LMH0324RTWR [TI]

3G HD/SD 低功耗 SDI 自适应电缆均衡器 | RTW | 24 | -40 to 85;
LMH0324RTWR
型号: LMH0324RTWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3G HD/SD 低功耗 SDI 自适应电缆均衡器 | RTW | 24 | -40 to 85

文件: 总40页 (文件大小:1286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMH0324  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
LMH0324 3G/HD/SD SDI 双路输出自适应电缆均衡器  
1 特性  
3 说明  
1
支持 ST 424(3G)ST 292(HD) ST 259(SD)  
LMH0324 是一款低功耗、双路输出、延长长度、自适  
应电缆均衡器。该器件旨在均衡通过 75同轴电缆传  
输的 SDI 数据。该均衡器具有 125Mbps 2.97Gbps  
的较宽数据速率范围。该均衡器包含有源传感电路,保  
证了出色的性能并增强了对输入信号启动幅值变化的抗  
扰性。  
兼容 DVB-ASI AES10 (MADI)  
自适应电缆均衡器  
电缆长度 (Belden 1694A):  
2.97Gbps 时为 200m  
1.485Gbps 时为 280m  
270Mbps 时为 600m  
LMH0324 提供扩展电缆长度的同时还拥有低功耗特  
性。该器件具备功率管理功能,可在无输入信号时进一  
步降低功耗。  
低功耗:78mW(典型值)  
节能模式:15mW  
片上输入终端(75单端)  
集成输入回波损耗网络  
LMH0324 具有两个差分串行数据输出,可灵活进行扇  
出缓冲。输出驱动器提供可编程的去加重功能,用于补  
LMH0324 输出端的电路板走线损失。LMH0324 的  
工作状态可通过控制引脚进行设置。该器件的附加设置  
可通过 SPI SMBus 接口进行编程设定。  
具有去加重功能的双路 100输出驱动器  
独立输出断电控制  
支持信号分离器模式(–6dB 启动幅值)  
电缆长度指示  
数字 MUTEREF 阈值  
LMH0324 LMH1219(带有集成时钟恢复器的  
12Gbps 自适应电缆均衡器)引脚兼容。这一引脚兼容  
性使得从 3Gbps 均衡器到具有集成时钟恢复器的  
12Gbps 均衡器的升级变得更加容易。  
通过 2.5V 1.8V 电源供电  
可通过控制引脚、SPI 或者 SMBus 接口进行配置  
4mm × 4mm 24 引脚 QFN 封装  
工作温度范围:-40°C +85°C  
器件信息(1)  
器件型号  
LMH0324  
封装  
QFN (24)  
封装尺寸(标称值)  
2 应用  
4.00mm × 4.00mm  
兼容 SMPTE 的串行数字接口 (SDI)  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
广播视频路由器、交换机和监视器  
DVB-ASI 和分布式放大器  
数字视频处理和编辑  
简化框图  
Low Power  
Adaptive Cable Equalizer  
VOD_DE  
EQ  
Bypass  
2
2
100 Ω  
Driver  
OUT0±  
OUT1±  
SE 75 Ω  
Term and  
RL Network  
2
Cable  
EQ  
VOD_DE  
IN0±  
100 Ω  
Driver  
Carrier  
Detector  
OUT_MUX  
CD_N  
Power  
Serial  
Interface  
LDO  
Control Logic  
Management  
Single 2.5 V  
Control Carrier  
SPI  
or  
VDD_LDO  
or  
Pins  
Detect  
1.8 V  
SMBus  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNLS531  
 
 
 
 
LMH0324  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
目录  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
7.4 Device Functional Modes........................................ 16  
7.5 LMH0324 Register Map .......................................... 21  
Application and Implementation ........................ 26  
8.1 Application Information............................................ 26  
8.2 Typical Application ................................................. 26  
Power Supply Recommendations...................... 30  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
8
9
10 Layout................................................................... 31  
10.1 Layout Guidelines ................................................. 31  
10.2 Layout Example .................................................... 31  
11 器件和文档支持 ..................................................... 32  
11.1 接收文档更新通知 ................................................. 32  
11.2 社区资源................................................................ 32  
11.3 ....................................................................... 32  
11.4 静电放电警告......................................................... 32  
11.5 术语表 ................................................................... 32  
12 机械、封装和可订购信息....................................... 32  
6.6 Recommended SMBus Interface AC Timing  
Specifications............................................................. 9  
6.7 Serial Parallel Interface (SPI) AC Timing  
Specifications............................................................. 9  
6.8 Typical Characteristics............................................ 10  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7
4 修订历史记录  
Changes from Revision A (May 2016) to Revision B  
Page  
已添加 参考设计顶部导航图标链接;首次公开发布的产品说明书 ......................................................................................... 1  
Changes from Original (April 2016) to Revision A  
Page  
Deleted min and max VOD_DE amplitude specification when VOD_DE = Level F ............................................................. 8  
Changed typical VOD_DE amplitude specifications for Levels F, R, and L .......................................................................... 8  
Changed DEM value and DEM register settings in Table 4 to match correct VOD_DE pin logic levels ............................. 14  
已添加 new row for VOD = 5, DEM = 5 setting in 9 ....................................................................................................... 28  
2
Copyright © 2016–2018, Texas Instruments Incorporated  
 
