T
OVER  
TRIP TEST  
LM57  
RESET  
Momentary  
T
OVER  
GND  
Figure 19. Latch Circuit Using TOVER Output  
Copyright © 2015, Texas Instruments Incorporated  
25  
 
LM57-Q1  
ZHCSDV7 JULY 2015  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LM57-Q1 has several outputs allowing for varying system implementations.  
8.1.1 ADC Input Considerations  
The LM57-Q1 has an analog temperature sensor output (VTEMP) that can be directly connected to an ADC  
(Analog to Digital Converter) input. Most CMOS ADCs found in microcontrollers and ASICs have a sampled data  
comparator input structure. When the ADC charges the sampling cap, it requires instantaneous charge from the  
output of the analog source such as the LM57-Q1 temperature sensor and many op amps. This requirement is  
easily accommodated by the addition of a capacitor (CFILTER). The size of CFILTER depends on the size of the  
sampling capacitor and the sampling frequency. Because not all ADCs have identical input stages, the charge  
requirements will vary. The general ADC application shown in Figure 20 is an example only.  
SAR Analog-to-Digital Converter  
Reset  
+2.4V to +5.5V  
Input  
Pin  
LM57  
Sample  
R
IN  
V
DD  
V
TEMP  
C
BP  
C
C
PIN  
SAMPLE  
C
FILTER  
GND  
Figure 20. Suggested Connection to a Sampling Analog-to-Digital Converter Input Stage  
8.2 Typical Application  
V
DD  
Supply  
(+2.4V to +5.5V)  
V
DD  
Analog  
V
TEMP  
ADC Input  
LM57  
Microcontroller  
SENSE1  
T
OVER  
SENSE2  
Digital In  
T
OVER  
TRIP TEST  
GND  
Digital Out  
Figure 21. Typical Application Schematic with Microcontroller TRIP TEST Control  
26  
Copyright © 2015, Texas Instruments Incorporated  
 
 
LM57-Q1  
www.ti.com.cn  
ZHCSDV7 JULY 2015  
Typical Application (continued)  
8.2.1 Design Requirements  
By simply selecting the value of two resistors the trip point of the LM57-Q1 can easily be programmed as  
described in the following section. If standard 1% values are used the actual trip point threshold is not degraded  
and stands as described in the Electrical Characteristics section ( ).  
8.2.2 Detailed Design Procedure  
8.2.2.1 Selection of RSENSE Resistors  
To set the trip point:  
1. Locate the desired trip temperature in .  
2. Identify the corresponding RSENSE2 value by following the column up to the resistor value.  
3. Identify the corresponding RSENSE1 value by following the row leftwards to the resistor value.  
4. Use only the EIA E96 standard resistor values from the list.  
5. Use only a resistor with 1% tolerance and a temperature coefficient of 100 ppm (or better). These restrictions  
are necessary to stay at the selected setting, and not to slip into an adjacent setting.  
6. This is consistent with using resistors from the thick film chip resistors CRCW0402 family. These are  
available with very small dimensions of L = 1 mm, W = 0.5 mm, H = 0.35 mm.  
7. Note that the resistor tolerance does not diminish the accuracy of the trip point. As can be seen in the block  
diagram these inputs drive the logic inputs of a DAC thus their tolerance does affect the trip point accuracy  
unless the DAC setting slips into an adjacent level. See patent number 6924758.  
8.2.3 Application Curves  
The typical performance of the LM57TSPWQ1 temperature sensor output can be seen in Figure 22. Figure 23  
shows the output behavior of the LM57-Q1 TOVER output.  
2.0  
MAX LImit  
1.5  
Trip Point  
1.0  
Trip Point - Hysteresis  
0.5  
VTEMP Output  
(Temp. of Leads)  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
T
OVER  
MIN Limit  
0
25  
50  
75  
100 125 150 175  
±50 ±25  
DUT Temperature (ƒC)  
C102  
Figure 22. J2 VTEMP Accuracy Characteristics  
Figure 23. Output Transfer Characteristic  
Copyright © 2015, Texas Instruments Incorporated  
27  
 
LM57-Q1  
ZHCSDV7 JULY 2015  
www.ti.com.cn  
Typical Application (continued)  
8.2.4 Grounding of the TRIP TEST Pin  
The circuit in Figure 24 shows the TRIP TEST pin grounded. This allows the LM57-Q1 to function autonomously  
without microcontroller intervention. In all other respects this circuit functions similarly to the circuit shown in  
Figure 21.  
V
DD  
Supply  
(+2.4V to +5.5V)  
V
DD  
V
TEMP  
LM57  
Microcontroller  
SENSE1  
SENSE2  
T
OVER  
Digital In  
T
OVER  
TRIP TEST  
GND  
Figure 24. Typical Application Schematic without Microcontroller TRIP TEST Control  
9 Power Supply Recommendations  
Power supply bypass capacitors are optional and may be required if the supply line is noisy. TI recommends that  
a local supply decoupling capacitor be used to reduce noise. For noisy environments, TI recommends a 100-nF  
supply decoupling capacitor placed closed across VDD and GND pins of LM57-Q1.  
10 Layout  
10.1 Layout Guidelines  
The LM57-Q1 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be  
glued or cemented to a surface. The temperatures of the lands and traces to the other leads of the LM57-Q1 will  
also affect the temperature reading.  
Alternatively, the LM57-Q1 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath  
or screwed into a threaded hole in a tank. As with any IC, the LM57-Q1 and accompanying wiring and circuits  
must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate  
at cold temperatures where condensation can occur. If moisture creates a short circuit from the VTEMP output to  
ground or VDD, the VTEMP output from the LM57-Q1 will not be correct. Printed-circuit coatings are often used to  
ensure that moisture cannot corrode the leads or circuit traces.  
28  
Copyright © 2015, Texas Instruments Incorporated  
 
