LMH0302SQE/NOPB [TI]

3G HD/SD SDI 电缆驱动器 | RUM | 16 | -40 to 85;
LMH0302SQE/NOPB
型号: LMH0302SQE/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3G HD/SD SDI 电缆驱动器 | RUM | 16 | -40 to 85

驱动 驱动器
文件: 总20页 (文件大小:745K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LMH0302  
ZHCSAK2H APRIL 2007REVISED JUNE 2016  
LMH0302 3Gbps HD/SD SDI 电缆驱动器  
1 特性  
3 说明  
1
支持 ST 424 (3G)292 (HD) 259 (SD)  
LMH0302 3Gbps HD/SD SDI 电缆驱动器设计用于 ST  
424ST 292ST 344 ST 259 串行数字视频 应  
用。LMH0302 以高达 2.97Gbps 的数据速率驱动  
75传输线路(Belden 1694ABelden 8281 或等效  
电缆)。  
数据速率高达 2.97Gbps  
支持 DVB-ASI270Mbps 时)  
100差分输入  
75单端输出  
可选转换率  
LMH0302 提供有两种可选转换率,以符合 ST 259 和  
ST 424/292。输出驱动器可通过输出驱动器使能引脚  
实现掉电。  
输出驱动器掉电控制  
3.3V 单电源运行  
工业温度范围:-40°C 85°C  
LMH0302 3.3V 单电源供电运行。SD 模式下的典型  
功耗为 125mWHD 模式下的典型功耗为 165mW。  
LMH0302 采用 16 引脚 WQFN 封装。  
典型功耗:125mWSD 模式),165mWHD 模  
式)  
16 引脚超薄型四方扁平无引线 (WQFN) 封装  
封装与 LMH0002SQ 兼容  
器件信息(1)  
替代 Gennum GS2978  
器件型号  
LMH0302  
封装  
封装尺寸(标称值)  
WQFN (16)  
4.00mm x 4.00mm  
2 应用  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
ST 424ST 292ST 344 ST 259 串行数字接  
数字视频路由器和交换机  
分布式放大器  
典型应用  
V
CC  
0.1 mF  
75W  
75W  
SD/HD  
ENABLE  
6.8 nH  
1.0 mF  
4.7 mF  
ENABLE  
SDI  
49.9W  
49.9W  
SD/HD  
75W  
75W  
SDO  
SDO  
LMH0302  
4.7 mF  
R
REF  
SDI  
1.0 mF  
Differential  
Input  
V
CC  
6.8 nH  
0.1 mF  
750W  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNLS247  
 
 
 
 
 
LMH0302  
ZHCSAK2H APRIL 2007REVISED JUNE 2016  
www.ti.com.cn  
目录  
7.3 Feature Description .................................................. 6  
7.4 Device Functional Modes.......................................... 7  
Application and Implementation .......................... 8  
8.1 Application Information ............................................ 8  
8.2 Typical Application ................................................... 8  
Power Supply Recommendations...................... 10  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information ................................................. 4  
6.5 Electrical Characteristics – DC ................................. 4  
6.6 Electrical Characteristics – AC.................................. 5  
6.7 Typical Characteristics ............................................. 5  
Detailed Description .............................................. 6  
7.1 Overview .................................................................. 6  
7.2 Functional Block Diagram ........................................ 6  
8
9
10 Layout................................................................... 10  
10.1 Layout Guidelines ................................................ 10  
10.2 Layout Example ................................................... 11  
11 器件和文档支持 ..................................................... 12  
11.1 社区资源................................................................ 12  
11.2 ....................................................................... 12  
11.3 静电放电警告......................................................... 12  
11.4 Glossary................................................................ 12  
12 机械、封装和可订购信息....................................... 12  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision G (April 2013) to Revision H  
Page  
已添加 ESD 额定值表,特性 描述部分,器件功能模式应用和实施部分,电源相关建议部分,布局部分,器件和文  
档支持部分以及机械、封装和可订购信息........................................................................................................................ 1  
Changes from Revision F (April 2013) to Revision G  
Page  
已更改 国家数据表的版面布局至 TI 格式................................................................................................................................ 1  
2
Copyright © 2007–2016, Texas Instruments Incorporated  
 
