LM94021QBIMG/NOPB [TI]

具有多个增益模拟输出选项的汽车级 ±1.5°C 温度传感器 | DCK | 5 | -50 to 150;
LM94021QBIMG/NOPB
型号: LM94021QBIMG/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有多个增益模拟输出选项的汽车级 ±1.5°C 温度传感器 | DCK | 5 | -50 to 150

温度传感 传感器 温度传感器
文件: 总24页 (文件大小:1270K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM94021  
www.ti.com  
SNIS138E FEBRUARY 2005REVISED JUNE 2013  
LM94021/LM94021Q Multi-Gain Analog Temperature Sensor  
Check for Samples: LM94021  
1
FEATURES  
DESCRIPTION  
The LM94021 is a precision analog output CMOS  
integrated-circuit temperature sensor that operates at  
a supply voltage as low as 1.5V. While operating over  
the wide temperature range of 50°C to +150°C, the  
LM94021 delivers an output voltage that is inversely  
2
LM94021Q is AEC-Q100 Grade 0 Qualified and  
is Manufactured on an Automotive Grade Flow  
Low 1.5V Operation  
Four Selectable Gains  
proportional  
to  
measured  
temperature.  
The  
Very Accurate Over Wide Temperature Range  
of 50°C to +150°C  
LM94021's low supply current makes it ideal for  
battery-powered systems as well as general  
temperature sensing applications.  
Low Quiescent Current  
Output is Short-Circuit Protected  
Extremely Small SC70 Package  
Two logic inputs, Gain Select 1 (GS1) and Gain  
Select 0 (GS0), select the gain of the temperature-to-  
voltage output transfer function. Four slopes are  
selectable: 5.5 mV/°C, 8.2 mV/°C, 10.9 mV/°C,  
and 13.6 mV/°C. In the lowest gain configuration  
(GS1 and GS0 both tied low), the LM94021 can  
Footprint Compatible with the Industry-  
Standard LM20 Temperature Sensor  
UL Recognized Component  
operate with  
a
1.5V supply while measuring  
APPLICATIONS  
temperature over the full 50°C to +150°C operating  
range. Tying both inputs high causes the transfer  
function to have the largest gain of 13.6 mV/°C for  
maximum temperature sensitivity. The gain-select  
inputs can be tied directly to VDD or Ground without  
any pull-up or pull-down resistors, reducing  
component count and board area. These inputs can  
also be driven by logic signals allowing the system to  
optimize the gain during operation or system  
diagnostics.  
Cell Phones  
Wireless Transceivers  
Battery Management  
Automotive  
Disk Drives  
Games  
Appliances  
Table 1. KEY SPECIFICATIONS  
Supply Voltage  
1.5V to 5.5V  
Supply Current  
9 μA (typ)  
20°C to 40°C  
50°C to 70°C  
50°C to 90°C  
50°C to 150°C  
±1.5°C  
±1.8°C  
±2.1°C  
±2.7°C  
Temperature Accuracy  
Operating Temperature  
–50°C to 150°C  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2005–2013, Texas Instruments Incorporated  
LM94021  
SNIS138E FEBRUARY 2005REVISED JUNE 2013  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
CONNECTION DIAGRAM  
1
2
3
5
4
GS0  
GND  
OUT  
GS1  
LM94021  
V
DD  
Figure 1. 5-Pin SC70 - Top View  
TYPICAL TRANSFER CHARACTERISTIC  
Output Voltage vs Temperature  
TYPICAL APPLICATION  
Full-Range Celsius Temperature Sensor (50°C to +150°C) operating from a Single Battery Cell  
V
(+1.5V to +5.5V)  
DD  
V
DD  
LM94021  
Single Battery  
Cell  
GS1  
OUT  
GS0  
GND  
2
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LM94021  
LM94021  
www.ti.com  
SNIS138E FEBRUARY 2005REVISED JUNE 2013  
PIN DESCRIPTIONS  
LABEL  
PIN NUMBER  
TYPE  
EQUIVALENT CIRCUIT  
FUNCTION  
Gain Select 1 - One of two inputs for  
selecting the slope of the output  
response  
V
DD  
GS1  
5
Logic Input  
Gain Select 0 - One of two inputs for  
selecting the slope of the output  
response  
ESD  
CLAMP  
GS0  
1
Logic Input  
GND  
V
DD  
Outputs a voltage which is inversely  
proportional to temperature  
OUT  
3
Analog Output  
GND  
VDD  
4
2
Power  
Positive Supply Voltage  
Power Supply Ground  
GND  
Ground  
(1)  
ABSOLUTE MAXIMUM RATINGS  
VALUES  
0.3V to +6.0V  
0.3V to (VDD + 0.5V)  
±7 mA  
Supply Voltage  
Voltage at Output Pin  
Output Current  
Voltage at GS0 and GS1 Input Pins  
0.3V to +6.0V  
5 mA  
(2)  
Input Current at any pin  
Storage Temperature  
65°C to +150°C  
+150°C  
Maximum Junction Temperature (TJMAX  
)
Human Body Model  
Machine Model  
2500V  
(3)  
ESD Susceptibility  
250V  
Soldering process must comply with Reflow Temperature Profile specifications. Refer to http://www.ti.com/packaging.(4)  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the  
Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may  
degrade when the device is not operated under the listed test conditions.  
(2) When the input voltage (VI) at any pin exceeds power supplies (VI < GND or VI > V+), the current at that pin should be limited to 5 mA.  
(3) The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. The machine model is a 200 pF  
capacitor discharged directly into each pin.  
(4) Reflow temperature profiles are different for lead-free and non-lead-free packages.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM94021  