LMH0324  
www.ti.com.cn  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
5 Pin Configuration and Functions  
RTW Package  
24-Pin QFN  
Top View  
IN0+  
IN0-  
1
2
3
4
5
6
18 OUT0+  
17 OUT0-  
16 VSS  
VSS  
LMH0324  
RSV1  
15 OUT1+  
14 OUT1-  
13 RSV_L  
RSV2  
EP = VSS  
MODE_SEL  
Pin Functions  
PIN  
(1)  
I/O  
DESCRIPTION  
NAME  
NO.  
High Speed Differential I/Os  
IN0+  
IN0-  
1
2
I, Analog  
I Analog  
Single-ended complementary inputs, 75-internal termination from IN0+ or IN0- to  
internal common mode voltage and return loss compensation network. Requires  
external 4.7-µF AC coupling capacitors for SMPTE video applications.  
RSV1  
RSV2  
OUT0+  
4
5
Reserved pins.  
Do not connect.  
18  
O, Analog  
O, Analog  
O, Analog  
O, Analog  
Differential complementary outputs with 100-internal termination. Requires external  
4.7-µF AC coupling capacitors. Output driver OUT0± can be disabled under user  
control.  
OUT0-  
17  
15  
14  
OUT1+  
Differential complementary outputs with 100-internal termination. Requires external  
4.7-µF AC coupling capacitors. Output driver OUT1± can be disabled under user  
control.  
OUT1-  
Control Pins  
CD_N is the carrier detect. CD_N is pulled LOW when signal is detected and  
adaptation is completed. CD_N is an open drain output. It requires an external  
resistor to logic supply.  
CD_N  
12  
O, LVCMOS, OD  
CD_N is tolerant to 3.3 V when VDDIO is powered from 2.5 V supply.  
IN_OUT_SEL selects the signal flow at input port IN0 to output ports. See Table 2 for  
details. This pin setting can be overridden by register control.  
IN_OUT_SEL  
OUT_CTRL  
8
I, 4-LEVEL  
I, 4-LEVEL  
OUT_CTRL selects the equalized or un-equalized signal from IN0 to OUT0± and  
OUT1±. See Table 3 for details. This pin setting can be overridden by register control.  
19  
VOD_DE selects the driver output amplitude and de-emphasis level for both OUT0±  
and OUT1±. See Table 4 for details. This pin setting can be overridden by register  
control.  
VOD_DE  
11  
6
I, 4-LEVEL  
I, 4-LEVEL  
MODE_SEL  
MODE_SEL enables SPI or SMBus serial control interface. See Table 5 for details.  
(1) Note: I = Input, O=Output, IO=Input or Output, OD=Open Drain, LVCMOS=2-State Logic, 4-LEVEL=4-State Logic  
Copyright © 2016–2018, Texas Instruments Incorporated  
3
LMH0324  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
(1)  
I/O  
DESCRIPTION  
NAME  
NO.  
Serial Control Interface (SPI Mode), MODE_SEL = F (Float)  
SS_N is the Slave Select. When SS_N is at logic Low, it enables SPI access to the  
LMH0324 slave device. SS_N is a LVCMOS input referenced to VDDIO.  
SS_N  
MISO  
MOSI  
SCK  
7
I, LVCMOS  
O, LVCMOS  
I, LVCMOS  
I, LVCMOS  
MISO is the SPI serial data output from the LMH0324 slave device. MISO is a  
LVCMOS output referenced to VDDIO.  
20  
10  
21  
MOSI is used as the SPI serial data input to the LMH0324 slave device. MOSI is  
LVCMOS input referenced to VDDIO.  
SCK is the SPI serial input clock to the LMH0324 slave device. SCK is LVCMOS  
referenced to VDDIO.  
Serial Control Interface (SMBus MODE) , MODE_SEL = L (1 kΩ to VSS)  
ADDR0  
ADDR1  
7
Strap, 4-LEVEL  
Strap, 4-LEVEL  
ADDR[1:0] are SMBus address straps to select one of the 16 supported SMBus  
addresses. ADDR[1:0] are 4-level straps and are read into the device at power up.  
20  
SMBus bi-directional open drain data line to or from the LMH0324 slave device. SDA  
is an open drain IO and requires an external 2 kto 5 kpull-up resistor to the  
SMBus termination voltage. SDA is 3.3 V tolerant when VDDIO is powered from 2.5  
V.  
SDA  
SCL  
10  
21  
IO, LVCMOS, OD  
I, LVCMOS, OD  
SMBus input clock to the LMH0324 slave device. It is driven by a LVCMOS open  
drain driver from the SMBus master. SCL requires an external 2 kto 5 kpull-up  
resistor to the SMBus termination voltage. SCL is 3.3 V tolerant when VDDIO is  
powered from 2.5 V.  
Power  
VSS  
3, 9, 16  
24  
I, Ground  
I, Power  
Ground reference.  
VIN is connected to an external power supply. It accepts either 2.5 V ± 5% or 1.8 V ±  
5%. When VIN is powered from 2.5 V, VDD_LDO is the output of an on-chip LDO  
regulator and requires a bypass capacitor to VSS.  
VIN  
When VIN is powered from 1.8 V, for lower power operation, both VIN and VDD_LDO  
should be connected to 1.8 V supply.  
VDDIO powers the LVCMOS IO and 4-level input logic. VDDIO should be connected  
to 2.5 V ± 5% or 1.8 V ± 5%. VDDIO must always be greater than or equal to VIN.  
For SMBus access, VDDIO must be 2.5 V ± 5%.  
VDDIO  
22  
23  
I, Power  
VDD_LDO is the output of the internal 1.8 V LDO regulator when VIN is connected to  
2.5 V supply. VDD_LDO output requires external 1-µF and 0.1-µF bypass capacitors  
to VSS. The internal LDO is designed to power internal circuitry only. VDD_LDO is an  
input when VIN is powered from 1.8 V for lower power operation. When VIN is  
connected to a 1.8 V supply, both VIN and VDD_LDO should be connected to the 1.8  
V supply.  
VDD_LDO  
IO, Power  
For pin compatibility with the LMH1219 (11.88 Gbps Ultra-HD adaptive cable  
equalizer with integrated reclocker), connect RSV_L to a 2.5 V supply with a 0.1-µF  
bypass capacitor. For low power operation, tie RSV_L to VSS. See Power Supply  
Recommendations for details.  
RSV_L  
EP  
13  
I
EP is the exposed pad at the bottom of the QFN package. The exposed pad must be  
connected to the ground plane through a via array. See 26 for details.  
I, Ground  
4
Copyright © 2016–2018, Texas Instruments Incorporated  
LMH0324  
www.ti.com.cn  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
MAX  
2.75  
2.0  
UNIT  
V
Supply Voltage for 2.5-V Mode (VIN, VDDIO)  
Supply Voltage for 1.8-V Mode (VIN, VDD_LDO, VDDIO)  
V
4-Level Input/Output Voltage for 2.5 V Supply (IN_OUT_SEL, OUT_CTRL, VOD_DE,  
MODE_SEL, ADDR0, ADDR1)  
–0.5  
-0.5  
2.75  
2.0  
V
V
4-Level Input/Output Voltage for 1.8 V Supply (IN_OUT_SEL, OUT_CTRL, VOD_DE,  
MODE_SEL, ADDR0, ADDR1)  
SMBus Input/Output Voltage (SDA, SCL)(2)  
SPI Input/Output Voltage for 2.5 V Supply (SS_N, MISO, MOSI, and SCK)  
SPI Input/Output Voltage for 1.8 V Supply (SS_N, MISO, MOSI, and SCK)  
Input Voltage (IN0±)  
–0.5  
–0.5  
-0.5  
–0.5  
–30  
4.0  
2.75  
2.0  
V
V
V
2.75  
30  
V
Input Current (IN0±)  
mA  
°C  
°C  
Junction Temperature  
125  
150  
Storage temperature  
-65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) SDA and SCL is 3.3 V tolerant when VDDIO is 2.5 V.  
6.2 ESD Ratings  
VALUE  
±4500  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD) Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500 V HBM is possible with the necessary precautions. Pins listed as ±4500 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250 V CDM is possible with the necessary precautions. Pins listed as ±1500 V may actually have higher performance.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.375  
1.71  
NOM  
2.5  
MAX  
2.625  
1.89  
3.6  
UNIT  
2.5 V Supplies  
1.8 V Supplies  
VDDSMBUS  
VIN, VDDIO to VSS  
V
V
V
VIN, VDDIO , VDD_LDO to VSS  
SMBus: SDA, SCL Open Drain Termination Voltage, VDDIO = 2.5 V  
Source Launch Amplitude before Coax  
Splitter Mode  
1.8  
2.375  
0.72  
0.8  
0.4  
0.88  
0.44  
100  
VLAUNCH  
Vp-p  
0.36  
TJUNCTION  
TAMBIENT  
Operating Junction Temperature  
Ambient Temperature  
°C  
°C  
–40  
25  
85  
50 Hz to 1 MHz, Sinusoidal  
<20  
(1)  
NPS  
Supply Noise  
mVp-p  
1.1 MHz to 6 GHz,  
Sinusoidal  
<10  
(1) The sum of the DC supply voltage and AC supply noise should not exceed the recommended supply voltage range.  
Copyright © 2016–2018, Texas Instruments Incorporated  
5
 
LMH0324  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
6.4 Thermal Information  
LMH0324  
RTW (QFN)  
24 PINS  
33.2  
THERMAL METRIC(1)(2)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
28.8  
11.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
11.3  
RθJC(bot)  
2.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
(2) No heat sink is assumed for these estimations. Depending on the application, a heat sink, faster air flow, and/or reduced ambient  
temperature (<85°C) may be required in order to maintain the maximum junction temperature specified in Electrical Characteristics.  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
78  
MAX  
UNIT  
mW  
POWER  
Measured with PRBS-10, VOD =  
Default, only OUT0 enabled, 2.97  
Gbps,  
VIN=VDD_LDO=VDDIO=1.8 V  
PD1P8V  
Power Consumption(1)  
Power Consumption(1)  
Measured with PRBS-10, VOD =  
Default, OUT0 and OUT1 enabled,  
2.97 Gbps,  
100  
mW  
VIN=VDD_LDO=VDDIO=1.8 V  
Power Save Mode: No input  
signal,  
PDZ1P8V  
15  
mW  
mW  
VIN=VDD_LDO=VDDIO=1.8 V  
Measured with PRBS-10, 2.97  
Gbps, VOD = Default, only OUT0  
enabled, VIN=VDDIO=2.5 V  
128  
PD2P5V  
PDZ2P5V  
IDD  
Power Consumption(1)  
Power Consumption(1)  
Current Consumption(1)  
Measured with PRBS-10, 2.97  
Gbps, VOD = Default, OUT0 and  
OUT1 enabled, VIN=VDDIO=2.5 V  
147  
28  
mW  
mW  
Power Save Mode: No input  
signal, VIN=VDDIO=2.5 V  
Measured at 1.8 V supply with  
PRBS-10, 2.97 Gbps, VOD =  
Default, only OUT0 enabled  
43  
55  
71  
mA  
Measured at 2.5 V supply with  
PRBS-10, 2.97 Gbps, VOD =  
Default, only OUT0 enabled  
51  
Forced Power Save Mode:  
MODE_SEL = LEVEL-H,  
Measured at 1.8 V supply,  
VIN=VDD_LDO=VDDIO=1.8 V  
IDDZ_1P8V  
Current Consumption(1)  
4
10  
mA  
V
LDO 1.8 V Output  
Voltage  
VLDO  
VIN = VDDIO = 2.5 V  
1.71  
1.8  
1.89  
(1) Measured with RSV_L tied to VSS.  
6
Copyright © 2016–2018, Texas Instruments Incorporated  
 