LMH0302  
www.ti.com.cn  
ZHCSAK2H APRIL 2007REVISED JUNE 2016  
5 Pin Configuration and Functions  
RUM Package  
16-Pin WQFN  
Top View  
SDI  
SDI  
1
12  
11  
10  
9
SDO  
SDO  
2
3
4
GND  
VEE  
SD/HD  
VCC  
RREF  
Not to scale  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Output driver enable. When low, the SDO/SDO output driver is powered off. ENABLE has an  
internal pullup. H = Normal operation. L = Output driver powered off.  
ENABLE  
6
I
EP is the exposed pad at the bottom of the WQFN package. The exposed pad must be  
connected to the ground plane through a via array. See Figure 6 for details.  
EP  
G
5, 7, 8, 13,  
14, 15, 16  
NC  
No connect. Not bonded internally.  
RREF  
SD/HD  
4
I
I
Output driver level control. Connect a resistor to VCC to set output voltage swing.  
Output slew rate control. Output rise/fall time complies with ST 424 or 292 when low and ST 259  
when high.  
10  
SDI  
1
2
I
Serial data true input.  
SDI  
I
Serial data complement input.  
Serial data true output.  
SDO  
SDO  
VCC  
VEE  
12  
11  
9
O
O
P
G
Serial data complement output.  
Positive power supply (3.3 V).  
Negative power supply (ground).  
3
(1) G = Ground, I = Input, O = Output, and P = Power  
Copyright © 2007–2016, Texas Instruments Incorporated  
3
LMH0302  
ZHCSAK2H APRIL 2007REVISED JUNE 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.3  
MAX  
3.6  
UNIT  
V
Supply voltage  
Input voltage (all inputs)  
Output current  
VCC + 0.3  
28  
V
mA  
°C  
°C  
°C  
Lead temperature, soldering (4 s)  
Junction temperature, TJ  
Storage temperature, Tstg  
260  
125  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±4500  
±2000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Machine model (MM)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
3.46  
100  
85  
UNIT  
Supply voltage (VCC – VEE  
)
3.13  
3.3  
V
Operating junction temperature  
Operating free air temperature, TA  
°C  
°C  
–40  
25  
6.4 Thermal Information  
LMH0302  
THERMAL METRIC(1)  
RUM (WQFN)  
16 PINS  
47.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
47.2  
25.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.7  
ψJB  
25.7  
RθJC(bot)  
14.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics – DC  
Over supply voltage and operating free-air temperature range (unless otherwise noted)  
(1)(2)  
PARAMETER  
TEST CONDITIONS  
SDI, SDI  
Differential, SDI, SDI  
MIN  
1.1 + VSDI/2  
100  
TYP  
MAX  
VCC – VSDI/2  
2200  
UNIT  
V
VCMIN  
VSDI  
Input common mode voltage  
Input voltage swing  
mVPP  
(1) Current flow into device pins is defined as positive. Current flow out of device pins is defined as negative. All voltages are stated  
referenced to VEE = 0 V.  
(2) Typical values are stated for VCC = 3.3 V and TA = 25°C.  
4
Copyright © 2007–2016, Texas Instruments Incorporated  
 