LM94021  
SNIS138E FEBRUARY 2005REVISED JUNE 2013  
www.ti.com  
(1)  
OPERATING RATINGS  
Specified Temperature Range  
TMIN TA TMAX  
LM94021  
50°C TA +150°C  
Supply Voltage Range (VDD  
)
+1.5 V to +5.5 V  
(2)(3)  
Thermal Resistance (θJA  
)
415°C/W  
5-Pin SC70  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the  
Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may  
degrade when the device is not operated under the listed test conditions.  
(2) The junction to ambient thermal resistance (θJA) is specified without a heat sink in still air.  
(3) Changes in output due to self heating can be computed by multiplying the internal dissipation by the thermal resistance.  
ACCURACY CHARACTERISTICS  
These limits do not include DC load regulation. These stated accuracy limits are with reference to the values in the LM94021  
Transfer Table.  
UNITS  
(1)  
PARAMETER  
CONDITIONS  
LIMITS  
(LIMIT)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
°C (max)  
TA = +20°C to +40°C; VDD = 1.5V to 5.5V  
TA = +0°C to +70°C; VDD = 1.5V to 5.5V  
TA = +0°C to +90°C; VDD = 1.5V to 5.5V  
TA = +0°C to +120°C; VDD = 1.5V to 5.5V  
TA = +0°C to +150°C; VDD = 1.5V to 5.5V  
TA = 50°C to +0°C; VDD = 1.6V to 5.5V  
TA = +20°C to +40°C; VDD = 1.8V to 5.5V  
TA = +0°C to +70°C; VDD = 1.9V to 5.5V  
TA = +0°C to +90°C; VDD = 1.9V to 5.5V  
TA = +0°C to +120°C; VDD = 1.9V to 5.5V  
TA = +0°C to +150°C; VDD = 1.9V to 5.5V  
TA = 50°C to +0°C; VDD = 2.3V to 5.5V  
TA = +20°C to +40°C; VDD = 2.2V to 5.5V  
TA = +0°C to +70°C; VDD = 2.4V to 5.5V  
TA = +0°C to +90°C; VDD = 2.4V to 5.5V  
TA = +0°C to +120°C; VDD = 2.4V to 5.5V  
TA = +0°C to +150°C; VDD = 2.4V to 5.5V  
TA = 50°C to +0°C; VDD = 3.0V to 5.5V  
TA = +20°C to +40°C; VDD = 2.7V to 5.5V  
TA = +0°C to +70°C; VDD = 3.0V to 5.5V  
TA = +0°C to +90°C; VDD = 3.0V to 5.5V  
TA = +0°C to +120°C; VDD = 3.0V to 5.5V  
TA = 0°C to +150°C; VDD = 3.0V to 5.5V  
TA = 50°C to +0°C; VDD = 3.6V to 5.5V  
±1.5  
±1.8  
±2.1  
±2.4  
±2.7  
±1.8  
±1.5  
±1.8  
±2.1  
±2.4  
±2.7  
±1.8  
±1.5  
±1.8  
±2.1  
±2.4  
±2.7  
±1.8  
±1.5  
±1.8  
±2.1  
±2.4  
±2.7  
±1.8  
GS1 = 0  
GS0 = 0  
GS1 = 0  
GS0 = 1  
(2)  
Temperature Error  
GS1 = 1  
GS0 = 0  
GS1 = 1  
GS0 = 1  
(1) Limits are ensured to TI's AOQL (Average Outgoing Quality Level).  
(2) Accuracy is defined as the error between the measured and reference output voltages, tabulated in the Transfer Table at the specified  
conditions of supply gain setting, voltage, and temperature (expressed in °C). Accuracy limits include line regulation within the specified  
conditions. Accuracy limits do not include load regulation; they assume no DC load.  
4
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LM94021  
LM94021  
www.ti.com  
SNIS138E FEBRUARY 2005REVISED JUNE 2013  
ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, these specifications apply for +VDD = +1.5V to +5.5V . Boldface limits apply for TA = TJ = TMIN to  
TMAX ; all other limits TA = TJ = 25°C.  
UNITS  
(LIMIT)  
(1)  
(2)  
PARAMETER  
CONDITIONS  
TYPICAL  
LIMITS  
GS1 = 0, GS0 = 0  
5.5  
8.2  
10.9  
13.6  
mV/°C  
mV/°C  
mV/°C  
mV/°C  
GS1 = 0, GS1 = 1  
GS1 = 1, GS0 = 0  
GS1 = 1, GS0 = 1  
Sensor Gain  
(4)  
Source 2.0 μA  
Sink 100 μA  
Sink = 50 μA  
1  
1.6  
mV (max)  
mV (max)  
mV  
(3)  
Load Regulation  
0.4  
200  
9
(5)  
Line Regulation  
Supply Current  
(VDD - VOUT) 200 mV  
μV/V  
TA = +30°C to +150°C  
TA = 50°C to +150°C  
12  
13  
μA (max)  
μA (max)  
IS  
CL  
Output Load Capacitance  
1100  
pF (max)  
CL= 0 pF  
CL=1100 pF  
0.7  
0.8  
1.6  
2.4  
ms (max)  
ms (max)  
(6)  
Power-on Time  
GS1 and GS0 Input Logic "1" Threshold  
Voltage  
VIH  
VIL  
VDD- 0.5V  
0.5  
V (min)  
V (max)  
GS1 and GS0 Input Logic "0" Threshold  
Voltage  
(7)  
IIH  
IIL  
Logic "1" Input Current  
0.001  
0.001  
1
1
μA (max)  
μA (max)  
(7)  
Logic "0" Input Current  
(1) Typicals are at TJ = TA = 25°C and represent most likely parametric norm.  
(2) Limits are ensured to TI's AOQL (Average Outgoing Quality Level).  
(3) Source currents are flowing out of the LM94021. Sink currents are flowing into the LM94021.  
(4) Assumes (VDD - VOUT) 200 mV.  
(5) Line regulation is calculated by subtracting the output voltage at the highest supply voltage from the output voltage at the lowest supply  
voltage. The typical line regulation specification does not include the output voltage shift discussed in Section 5.0.  
(6) Specified by design.  
(7) The input current is leakage only and is highest at high temperature. It is typically only 0.001 µA. The 1 µA limit is solely based on a  
testing limitation and does not reflect the actual performance of the part.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM94021  
 
