LM74722-Q1 [TI]

具有 200kHz 有源整流和负载突降保护功能的汽车类低 IQ 理想二极管控制器;
LM74722-Q1
型号: LM74722-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 200kHz 有源整流和负载突降保护功能的汽车类低 IQ 理想二极管控制器

控制器 二极管
文件: 总35页 (文件大小:4301K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
LM74722-Q1 200kHz 有源整流和负载突降保护功能的汽车类IQ 理想二  
极管控制器  
1 特性  
3 说明  
• 具有符AEC-Q100 标准的下列特性  
LM74722-Q1 理想二极管控制器可驱动和控制外部背  
N MOSFET从而模拟具有电源路径开/关控  
制和过压保护功能的理想二极管整流器。3V 65V 的  
宽输入电源电压可保护和控制 12V 24V 汽车类电池  
供电的 ECU。该器件可承受并保护负载免受低至 –  
65V 的负电源电压的影响。集成的理想二极管控制器  
(GATE) 可驱动第一个 MOSFET 来代替肖特基二极  
实现反向输入保护和输出电压保持功能。具有快速  
导通和关断比较器的强大升压稳压器可确保在汽车测试  
ISO16750 LV124期间实现稳健、高效的  
MOSFET 开关性能期间 ECU 会收到输入短时中断  
以及频率高达 200kHz 的交流叠加输入信号。运行期间  
的低静态电流 35µA最大值可实现常开型系统设  
计。在电源路径中使用了第二个 MOSFET 的情况下,  
该器件允许使用 EN 引脚实现负载断开控制。EN 处  
于低电平时静态电流降至 3.3μA最大值。该器  
件具有可调节过压切断保护或使OV 引脚的过压钳位  
保护。  
– 器件温度等1:  
40°C +125°C 环境工作温度范围  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C4B  
3V 65V 输入范围  
• 反向输入保护低65V  
• 低静态电流运行35µA最大值)  
3.3µA最大值低关断电流EN = 低电平)  
13mV 阳极至阴极正向压降调节下理想二极管正  
常运行  
• 驱动外部背对N MOSFET  
• 集成30mA 升压稳压器  
• 高200 kHz 的有源整流  
• 快速响应反向电流阻断0.5µs  
• 快速正GATE 导通延迟0.72µs  
• 可调节过压保护  
• 采用合适TVS 二极管符合汽ISO7637 瞬态  
要求  
器件信息  
封装(1)  
• 采用节省空间12 WSON 封装  
封装尺寸标称值)  
器件型号  
LM74722-Q1  
WSON (12)  
3.00mm × 3.00mm  
2 应用  
• 汽车电池保护  
ADAS 域控制器  
出色的音频放大器  
音响主机  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
Q1  
Q1  
Q2  
VBATT  
12 V  
VOUT  
VBATT  
12 V  
VOUT  
PD  
C
CAP LX  
GATE  
A
D1  
C
CAP LX  
PD  
GATE  
A
D1  
SMBJ36CA  
SMBJ36CA  
VSNS  
SW  
VSNS  
SW  
R1  
BATT_MON  
LM74722-Q1  
GND  
R1  
BATT_MON  
LM74722-Q1  
GND  
R2  
EN  
R2  
ON OFF  
OV  
EN  
R3  
ON OFF  
OV  
R3  
具有开关输出的IQ 理想二极管  
IQ 理想二极管  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFR9  
 
 
 
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
Table of Contents  
9.1 Application Information............................................. 14  
9.2 Typical 12-V Reverse Battery Protection  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics............................................6  
6.7 Typical Characteristics................................................7  
7 Parameter Measurement Information............................9  
8 Detailed Description......................................................10  
8.1 Overview...................................................................10  
8.2 Functional Block Diagram.........................................10  
8.3 Feature Description...................................................11  
8.4 Device Functional Modes..........................................13  
9 Application and Implementation..................................14  
Application...................................................................14  
9.3 What to Do and What Not to Do............................... 22  
10 Power Supply Recommendations..............................23  
10.1 Transient Protection................................................23  
10.2 TVS Selection for 12-V Battery Systems................ 24  
10.3 TVS Selection for 24-V Battery Systems................ 24  
11 Layout...........................................................................26  
11.1 Layout Guidelines................................................... 26  
11.2 Layout Example...................................................... 26  
12 Device and Documentation Support..........................27  
12.1 接收文档更新通知................................................... 27  
12.2 支持资源..................................................................27  
12.3 Trademarks.............................................................27  
12.4 Electrostatic Discharge Caution..............................27  
12.5 术语表..................................................................... 27  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 27  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (February 2022) to Revision B (August 2022)  
Page  
• 将状态从“预告信息”更改为“量产数据”....................................................................................................... 1  
Changes from Revision * (September 2021) to Revision A (February 2022)  
Page  
• 更新了数据表标题...............................................................................................................................................1  
Updated the Load Disconnect Switch Control (PD) description........................................................................11  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LM74722-Q1  
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
12  
11  
10  
1
2
3
4
GATE  
A
C
CAP  
LX  
VSNS  
SW  
RTN  
9
8
7
N.C  
Exposed  
Thermal  
Pad  
PD  
5
6
OV  
EN  
GND  
5-1. WSON 12-Pin DRR Transparent Top View  
5-1. Pin Functions  
PIN  
LM74722-Q1  
TYPE  
DESCRIPTION  
NAME  
DRR-12 (WSON)  
GATE  
A
1
2
3
O
I
Diode controller gate drive output. Connect to the GATE of the external MOSFET.  
Anode of the ideal diode. Connect to the source of the external MOSFET.  
Voltage sensing input  
VSNS  
I
Voltage sensing disconnect switch terminal. VSNS and SW connect internally through  
a switch. Use SW as the top connection of the battery sensing or OV resistor ladder  
network. When EN is pulled low, the switch is OFF disconnecting the resistor ladder  
from the battery line, thereby cutting off the leakage current. If the internal disconnect  
switch between VSNS and SW is not used, then short them together and connect to C  
pin.  
SW  
4
I
Adjustable overvoltage threshold input. Connect a resistor ladder across SW to OV  
terminal. When the voltage at OV exceeds the over voltage cut-off threshold, then the  
PD is pulled low turning OFF the HSFET. PD is driven high when the sense voltage  
goes below the OV falling threshold.  
OV  
EN  
5
6
I
I
EN input. Connect to A or C pin for always ON operation. In this mode, the device  
consumes an IQ of 35 µA (maximum) that can be driven externally from a micro  
controller I/O. Pulling this pin low below 0.3 V enters the device in low Iq shutdown  
mode.  
GND  
PD  
7
8
9
G
O
I
Connect to the system ground plane.  
Pull down connection for the external HSFET. Connect to the GATE of the external  
FET. Keep PD pin floating when not used.  
N.C  
No connect  
Switch node of the internal boost regulator. This node must be kept small on the PCB  
for good performance and low EMI. Connect the boost inductor between this pin and  
the DRAIN connection of the external FET.  
LX  
10  
11  
I
Boost regulator output. This pin is used to provide a drive voltage to the gate driver of  
the ideal diode stage as well as drive supply for the HSFET. Connect a 1-µF capacitor  
between this pin and the DRAIN connection of the external FET.  
CAP  
O
Cathode of the ideal diode and supply voltage pin. Connect to the DRAIN of the  
external MOSFET. The voltage sensed at this pin is used to control the external  
MOSFET GATE. This pin must be locally bypassed with at least 1 µF.  
C
12  
I
RTN  
Thermal Pad  
Leave exposed pad floating. Do not connect to GND plane.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM74722-Q1  
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
65  
MAX  
70  
UNIT  
V
Input Pins  
A to GND  
Input Pins  
C to GND  
70  
V
0.3  
0.3  
V(A)  
Input Pins  
VSNS, SW, EN, OV to GND, V(A) > 0 V  
VSNS, SW, EN, OV to GND, V(A) 0 V  
RTN to GND  
70  
V
Input Pins  
(70 + V(A)  
)
V
Input Pins  
0.3  
10  
V
65  
Input Pins  
IVSNS, ISW  
mA  
mA  
1  
Input Pins  
IEN, IOV, V(A) > 0 V  
IEN, IOV, V(A) 0 V  
CAP to C  
1  
Input Pins  
Internally limited  
0.3  
0.3  
0.3  
0.3  
5  
Output Pins  
Output Pins  
Output Pins  
Output Pins  
Output to Input Pins  
15.9  
85  
V
V
CAP to A  
GATE to A  
15  
V
LX, CAP, PD to GND  
85  
V
C to A  
85  
V
(2)  
Operating junction temperature, Tj  
Storage temperature, Tstg  
150  
150  
°C  
°C  
40  
40  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
±2000  
Corner pins (GATE, EN, GND,  
C)  
V(ESD)  
Electrostatic discharge  
±750  
±500  
V
Charged device model (CDM),  
per AEC Q100-011  
Other pins  
(1) AEC-Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specifications.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
NOM  
MAX  
65  
UNIT  
A to GND  
C to GND  
EN to GND  
A
60  
Input Pins  
65  
V
65  
60  
0.1  
1
µF  
µF  
External  
capacitance  
VS, C, CAP to C  
External  
Inductor  
LX  
100  
µH  
External  
MOSFET max GATE to A  
VGS rating  
15  
V
TJ  
Operating junction temperature range(2)  
150  
°C  
40  
(1) Recommended Operating Conditions are conditions under which the device is intended to be functional. For specifications and test  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LM74722-Q1  
 