 
LMH0302  
www.ti.com.cn  
ZHCSAK2H APRIL 2007REVISED JUNE 2016  
Electrical Characteristics – DC (continued)  
(1)(2)  
Over supply voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SDO, SDO  
MIN  
TYP  
MAX  
UNIT  
VCMOUT Output common mode voltage  
VCC – VSDO  
V
Single-ended, 75-load,  
RREF = 750 1%  
VSDO  
Output voltage swing  
720  
2
800  
880  
mVPP  
VIH  
VIL  
Input voltage high level  
Input voltage low level  
SD/HD, ENABLE  
V
V
SD/HD, ENABLE  
0.8  
59  
33  
48  
22  
SD/HD = 0, SDO/SDO enabled  
SD/HD = 0, SDO/SDO disabled  
SD/HD = 1, SDO/SDO enabled  
SD/HD = 1, SDO/SDO disabled  
50  
26  
38  
15  
ICC  
Supply current  
mA  
6.6 Electrical Characteristics – AC  
Over supply voltage and operating free-air temperature range (unless otherwise noted)  
(1)  
PARAMETER  
Input data rate  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DRSDI  
SDI, SDI  
2970  
Mbps  
2.97 Gbps, SDO, SDO  
20  
18  
15  
90  
Tjit  
Additive jitter  
1.485 Gbps, SDO, SDO  
psP-P  
270 Mbps, SDO, SDO  
SD/HD = 0, 20% – 80%, SDO, SDO  
SD/HD = 1, 20% – 80%, SDO, SDO  
SD/HD = 0, SDO, SDO  
130  
800  
30  
tr,tf  
Output rise time, fall time  
ps  
ps  
400  
TMATCH Mismatch in rise time, fall time  
SD/HD = 1, SDO, SDO  
50  
SD/HD = 0, 2.97 Gbps, SDO, SDO(2)  
SD/HD = 0, 1.485 Gbps, SDO, SDO(2)  
SD/HD = 1, SDO, SDO(2)  
SD/HD = 0, SDO, SDO(2)  
SD/HD = 1, SDO, SDO(2)  
27  
TDCD  
Duty cycle distortion  
30  
ps  
100  
10%  
8%  
TOS  
Output overshoot  
Output return loss  
5 MHz to 1.5 GHz, SDO, SDO(3)  
1.5 GHz to 3.0 GHz, SDO, SDO(3)  
15  
10  
RLSDO  
dB  
(1) Typical values are stated for VCC = 3.3 V and TA = 25°C.  
(2) Specification is ensured by characterization.  
(3) Output return loss is dependent on board design. The LMH0302 meets this specification on the SD302 evaluation board.  
6.7 Typical Characteristics  
Typical device characteristics at TA = 25°C and VCC = 3.3 V (unless otherwise noted)  
200 ps/DIV  
100 ps/DIV  
Figure 2. SDO PRBS10 at 1.485 Gbps  
Figure 1. SDO PRBS10 at 2.97 Gbps  
Copyright © 2007–2016, Texas Instruments Incorporated  
5
 