LM94021  
SNIS138E FEBRUARY 2005REVISED JUNE 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS  
Temperature Error vs. Temperature  
Minimum Operating Temperature vs. Supply Voltage  
4
3
MAX Limit  
2
1
0
MIN Limit  
-1  
-2  
-3  
-4  
-50 -25  
0
25 50 75 100 125 150  
TEMPERATURE (ºC)  
Figure 2.  
Figure 3.  
Supply Current vs. Temperature  
Supply Current vs. Supply Voltage  
Figure 4.  
Figure 5.  
Load Regulation, Sourcing Current  
Load Regulation, Sinking Current  
Figure 6.  
Figure 7.  
6
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LM94021  
LM94021  
www.ti.com  
SNIS138E FEBRUARY 2005REVISED JUNE 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Change in VOUT vs. Overhead Voltage  
Supply Noise Gain vs. Frequency  
0
-10  
-20  
-30  
-40  
-50  
V
= 5.0V  
DD  
TEMP = 25°C  
C
= 0 pF  
LOAD  
C
= 100 pF  
LOAD  
C
= 1 nF  
LOAD  
-60  
-70  
100k  
10M  
100  
1k  
10k  
1M  
FREQUENCY (Hz)  
Figure 8.  
Figure 9.  
Line Regulation: Output Voltage vs. Supply Voltage  
Gain Select = 00  
Line Regulation: Output Voltage vs. Supply Voltage  
Gain Select = 01  
Figure 10.  
Figure 11.  
Line Regulation: Output Voltage vs. Supply Voltage  
Gain Select = 10  
Line Regulation: Output Voltage vs. Supply Voltage  
Gain Select = 11  
Figure 12.  
Figure 13.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM94021  
LM94021  
SNIS138E FEBRUARY 2005REVISED JUNE 2013  
www.ti.com  
APPLICATION INFORMATION  
LM94021 TRANSFER FUNCTION  
The LM94021 has four selectable gains, each of which can be selected by the GS1 and GS0 input pins. The  
output voltage for each gain, across the complete operating temperature range is shown in Table 2, below. This  
table is the reference from which the LM94021 accuracy specifications (listed in the ELECTRICAL  
CHARACTERISTICS section) are determined. This table can be used, for example, in a host processor look-up  
table.  
A
file  
containing  
this  
data  
is  
available  
for  
download  
at  
http://www.ti.com/lsds/ti/analog/temperature_sensor.page.  
Table 2. LM94021 Transfer Table  
TEMPERATURE  
(°C)  
GS = 00  
GS = 01  
(mV)  
GS = 10  
GS = 11  
(mV)  
1299  
1294  
1289  
1284  
1278  
1273  
1268  
1263  
1257  
1252  
1247  
1242  
1236  
1231  
1226  
1221  
1215  
1210  
1205  
1200  
1194  
1189  
1184  
1178  
1173  
1168  
1162  
1157  
1152  
1146  
1141  
1136  
1130  
1125  
1120  
1114  
1109  
1104  
(mV)  
2616  
2607  
2598  
2589  
2580  
2571  
2562  
2553  
2543  
2533  
2522  
2512  
2501  
2491  
2481  
2470  
2460  
2449  
2439  
2429  
2418  
2408  
2397  
2387  
2376  
2366  
2355  
2345  
2334  
2324  
2313  
2302  
2292  
2281  
2271  
2260  
2250  
2239  
(mV)  
3277  
3266  
3254  
3243  
3232  
3221  
3210  
3199  
3186  
3173  
3160  
3147  
3134  
3121  
3108  
3095  
3082  
3069  
3056  
3043  
3030  
3017  
3004  
2991  
2978  
2965  
2952  
2938  
2925  
2912  
2899  
2886  
2873  
2859  
2846  
2833  
2820  
2807  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
-35  
1955  
1949  
1942  
1935  
1928  
1921  
1915  
1908  
1900  
1892  
1885  
1877  
1869  
1861  
1853  
1845  
1838  
1830  
1822  
1814  
1806  
1798  
1790  
1783  
1775  
1767  
1759  
1751  
1743  
1735  
1727  
1719  
1711  
1703  
1695  
1687  
1679  
1671  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
8
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LM94021  
 