LM57-Q1  
www.ti.com.cn  
ZHCSDV7 JULY 2015  
10.2 Layout Example  
VIA to ground plane  
VIA to power plane  
GND  
SENSE1  
SENSE2  
VDD  
VTEMP  
TOVER  
RSENSE1  
RSENSE2  
TOVER  
TRIP TEST  
0.1 µ F  
Figure 25. PW (TSSOP) Package Layout Example  
10.3 Temperature Considerations  
The junction temperature of the LM57-Q1 is the actual temperature being measured. The thermal resistance  
junction-to-ambient (RθJA) is the parameter (from ) used to calculate the rise of a device junction temperature due  
to its power dissipation. Equation 3 is used to calculate the rise in the die temperature of the LM57-Q1.  
7J ꢀ ꢀ7A ꢀꢁꢀ5TJA  9DD,Q ꢃꢀꢁꢀꢂ9DD ꢀ±ꢀ9TEMP ꢃꢀꢀ,L  
ª
º
¼
¬
where  
TA is the ambient temperature.  
IQ is the quiescent current.  
IL is the load current on VTEMP  
.
RθJA can be found in  
(3)  
For example using an LM57-Q1 in the PW (TSSOP) package, in an application where TA = 30°C, VDD = 5.5 V,  
IDD = 28 μA, J5 gain, VTEMP = 2368 mV, and IL = 0 μA, the total temperature rise would be [183°C/W × 5.5 V × 28  
μA] = 0.028°C. To minimize self-heating, the load current on VTEMP should be minimized.  
版权 © 2015, Texas Instruments Incorporated  
29  
 
LM57-Q1  
ZHCSDV7 JULY 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
相关文档如下:  
LM57 商用数据表。  
《回流温度曲线》规范,www.ti.com/packaging。  
应用报告《IC 封装热指标》SPRA953  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
30  
版权 © 2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM57FEPWQ1  
LM57FEPWRQ1  
LM57FQPWQ1  
LM57FQPWRQ1  
LM57FSPWQ1  
LM57FSPWRQ1  
LM57TEPWQ1  
LM57TEPWRQ1  
LM57TQPWQ1  
LM57TQPWRQ1  
LM57TSPWQ1  
LM57TSPWRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
PW  
8
8
8
8
8
8
8
8
8
8
8
8
150  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-50 to 150  
-50 to 150  
-50 to 125  
-50 to 125  
-50 to 160  
-50 to 160  
-50 to 150  
-50 to 150  
-50 to 125  
-50 to 125  
-50 to 160  
-50 to 160  
LM57FE  
2000 RoHS & Green  
150 RoHS & Green  
2000 RoHS & Green  
150 RoHS & Green  
2000 RoHS & Green  
150 RoHS & Green  
2000 RoHS & Green  
150 RoHS & Green  
2000 RoHS & Green  
150 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
LM57FE  
LM57FQ  
LM57FQ  
LM57FS  
LM57FS  
LM57TE  
LM57TE  
LM57TQ  
LM57TQ  
LM57TS  
LM57TS  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
PW0008A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
8
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
A
0.1 C  
6X 0.65  
8
5
1
3.1  
2.9  
NOTE 3  
2X  
1.95  
4
0.30  
0.19  
8X  
4.5  
4.3  
1.2 MAX  
B
0.1  
C A  
B
NOTE 4  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
0 - 8  
DETAIL A  
TYPICAL  
4221848/A 02/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
8X (0.45)  
(R0.05)  
1
4
TYP  
8
SYMM  
6X (0.65)  
5
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221848/A 02/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
(R0.05) TYP  
8X (0.45)  
1
4
8
SYMM  
6X (0.65)  
5
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221848/A 02/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

LM57TSPWQ1

具有电阻可编程温度开关的汽车级、±0.7°C 温度传感器 | PW | 8 | -50 to 160
TI

LM57TSPWRQ1

具有电阻可编程温度开关的汽车级、±0.7°C 温度传感器 | PW | 8 | -50 to 160
TI

LM580Z

GREEN OVAL LAMP LED
SEOUL

LM581

INFRARED LAMP LED
SEOUL

LM5817

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIER
SEMTECH

LM5817

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS
MDD

LM5818

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIER
SEMTECH

LM5818

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS
MDD

LM5819

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIER
SEMTECH

LM5819

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS
MDD

LM581KH

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 10V, MBCY3
TI

LM581LH

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 10V, MBCY3
TI