LMH0302  
ZHCSAK2H APRIL 2007REVISED JUNE 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMH0302 ST 424, ST292, ST259 serial digital cable driver is a monolithic, high-speed cable driver designed  
for use in serial digital video data transmission applications. The LMH0302 drives 75-transmission lines  
(Belden 8281, 1694A, Canare L-5CFB, or equivalent) at data rates up to 2.97 Gbps.  
The LMH0302 provides two selectable slew rates for ST 259 and ST 292/424 compliance. The output voltage  
swing is adjustable through a single external resistor ( RREF).  
The LMH0302 is powered from a single 3.3-V supply. Power consumption is typically 125 mW in SD mode and  
165 mW in HD mode. The LMH0302 is available in a 16-pin WQFN package.  
7.2 Functional Block Diagram  
SDO  
SDO  
SDI  
+
-
+
-
SDI  
RREF  
Bias Generator  
Control  
Copyright © 2016, Texas Instruments Incorporated  
7.3 Feature Description  
The LMH0302 data path consists of several key blocks:  
Input interfacing  
Output interfacing  
Output slew rate control  
Output enable  
7.3.1 Input Interfacing  
The LMH0302 accepts either differential or single-ended input. The inputs are self-biased, allowing for simple AC  
or DC coupling. DC-coupled inputs must be kept within the specified common-mode range.  
7.3.2 Output Interfacing  
The LMH0302 uses current mode outputs. Single-ended output levels are 800 mVP-P into 75-AC-coupled  
coaxial cable with an RREF resistor of 750 . The RREF resistor is connected between the RREF pin and VCC  
.
6
Copyright © 2007–2016, Texas Instruments Incorporated  
LMH0302  
www.ti.com.cn  
ZHCSAK2H APRIL 2007REVISED JUNE 2016  
Feature Description (continued)  
The RREF resistor must be placed as close as possible to the RREF pin. In addition, the copper in the plane layers  
below the RREF network must be removed to minimize parasitic capacitance.  
7.3.3 Output Slew Rate Control  
The LMH0302 output rise and fall times are selectable for either ST 259, ST 424, or 292 compliance through the  
SD/HD pin. For slower rise and fall times, or ST 259 compliance, SD/HD is set high. For faster rise and fall times,  
ST 424 and ST 292 compliance, SD/HD is set low.  
7.3.4 Output Enable  
The SDO/SDO output driver are enabled or disabled with the ENABLE pin. When set low, the output driver is  
powered off. ENABLE has an internal pullup.  
7.4 Device Functional Modes  
The LMH0302 features are programmed using pin mode only.  
Copyright © 2007–2016, Texas Instruments Incorporated  
7
LMH0302  
ZHCSAK2H APRIL 2007REVISED JUNE 2016  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LMH0302 is a single-channel SDI cable driver that supports different application spaces. The following  
sections describe the typical use cases and common implementation practices.  
8.1.1 General Guidance for All Applications  
The SMPTE specifications define the use of AC-coupling capacitors for transporting uncompressed serial data  
streams with heavy low-frequency content. This specification requires the use of a 4.7-µF AC-coupling capacitor  
to avoid low frequency DC wander. The 75-signal is also required to meet certain rise and fall timing to  
facilitate highest eye opening for the receiving device.  
SMPTE specifies the requirements for the Serial Digital Interface to transport digital video at SD, HD, 3 Gbps,  
and higher data rates over coaxial cables. One of the requirements is meeting the required return loss. This  
requirement specifies how closely the port resembles 75-impedance across a specified frequency band.  
Output return loss is dependent on board design. The LMH0302 supports these requirements.  
8.2 Typical Application  
V
CC  
0.1 mF  
75W  
75W  
SD/HD  
ENABLE  
6.8 nH  
1.0 mF  
4.7 mF  
ENABLE  
SDI  
49.9W  
49.9W  
SD/HD  
75W  
75W  
SDO  
SDO  
LMH0302  
4.7 mF  
R
REF  
SDI  
1.0 mF  
Differential  
Input  
V
CC  
6.8 nH  
0.1 mF  
750W  
Copyright © 2016, Texas Instruments Incorporated  
Figure 3. Application Circuit  
8
Copyright © 2007–2016, Texas Instruments Incorporated  
 
LMH0302  
www.ti.com.cn  
ZHCSAK2H APRIL 2007REVISED JUNE 2016  
Typical Application (continued)  
8.2.1 Design Requirements  
For the LMH0302 design example, Table 1 lists the design parameters.  
Table 1. LMH0302 Design Parameters  
PARAMETER  
Input termination  
REQUIREMENT  
Required; 49.9 are recommended (see Figure 3).  
Required; both SDO and SDO require AC-coupling capacitors. SDO AC-coupling capacitors  
are expected to be 4.7 µF to comply with SMPTE wander requirement.  
Output AC-coupling capacitors  
To minimize power supply noise, place 0.1-µF capacitor as close to the device VCC pin as  
possible.  
DC power supply coupling capacitors  
Distance from device to BNC  
Keep this distance as short as possible.  
High speed SDI and SDI trace impedance  
Design differential trace impedance of SDI and SDI with 100 .  
High speed SDO and SDO trace impedance Single-ended trace impedance for SDO and SDO with 75 .  
8.2.2 Detailed Design Procedure  
The following design procedure is recommended:  
1. Select a suitable power supply voltage for the LMH0302. It can be powered from a single 3.3-V supply.  
2. Check that the power supply meets the DC requirements in Electrical Characteristics – DC.  
3. Select the proper pull-high or pull-low for SD/HD to set the slew rate.  
4. Select proper pull-high or pull-low for ENABLE to enable or disable the output driver.  
5. Choose a high-quality 75-BNC that is capable to support 2.97-Gbps applications. Consult a BNC supplier  
regarding insertion loss, impedance specifications, and recommended BNC footprint for meeting SMPTE  
return loss requirements.  
6. Choose small 0402 surface-mount ceramic capacitors for the AC-coupling and bypass capacitors.  
7. Use proper footprint for BNC and AC-coupling capacitors. Anti-pads are commonly used in power and  
ground planes under these landing pads to achieve optimum return loss.  
8.2.3 Application Curves  
920  
900  
880  
860  
840  
820  
800  
780  
760  
660  
680  
700  
720  
740  
760  
780  
1 ns/DIV  
RREF Resistance ()  
C001  
Figure 5. SDO Amplitude vs RREF Resistance  
Figure 4. SDO PRBS10 at 270 Mbps  
Copyright © 2007–2016, Texas Instruments Incorporated  
9
 