LMH0324  
www.ti.com.cn  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LVCMOS DC SPECIFICATIONS  
2-Level Input (SS_N, SCK, MOSI),  
VDDIO = 2.5 V or 1.8 V  
0.7 x VDDIO  
VDDIO + 0.3  
3.6  
VIH  
High Level Input Voltage  
V
2-Level Input (SCL, SDA), VDDIO  
= 2.5 V  
0.7 x VDDIO  
2-Level Input (SS_N, SCK, MOSI)  
VDDIO = 2.5 V or 1.8 V  
-0.3  
0.3 x VDDIO  
0.3 x VDDIO  
VDDIO  
0.2 x VDDIO  
0.4  
VIL  
Low Level Input Voltage  
V
V
V
2-Level Input (SCL, SDA), VDDIO  
= 2.5 V  
0
High Level Output  
Voltage  
IOH = -2 mA, (MISO), VDDIO = 2.5  
V or 1.8 V  
VOH  
0.8 x VDDIO  
IOL = 2 mA, (MISO), VDDIO = 2.5  
V or 1.8 V  
0
0
Low Level Output  
Voltage  
VOL  
IOL = 3 mA, (CD_N, SCL, SDA),  
VDDIO = 2.5 V  
SPI Mode: LVCMOS (SS_N, SCK,  
MOSI), Vinput = VDDIO  
15  
Input High Leakage  
Current  
IIH  
µA  
µA  
SMBus Mode: LVCMOS (CD_N,  
SCL, SDA), Vinput = VDDIO  
10  
SPI Mode: LVCMOS (SS_N),  
Vinput = VSS  
-40  
-15  
-10  
Input Low Leakage  
Current  
SPI Mode: LVCMOS (SCK,  
MOSI), Vinput = VSS  
IIL  
SMBus Mode: LVCMOS (CD_N,  
SCL, SDA), Vinput = VSS  
4-LEVEL LOGIC DC SPECIFICATIONS (REFERENCE TO VDDIO, APPLY TO ALL 4-LEVEL INPUT CONTROL PINS)  
V4_LVL_H  
V4_LVL_F  
LEVEL-H Input Voltage  
External pull-up 1 kto VDDIO  
VDDIO  
V
V
LEVEL-F Default Voltage Float, VDDIO = 2.5 V or 1.8 V  
2/3 x VDDIO  
External pull-down 20 kto VSS,  
LEVEL-R Input Voltage  
V4_LVL_R  
V4_LVL_L  
1/3 x VDDIO  
0
V
V
VDDIO = 2.5 V or 1.8 V  
LEVEL-L Input Voltage  
External pull-down 1 kto VSS  
4-Levels (IN_OUT_SEL,  
OUT_CTRL, VOD_DE,  
MODE_SEL), Vinput = VDDIO  
20  
20  
45  
45  
80  
80  
Input High Leakage  
Current  
I4_LVL_IH  
µA  
µA  
SMBus Mode: 4-Levels (ADDR0,  
ADDR1), Vinput = VDDIO  
4-Levels (IN_OUT_SEL,  
OUT_CTRL, VOD_DE,  
MODE_SEL), Vinput = VSS  
-160  
-160  
–93  
–93  
-40  
-40  
Input Low Leakage  
Current  
I4_LVL_IL  
SMBus Mode: 4-Levels (ADDR0,  
ADDR1), Vinput = VSS  
RECEIVER SPECIFICATIONS (IN0+)  
RIN0_TERM  
DC Input Termination  
IN0+ and IN0- to VSS  
63  
75  
–20  
–18  
87  
Ω
S11, 5 MHz to 1.485 GHz  
S11, 1.485 GHz to 3 GHz  
Input Return Loss  
RLIN0  
dB  
Reference to 75 (2)  
IN0 DC Common Mode  
Voltage  
Input common mode voltage at  
IN0+ to VSS  
VIN0_CM  
1.4  
100  
50  
V
SD signal at IN0+, Input launch  
amplitude = 0.8 Vp-p  
mVp-p  
mVp-p  
VWANDER  
Input DC Wander  
HD, 3G signal at IN0+, Input  
launch amplitude = 0.8 Vp-p  
(2) This parameter was measured with an LMH0324-18EVM.  
Copyright © 2016–2018, Texas Instruments Incorporated  
7
LMH0324  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT DRIVERS (OUT0± OR OUT1±)  
8T pattern, see Figure 6, VOD_DE  
= LEVEL-H  
SD, HD, and 3G  
410  
560  
635  
810  
410  
500  
480  
8T pattern, see Figure 6,VOD_DE  
= LEVEL-F  
SD, HD, and 3G  
485  
620  
Output Differential  
VOD  
mVp-p  
Voltage(3)  
8T pattern, see Figure 6, VOD_DE  
= LEVEL-R  
SD, HD, and 3G  
8T pattern, see Figure 6, VOD_DE  
= LEVEL-L  
SD, HD, and 3G  
8T pattern, see Figure 7, VOD_DE  
= LEVEL-H  
SD, HD, and 3G  
8T pattern, see Figure 7, VOD_DE  
= LEVEL-F Default  
SD, HD, and 3G  
De-emphasized Output  
VODDE  
Differential Voltage(3)  
8T pattern, see Figure 7, VOD_DE  
= LEVEL-R  
SD, HD, and 3G  
8T pattern, see Figure 7, VOD_DE  
= LEVEL-L  
SD, HD, and 3G  
480  
100  
45  
DC Output Differential  
ROUT_TERM  
Measured across OUTn+ and  
OUTn-  
80  
120  
Ω
Termination  
20% - 80% using 8T Pattern 270  
Mbps, 1.485 Gbps, 2.97 Gbps,  
measured after 1 inch trace  
Output Rise or Fall Time  
tR/tF  
ps  
(4)  
125  
Mbps  
Gbps  
DR  
Input Data Rate  
2.97  
0.4  
2.97 Gbps B1694A: 0 – 150 m  
2.97 Gbps B1694A: 150 m  
0.25  
0.25  
0.55  
0.2  
2.97 Gbps B1694A: 150 - 200 m  
1.485 Gbps B1694A: 0 – 200 m  
1.485 Gbps B1694A: 200 m  
1.485 Gbps B1694A: 200 – 300 m  
270 Mbps B1694A: 0 – 400 m  
270 Mbps B1694A: 400 m  
Jitter for Various Cable  
Length(4)  
JITRATE  
0.2  
0.35  
0.3  
UI  
0.55  
0.2  
0.15  
0.35  
270 Mbps B1694A: 400 – 600 m  
Equalizer Adapt Time -  
Signal detect to  
Adaptation Completed  
PRBS-10, Belden 1694A coax  
cable, nominal launch amplitude of  
0.8 Vpp, 2.97 Gbps  
TADAPT  
5
ms  
(3) ATE production tested with DC method.  
(4) This parameter was measured with an LMH0324-18EVM.  
8
Copyright © 2016–2018, Texas Instruments Incorporated  
LMH0324  
www.ti.com.cn  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
6.6 Recommended SMBus Interface AC Timing Specifications  
over recommended operating supply and temperature ranges (unless otherwise noted)  
(1)(2) (3)  
MIN  
NOM  
MAX  
UNIT  
FSCL  
TBUF  
SMBus SCL Frequency  
10  
400  
kHz  
Bus Free Time between Stop and  
Start Condition  
1.3  
0.6  
0.6  
µs  
µs  
µs  
Hold time after (Repeated) Start  
Condition. After this period, the first  
clock is generated.  
THD:STA  
Repeated Start Condition Setup  
Time  
TSU:STA  
TSU:STO  
THD:DAT  
TSU:DAT  
TLOW  
THIGH  
TR  
Stop Condition Setup Time  
Data Hold Time  
0.6  
0
µs  
ns  
ns  
µs  
µs  
ns  
ns  
Data Setup Time  
100  
1.3  
0.6  
Clock Low Period  
Clock High Period  
Clock/Data Rise Time  
Clock/Data Fall Time  
300  
300  
TF  
(1) These parameters support SMBus 2.0 specifications.  
(2) These parameters are not production tested.  
(3) See Figure 1 for timing diagrams.  
6.7 Serial Parallel Interface (SPI) AC Timing Specifications  
over recommended operating supply and temperature ranges (unless otherwise noted)(1)  
MIN  
NOM  
MAX  
20  
UNIT  
MHz  
ns  
FSCK  
TSCK  
TPH  
SPI SCK Frequency  
SCK Period  
10  
50  
SCK Pulse Width High  
SCK Pulse Width Low  
MOSI Setup Time  
0.40 x TSCK  
ns  
TPL  
0.40 x TSCK  
ns  
TSU  
4
4
ns  
TH  
MOSI Hold Time  
ns  
TSSSU  
TSSH  
TSSOF  
TODZ  
TOZD  
TOD  
SS_N Setup Time  
14  
4
ns  
SS_N Hold Time  
ns  
SS_N Off Time  
1
µs  
MISO Driven-to-Tristate Time  
MISO Tristate-to-Driven Time  
MISO Output Delay Time  
20  
10  
15  
ns  
ns  
ns  
(1) See Figure 2 for timing diagrams.  
ttLOW  
t
tR  
tHIGH  
SCL  
ttHD:STA  
t
tHD:DAT  
tSU:STA  
tF  
tSU:STO  
ttBUF  
t
tSU:DAT  
SDA  
SP  
ST  
ST  
SP  
Figure 1. SMBus Timing Parameters  
Copyright © 2016–2018, Texas Instruments Incorporated  
9
 