LM94021  
www.ti.com  
SNIS138E FEBRUARY 2005REVISED JUNE 2013  
Table 2. LM94021 Transfer Table (continued)  
TEMPERATURE  
(°C)  
GS = 00  
(mV)  
GS = 01  
(mV)  
GS = 10  
(mV)  
GS = 11  
(mV)  
12  
11  
10  
9  
8  
7  
6  
5  
4  
3  
2  
1  
0
1098  
1093  
1088  
1082  
1077  
1072  
1066  
1061  
1055  
1050  
1044  
1039  
1034  
1028  
1023  
1017  
1012  
1007  
1001  
996  
1663  
1656  
1648  
1639  
1631  
1623  
1615  
1607  
1599  
1591  
1583  
1575  
1567  
1559  
1551  
1543  
1535  
1527  
1519  
1511  
1502  
1494  
1486  
1478  
1470  
1462  
1454  
1446  
1438  
1430  
1421  
1413  
1405  
1397  
1389  
1381  
1373  
1365  
1356  
1348  
1340  
1332  
1324  
1316  
1308  
1299  
1291  
2228  
2218  
2207  
2197  
2186  
2175  
2164  
2154  
2143  
2132  
2122  
2111  
2100  
2089  
2079  
2068  
2057  
2047  
2036  
2025  
2014  
2004  
1993  
1982  
1971  
1961  
1950  
1939  
1928  
1918  
1907  
1896  
1885  
1874  
1864  
1853  
1842  
1831  
1820  
1810  
1799  
1788  
1777  
1766  
1756  
1745  
1734  
2793  
2780  
2767  
2754  
2740  
2727  
2714  
2700  
2687  
2674  
2660  
2647  
2633  
2620  
2607  
2593  
2580  
2567  
2553  
2540  
2527  
2513  
2500  
2486  
2473  
2459  
2446  
2433  
2419  
2406  
2392  
2379  
2365  
2352  
2338  
2325  
2311  
2298  
2285  
2271  
2258  
2244  
2231  
2217  
2204  
2190  
2176  
1
2
3
4
5
6
7
8
990  
9
985  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
980  
974  
969  
963  
958  
952  
947  
941  
936  
931  
925  
920  
914  
909  
903  
898  
892  
887  
882  
876  
871  
865  
860  
854  
849  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM94021  
LM94021  
SNIS138E FEBRUARY 2005REVISED JUNE 2013  
www.ti.com  
Table 2. LM94021 Transfer Table (continued)  
TEMPERATURE  
(°C)  
GS = 00  
(mV)  
GS = 01  
(mV)  
GS = 10  
(mV)  
GS = 11  
(mV)  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
843  
838  
832  
827  
821  
816  
810  
804  
799  
793  
788  
782  
777  
771  
766  
760  
754  
749  
743  
738  
732  
726  
721  
715  
710  
704  
698  
693  
687  
681  
676  
670  
664  
659  
653  
647  
642  
636  
630  
625  
619  
613  
608  
602  
596  
591  
585  
1283  
1275  
1267  
1258  
1250  
1242  
1234  
1225  
1217  
1209  
1201  
1192  
1184  
1176  
1167  
1159  
1151  
1143  
1134  
1126  
1118  
1109  
1101  
1093  
1084  
1076  
1067  
1059  
1051  
1042  
1034  
1025  
1017  
1008  
1000  
991  
1723  
1712  
1701  
1690  
1679  
1668  
1657  
1646  
1635  
1624  
1613  
1602  
1591  
1580  
1569  
1558  
1547  
1536  
1525  
1514  
1503  
1492  
1481  
1470  
1459  
1448  
1436  
1425  
1414  
1403  
1391  
1380  
1369  
1358  
1346  
1335  
1324  
1313  
1301  
1290  
1279  
1268  
1257  
1245  
1234  
1223  
1212  
2163  
2149  
2136  
2122  
2108  
2095  
2081  
2067  
2054  
2040  
2026  
2012  
1999  
1985  
1971  
1958  
1944  
1930  
1916  
1902  
1888  
1875  
1861  
1847  
1833  
1819  
1805  
1791  
1777  
1763  
1749  
1735  
1721  
1707  
1693  
1679  
1665  
1651  
1637  
1623  
1609  
1595  
1581  
1567  
1553  
1539  
1525  
983  
974  
966  
957  
949  
941  
932  
924  
915  
907  
898  
10  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LM94021  
LM94021  
www.ti.com  
SNIS138E FEBRUARY 2005REVISED JUNE 2013  
Table 2. LM94021 Transfer Table (continued)  
TEMPERATURE  
(°C)  
GS = 00  
(mV)  
GS = 01  
(mV)  
GS = 10  
(mV)  
GS = 11  
(mV)  
82  
83  
579  
574  
568  
562  
557  
551  
545  
539  
534  
528  
522  
517  
511  
505  
499  
494  
488  
482  
476  
471  
465  
459  
453  
448  
442  
436  
430  
425  
419  
413  
407  
401  
396  
390  
384  
378  
372  
367  
361  
355  
349  
343  
337  
332  
326  
320  
314  
890  
881  
873  
865  
856  
848  
839  
831  
822  
814  
805  
797  
788  
779  
771  
762  
754  
745  
737  
728  
720  
711  
702  
694  
685  
677  
668  
660  
651  
642  
634  
625  
617  
608  
599  
591  
582  
573  
565  
556  
547  
539  
530  
521  
513  
504  
495  
1201  
1189  
1178  
1167  
1155  
1144  
1133  
1122  
1110  
1099  
1088  
1076  
1065  
1054  
1042  
1031  
1020  
1008  
997  
1511  
1497  
1483  
1469  
1455  
1441  
1427  
1413  
1399  
1385  
1371  
1356  
1342  
1328  
1314  
1300  
1286  
1272  
1257  
1243  
1229  
1215  
1201  
1186  
1172  
1158  
1144  
1130  
1115  
1101  
1087  
1073  
1058  
1044  
1030  
1015  
1001  
987  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
986  
974  
963  
951  
940  
929  
917  
906  
895  
883  
872  
860  
849  
837  
826  
814  
803  
791  
780  
769  
973  
757  
958  
745  
944  
734  
929  
722  
915  
711  
901  
699  
886  
688  
872  
676  
858  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM94021  
LM94021  
SNIS138E FEBRUARY 2005REVISED JUNE 2013  
www.ti.com  
Table 2. LM94021 Transfer Table (continued)  
TEMPERATURE  
(°C)  
GS = 00  
(mV)  
GS = 01  
(mV)  
GS = 10  
(mV)  
GS = 11  
(mV)  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
308  
302  
296  
291  
285  
279  
273  
267  
261  
255  
249  
243  
237  
231  
225  
219  
213  
207  
201  
195  
189  
183  
487  
478  
469  
460  
452  
443  
434  
425  
416  
408  
399  
390  
381  
372  
363  
354  
346  
337  