LMH0302  
ZHCSAK2H APRIL 2007REVISED JUNE 2016  
www.ti.com.cn  
9 Power Supply Recommendations  
Follow these general guidelines when designing the power supply:  
1. The power supply must be designed to provide the recommended operating conditions (see Recommended  
Operating Conditions).  
2. The maximum current draw for the LMH0302 is provided in Electrical Characteristics – DC. This figure can  
be used to calculate the maximum current the supply must provide.  
3. The LMH0302 does not require any special power supply filtering, provided the recommended operating  
conditions are met. Only standard supply coupling is required.  
10 Layout  
10.1 Layout Guidelines  
TI recommends the following layout guidelines for the LMH0302:  
1. The RREF 1% tolerance resistor must be placed as close as possible to the RREF pin. In addition, the copper  
in the plane layers below the RREF network must be removed to minimize parasitic capacitance.  
2. Choose a suitable board stackup that supports 75-Ω single-ended trace and 100-Ω differential trace routing  
on the top layer of the board. This is typically done with a Layer 2 ground plane reference for the 100-Ω  
differential traces and a second ground plane at Layer 3 reference for the 75-Ω single-ended traces.  
3. Use single-ended uncoupled trace designed with 75-Ω impedance for signal routing to SDO and SDO. The  
trace width is typically 8-10 mil reference to a ground plane at Layer 3.  
4. Use coupled differential traces with 100-Ω impedance for signal routing to SDI and SDI. They are usually  
5-mil to 8-mil trace width reference to a ground plane at Layer 2.  
5. Place anti-pad (ground relief) on the power and ground planes directly under the 4.7-μF AC-coupling  
capacitor, return loss network, and IC landing pads to minimize parasitic capacitance. The size of the anti-  
pad depends on the board stackup and can be determined by a 3-dimension electromagnetic simulation tool.  
6. Use a well-designed BNC footprint to ensure the BNC’s signal landing pad achieves 75-Ω characteristic  
impedance. BNC suppliers usually provide recommendations on BNC footprint for best results.  
7. Keep trace length short between the BNC and SDO. The trace routing for SDO and SDO must be  
symmetrical, approximately equal lengths, and equal loading.  
8. The exposed pad EP of the package must be connected to the ground plane through an array of vias. These  
vias are solder-masked to avoid solder flow into the plated-through holes during the board manufacturing  
process.  
9. Connect each supply pin (VCC and VEE) to the power or ground planes with a short via. The via is usually  
placed tangent to the landing pads of the supply pins with the shortest trace possible.  
10. Power-supply bypass capacitors must be placed close to the supply pins.  
10  
Copyright © 2007–2016, Texas Instruments Incorporated  
LMH0302  
www.ti.com.cn  
ZHCSAK2H APRIL 2007REVISED JUNE 2016  
10.2 Layout Example  
Figure 6 shows an example of proper layout requirements for the LMH0302.  
BNC foot print  
Anti-pad  
GND stitch  
> 5W  
VCC  
4.7 µF  
Anti-pad:  
Zo = 75  
100 coupled trace  
W = 8  
S = 10  
0.1 µF  
0.1 µF  
Solder  
Paste  
mask  
75 ꢀ  
W = 8  
4.7 µF  
W = 10  
> 5W  
VCC  
750 ꢀ  
VCC  
EP  
GND  
GND  
Figure 6. LMH0302 High-Speed Traces Layout Example  
版权 © 2007–2016, Texas Instruments Incorporated  
11  
 