LMH0324  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
tSSOF  
SS_N  
(host)  
tSSOF  
tSSSU  
tPH  
tPL  
tSSH  
SCK  
(host)  
tH  
8X1“  
17X1“  
tSU  
MOSI  
(host)  
A7 A6 A5 A4 A3 A2 A1 A0  
1
tOD  
tODZ  
tOZD  
MISO  
(device)  
A7' A6' A5' A4' A3' A2' A1' A0' D7' D6' D5' D4' D3' D2' D1' D0'  
1
Don‘t Care  
Figure 2. SPI Timing Parameters  
6.8 Typical Characteristics  
Typical device characteristics at TA = 25°C and VIN = VDDIO = 2.5 V, unless otherwise noted.  
112 ps/DIV  
56 ps/DIV  
Figure 3. 2.97 Gbps, Input: 150 m Belden 1694A  
PRBS10  
Figure 4. 1.485 Gbps, Input: 200 m Belden 1694A  
PRBS10  
1.0  
DE = 0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0
1
2
3
4
5
6
7
617 ps/DIV  
VOD Register Settings  
C001  
Figure 5. 270 Mbps, Input: 400 m Belden 1694A  
PRBS10  
Figure 6. VOD vs. VOD and DEM Register Settings  
10  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
LMH0324  
www.ti.com.cn  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
Typical Characteristics (continued)  
Typical device characteristics at TA = 25°C and VIN = VDDIO = 2.5 V, unless otherwise noted.  
0
DE = 1  
œ2  
œ4  
DE = 2  
DE = 3  
DE = 4  
DE = 5  
DE = 6  
DE = 7  
œ6  
œ8  
œ10  
œ12  
0
1
2
3
4
5
6
7
VOD Register Settings  
C002  
Figure 7. De-emphasis vs. VOD and DEM Register Settings  
Copyright © 2016–2018, Texas Instruments Incorporated  
11  
LMH0324  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMH0324 is an adaptive cable equalizer designed to equalize serial digital video data transmitted over long  
distance of coaxial cable, such as Belden 1694A. It is designed with high gain equalization boost implemented  
with low power and low noise circuitry, supporting 3G/HD/SD SDI video transport over high loss coaxial cable.  
It is designed to support common video data rates from 125 Mbps to 2.97 Gbps, compatible to SMPTE video  
standards ST-424, ST-344, ST-292, ST-259, and DVB-ASI.  
The LMH0324 automatically selects the correct level of equalization boost based on the signal quality of the input  
signal. It offers two output drivers that support fan-out buffering. Programmable de-emphasis is available to  
reduce the inter-symbol interference jitter caused by the printed circuit board traces connecting the drivers to  
their downstream receivers.  
7.2 Functional Block Diagram  
Low Power  
Adaptive Cable Equalizer  
VOD_DE  
2
100 Ω  
DRIVER  
EQ Bypass  
OUT0±  
OUT1±  
2
SE 75 Ω  
Term and  
RL network  
VOD_DE  
Adaptive  
Cable EQ  
IN0±  
2
100 Ω  
DRIVER  
Carrier  
OUT_MUX  
Detector  
Control  
LOS  
Power  
Management  
Serial  
Interface  
LDO  
Control Logic  
12  
Copyright © 2016–2018, Texas Instruments Incorporated  
LMH0324  
www.ti.com.cn  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
7.3 Feature Description  
The LMH0324 consists of several key blocks:  
4-Level Input Configuration Pins  
Carrier Detect  
Adaptive Cable Equalizer  
Launch Amplitude  
Input-Output Mux Selection  
Output Function Control  
Output Driver Amplitude and De-Emphasis Control  
7.3.1 4-Level Input Configuration Pins  
The 4-level input configuration pins use a resistor divider to provide four logic states for each control pin. There is  
an internal 30-kΩ pullup and a 60-kΩ pulldown connected to the control pin that sets the default voltage at 2/3 x  
VDDIO. These resistors, together with the external resistor, combine to achieve the desired voltage level. By  
using the 1-kΩ pull-down, 20-kΩ pulldown, no connect, and 1-kΩ pullup, the optimal voltage levels for each of the  
four input states are achieved as shown in Table 1.  
Table 1. 4-Level Control Pin Settings  
LEVEL  
SETTING  
RESULTING PIN VOLTAGE  
H
F
R
L
Tie 1 kto VDDIO  
Float (leave pin open)  
Tie 20 kto VSS  
Tie 1 kto VSS  
VDDIO  
2/3 × VDDIO  
1/3 × VDDIO  
0
Typical 4-Level Input Thresholds:  
Internal Threshold between L and R = 0.2 × VDDIO  
Internal Threshold between R and F = 0.5 × VDDIO  
Internal Threshold between F and H = 0.8 × VDDIO  
7.3.2 Carrier Detect  
An internal Carrier Detector circuit is used to monitor the presence or absence of the input signal. When the input  
signal amplitude exceeds the carrier detector’s threshold, adaptation is activated, and CD_N is pulled low at the  
end of adaptation. When the input signal amplitude is below the carrier detector’s threshold, input equalization  
circuitry is powered down and the CD_N is pulled high to indicate absence of input signal. The LMH0324 high  
gain adaptive cable equalizer supports long cable reach. As a result, the carrier detector threshold is sensitive,  
and system designers need to pay close attention to the PCB layout to avoid excessive crosstalk from interfering  
with the carrier detection.  
In the absence of input signal, the LMH0324 automatically goes into Power Save Mode to conserve power  
consumption. When valid signal is detected, the LMH0324 automatically exits the Power Save Mode and returns  
to the normal operating mode. An LED can be connected to CD_N through a current limiting resistor to provide  
visual indication of the carrier detection.  
7.3.3 Adaptive Cable Equalizer  
IN0+ is the input to the adaptive cable equalizer. It has an on-chip 75-termination to the input common mode  
voltage and includes a series return loss compensation network for meeting stringent SMPTE return loss  
requirements. It is designed for AC coupling, requiring a 4.7-µF AC coupling capacitor for minimizing base-line  
wander due to the rare-occurring pathological bit pattern. The cable equalizer is designed with high gain and low  
noise circuitry to compensate for the insertion loss of a coaxial cable, such as Belden 1694A, which is widely  
used in broadcast video infrastructures.  
Internal control loops are used to monitor the input signal quality and automatically select the optimum  
equalization boost and DC offset compensation. The LMH0324 is designed to handle the stringent pathological  
pattern defined in the SMPTE RP 198 and SMPTE RP 178 standards.  
Copyright © 2016–2018, Texas Instruments Incorporated  
13  
 
 
 
 
LMH0324  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
7.3.4 Launch Amplitude  
The LMH0324 is designed to equalize data transmitted through a coaxial cable driven by a SMPTE compatible  
cable driver with launch amplitude of 800 mVp-p ± 10%. In applications where a 1:2 passive splitter is used, the  
signal amplitude is reduced by half due to the 6 dB insertion loss of the splitter. The LMH0324 is designed to  
support -6 dB splitter mode, enabled by SPI or SMBus serial interface.  
7.3.5 Input-Output Mux Selection  
By default, the LMH0324 input-to-output signal flow and data rate selection are configured by the IN_OUT_SEL  
pin logic settings shown in Table 2. These settings can be overridden via register control by applying the  
appropriate override bit values.  
Table 2. IN_OUT_SEL Pin Settings  
LEVEL  
DEFINITION  
H
F
R
L
IN0 to OUT0 and OUT1  
IN0 to OUT0 (with OUT1 disabled)  
Reserved  
Reserved  
7.3.6 Output Function Control  
By default, the LMH0324 output function control for OUT0 and OUT1 is configured by the OUT_CTRL pin logic  
settings shown in Table 3. These settings can be overridden via register control by applying the appropriate  
override bit values.  
Table 3. OUT_CTRL Pin Settings  
LEVEL  
DEFINITION  
Equalizer Bypass  
Raw data at IN0+ is routed to the output drivers  
H
Normal Data  
Equalized data is routed to the output drivers  
F
R
L
Reserved  
Reserved  
7.3.7 Output Driver Amplitude and De-Emphasis Control  
The VOD_DE control pin selects the output amplitude and de-emphasis settings for both OUT0± and OUT1±. It  
offers users the capability to select higher output amplitude and de-emphasis level for longer board trace that  
connects the drivers to their downstream receivers. Driver de-emphasis provides transmitter equalization to  
reduce the ISI caused by the board trace.  
By default, the output driver VOD and de-emphasis settings are configured by the VOD_DE pin logic settings  
shown in Table 4. These settings can be overridden via register control. Through register programming, the  
output amplitude and de-emphasis level can be individually set for OUT0± and OUT1±. SPI and SMBus register  
programming provide a wider range of output amplitude and de-emphasis levels.  
Table 4. Recommended VOD_DE Pin and Register Settings for Different FR4 Trace Lengths(1)  
VOD REG SETTING  
OUT0±: 0x30[5]=1, 0x30[2:0]  
OUT1±: 0x32[5]=1, 0x32[2:0]  
DEM REG SETTING  
OUT0±: 0x31[6]=1, 0x31[2:0]  
OUT1±: 0x33[6]=1, 0x33[2:0]  
FR4 TRACE  
LENGTH  
(inches)  
VOD_DE  
LEVEL  
VOD  
VODDE  
DEM (dB)  
(mVpp)(2)  
(mVpp)(2)  
H
F
R
L
0
2
3
5
0
2
3
5
410  
560  
635  
810  
410  
500  
480  
480  
0
0 – 1  
2 – 4  
5 – 6  
7 – 8  
-0.9  
-2.4  
-6.1  
(1) The output drivers are capable of providing higher VOD and DEM levels (max settings are 7). For more VOD and de-emphasis levels,  
refer to 9.  
(2) See Figure 8.  
14  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
 