328  
319  
310  
301  
665  
653  
642  
630  
618  
607  
595  
584  
572  
560  
549  
537  
525  
514  
502  
490  
479  
467  
455  
443  
432  
420  
843  
829  
814  
800  
786  
771  
757  
742  
728  
713  
699  
684  
670  
655  
640  
626  
611  
597  
582  
568  
553  
538  
Although the LM94021 is very linear, its response does have a slight umbrella's parabolic shape. This shape is  
very accurately reflected in the LM94021 Transfer Table. The Transfer Table can be calculated by using the  
parabolic equation.  
mV  
mV  
°C2  
2
J2,G00 :VTEMP mV = 870.6mV - 5.506  
T - 30°C - 0.00176  
T - 30°C  
(
)
(
)
(
)
°C  
mV  
mV  
°C2  
2
J3,G01 :VTEMP mV = 1324.0mV - 8.194  
T - 30°C - 0.00262  
T - 30°C  
(
)
(
)
(
)
°C  
mV  
mV  
°C2  
2
J4,G10 :VTEMP mV = 1777.3mV - 10.888  
T - 30°C - 0.00347  
T - 30°C  
(
)
(
)
(
)
°C  
mV  
°C  
mV  
°C2  
2
J5,G11 :VTEMP mV = 2230.8mV - 13.582  
T - 30°C - 0.00433  
T - 30°C  
(
)
(
)
(
)
(1)  
For a linear approximation, a line can easily be calculated over the desired temperature range from the Table  
using the two-point equation:  
V2 - V1  
ì
V - V1 =  
(T - T1)  
T2 - T1  
(2)  
Where V is in mV, T is in °C, T1 and V1 are the coordinates of the lowest temperature, T2 and V2 are the  
coordinates of the highest temperature.  
For example, if we want to determine the equation of a line with the Gain Setting at GS1 = 0 and GS0 = 0, over a  
temperature range of 20°C to 50°C, we would proceed as follows:  
760 mV - 925 mV  
o
ì
V - 925 mV =  
(T - 20 C)  
50oC - 20oC  
(3)  
(4)  
(5)  
o
o
ì
(-5.50 mV / C) (T - 20 C)  
V - 925 mV =  
o
ì
(-5.50 mV / C) T + 1035 mV  
V =  
12  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LM94021  
LM94021  
www.ti.com  
SNIS138E FEBRUARY 2005REVISED JUNE 2013  
Using this method of linear approximation, the transfer function can be approximated for one or more  
temperature ranges of interest.  
MOUNTING AND THERMAL CONDUCTIVITY  
The LM94021 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be  
glued or cemented to a surface.  
To ensure good thermal conductivity, the backside of the LM94021 die is directly attached to the GND pin (Pin  
2). The temperatures of the lands and traces to the other leads of the LM94021 will also affect the temperature  
reading.  
Alternatively, the LM94021 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath  
or screwed into a threaded hole in a tank. As with any IC, the LM94021 and accompanying wiring and circuits  
must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate  
at cold temperatures where condensation can occur. If moisture creates a short circuit from the output to ground  
or VDD, the output from the LM94021 will not be correct. Printed-circuit coatings are often used to ensure that  
moisture cannot corrode the leads or circuit traces.  
The thermal resistance junction to ambient (θJA) is the parameter used to calculate the rise of a device junction  
temperature due to its power dissipation. The equation used to calculate the rise in the LM94021's die  
temperature is  
TJ = TA + qJA (VDDIQ) + (VDD - VO) IL  
[
]
(6)  
where TA is the ambient temperature, IQ is the quiescent current, IL is the load current on the output, and VO is  
the output voltage. For example, in an application where TA = 30°C, VDD = 5 V, IDD = 9 μA, Gain Select = 11,  
VOUT = 2.231 mV, and IL = 2 μA, the junction temperature would be 30.021°C, showing a self-heating error of  
only 0.021°C. Since the LM94021's junction temperature is the actual temperature being measured, care should  
be taken to minimize the load current that the LM94021 is required to drive. Table 3 shows the thermal  
resistance of the LM94021.  
Table 3. LM94021 Thermal Resistance  
DEVICE NUMBER  
PACKAGE NUMBER  
THERMAL RESISTANCE (θJA)  
LM94021BIMG  
DCK0005A  
415°C/W  
NOISE CONSIDERATIONS  
The LM94021 has excellent noise rejection (the ratio of the AC signal on VOUT to the AC signal on VDD). During  
bench tests, sine wave rejection of 54 dB or better was observed over 200 Hz to 10 kHz; Also, 28 dB or better  
was observed from 10 kHz to 1 MHz. A load capacitor on the output can help filter noise; for example, a 1 nF  
load capacitor resulted in 51 dB or better from 200 Hz to 1 MHz.  
There is no specific requirement for the use of a bypass capacitor close to the LM94021 because it does not  
draw transient currents. For operation in very noisy environments, some bypass capacitance may be required.  
The capacitance does not need to be in close proximity to the LM94021. The LM94021 has been bench tested  
successfully with a bypass capacitor as far as 6 inches away. In fact, it can be powered by a properly-bypassed  
logic gate.  
CAPACITIVE LOADS  
The LM94021 handles capacitive loading well. In an extremely noisy environment, or when driving a switched  
sampling input on an ADC, it may be necessary to add some filtering to minimize noise coupling. Without any  
precautions, the LM94021 can drive a capacitive load less than or equal to 1100 pF as shown in Figure 14. For  
capacitive loads greater than 1100 pF, a series resistor may be required on the output, as shown in Figure 15.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM94021  
 