 
 
 
 
 
 
 
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
conditions, see Electrical Characteristics.  
(2) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
6.4 Thermal Information  
LM74722-Q1  
THERMAL METRIC(1)  
DRR (WSON)  
UNIT  
12 PINS  
61.6  
50  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
32.7  
1.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (botton) thermal resistance  
32.7  
6.9  
ΨJB  
RθJC  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(A) = V(C) = 12 V, C(CAP) = 1 µF, V(EN) = 2 V, over operating free-air  
temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VA SUPPLY VOLTAGE  
VA POR Rising threshold  
VA POR Falling threshold  
Minimum voltage at C  
3.1  
2.2  
3.4  
2.6  
3.85  
V(A POR)  
2.9  
3
V
V(C)  
I(SHDN)  
Shutdown Supply Current  
V(EN) = 0 V  
1.5  
27  
3.3  
V(EN) = 2 V, Active Rectifier Controller  
In Regulation, 40°C TJ +85°C  
32  
35  
µA  
I(Q)  
Total System Quiescent Current  
V(EN) = 2 V, Active Rectifier Controller  
In Regulation, 40°C TJ +125°C  
27  
ENABLE INPUT  
V(EN_IH)  
Enable input high threshold  
Enable input low threshold  
Enable Hysteresis  
2
V
V(EN_IL)  
0.5  
0.85  
485  
55  
1.2  
V(EN_Hys)  
mV  
nA  
I(EN)  
Enable sink current  
V(EN) = 12 V  
155  
VANODE to VCATHODE  
V(AC REG)  
Regulated Forward V(AC) Threshold  
V(AC) threshold from RCB to oFCB  
7.5  
75  
12.8  
105  
18.7  
140  
V(AC_FWD)  
mV  
V(AC) threshold for reverse current  
blocking  
V(AC_REV)  
12  
5.6  
1.3  
GATE DRIVE  
V(GATE) - V(A)  
3 V < V(C) < 65 V  
9.5  
8.5  
13  
39  
V
µA  
A
V(A) V(C) = 0 V,  
Regulation max sink current  
Peak Pull down current  
22  
2.5  
1.2  
V
(GATE) V(A) = 5 V  
I(GATE)  
V(A) V(C) = 20 mV  
V(A) V(C) = 20 mV,  
RGATE  
GATE pull down resistance  
V
(GATE) V(A) = 100 mV  
BOOST REGULATOR CHARGE PUMP  
Boost output rising threshold  
Hysteresis  
13  
15.5  
V
V
(CAP) V(C)  
1.1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM74722-Q1  
 
 
 