LMH0324  
www.ti.com.cn  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
VOD  
VODDE  
Figure 8. VOD and VODDE Levels  
7.3.8 Additional Programmability  
The LMH0324 supports extended programmability through the use of an SPI or SMBus serial control interface.  
Such added programmability includes:  
Cable Length Indicator (CLI).  
Digital MUTEREF  
7.3.8.1 Cable Length Indicator (CLI)  
The Cable Length Indicator (CLI) indicates the length of the coaxial cable attached to IN0+. CLI is accessible  
through CableEQ/Driver Page Reg 0x25[5:0]. The 6-bit setting ranges in decimal value from 0 to 55 (000000'b to  
110111'b binary), corresponding to approximately 0 to 600 m of Belden 1694A cable.  
7.3.8.2 Digital MUTEREF  
Digital MUTEREF CableEQ/Driver Page Reg 0x03[5:0] sets the threshold for the maximum cable length to be  
equalized before muting the outputs. The MUTEREF register value is directly proportional to the cable length  
being equalized. MUTEREF is data rate dependent. Follow the steps below to set MUTEREF register setting for  
any desired SDI rate:  
1. Connect the desired input cable length at which the driver output needs to be muted.  
2. Send video pattern at IN0+ at the SD rate (270 Mbps). At SD, the Cable Length Indicator (CLI) has the  
largest dynamic range.  
3. Read back Cable EQ/Driver Page Reg 0x25[5:0] to record the CLI value.  
4. Copy the CLI value, and write this value to Digital MUTEREF Cable EQ/Driver Page Reg 0x03[5:0].  
Copyright © 2016–2018, Texas Instruments Incorporated  
15  
 
 
LMH0324  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
7.4 Device Functional Modes  
The LMH0324 operates in one of two modes: System Management Bus (SMBus) or Serial Peripheral Interface  
(SPI) mode. In order to determine the mode of operation, the proper setting must be applied to the MODE_SEL  
pin at power-up, as detailed in Table 5.  
Table 5. MODE_SEL Pin Settings  
LEVEL  
DEFINITION  
Forced Power Save Mode, only SPI is enabled (all other circuitry powered down)  
Select SPI Interface for register access  
H
F
R
L
Reserved for factory testing – do not use  
Select SMBus Interface for register access  
NOTE  
Changing logic states between LEVEL-L and LEVEL-H after power up is not allowed.  
7.4.1 System Management Bus (SMBus) Mode  
If MODE_SEL = L, the LMH0324 is in SMBus mode. In SMBus mode, Pins 10 and 21 are configured as SDA  
and SCL. Pins 7 and 20 act as 4-level address straps for ADDR0 and ADDR1 at power up to determine the 7-bit  
slave address of the LMH0324, as shown in Table 6.  
Table 6. SMBus Device Slave Addresses(1)  
ADDR0  
ADDR1  
7-BIT SLAVE  
8-BIT WRITE  
(LEVEL)  
(LEVEL)  
ADDRESS [HEX]  
COMMAND [HEX]  
L
L
L
R
F
H
L
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
3A  
3C  
3E  
40  
42  
44  
46  
48  
4A  
4C  
4E  
50  
52  
54  
56  
58  
L
L
R
R
R
R
F
F
F
F
H
H
H
H
R
F
H
L
R
F
H
L
R
F
H
(1) The 8-bit write command consists of the 7-bit slave address (Bits 7:1) with 0 appended to the LSB to  
indicate an SMBus write. For example, if the 7-bit slave address is 0x1D (001 1101'b), the 8-bit write  
command is 0x3A (0011 1010'b).  
16  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
LMH0324  
www.ti.com.cn  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
7.4.1.1 SMBus Read and Write Transactions  
SMBus is a two-wire serial interface through which various system component chips can communicate with the  
master. Slave devices are identified by having a unique device address. The two-wire serial interface consists of  
SCL and SDA signals. SCL is a clock output from the master to all of the slave devices on the bus. SDA is a  
bidirectional data signal between the master and slave devices. The LMH0324 SMBus SCL and SDA signals are  
open drain and require external pull-up resistors.  
Start and Stop:  
The master generates start and stop patterns at the beginning and end of each transaction.  
Start: High to low transition (falling edge) of SDA while SCL is high.  
Stop: Low to high transition (rising edge) of SDA while SCL is high.  
SDA  
SCL  
S
P
Start  
Stop  
Condition  
Condition  
Figure 9. Start and Stop Conditions  
The master generates nine clock pulses for each byte transfer. The 9th clock pulse constitutes the ACK cycle.  
The transmitter releases SDA to allow the receiver to send the ACK signal. An ACK is recorded when the device  
pulls SDA low, while a NACK is recorded if the line remains high.  
ACK Signal  
from Receiver  
SDA  
MSB  
SCL  
1
2
3 - 6  
7
8
9
1
2
3 - 8  
9
S
P
ACK  
ACK  
Start  
Stop  
Condition  
Condition  
Byte Complete  
Interrupt Within  
Receiver  
Clock Line Held Low  
by Receiver While  
Interrupt Serviced  
Figure 10. Acknowledge (ACK)  
7.4.1.1.1 SMBus Write Operation Format  
Writing data to a slave device consists of three parts, as illustrated in Figure 11:  
1. The master begins with a start condition, followed by the slave device address with the R/W bit set to 0'b.  
2. After an ACK from the slave device, the 8-bit register word address is written.  
3. After an ACK from the slave device, the 8-bit data is written, followed by a stop condition.  
Device  
Address  
Word Address  
Data  
SDA  
Line  
Figure 11. SMBus Write Operation  
Copyright © 2016–2018, Texas Instruments Incorporated  
17  
 
LMH0324  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
7.4.1.1.2 SMBus Read Operation Format  
Reading data from a slave device consists of four parts, as illustrated in Figure 12:  
1. The master begins with a start condition, followed by the slave device address with the R/W bit set to 0'b.  
2. After an ACK from the slave device, the 8-bit register word address is written.  
3. After an ACK from the slave device, the master initiates a re-start condition, followed by the slave address  
with the R/W bit set to 1'b.  
4. After an ACK from the slave device, the 8-bit data is read back. The last ACK is high if there are no more  
bytes to read, and the last read is followed by a stop condition.  
Device  
Device  
Address  
Word Address (n)  
Address  
Data (n)  
SDA  
Line  
Set word address in the device  
that will be read following restart  
and repeat of device address  
Figure 12. SMBus Read Operation  
7.4.2 Serial Peripheral Interface (SPI) Mode  
If MODE_SEL = F or H, the LMH0324 is in SPI mode. In SPI mode, the following pins are used for SPI bus  
communication:  
MOSI (pin 10): Master Output Slave Input  
MISO (pin 20): Master Input Slave Output  
SS_N (pin 7): Slave Select (active low)  
SCK (pin 21): Serial clock (input to the LMH0324 slave device)  
7.4.2.1 SPI Read and Write Transactions  
Each SPI transaction to a single device is 17 bits long and is framed by SS_N when asserted low. The MOSI  
input is ignored, and the MISO output is floated whenever SS_N is de-asserted (high).  
The bits are shifted in left-to-right. The first bit is R/W, which is 1'b for "read" and 0'b for "write." Bits A7-A0 are  
the 8-bit register address, and bits D7-D0 are the 8-bit read or write data. The previous SPI command, address,  
and data are shifted out on MISO as the current command, address, and data are shifted in on MOSI. In all SPI  
transactions, the MISO output signal is enabled asynchronously when SS_N asserts low. The contents of a  
single MOSI or MISO transaction frame are shown in Table 7.  
Table 7. 17-Bit Single SPI Transaction Frame  
R/W  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
7.4.2.1.1 SPI Write Transaction Format  
For SPI writes, the R/W bit is 0'b. SPI write transactions are 17 bits per device, and the command is executed on  
the rising edge of SS_N. The SPI transaction always starts on the rising edge of the clock.  
The signal timing for a SPI Write transaction is shown in Figure 13. The "prime" values on MISO (for example,  
A7') reflect the contents of the shift register from the previous SPI transaction and are don’t-care for the current  
transaction.  
18  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
 