LM94021  
SNIS138E FEBRUARY 2005REVISED JUNE 2013  
www.ti.com  
V
DD  
LM94021  
GND  
OUT  
OPTIONAL  
BYPASS  
C
LOAD  
< 1100 pF  
CAPACITANCE  
Figure 14. LM94021 No Decoupling Required for Capacitive Loads Less than 1100 pF  
V
DD  
R
S
LM94021  
GND  
OUT  
OPTIONAL  
BYPASS  
CAPACITANCE  
C
LOAD  
> 1100 pF  
Figure 15. LM94021 with Series Resistor for Capacitive Loading greater than 1100 pF  
OUTPUT VOLTAGE SHIFT  
The LM94021 is very linear over temperature and supply voltage range. Due to the intrinsic behavior of an  
NMOS/PMOS rail-to-rail buffer, a slight shift in the output can occur when the supply voltage is ramped over the  
operating range of the device. The location of the shift is determined by the relative levels of VDD and VOUT. The  
shift typically occurs when VDD- VOUT = 1.0V.  
This slight shift (a few millivolts) takes place over a wide change (approximately 200 mV) in VDD or VOUT. Since  
the shift takes place over a wide temperature change of 5°C to 20°C, VOUT is always monotonic. The accuracy  
specifications in the ELECTRICAL CHARACTERISTICS table already include this possible shift.  
SELECTABLE GAIN FOR OPTIMIZATION AND IN SITU TESTING  
The Gain Select digital inputs can be tied to the rails or can be driven from digital outputs such as microcontroller  
GPIO pins. In low-supply voltage applications, the ability to reduce the gain to 5.5 mV/°C allows the LM94021 to  
operate over the full 50°C to 150°C range. When a larger supply voltage is present, the gain can be increased  
as high as 13.6 mV/°C. The larger gain is optimal for reducing the effects of noise (for example, noise coupling  
on the output line or quantization noise induced by an analog-to-digital converter which may be sampling the  
LM94021 output).  
Another application advantage of the digitally selectable gain is the ability to perform dynamic testing of the  
LM94021 while it is running in a system. By toggling the logic levels of the gain select pins and monitoring the  
resultant change in the output voltage level, the host system can verify the functionality of the LM94021.  
14  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LM94021  
LM94021  
www.ti.com  
SNIS138E FEBRUARY 2005REVISED JUNE 2013  
APPLICATION CIRCUITS  
V
TEMP  
V+  
R3  
V
V
T1  
R4  
T2  
R1  
V
T
(High = overtemp alarm)  
4.1V  
+
V
OUT  
V
OUT  
U1  
LM4040  
U3  
0.1 mF  
-
R2  
(4.1)R2  
V
V
=
=
T1  
R2 + R1||R3  
LM94021  
V
DD  
V
Temp  
(4.1)R2||R3  
R1 + R2||R3  
T2  
U2  
Figure 16. Celsius Thermostat  
V
DD  
V
OUT  
SHUTDOWN  
LM94021  
Any logic  
device output  
Figure 17. Conserving Power Dissipation with Shutdown  
SAR Analog-to-Digital Converter  
Reset  
+1.5V to +5.5V  
Input  
Pin  
LM94021  
Sample  
R
IN  
4
5
3
OUT  
GND  
GS0  
V
DD  
C
BP  
C
IN  
C
2
FILTER  
C
SAMPLE  
1
GS1  
Most CMOS ADCs found in microcontrollers and ASICs have a sampled data comparator input structure. When the  
ADC charges the sampling cap, it requires instantaneous charge from the output of the analog source such as the  
LM94021 temperature sensor and many op amps. This requirement is easily accommodated by the addition of a  
capacitor (CFILTER). The size of CFILTER depends on the size of the sampling capacitor and the sampling frequency.  
Since not all ADCs have identical input stages, the charge requirements will vary. This general ADC application is  
shown as an example only.  
Figure 18. Suggested Connection to a Sampling Analog-to-Digital Converter Input Stage  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LM94021  
 