 
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(A) = V(C) = 12 V, C(CAP) = 1 µF, V(EN) = 2 V, over operating free-air  
temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
(CAP) V(C) = 7.5 V  
MIN  
110  
1.3  
TYP  
29  
MAX UNIT  
I(CAP)  
I(LX)  
Boost load capacity  
V
mA  
V(C) = 12 V  
V(C) = 3 V  
140  
175  
210  
5.1  
Peak Inductor current limit  
R(LX)  
Low side switch on-resistance  
2.7  
BATTERY SENSING (VSNS, SW) AND OVER VOLTAGE DETECTION (OVP, PD)  
Battery sensing disconnect switch  
resistance  
R(SW)  
104  
226  
430  
V(OVR)  
Overvoltage threshold input, risIng  
Overvoltage threshold input, falling  
OV Hysteresis  
1.13  
1.03  
1.231  
1.125  
110  
50  
1.33  
V
V(OVF)  
1.215  
V
V(OV_Hys)  
I(OV)  
mV  
nA  
µA  
mA  
mA  
OV Input leakage current  
Pull up current  
0 V < V(OV) < 5 V  
3 V < V(C) < 65 V  
V(OV) > V(OVR)  
110  
60  
I(PD_SRC)  
I(PD_SINK,Pk)  
I(PD_SINK,DC)  
CATHODE  
43  
55  
7
50  
Peak Pull down current  
DC Pull down current  
88  
117  
14  
10  
C POR Rising  
C POR Falling  
2.58  
2.35  
2.8  
2.6  
2.95  
2.85  
15  
V(C)  
V
8.5  
V(A) = 12 V, V(A) V(C) = 100 mV  
V(A) = 14 V, V(C) = 14 V  
I(C)  
C sink current  
µA  
12.8  
18  
6.6 Switching Characteristics  
TJ = 40°C to +125°C; typical values at TJ = 25°C, V(A) = V(C) = 12 V, C(CAP) = 1 µF, V(EN) = 2 V, over operating free-air  
temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
V(A) V(A POR) to V(GATE A) > 5 V,  
C((GATE A) = 10 nF  
tA_POR(DLY)  
A (low to high) to GATE turn-on delay  
200  
µs  
µs  
V(A) V(C) = 100 mV to 700  
mV, V(GATE A) > 5 V, C((GATE A) = 10  
nF  
0.72  
1.02  
0.46  
1.25  
Forward voltage detection to GATE turn-  
on delay  
tGATE_ON(DLY)  
V(A) V(C) = 100 mV to 700  
mV, V(GATE A) > 5 V, C((GATE A) = 30  
nF  
1.9  
µs  
µs  
V(A) V(C) = +30 mV to 100  
mV, V(GATE A) < 1 V, C((GATE A) = 10  
nF  
Reverse voltage detection to GATE  
turn-off delay  
tGATE_OFF(DLY)  
0.65  
tEN_OFF(DLY)PD EN to PD Delay  
tOV_OFF(DLY)PD OV to PD Deglitch  
6.5  
0.9  
38  
12  
1.5  
65  
µs  
µs  
µs  
EN to PD ↓  
OV to PD ↓  
tPD_Pk  
Peak Pull Down duration  
11  
I(PD_SINK,Pk) to I(PD_SINK,DC)  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LM74722-Q1  
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
16  
14  
12  
10  
8
40C  
25C  
85C  
–40C  
25C  
125C  
150C  
85C  
125C  
150C  
6
4
2
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VS (V)  
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65  
VA (V)  
6-1. Operating Quiescent Current vs Supply Voltage  
6-2. Shutdown Supply Current vs Supply Voltage  
3.5  
3
2.5  
2
1.5  
VS PORR  
VS PORF  
1
-50  
0
50  
100  
150  
200  
Temperature (C)  
6-3. VA POR Threshold vs Temperature  
6-4. VS POR Threshold vs Temperature  
14  
40  
35  
30  
25  
20  
15  
10  
5
VS = 12 V  
VS = 3 V  
13  
12  
11  
(VCAPVS) R  
(VCAPVS) F  
10  
0
-50  
0
50  
100  
150  
200  
-50  
0
50  
100  
150  
200  
Temperature (C)  
Temperature (C)  
6-5. Boost Comparator Threshold vs Temperature  
6-6. Boost Loading Capacity vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM74722-Q1  
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
6.7 Typical Characteristics (continued)  
1.2  
1
1.3  
1.2  
1.1  
1
0.8  
0.6  
0.4  
0.2  
VOV_R  
VOV_F  
-50  
0
50  
100  
150  
200  
Temperature (C)  
-50  
0
50  
100  
150  
200  
Temperature (C)  
6-8. PD Turn-Off Delay During OV  
6-7. OV Threshold vs Temperature  
8
7
6
5
4
3
2
4
3.2  
2.4  
1.6  
0.8  
0
4.7nF  
10nF  
22nF  
33nF  
47nF  
-50  
0
50  
100  
150  
200  
-40  
0
40  
80  
120  
160  
Temperature (C)  
Temperature (C)  
6-9. PD Turn-Off Delay During EN  
6-10. Forward Turn-On Delay vs Temperature  
90  
60  
5
4.5  
4
RPD = 270   
RPD = 330   
30  
0
3.5  
3
-30  
-60  
-90  
2.5  
2
-10  
0
10  
20  
30  
40  
50  
V(AC) mV  
5
10 15 20 25 30 35 40 45 50 55 60 65  
VS (V)  
6-11. Gate Current vs Forward Voltage Drop  
6-12. PD Turn-Off Delay vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LM74722-Q1  
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
30 mV  
VA > VC  
0 mV  
VC > VA  
–100 mV  
VGATE  
1 V  
0 V  
ttGATE_OFF(DLY)  
t
700 mV  
VA > VC  
0 mV  
VC > VA  
–100 mV  
VGATE  
5 V  
0 V  
ttGATE_ON(DLY)  
t
VOVR + 0.1 V  
0 V  
VPD  
0 V  
ttOV_OFF(DLY)PD  
t
7-1. Timing Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM74722-Q1  
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LM74722-Q1 ideal diode controller drives and controls external back-to-back N-Channel MOSFETs to  
emulate an ideal diode rectifier with power path ON and OFF control and overvoltage protection. The wide input  
supply of 3 V to 65 V allows protection and control of 12-V and 24-V automotive battery powered ECUs. IQ  
during operation (EN = High) is < 35 µA and < 3.3 µA during shutdown mode (EN = Low). The device can  
withstand and protect the loads from negative supply voltages down to 65 V. An integrated ideal diode  
controller (GATE) drives the first MOSFET to replace a Schottky diode for reverse input protection and output  
voltage holdup. A strong 30-mA boost regulator and short turn-ON and turn-OFF delay times of comparators  
ensures fast transient response ensuring robust and efficient MOSFET switching performance during automotive  
testing, such as ISO16750 or LV124, where an ECU is subjected to input short interruptions and AC  
superimpose input signals up to 200-kHz frequency. The device features an adjustable overvoltage cutoff  
protection feature for load dump protection.  
The LM74722-Q1 controls the GATE of the MOSFET Q1 to regulate the forward voltage drop at 13 mV. The  
linear regulation scheme in these devices enables graceful control of the GATE voltage and turns off of the  
MOSFET during a reverse current event and ensures zero DC reverse current flow.  
LM74722-Q1 PD gate drive can be used to drive load disconnect MOSFET (Q2). The back to back connected  
MOSFET configuration can be used when system requires overvoltage protection, inrush current protection or  
output load disconnect function.  
8.2 Functional Block Diagram  
Q1  
Q2  
VBATT  
VOUT  
18 V  
GATE  
C
CAP  
LX  
PD  
A
VSNS  
SW  
50 µA  
EN  
Reverse Current  
Protection controller and  
Gate Driver  
EN  
Boost Converter  
and control  
R1  
BATT_MON  
VA + 10 V  
88 mA  
10 mA  
R2  
OV  
+
RTN  
OV  
1.23 V  
R3  
EN  
1.12 V  
VS  
+
2.8 V  
2.6 V  
OV  
+
EN  
EN  
VA  
VCAP  
VA  
VA + 10 V  
2 V  
Bias Rails  
RTN  
0.5 V  
Reverse  
Protection Logic  
LM74722-Q1  
GND  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM74722-Q1  
 