LMH0324  
www.ti.com.cn  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
tSSOF  
tSSH  
SS_N  
tPL  
tSSSU  
tPH  
SCK  
tH  
tSU  
HiZ  
MOSI  
0
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
tODZ  
HiZ  
MISO  
R/W  
A7'  
A6'  
A5'  
A4'  
A3'  
A2'  
A1'  
A0'  
D7'  
D6'  
D5'  
D4'  
D3'  
D2'  
D1'  
D0'  
Figure 13. Signal Timing for a SPI Write Transaction  
7.4.2.1.2 SPI Read Transaction Format  
A SPI read transaction is 34 bits per device and consists of two 17-bit frames. The first 17-bit read transaction  
frame shifts in the address to be read, followed by a dummy transaction second frame to shift out 17-bit read  
data. The R/W bit is 1'b for the read transaction, as shown in Figure 14.  
The first 17 bits from the read transaction specifies 1-bit of R/W and 8-bits of address A7-A0 in the first 8 bits.  
The eight 1’s following the address are ignored. The second dummy transaction acts like a read operation on  
address 0xFF and needs to be ignored. However, the transaction is necessary in order to shift out the read data  
D7-D0 in the last 8 bits of the MISO output. As with the SPI Write, the “prime” values on MISO during the first 16  
clocks are don’t-care for this portion of the transaction. The values shifted out on MISO during the last 17 clocks  
reflect the read address and 8-bit read data for the current transaction.  
tSSOF  
SS_N  
(host)  
tSSOF  
tSSSU  
tPH  
tPL  
tSSH  
SCK  
(host)  
tH  
8X1“  
17X1“  
tSU  
MOSI  
(host)  
A7 A6 A5 A4 A3 A2 A1 A0  
1
tOD  
tODZ  
tOZD  
MISO  
(device)  
A7' A6' A5' A4' A3' A2' A1' A0' D7' D6' D5' D4' D3' D2' D1' D0'  
1
Don‘t Care  
Figure 14. Signal Timing for a SPI Read Transaction  
Copyright © 2016–2018, Texas Instruments Incorporated  
19  
 
LMH0324  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
7.4.2.2 SPI Daisy Chain  
The LMH0324 supports SPI daisy-chaining among multiple devices, as shown in Figure 15.  
MISO  
Device 1  
Device 2  
Device 3  
Device N  
Host  
LMH0324  
LMH0324  
LMH0324  
LMH0324  
. . .  
MOSI  
MOSI  
MISO  
MOSI  
MISO  
MOSI  
MISO  
MOSI  
MISO  
SCK  
SS  
Figure 15. Daisy-Chain Configuration  
Each LMH0324 device is directly connected to the SCK and SS_N pins of the host. The first LMH0324 device in  
the chain is connected to the host’s MOSI pin, and the last device in the chain is connected to the host’s MISO  
pin. The MOSI pin of each intermediate LMH0324 device in the chain is connected to the MISO pin of the  
previous LMH0324 device, thereby creating a serial shift register. In a daisy-chain configuration of N x LMH0324  
devices, the host conceptually sees a shift register of length 17 x N for a basic SPI transaction, during which  
SS_N is asserted low for 17 x N clock cycles.  
20  
Copyright © 2016–2018, Texas Instruments Incorporated  
 