LM94021  
SNIS138E FEBRUARY 2005REVISED JUNE 2013  
www.ti.com  
REVISION HISTORY  
Changes from Revision C (February 2013) to Revision D  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 15  
16  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LM94021  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM94021BIMG/NOPB  
LM94021BIMGX/NOPB  
LM94021QBIMG/NOPB  
LM94021QBIMGX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SC70  
SC70  
SC70  
SC70  
DCK  
DCK  
DCK  
DCK  
5
5
5
5
1000 RoHS & Green  
3000 RoHS & Green  
1000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-50 to 150  
-50 to 150  
-50 to 150  
-50 to 150  
21B  
21B  
21Q  
21Q  
SN  
SN  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LM94021, LM94021-Q1 :  
Catalog: LM94021  
Automotive: LM94021-Q1  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Oct-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM94021BIMG/NOPB  
LM94021BIMGX/NOPB  
LM94021QBIMG/NOPB  
SC70  
SC70  
SC70  
DCK  
DCK  
DCK  
DCK  
5
5
5
5
1000  
3000  
1000  
3000  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
2.25  
2.25  
2.25  
2.25  
2.45  
2.45  
2.45  
2.45  
1.2  
1.2  
1.2  
1.2  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
LM94021QBIMGX/NOPB SC70  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Oct-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM94021BIMG/NOPB  
LM94021BIMGX/NOPB  
LM94021QBIMG/NOPB  
LM94021QBIMGX/NOPB  
SC70  
SC70  
SC70  
SC70  
DCK  
DCK  
DCK  
DCK  
5
5
5
5
1000  
3000  
1000  
3000  
208.0  
208.0  
208.0  
208.0  
191.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