LMH0302  
ZHCSAK2H APRIL 2007REVISED JUNE 2016  
www.ti.com.cn  
11 器件和文档支持  
11.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.2 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
12  
版权 © 2007–2016, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH0302SQ/NOPB  
LMH0302SQE/NOPB  
LMH0302SQX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
RUM  
RUM  
RUM  
16  
16  
16  
1000 RoHS & Green  
250 RoHS & Green  
4500 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
L0302  
L0302  
L0302  
SN  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMH0302SQ/NOPB  
LMH0302SQE/NOPB  
LMH0302SQX/NOPB  
WQFN  
WQFN  
WQFN  
RUM  
RUM  
RUM  
16  
16  
16  
1000  
250  
178.0  
178.0  
330.0  
12.4  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
1.3  
1.3  
1.3  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
4500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMH0302SQ/NOPB  
LMH0302SQE/NOPB  
LMH0302SQX/NOPB  
WQFN  
WQFN  
WQFN  
RUM  
RUM  
RUM  
16  
16  
16  
1000  
250  
208.0  
208.0  
356.0  
191.0  
191.0  
356.0  
35.0  
35.0  
35.0  
4500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RUM0016A  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
4.1  
3.9  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
0.08 C  
DIM A  
OPT 1  
0.2  
OPT 2  
0.1  
2X 1.95  
SYMM  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
4
9
2X 1.95  
SYMM  
17  
2.6 0.1  
12X 0.65  
1
12  
0.35  
0.25  
16X  
PIN 1 ID  
(45 X 0.3)  
13  
16  
0.1  
C A B  
0.5  
0.3  
0.05  
16X  
4214998/A 11/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RUM0016A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.6)  
SYMM  
SEE SOLDER MASK  
DETAIL  
13  
16  
16X (0.6)  
1
12  
16X (0.3)  
17  
SYMM  
12X (0.65)  
(3.8)  
(1.05)  
4
9
(R0.05) TYP  
(
0.2) TYP  
VIA  
5
8
(1.05)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214998/A 11/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RUM0016A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.675) TYP  
13  
16  
16X (0.6)  
1
12  
16X (0.3)  
(0.675) TYP  
(3.8)  
17  
SYMM  
12X (0.65)  
4X ( 1.15)  
9
4
(R0.05) TYP  
8
5
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 17  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4214998/A 11/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LMH0302SQX

IC,LINE DRIVER,1 DRIVER,BIPOLAR,LLCC,16PIN,PLASTIC
TI

LMH0302SQX/NOPB

3G HD/SD SDI 电缆驱动器 | RUM | 16 | -40 to 85
TI

LMH0302_0706

3Gbps HD/SD SDI Cable Driver
NSC

LMH0302_0711

3Gbps HD/SD SDI Cable Driver
NSC

LMH0302_08

3Gbps HD/SD SDI Cable Driver
NSC

LMH0303

3 Gbps HD/SD SDI Cable Driver with Cable Detect
NSC

LMH0303

具有电缆检测功能的 3G HD/SD SDI 电缆驱动器
TI

LMH0303SQ

IC LINE DRIVER, QCC16, LLP-16, Line Driver or Receiver
NSC

LMH0303SQ/NOPB

IC LINE DRIVER, QCC16, ROHS COMPLIANT, LLP-16, Line Driver or Receiver
NSC

LMH0303SQ/NOPB

具有电缆检测功能的 3G HD/SD SDI 电缆驱动器 | RUM | 16 | -40 to 85
TI

LMH0303SQE/NOPB

IC LINE DRIVER, QCC16, ROHS COMPLIANT, LLP-16, Line Driver or Receiver
NSC

LMH0303SQE/NOPB

具有电缆检测功能的 3G HD/SD SDI 电缆驱动器 | RUM | 16 | -40 to 85
TI