LMH0324  
www.ti.com.cn  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
7.5 LMH0324 Register Map  
The LMH0324 register set definition is divided into two register pages. These register pages are used to control  
different aspects of the LMH0324 functionality. A brief summary of the pages is shown below:  
1. Share Register Page: This page corresponds to global parameters, such as LMH0324 device ID. This is the  
default page at start-up.  
2. CableEQ/Drivers Register Page: This page corresponds to IN0 Cable EQ and both OUT0 and OUT1 driver  
output settings. Access this page by setting Reg 0xFF[2:0] = 101’b.  
Please note the following about the LMH0324 default register values in the register map:  
Default register values were read after power-up with no active inputs applied to IN0.  
Default register values for Reserved "Read-Only" bits may vary dynamically from part to part.  
7.5.1 Share Register Page  
Address Register Name  
Bit  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:5  
Field  
Default Type  
Description  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x00  
0x40  
0x02  
0x00  
0x01  
0x00  
0x00  
0x04  
0x11  
0x00  
R
R
Reserved  
Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
R
R
Reserved  
Reserved  
1 = Internal state machine register initialization done.  
0 = Internal state machine register initialization not done.  
Reset  
Share/Channel  
Regs  
4
reset_done  
R
0xE2  
0x10  
3:1  
0
Reserved  
reset_init  
Version  
RW Reserved  
RW 1 = Initialize internal state machine register settings.  
0xF0  
0xF1  
Device Revision  
Device ID  
7:0  
7:0  
7:6  
5:4  
3
0x02  
0x81  
R
R
Device Revision  
Device_ID  
Reserved  
Reserved  
Reserved  
For LMH0324, Device ID = 0x81  
RW Reserved  
RW Reserved  
RW Reserved  
Register  
Communication  
Control  
0 = The shared registers are enabled.  
RW 1 = Enables communication access to the Register Page  
specified in Reg 0xFF[1:0].  
0xFF  
0x00  
2
page_select_enable  
page_select  
Enable communication access to a specific Register Page  
RW 01 = CableEQ/Drivers Register Page  
Other values are invalid  
1:0  
Copyright © 2016–2018, Texas Instruments Incorporated  
21  
LMH0324  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
7.5.2 CableEQ/Drivers Register Page  
Address Register Name  
Bit  
7
Field  
Default Type  
Description  
CD_N pin status  
adapt_cd  
Reserved  
RW 0 = CD_N indicates when Coarse Adaptation is done  
1 = CD_N indicates carrier detect  
6
RW Reserved  
IN0 Power Save Override Control for Cable EQ  
0 = Disable Power Save mode override. Automatic power  
RW save mode when no input signal detected.  
1 = Enable Power Save mode override. Power Save mode  
control set by value in Reg 0x00[4:3].  
5
reg_power_save_ov  
IN0 Auto Power Save mode control for Cable EQ if Reg  
0x00[5] = 1  
00 = Enable Power Save mode when no input signal is  
RW detected  
Reset  
CableEQ/Drivers  
Registers  
0x00  
0x08  
4:3  
reg_power_save  
01 = Disable auto Power Save mode  
10 = Reserved  
11 = Force Power Save mode  
Reset registers (self-clearing)  
0 = Normal operation  
rst_cableEQ/Drivers_  
regs  
1 = Reset CableEQ/Drivers Registers. Register re-  
initialization procedure required after resetting the  
2
RW  
CableEQ/Drivers Registers. Refer to the LMH0324  
Programming Guide for details.  
1:0  
7:1  
Reserved  
Reserved  
RW Reserved  
R
R
R
Reserved  
EQ Observation  
Status  
0x01  
0x02  
0x03  
0x80  
0x07  
0x3F  
0 = Adaptation not completed  
1 = Adaptation completed  
0
7
adaptation_status  
Reserved  
Reserved  
Carrier Detect Status of IN0  
0 = No signal present at IN0  
1 = Signal present at IN0  
6
5:3  
2
IN0 Carrier Detect  
freq_rate_det  
R
R
R
Readback of rate detected  
001 = 125M-270M  
010 = 1.5G-3G  
Observation Bit  
0 = Power Save Mode is Inactive  
1 = Power Save Mode is Active  
power_save_status  
Rate and Driver  
Observation  
Status  
Observation Bit  
0 = OUT1 Driver is Active  
1
0
mute_tx1  
mute_tx0  
R
R
1 = OUT1 Driver is in Mute  
Note: When muted, driver output remains at common mode  
voltage.  
Observation Bit  
0 = OUT0 Driver is Active  
1 = OUT0 Driver is in Mute  
Note: When muted, driver output remains at common mode  
voltage.  
7:6  
5:0  
Reserved  
MUTERef  
RW Reserved  
MUTERef Control  
Digital MUTEref: Sets the threshold at which output will be  
muted. See Digital MUTEREF  
RW  
.
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x00  
0x00  
0xA0  
0x24  
0x27  
0x01  
0x05  
0x37  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
22  
Copyright © 2016–2018, Texas Instruments Incorporated  
LMH0324  
www.ti.com.cn  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
Address Register Name  
Bit  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:6  
Field  
Default Type  
RW Reserved  
Description  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x01  
0x25  
0x37  
0x02  
0x0A  
0x02  
0x08  
0x04  
0x3C  
0x00  
0x00  
0x08  
0x01  
0x08  
0x01  
0xA7  
0x00  
0x00  
0x00  
0x00  
0x00  
0xC0  
0x00  
0x00  
0x00  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
R
R
R
Reserved  
Cable Length  
Indicator  
Readback of the Cable Length Indicator after adaptation is  
completed.  
See Cable Length Indicator (CLI).  
0x25  
0x26  
0x00  
0x05  
5:0  
CLI  
Reserved  
7:0  
7:4  
Reserved  
Reserved  
Reserved  
RW Reserved  
Override eq_bypass value to analog core  
0 = Disable EQ Bypass override  
1 = Enable EQ Bypass override. Value of EQ Bypass Control  
determined by Reg 0x27[2].  
3
eq_bypass_ov  
RW  
EQ Bypass  
Override  
0x27  
0x00  
Override value of eq_bypass  
2
eq_bypass_val  
RW 0 = Do not Bypass Cable EQ. Use Adaptive EQ  
1 = Bypass Cable EQ  
1:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RW Reserved  
RW Reserved  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x00  
0x20  
0x40  
0x89  
0x0B  
0x20  
0x00  
0x00  
R
Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
R
Reserved  
RW Reserved  
Copyright © 2016–2018, Texas Instruments Incorporated  
23  
LMH0324  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
Address Register Name  
Bit  
Field  
Default Type  
Description  
OUT0 Mute Override Control  
0 = Disable OUT0 Mute Override Control  
1 = Enable OUT0 Mute Override Control by value in Reg  
0x30[6].  
7
tx0_mute_ov  
RW  
0 = Normal Operation  
1 = Mute OUT0 if Reg 0x30[7] = 1  
6
5
tx0_mute_val  
tx0_vod_ov  
RW  
OUT0 Output  
0x30  
0x0A  
RW  
OUT0 VOD Override Control  
Control  
0 = VOD settings for OUT0 determined by VOD_DE pin  
1 = Override VOD pin settings for OUT0. VOD settings for  
OUT0 are controlled by Reg 0x30[2:0]  
4:3  
2:0  
7
Reserved  
tx0_vod  
RW Reserved  
VOD settings with DE = 0 for OUT0 if Reg 0x30[5] = 1. See  
Figure 6.  
RW  
RW  
Reserved  
RW Reserved  
OUT0 De-Emphasis Override Control  
0 = De-emphasis for OUT0 determined by VOD_DE pin  
1 = Override De-emphasis settings for OUT0. De-emphasis  
settings for OUT0 are controlled by Reg 0x31[2:0]  
6
5
tx0_dem_ov  
tx0_PD_ov  
OUT0 Power Down Override Control  
0 = Disable OUT0 Power Down Override Control  
1 = Enable OUT0 Power Down Override Control by value in  
Reg 0x31[4].  
OUT0  
RW  
RW  
0x31  
De-Emphasis  
Control  
0x01  
0 = Normal Operation  
1 = Power Down OUT0 if Reg 0x31[5] = 1  
4
3
tx0_PD  
Reserved  
tx0_dem  
RW Reserved  
De-emphasis settings for OUT0 if Reg 0x31[6] = 1. See  
2:0  
RW  
RW  
RW  
RW  
Figure 7.  
OUT1 Mute Override Control  
0 = Disable OUT1 Mute Override Control  
1 = Enable OUT1 Mute Override Control by value in Reg  
0x32[6].  
7
6
5
tx1_mute_ov  
tx1_mute_val  
tx1_vod_ov  
0 = Normal Operation  
1 = Mute OUT1 if Reg 0x32[7] = 1  
OUT1 Output  
Control  
0x32  
0x0A  
OUT1 VOD Override Control  
0 = VOD settings for OUT1 determined by VOD_DE pin  
1 = Override VOD pin settings for OUT1. VOD settings for  
OUT1 are controlled by Reg 0x32[2:0]  
4:3  
2:0  
7
Reserved  
tx1_vod  
RW Reserved  
VOD settings with DE = 0 for OUT1 if Reg 0x32[5] = 1. See  
Figure 6.  
RW Reserved  
OUT1 De-Emphasis Override Control  
RW  
Reserved  
0 = De-emphasis for OUT1 determined by VOD_DE pin  
1 = Override De-emphasis settings for OUT1. De-emphasis  
settings for OUT1 are controlled by Reg 0x33[2:0]  
6
5
tx1_dem_ov  
tx1_PD_ov  
RW  
OUT1 Power Down Override Control  
0 = Disable OUT1 Power Down Override Control  
1 = Enable OUT1 Power Down Override Control by value in  
Reg 0x33[4].  
OUT1  
De-emphasis  
Control  
RW  
RW  
0x33  
0x11  
0 = Normal Operation  
1 = Power Down OUT1 if Reg 0x33[5] = 1  
4
3
tx1_PD  
Reserved  
tx1_dem  
RW Reserved  
De-emphasis settings for OUT1 if Reg 0x33[6] = 1. See  
Figure 7.  
2:0  
RW  
RW  
-6 dB Launch Amplitude Adaptation Mode  
0 = Enable EQ adaptation to operate with nominal 800 mV  
launch amplitude  
1 = Enable EQ adaptation to operate with 400 mV launch  
amplitude  
7
hi_gain_mode  
Reserved  
0x34  
Splitter_Reg  
0x17  
6:0  
Reserved  
24  
Copyright © 2016–2018, Texas Instruments Incorporated  
LMH0324  
www.ti.com.cn  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
Address Register Name  
Bit  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
Field  
Default Type  
RW Reserved  
Description  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x61  
0x02  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x7F  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x0F  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
R
R
R
R
R
R
R
R
R
R
R
R
R
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
RW Reserved  
R
Reserved  
版权 © 2016–2018, Texas Instruments Incorporated  
25  
LMH0324  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 General Guidance for SMPTE Applications  
SMPTE specifies the requirements for the Serial Digital Interface to transport digital video over coaxial cables.  
One of the requirements is meeting return loss, which specifies how closely the port resembles 75-Ω impedance  
across a specified frequency band. The SMPTE specifications also defines the use of AC coupling capacitors for  
transporting uncompressed serial data streams with heavy low frequency content. The use of 4.7-μF AC coupling  
capacitors is recommended to avoid low frequency DC wander. Refer to 8 for design requirements.  
8.2 Typical Application  
The LMH0324 is a low-power SDI equalizer that supports SDI data rates from 125 Mbps to 2.97 Gbps. 16  
shows a typical implementation of the LMH0324 as a SDI adaptive cable equalizer. Signal attenuated by a long  
coax cable is applied to the LMH0324 at the BNC port. Equalized data is output at OUT0± and OUT1± to a  
downstream video processor.  
2.5 V  
0.1 µF  
0.1 µF  
1 µF  
10 µF  
75 BNC  
4.7 µF  
RSV_L  
VDDIO  
VIN  
OUT0+  
75 Ω board trace  
75 Ω board trace  
IN0+  
IN0-  
RX+  
RX-  
100 Ω coupled trace  
4.7 µF  
OUT0-  
VDD_LDO  
EP  
VSS  
VSS  
VSS  
75 Ω  
1 µF  
0.1 µF  
FPGA/Video  
Processor  
LMH0324  
RSV1  
RSV2  
OUT1+  
OUT1-  
RX+  
RX-  
100-Ω coupled trace  
4.7 µF  
MODE_SEL = Float Enables SPI Interface  
1 kΩ  
220 Ω  
VDDIO  
16. LMH0324 SPI Mode Connection Diagram  
26  
版权 © 2016–2018, Texas Instruments Incorporated  
 