LM94021QBIMGX/NOPB

具有多个增益模拟输出选项的汽车级 ±1.5°C 温度传感器 | DCK | 5 | -50 to 150
TI

LM94022

1.5V, SC70, Multi-Gain Analog Temperature Sensor with Class-AB Output
NSC

LM94022

1.5-V, SC70, Multi-Gain Analog Temperature Sensor With Class-AB Output
TI

LM94022-Q1

1.5-V, SC70, Multi-Gain Analog Temperature Sensor With Class-AB Output
TI

LM94022BIMG

1.5V, SC70, Multi-Gain Analog Temperature Sensor with Class-AB Output
NSC

LM94022BIMG

1.5-V, SC70, Multi-Gain Analog Temperature Sensor With Class-AB Output
TI

LM94022BIMG/NOPB

Analog Temperature Sensor, ANALOG TEMP SENSOR-VOLTAGE, 2.70Cel, RECTANGULAR, SURFACE MOUNT, LEAD FREE, SC-70, 5 PIN
NSC

LM94022BIMG/NOPB

1.5-V, SC70, Multi-Gain Analog Temperature Sensor With Class-AB Output
TI

LM94022BIMGX

1.5V, SC70, Multi-Gain Analog Temperature Sensor with Class-AB Output
NSC

LM94022BIMGX/NOPB

1.5-V, SC70, Multi-Gain Analog Temperature Sensor With Class-AB Output
TI

LM94022EIMG

暂无描述
NSC

LM94022EIMGX

IC,TEMPERATURE SENSOR,CMOS,TSSOP,6PIN,PLASTIC
TI