 
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Dual Gate Control (GATE, PD)  
The LM74722-Q1 features two separate gate control and driver outputs. That is, GATE and PD to drive back-to-  
back N-channel MOSFETs.  
8.3.1.1 Reverse Battery Protection (A, C, GATE)  
A, C, GATE comprises of the ideal diode stage. Connect the source of the external MOSFET to A, drain to C and  
gate to GATE pin. The LM74722-Q1 has integrated reverse input protection down to 65 V.  
In LM74722-Q1, the voltage drop across the MOSFET is continuously monitored between the A and C pins. The  
GATE to A voltage is adjusted as needed to regulate the forward voltage drop at 13 mV (typical). This closed  
loop regulation scheme enables graceful turn-off of the MOSFET during a reverse current event and ensures  
zero DC reverse current flow. This scheme ensures robust performance during slow input voltage ramp down  
tests. Along with the linear regulation amplifier scheme, the LM74722-Q1 also integrates a fast reverse voltage  
comparator. When the voltage drop across A and C reaches V(AC_REV) threshold, then the GATE goes low within  
0.5 µs (typical). This fast reverse voltage comparator scheme ensures robust performance during fast input  
voltage ramp down tests such as input micro-shorts. The external MOSFET is turned ON back when the voltage  
across A and C hits the V(AC_FWD) threshold within 0.72 µs (typical). As shown in 8-1, for ideal diode only  
designs, connect LM74722-Q1.  
Q1  
VBATT  
12 V  
VOUT  
C
CAP LX  
PD  
GATE  
A
D1  
SMBJ36CA  
VSNS  
SW  
R1  
BATT_MON  
LM74722-Q1  
R2  
EN  
ON OFF  
GND  
OV  
R3  
8-1. Configuring LM74722-Q1 for Ideal Diode Only  
8.3.1.2 Load Disconnect Switch Control (PD)  
The PD pin provides a 50-µA drive and 88-mA peak pulldown strength for the load disconnect switch stage.  
Connect the Gate of the FET to PD pin. Place a 18-V Zener (Dz) across the FET gate and source.  
For inrush current limiting, connect CdVdT capacitor and R1 as shown in 8-2.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM74722-Q1  
 
 
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
Q1  
Dz  
18 V  
R1  
COUT  
RPD  
CdVdT  
50 µA  
PD  
Fault  
Off  
88 mA  
10 mA  
GND  
8-2. Inrush Current Limiting  
The CdVdT capacitor is required for slowing down the PD voltage ramp during power up for inrush current  
limiting. Use 方程1 to calculate CdVdT capacitance value.  
I
PD_DRV × COUT  
IINRUSH  
CdVdT  
=
(1)  
where IPD_DRV is 50 μA (typical), IINRUSH is the inrush current, and COUT is the output load capacitance. An extra  
resistor, R1, in series with the CdVdT capacitor improves the turn-off time.  
PD is pulled low during the following conditions:  
During an OV event with the OV pin voltage rising above the V(OVR) threshold  
When the EN pin is pulled low with V(EN) driven lower than V(EN_IL) level  
When the voltage at VS pin drops below the V(VS POR) falling threshold  
During these conditions, the FET Q1 turns OFF with its GATE connected to its SOURCE terminal through the  
external Zener (Dz).  
Use 方程2 to the peak power dissipated in the LM74722-Q1 at the instance of PD pulldown.  
PPD_peak = VOUT × IPD_SINK  
(2)  
where  
IPDSINK_peak is the peak sink current of 88 mA (typical)  
In the system designs with input voltage above 48 V, TI recommends to place a resistor, RPD, in series with the  
PD pin as shown in 8-2. The peak power dissipation during the pulldown events gets distributed in RPD and  
the internal PD switch. A resistor value in the range of 270 to 330 can be selected to limit the device power  
dissipation within the safe limits.  
8.3.1.3 Overvoltage Protection and Battery Voltage Sensing (VSNS, SW, OV)  
A disconnect switch is integrated between VSNS and SW pins. When the device is enabled, this internal switch  
allows input voltage monitoring by connecting a resistor divider from SW pin to GND. This switch is turned OFF  
when EN pin is pulled low. This action helps to reduce the leakage current through the resistor divider network  
during system shutdown state (IGN_OFF state).  
LM74722-Q1 has an OV pin which can be used to design overvoltage cutoff (OV setpoint referred to input side,  
VIN) or overvoltage clamp functionality (OV setpoint referred to output side, VOUT).  
8-3 shows a typical resistor ladder connection for battery voltage sensing and overvoltage threshold  
programming.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM74722-Q1  
 
 
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
VBATT  
A
VSNS  
SW  
EN  
R1  
R2  
R3  
BATT_MON  
LM74722-Q1  
OV  
+
PD_OFF  
1.23 V  
1.12 V  
8-3. Programming Overvoltage Threshold and Battery Voltage Sensing  
8.3.2 Boost Regulator  
The LM74722-Q1 integrates a boost converter to provide voltage necessary to drive the external N-channel  
MOSFETs for the ideal diode and the load disconnect stages. Place a 1-µF capacitor across drain of the FET to  
GND and across the CAP pin to drain of the FET. Use a 100-µH inductor with saturation current rating > 175 mA.  
For the boost converter to be enabled, the EN pin voltage must be above the specified input high threshold,  
V(ENR). The boost converter has a maximum output load capacity of 30-mA typical. If EN pin is pulled low, then  
the boost converter remains disabled.  
8.4 Device Functional Modes  
Shutdown Mode  
The LM74722-Q1 enters shutdown mode when the EN pin voltage is below the specified input low threshold,  
V(EN_IL). Both the gate drivers (GATE and PD) and the boost regulator are disabled in shutdown mode. During  
shutdown mode, the LM74722-Q1 enters low IQ operation with a total input quiescent consumption of 1.5 µA  
(typical).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM74722-Q1  
 
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
LM74722-Q1 controls two N-channel power MOSFETs with GATE used to control diode MOSFET to emulate an  
ideal diode and PD controlling second MOSFET for power path cutoff when disabled or during an overvoltage  
protection and provide inrush current limiting. IQ during operation (EN = High) is < 38 µA and < 3.5 µA during  
shutdown mode (EN = Low). LM74722-Q1 can be placed into low quiescent current mode using EN = low, where  
both GATE and PD are turned OFF.  
9.2 Typical 12-V Reverse Battery Protection Application  
9-1 shows a typical application circuit of LM74722-Q1 configured to provide reverse battery protection with  
overvoltage protection and inrush current limiting.  
C2  
1 µF, 50 V  
Q1  
Q2  
VOUT  
VBATT  
12 V  
D2  
18 V  
CLOAD  
470 µF  
C1  
0.1 µF  
50 V  
C3  
1 µF  
50 V  
L1  
100 µH  
D1  
SMBJ33CA  
R4  
PD  
C CAP LX  
100  
GATE  
C4  
10 nF  
A
VSNS  
SW  
R1  
LM74722-Q1  
GND  
90.9 k  
BATT_MON  
R2  
9.09 k  
EN  
ON OFF  
OV  
R3  
3.48 k  
9-1. Typical Application Circuit 12-V Reverse Battery Protection and Overvoltage Protection  
9.2.1 Design Requirements for 12-V Battery Protection  
9-1 lists the system design requirements.  
9-1. Design Parameters - 12-V Reverse Battery Protection and Overvoltage Protection  
DESIGN PARAMETER  
Operating input voltage range  
Output power  
EXAMPLE VALUE  
12-V battery, 12-V nominal with 3.2-V cold crank and 35-V load dump  
50 W  
4-A nominal, 5-A maximum  
Output current range  
Input capacitance  
0.1-µF minimum  
Output capacitance  
0.1-µF minimum, (optional 220 µF for E-10 functional class A performance)  
37 V, output cutoff > 37 V  
Overvoltage cutoff  
AC super imposed test  
Automotive transient immunity compliance  
Battery monitor ratio  
2-V peak-peak 100 kHz  
ISO 7637-2, ISO 16750-2 and LV124  
8:1  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LM74722-Q1  
 
 
 
 
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
9.2.1.1 Automotive Reverse Battery Protection  
9.2.1.1.1 Input Transient Protection: ISO 7637-2 Pulse 1  
ISO 7637-2 pulse 1 specifies negative transient immunity of electronic modules connected in parallel with an  
inductive load when the battery is disconnected. A typical pulse 1 specified in ISO 7637-2 starts with battery  
disconnection where supply voltage collapses to 0 V followed by 150 V 2 ms applied with a source impedance  
of 10 Ω at a slew rate of 1 µs on the supply input. LM74722-Q1 blocks reverse current and prevents the output  
voltage from swinging negative, protecting the rest of the electronic circuits from damage due to negative  
transient voltage. MOSFET Q1 is quickly turned off within 0.5 µs by fast reverse comparator of LM74722-Q1. A  
single bidirectional TVS is required at the input to clamp the negative transient pulse within the operating  
maximum voltage across cathode to anode of 85 V and does not violate the MOSFET Q1 drain-source  
breakdown voltage rating.  
9-2 shows ISO 7637-2 pulse 1 performance of LM74722-Q1.  
VOUT  
VIN  
IIN  
VGATE  
9-2. Performance During ISO 7637-2 Pulse 1 Test  
9.2.1.1.2 AC Super Imposed Input Rectification: ISO 16750-2 and LV124 E-06  
Alternators are used to power the automotive electrical system and charge the battery during normal run time of  
the vehicle. Rectified alternator output contains residual AC ripple voltage superimposed on the DC battery  
voltage due to various reasons. These reasons include engine speed variation, regulator duty cycle with field  
switching ON and OFF, and electrical load variations. On a 12-V battery supply, alternator output voltage is  
regulated by a voltage regulator between 14.5 V to 12.5 V by controlling the field current of alternator rotor. All  
electronic modules are tested for proper operation with superimposed AC ripple on the DC battery voltage. AC  
super imposed test specified in ISO 16750-2 and LV124 E-06 requires AC ripple of 2-V peak-peak on a 13.5-V  
DC battery voltage, swept from 15 Hz to 30 kHz. LM74722-Q1 rectifies the AC superimposed voltage by turning  
the MOSFET Q1 OFF quickly to cut off reverse current and turning the MOSFET Q1 ON quickly during forward  
conduction. 9-3 shows active rectification of 6-V peak-peak 100-kHz AC input by LM74722-Q1. Fast turn-off  
and quick turn-on of the MOSFET reduces power dissipation in the MOSFET Q1, and active rectification reduces  
power dissipation in the output hold-up capacitor ESR by half. 9-4 shows active rectification of 2-V peak-peak  
200-kHz AC input.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM74722-Q1  
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
VIN  
VIN  
VOUT  
VOUT  
VGATE  
VGATE  
FET VGS  
FET VGS  
9-3. AC Super Imposed Test - 6-V Peak-Peak 100 9-4. AC Super Imposed Test - 2-V Peak-Peak 200  
kHz  
kHz  
9.2.1.1.3 Input Micro-Short Protection: LV124 E-10  
E-10 test specified in LV124 standard checks for immunity of electronic modules to short interruptions in power  
supply input due to contact issues or relay bounce. During this test (case 2), micro-short is applied on the input  
for a duration as low as 10 µs to several ms. For a functional pass status A, electronic modules are required to  
run uninterrupted during the E-10 test (case 2) with 100-µs duration. When input micro-short is applied for 100  
µs, LM74722-Q1 quickly turns off MOSFET Q1 by shorting GATE to ANODE (source of MOSFET) within 0.5 µs  
to prevent the output from discharging and the PD remains ON keeping MOSFET Q2 ON, enabling fast recovery  
after the input short is removed.  
9-5 shows performance of LM74722-Q1 during E10 input power supply interruption test case 2. After the input  
short is removed, input voltage recovers and MOSFET Q1 is turned back ON within 200 µs. Note that dual-gate  
drive topology allows MOSFET Q2 to remain ON during the test and helps in restoring the input power faster.  
Output voltage remains unperturbed during the entire duration, achieving functional status A.  
VIN  
VIN  
VOUT  
VOUT  
VGATE  
VGATE  
VPD  
IIN  
9-5. Input Micro-Short LV124 E10 TC 2 100 µs 9-6. Input Micro-Short LV124 E10 TC 2 100 µs  
With PD  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM74722-Q1  
 
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9.2.2.1 Design Considerations  
9-1 summarizes the design parameters that must be known for designing an automotive reverse battery  
protection circuit with overvoltage cutoff. During power up, inrush current through MOSFET Q2 must be limited  
so that the MOSFET operates well within its SOA. Maximum load current, maximum ambient temperature, and  
thermal properties of the PCB determine the RDSON of the MOSFET Q2, and maximum operating voltage  
determines the voltage rating of the MOSFET Q2. Selection of MOSFET Q2 is determined mainly by the  
maximum operating load current, maximum ambient temperature, maximum frequency of AC super imposed  
voltage ripple, and ISO 7637-2 pulse 1 requirements. Overvoltage threshold is decided based on the rating of  
downstream DC/DC converter or other components after the reverse battery protection circuit. A single bi-  
directional TVS or two back-to-back uni-directional TVS are required to clamp input transients to a safe operating  
level for the MOSFETs Q1, Q2, and LM74722-Q1.  
9.2.2.2 Boost Converter Components (C2, C3, L1)  
Place a minimum of a 1-µF capacitor across CAP pin to C pin (C2) and across C pin to GND (C3) of LM74722-  
Q1. Use a 100-µH inductor (L1) with saturation current rating > 175 mA. Example: XPL2010-104ML from coil  
craft.  
9.2.2.3 Input and Output Capacitance  
TI recommends a minimum input capacitance C1 of 0.1 µF and output capacitance COUT of 0.1 µF.  
9.2.2.4 Hold-Up Capacitance  
Usually, bulk capacitors are placed on the output due to various reasons, such as uninterrupted operation during  
power interruption or micro-short at the input, holdup requirements for doing a memory dump before turning of  
the module, and filtering requirements as well. This design considers minimum bulk capacitors requirements for  
meeting functional status A during LV124 E10 test case 2 100-µs input interruption. To achieve functional pass  
status A, acceptable voltage drop in the output of LM74722-Q1 is based on the UVLO settings of downstream  
DC/DC converters. For this design, 2.5-V drop in output voltage for 100 µs is considered and the minimum  
holdup capacitance required is calculated by  
C(HOLD_UP_MIN) = ILOAD_MAX × 100 µs  
VOUT  
(3)  
Minimum holdup capacitance required for 1-V drop in 100 µs is 470 µF.  
9.2.2.5 Overvoltage Protection and Battery Monitor  
Resistors R1, R2 and R3 connected in series are used to program the overvoltage threshold and battery monitor  
ratio. The resistor values required for setting the overvoltage threshold, VOV, to 37 V and battery monitor ratio  
VBATT_MON:VBATT to 1:8 are calculated by solving 方程4 and 方程5.  
R3 × VOV  
VOVR  
=
R1+R2+R3  
(4)  
(R2 + R3) × VOV  
VBAT_MON  
=
R1+R2+R3  
(5)  
For minimizing the input current drawn from the battery through resistors R1, R2 and R3, TI recommends to use  
higher value of resistance. Using high value resistors adds error in the calculations because the current through  
the resistors at higher value becomes comparable to the leakage current into the OV pin. Maximum leakage  
current into the OV pin is 1 µA and choosing (R1 + R2 + R3) < 120 kΩ ensures current through resistors is 100  
times greater than leakage through OV pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM74722-Q1  
 
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
Based on the device electrical characteristics, VOVR is 1.23 V and battery monitor ratio (VBATT_MON / VBATT) is  
designed for a ratio of 1:8. To limit (R1 + R2 + R3) < 120 kΩ, select (R1 + R2) = 100 kΩ. Solving Equation 4 gives  
R3 = 3.45 kΩ. Solving Equation 5 for R2 using (R1 + R2) = 100 kΩ and R3 = 3.45 kΩ, gives R2 = 9.48 kΩ and  
R1 = 90.52 kΩ.  
Standard 1% resistor values closest to the calculated resistor values are R1 = 90.9 kΩ, R2 = 9.09 kΩ, and R3 =  
3.48 kΩ.  
9.2.2.6 MOSFET Selection: Blocking MOSFET Q1  
For selecting the blocking MOSFET Q1, important electrical parameters are the maximum continuous drain  
current ID, the maximum drain-to-source voltage VDS(MAX), the maximum drain-to-source voltage VGS(MAX), and  
the maximum source current through body diode and the drain-to-source ON resistance RDSON  
.
The maximum continuous drain current, ID, rating must exceed the maximum continuous load current.  
The maximum drain-to-source voltage, VDS(MAX), must be high enough to withstand the highest differential  
voltage seen in the application. This includes all the automotive transient events and any anticipated fault  
conditions. TI recommends to use MOSFETs with VDS voltage rating of 60 V along with a single bidirectional  
TVS or a VDS rating 40-V maximum rating along with two unidirectional TVS connected back-to-back at the  
input.  
The maximum VGS LM74722-Q1 can drive is 14 V, so a MOSFET with 15-V minimum VGS rating must be  
selected. If a MOSFET with < 15-V VGS rating is selected, a Zener diode can be used to clamp VGS to safe level,  
but this results in increased IQ current.  
To reduce the MOSFET conduction losses, lowest possible RDS(ON) is preferred, but selecting a MOSFET based  
on low RDS(ON) cannot always be beneficial. Higher RDS(ON) provides increased voltage information to the  
LM74722-Q1 reverse comparator at a lower reverse current. Reverse current detection is better with increased  
RDS(ON). Choosing a MOSFET with < 50-mV forward voltage drop at maximum current is a good starting point.  
Based on the design requirements, BUK7Y4R8-60E MOSFET is selected  
9.2.2.7 MOSFET Selection: Load Disconnect MOSFET Q2  
The VDS rating of the MOSFET Q2 must be sufficient to handle the maximum system voltage along with the  
input transient voltage. For this 12-V design, transient overvoltage events are during suppressed load dump 35  
V 400 ms and ISO 7637-2 pulse 2 A 50 V for 50 µs. Further, ISO 7637-2 pulse 3B is a very fast repetitive pulse  
of 100 V 100 ns that is usually absorbed by the input and output ceramic capacitors. The maximum voltage on  
the 12-V battery can be limited to < 40 V the minimum recommended input capacitance of 0.1 µF. The 50-V SO  
7637-2 pulse 2 A can also be absorbed by input and output capacitors and its amplitude can be reduced to 40-V  
peak by placing sufficient amount of capacitance at input and output. Choose a MOSFET with 40-V VDS  
rating .  
The VGS rating of the MOSFET Q2 must be higher than that maximum boost drive output of 15.5 V. FET with  
VGS absolute maximum rating of +/20 VGS is selected.  
Inrush current through the MOSFET during input hot-plug into the 12-V battery is determined by output  
capacitance. External capacitor on HGATE, CDVDT, is used to limit the inrush current during input hot-plug or  
start-up. The value of inrush current determined by 方程式 1 must be selected to ensure that the MOSFET Q2 is  
operating well within its safe operating area (SOA). To limit inrush current to 250 mA, value of CDVDT is 10.43 nF.  
The closest standard value of 10.0 nF is chosen.  
Duration of inrush current is calculated by 方程6  
12 × COUT  
TINRUSH  
=
IINRUSH  
(6)  
Calculated inrush current duration is 2.36 ms with 250-mA inrush current.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LM74722-Q1  
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
MOSFET BUK7Y4R8-60E having 60-V VDS and ±20-V VGS rating is selected for Q2. Power dissipation during  
inrush is well within the MOSFET safe operating area (SOA).  
9.2.2.8 TVS Selection  
TI recommends a 600-W SMBJ TVS such as SMBJ33CA for input transient clamping and protection. For  
detailed explanation on TVS selection for 12-V battery systems, refer to TVS Selection for 12-V Battery Systems.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM74722-Q1  
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
9.2.3 Application Curves  
VIN  
VIN  
VOUT  
VCAP  
VLX  
IL  
VGATE  
VPD  
9-8. Start-Up 12 V Showing Boost Output (VCAP  
)
9-7. Start-Up 12 V with EN Pulled to VIN  
and Switching (VLX)  
VIN  
VIN  
VOUT  
VPD  
VOUT  
VGATE  
IIN  
IIN  
9-9. Reverse Input Voltage 14 V for 60 s  
9-10. Inrush Current with No Load at Output  
VIN  
VIN  
VOUT  
VPD  
VOUT  
VPD  
IIN  
IIN  
9-11. Inrush Current with 60-ΩLoad  
9-12. Hot-Plug into 12 V  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LM74722-Q1  
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
VIN  
VIN  
VOUT  
VOUT  
VEN  
VGATE  
VEN  
IIN  
9-13. Output Turn-On with Enable  
9-14. GATE Turn-On with Enable  
VIN  
VIN  
VOUT  
VPD  
VOUT  
VPD  
IIN  
VEN  
9-15. PD Turn-On with Enable  
9-16. Overvoltage Protection  
VIN  
VIN  
VOUT  
VPD  
VOUT  
VEN  
VPD  
IIN  
9-18. Turn-On Delay PD  
9-17. Overvoltage Recovery  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LM74722-Q1  
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
VIN  
VIN  
VOUT  
VOUT  
VPD  
VGATE  
VEN  
VEN  
9-19. Turn-Off Delay GATE  
9-20. Turn-Off Delay PD  
9.3 What to Do and What Not to Do  
Leave the exposed pad (RTN) of the IC floating. Do not connect the exposed pad (RTN) to the GND plane.  
Connecting the RTN to the GND disables the reverse polarity protection feature.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LM74722-Q1  
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 Transient Protection  
When the external MOSFETs turn OFF during the conditions such as overvoltage cutoff, reverse current  
blocking, and EN causing an interruption of the current flow, the input line inductance generates a positive  
voltage spike on the input and output inductance generates a negative voltage spike on the output. The peak  
amplitude of voltage spikes (transients) depends on the value of inductance in series to the input or output of the  
device. These transients can exceed the Absolute Maximum Ratings of the device if steps are not taken to  
address the issue.  
Typical methods for addressing transients include:  
Minimizing lead length and inductance into and out of the device  
Using large PCB GND plane  
Use of a Schottky diode across the output and GND to absorb negative spikes  
A low value ceramic capacitor (C(IN) to approximately 0.1 μF) to absorb the energy and dampen the  
transients  
Equation 8 can estimate the approximate value of input capacitance.  
L IN  
( )  
Vspike Absolute = V IN + I Load  
( ) )  
´
(
)
(
C IN  
( )  
(7)  
where  
V(IN) is the nominal supply voltage  
I(LOAD) is the load current  
L(IN) equals the effective inductance seen looking into the source  
C(IN) is the capacitance present at the input  
Some applications can require additional Transient Voltage Suppressor (TVS) to prevent transients from  
exceeding the Absolute Maximum Ratings of the device. These transients can occur during EMC testing, such  
as automotive ISO7637 pulses.  
10-1 shows the circuit implementation with optional protection components (a ceramic capacitor, TVS, and  
Schottky diode).  
Q1  
Q2  
VOUT  
*
VIN  
D1  
C2  
C3  
*
CIN  
L1  
D3  
D2  
PD  
C
CAP LX  
GATE  
A
VSNS  
SW  
R1  
BATT_MON  
R2  
LM74722-Q1  
GND  
EN  
ON  
OFF  
OV  
R3  
* Optional components needed for suppression of transients.  
10-1. Circuit Implementation With Optional Protection Components for LM74722-Q1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LM74722-Q1  
 
 
 
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
10.2 TVS Selection for 12-V Battery Systems  
In selecting the TVS, important specifications are breakdown voltage and clamping voltage. The breakdown  
voltage of the TVS+ must be higher than 24-V jump start voltage and 35-V suppressed load dump voltage and  
less than the maximum ratings of LM74722-Q1 (65 V). The breakdown voltage of TVSmust be beyond the  
maximum reverse battery voltage 16 V, so that the TVSis not damaged due to long time exposure to  
reverse connected battery.  
Clamping voltage is the voltage the TVS diode clamps in high current pulse situations and this voltage is much  
higher than the breakdown voltage. In the case of an ISO 7637-2 pulse 1, the input voltage goes up to 150 V  
with a generator impedance of 10 Ω. This translates to 15 A flowing through the TVSand the voltage across  
the TVS is close to its clamping voltage.  
The next criterion is that the absolute maximum rating of cathode to anode voltage of the LM74722-Q1 (85 V)  
and the maximum VDS rating MOSFET are not exceeded. In the design example, 60-V rated MOSFET is chosen  
and maximum limit on the cathode to anode voltage is 60 V.  
During ISO 7637-2 pulse 1, the anode of LM74722-Q1 is pulled down by the ISO pulse, clamped by TVS, and  
the MOSFET Q1 is turned off quickly to prevent reverse current from discharging the bulk output capacitors.  
When the MOSFET turns off, the cathode to anode voltage seen is equal to (TVS clamping voltage + output  
capacitor voltage). If the maximum voltage on output capacitor is 16 V (maximum battery voltage), then the  
clamping voltage of the TVSmust not exceed (60 V 16) V = 44 V.  
The SMBJ33CA TVS diode can be used for 12-V battery protection application. The breakdown voltage of 36.7  
V meets the jump start, load dump requirements on the positive side and 16-V reverse battery connection on the  
negative side. During ISO 7637-2 pulse 1 test, the SMBJ33CA clamps at 44 V with 12 A of peak surge current  
and it meets the clamping voltage 44 V.  
SMBJ series of TVS are rated up to 600-W peak pulse power levels and are sufficient for ISO 7637-2 pulses.  
If 40-V rated MOSFET is choosen then maximum voltage across C (Drain of the MOSFET) and A (Source of the  
MOSFET) must not exceed 40-V. For 40-V MOSFET selection, two back-to-back connected uni-directional TVS  
diodes are required to protect against input transient events. On the positive side, the SMBJ33A TVS diode can  
be used for 12-V battery protection application. However on the negative side, TVS has to withstand 16-V  
reverse battery connection and clamping voltage has to be (40 V - 16 V) = 24 V. SMBJ16A can be used.  
10.3 TVS Selection for 24-V Battery Systems  
For 24-V battery protection application, the TVS and MOSFET in 9-1 must be changed to suit 24-V battery  
requirements.  
The breakdown voltage of the TVS+ must be higher than 48-V jump start voltage, less than the absolute  
maximum ratings of anode and enable pin of LM74722-Q1 (70 V), and must withstand 65-V suppressed load  
dump. The breakdown voltage of TVSmust be lower than maximum reverse battery voltage 32 V, so that  
the TVSdoes not damage due to long time exposure to reverse connected battery.  
During ISO 7637-2 pulse 1, the input voltage goes up to 600 V with a generator impedance of 50 Ω. This  
translates to 12 A flowing through the TVS. The clamping voltage of the TVScannot be the same as that of  
12-V battery protection circuit. Because during the ISO 7637-2 pulse, the anode to cathode voltage seen is  
equal to (-TVS Clamping voltage + Output capacitor voltage). For 24-V battery application, the maximum  
battery voltage is 32 V, then the clamping voltage of the TVSmust not exceed, 85 V 32 V = 53 V.  
Single bi-directional TVS cannot be used for 24-V battery protection because breakdown voltage for TVS+ 65  
V, maximum clamping voltage is 53 V and the clamping voltage cannot be less than the breakdown voltage.  
Two un-directional TVS connected back-to-back must be used at the input. For positive side TVS+, TI  
recommends SMBJ58A with the breakdown voltage of 64.4 V (minimum), 67.8 (typical). For the negative side  
TVS, TI recommends SMBJ28A with breakdown voltage close to 32 V (to withstand maximum reverse battery  
voltage 32 V) and maximum clamping voltage of 42.1 V.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LM74722-Q1  
 
 
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
For 24-V battery protection, TI recommends that a 75-V rated MOSFET be used along with SMBJ28A and  
SMBJ58A connected back-to-back at the input.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LM74722-Q1  
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Connect A, GATE, and C pins of LM74722-Q1 close to the MOSFET SOURCE, GATE and DRAIN pins for  
the ideal diode stage.  
Use thick and short traces for source and drain of the MOSFET to minimize resistive losses because the high  
current path of for this solution is through the MOSFET.  
Connect the GATE pin of the LM74722-Q1 to the MOSFET GATE with short trace.  
Minimize the loops formed by capacitor across CAP pin and DRAIN of the FET and C3 to GND by placing  
these capacitors as close as possible. Keep the GND side of the C3 capacitor close to GND pin of LM74722-  
Q1. Boost converter switching currents flow into LX, CAP, GND pins and C3 (across DRAIN of the FET to  
GND).  
Place transient suppression components, like input TVS and output Schottky, close to LM74722-Q1.  
11.2 Layout Example  
G
S
s
S
Q1  
Q2  
s
s
S
G
C2  
D2  
GTE  
C
VIN PLANE  
CAP  
VOUT PLANE  
A
L1  
LX  
VSNS  
C3  
N.C  
SW  
COUT  
PD  
D1  
OV  
EN  
GND  
GND PLANE  
11-1. LM74722-Q1 Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LM74722-Q1  
 
 
 
LM74722-Q1  
ZHCSLG2B SEPTEMBER 2021 REVISED AUGUST 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LM74722-Q1  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM74722QDRRRQ1  
ACTIVE  
WSON  
DRR  
12  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
L74722  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Sep-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM74722QDRRRQ1  
WSON  
DRR  
12  
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Sep-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WSON DRR 12  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
LM74722QDRRRQ1  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
WSON - 0.8 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
DRR0012F  
3.1  
2.9  
A
B
3.1  
2.9  
PIN 1 INDEX AREA  
0.100 MIN  
(0.130)  
SECTION A-A  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.16  
0.96  
SYMM  
(0.55) TYP  
6
(0.2) TYP  
10X 0.5  
7
A
A
SYMM  
2X  
2.6  
2.4  
2.5  
13  
1
12  
0.3  
0.2  
12X  
PIN 1 ID  
(OPTIONAL)  
0.52  
0.32  
12X  
0.1  
C A B  
C
0.05  
4225797/A 04/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WSON - 0.8 mm max height  
DRR0012F  
PLASTIC QUAD FLAT PACK- NO LEAD  
2X (2.78)  
(1.06)  
12X (0.62)  
12X (0.25)  
1
12  
10X (0.5)  
SYMM  
(2.5)  
13  
2X  
(2.5)  
2X  
(1)  
(R0.05)  
TYP  
7
6
SYMM  
(Ø0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MAX  
0.07 MIN  
ALL AROUND  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225797/A 04/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WSON - 0.8 mm max height  
DRR0012F  
PLASTIC QUAD FLAT PACK- NO LEAD  
2X (2.78)  
12X (0.62)  
12X (0.25)  
2X (1)  
13  
1
12  
2X  
(1.1)  
10X (0.5)  
SYMM  
2X  
(2.5)  
(R0.05)  
TYP  
2X  
(0.65)  
7
6
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
83% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4225797/A 04/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LM74722QDRRRQ1

具有 200kHz 有源整流和负载突降保护功能的汽车类低 IQ 理想二极管控制器 | DRR | 12 | -40 to 125
TI

LM747A

Dual Operational Amplifier
NSC

LM747AH

IC DUAL OP-AMP, 4000 uV OFFSET-MAX, 1.5 MHz BAND WIDTH, MBCY10, METAL CAN-10, Operational Amplifier
NSC

LM747AH-MIL

IC DUAL OP-AMP, 4000 uV OFFSET-MAX, 1.5 MHz BAND WIDTH, MBCY8, Operational Amplifier
NSC

LM747AH-MIL

Operational Amplifier, 2 Func, 4000uV Offset-Max, BIPolar, MBCY8, METAL, CAN-8
ROCHESTER

LM747AJ

Operational Amplifier, 2 Func, 4000uV Offset-Max, BIPolar, CDIP14, CERAMIC, DIP-14
ROCHESTER

LM747C

Dual Operational Amplifier
NSC

LM747CH

IC DUAL OP-AMP, 7500 uV OFFSET-MAX, MBCY10, METAL CAN, TO-100, 10 PIN, Operational Amplifier
NSC

LM747CH

Operational Amplifier, 2 Func, 7500uV Offset-Max, BIPolar, MBCY10, METAL CAN, TO-100, 10 PIN
ROCHESTER

LM747CJ

暂无描述
TI

LM747CJ

Operational Amplifier, 2 Func, 7500uV Offset-Max, BIPolar, CDIP14, CERAMIC, DIP-14
ROCHESTER

LM747CJ/A+

Voltage-Feedback Operational Amplifier
ETC