LMH0324  
www.ti.com.cn  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
Typical Application (接下页)  
8.2.1 Design Requirements  
8. LMH0324 Design Requirements  
DESIGN PARAMETER  
REQUIREMENTS  
AC coupling capacitor at IN0+ should be a 4.7-μF surface mount ceramic capacitor. IN0-  
should be AC terminated with 4.7 μF and 75 to VSS.  
Input AC coupling capacitors  
IN0+ and IN0- should be routed with uncoupled board traces with 75-characteristic  
impedance.  
High speed board trace for IN0  
BNC connector  
High performance BNC capable to support 2.97 Gbps should be used. Footprint of the BNC  
should be designed to achieve 75-characteristic impedance. For achieving best return loss  
performance, the BNC should be placed as close to the LMH0324 device as possible  
Both OUT0± and OUT1± require AC coupling capacitors. 4.7-μF capacitors are  
recommended.  
Output AC coupling capacitors  
High speed board trace for OUT0± and  
OUT1±  
OUT0± and OUT1± should be routed with coupled board traces with 100-differential  
impedance.  
Set MODE_SEL to Level-F (pin unconnected) for SPI. Set MODE_SEL to Level-L (connect 1  
kto VSS) for SMBus. SMBus is 3.3 V tolerant if VDDIO is powered from 2.5 V.  
Use of SPI or SMBus interface  
8.2.2 Detailed Design Procedure  
The following general design procedure is recommended:  
1. Select a suitable power supply voltage for the LMH0324. It can be powered from a single 2.5 V or 1.8 V  
supply. See Power Supply Recommendations for details.  
2. Check that the power supply meets the DC and AC requirements in the Recommended Operating  
Conditions.  
3. Select the proper pull-high or pull-low resistors for IN_OUT_SEL and OUT_CTRL for setting the signal path.  
4. If -6 dB launch amplitude or other expanded programmable features are needed, select the use of SPI or  
SMBus by setting the proper pull-high or pull-low resistor for the MODE_SEL pin.  
5. Choose a high quality 75-BNC that is capable to support 2.97 Gbps applications. Consult a BNC supplier  
regarding insertion loss, impedance specifications, and recommended BNC footprint for meeting SMPTE  
return loss requirements.  
6. Depending on the length and insertion loss of the output traces for OUT0± and OUT1±, select the proper  
pull-high or pull-low resistors for VOD_DE to set the output amplitude and de-emphasis settings. Refer to  
Table 4 for details.  
7. Choose a small 0402 surface mount ceramic capacitors for the AC coupling and bypass capacitors.  
8. Use proper footprint for BNC and AC coupling capacitors. Anti-pads are commonly used in power and VSS  
planes under these landing pads to achieve optimum return loss.  
8.2.3 Recommended VOD and DE Register Settings  
9 shows recommended output amplitude and de-emphasis register settings for most applications.  
9. VOD and DE Register Settings  
VOD REG SETTING  
DEM REG SETTING  
OUT0±: 0x30[5]=1, 0x30[2:0]  
OUT1±: 0x32[5]=1, 0x32[2:0]  
OUT0±: 0x31[6]=1, 0x31[2:0]  
OUT1±: 0x33[6]=1, 0x33[2:0]  
VOD (mVpp)  
DEM (dB)  
0
1
2
2
3
3
3
4
0
1
1
2
1
2
3
1
410  
486  
560  
560  
635  
635  
635  
716  
0
-0.1  
-0.1  
-0.9  
-0.3  
-1.3  
-2.4  
-0.5  
版权 © 2016–2018, Texas Instruments Incorporated  
27  
 
LMH0324  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
DEM (dB)  
9. VOD and DE Register Settings (接下页)  
VOD REG SETTING  
OUT0±: 0x30[5]=1, 0x30[2:0]  
OUT1±: 0x32[5]=1, 0x32[2:0]  
DEM REG SETTING  
OUT0±: 0x31[6]=1, 0x31[2:0]  
OUT1±: 0x33[6]=1, 0x33[2:0]  
VOD (mVpp)  
4
4
4
5
5
5
5
5
6
6
6
6
6
7
7
7
7
7
2
3
4
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
716  
716  
716  
810  
810  
810  
810  
810  
880  
880  
880  
880  
880  
973  
973  
973  
973  
973  
-1.8  
-3.0  
-4.0  
-0.8  
-2.4  
-3.6  
-4.6  
-6.1  
-1.0  
-2.7  
-4.0  
-5.0  
-6.5  
-1.2  
-3.1  
-4.6  
-5.7  
-7.1  
8.2.4 Application Performance Plots  
The LMH0324 performance was measured with the test setups shown in 17.  
CC  
75 Q /}ꢀÆ /ꢀꢁoꢂ  
Pattern  
Generator  
IN0+ LMH0324 OUT0±  
Oscilloscope  
VO = 800 mVp-p,  
PRBS10  
17. Test Setup for LMH0324 Cable Equalizer (IN0+)  
The eye diagrams in this subsection show how the LMH0324 improves overall signal integrity in the data path  
when different cable lengths are used at IN0+.  
56 ps/DIV  
56 ps/DIV  
18. 2.97 Gbps, CC = 150 m Belden 1694A  
19. 2.97 Gbps, CC = 200 m Belden 1694A  
28  
版权 © 2016–2018, Texas Instruments Incorporated  
 
LMH0324  
www.ti.com.cn  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
112 ps/DIV  
112 ps/DIV  
20. 1.485 Gbps, CC = 200 m Belden 1694A  
21. 1.485 Gbps, CC = 280 m Belden 1694A  
617 ps/DIV  
617 ps/DIV  
23. 270 Mbps, CC = 600 m Belden 1694A  
22. 270 Mbps, CC = 400 m Belden 1694A  
版权 © 2016–2018, Texas Instruments Incorporated  
29  
LMH0324  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
9 Power Supply Recommendations  
The LMH0324 is designed to provide flexibility in supply rails. There are two ways to power the LMH0324:  
Single 2.5 V Supply Mode: This mode offers ease of use and pin compatibility with the LMH1219 (11.88  
Gbps Ultra-HD Adaptive Cable Equalizer with Integrated Reclocker). The internal circuitry receives power  
from the on-chip 1.8 V regulator. In this mode, 2.5 V is applied to VIN, VDDIO, and RSV_L. This mode  
supports SPI or SMBus serial interface. See 24 for more details.  
Single 1.8 V Supply Mode: This mode provides the lowest power consumption. In this mode, 1.8 V is  
connected to VIN, VDD_LDO and VDDIO. RSV_L is tied to VSS. In this mode, SPI is supported, but SMBus  
serial interface is not. In Single 1.8 V Supply Mode, the LMH0324 is not drop-in compatible with the  
LMH1219. See 25 for more details.  
2.5 V  
1 µF  
10 µF  
0.1 µF  
0.1 µF  
0.1 µF  
RSV_L  
VDDIO  
VIN  
Internal LDO  
2.5 V to 1.8 V  
EP  
VSS  
VSS  
VSS  
VDD_LDO (1.8 V)  
1 µF  
0.1 µF  
24. Single 2.5 V Supply Mode - Compatible with LMH1219  
1.8 V  
0.1 µF  
10 µF  
1.8 V  
1 µF  
0.1 µF  
RSV_L  
VDDIO  
VIN  
VDD_LDO  
EP  
VSS  
VSS  
VSS  
1 µF  
0.1 µF  
25. Single 1.8 V Supply Mode - Not Compatible with LMH1219  
For power supply de-coupling, 0.1-μF surface-mount ceramic capacitors are recommended to be placed close to  
each supply pin to VSS. Larger bulk capacitors (for example, 10 µF and 1 µF) are recommended to be placed  
close to each LMH0324 device. Good supply bypassing requires low inductance capacitors. This can be  
achieved through an array of multiple small body size surface-mount bypass capacitors in order to keep low  
supply impedance. Better results can be achieved through the use of a buried capacitor formed by a VDD and  
VSS plane separated by 2-4 mil dielectric in a printed circuit board.  
30  
版权 © 2016–2018, Texas Instruments Incorporated  
 
 
LMH0324  
www.ti.com.cn  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
10 Layout  
10.1 Layout Guidelines  
The following layout guidelines are recommended for the LMH0324:  
1. Choose a suitable board stack-up that supports 75-single-ended trace and 100-differential trace routing  
on the board's top layer. This is typically done with a Layer 2 ground plane reference for the 100-Ω  
differential traces and a second ground plane at Layer 3 reference for the 75-single-ended traces.  
2. Use single-ended uncoupled trace designed with 75-Ω impedance for signal routing to IN0+ and IN0-. The  
trace width is typically 8-10 mil reference to a ground plane at Layer 3.  
3. Place anti-pad (ground relief) on the power and ground planes directly under the 4.7-µF AC coupling  
capacitor and IC landing pads to minimize parasitic capacitance. The size of the anti-pad depends on the  
board stack-up and can be determined by a 3-dimension electromagnetic simulation tool.  
4. Use a well-designed BNC footprint to ensure the BNC’s signal landing pad achieves 75-Ω characteristic  
impedance. BNC suppliers usually provide recommendations on BNC footprint for best results.  
5. Keep trace length short between the BNC and IN0+. The trace routing for IN0+ and IN0- should be  
symmetrical, approximately equal lengths and equal loading.  
6. Use coupled differential traces with 100-impedance for signal routing to OUT0± and OUT1±. They are  
usually 5-8 mil trace width reference to a ground plane at Layer 2.  
7. The exposed pad EP of the package should be connected to the ground plane through an array of vias.  
These vias are solder-masked to avoid solder flow into the plated-through holes during the board  
manufacturing process.  
8. Connect each supply pin (VIN, VDDIO, VDD_LDO, VSS) to the power or ground planes with a short via. The  
via is usually placed tangent to the supply pins’ landing pads with the shortest trace possible.  
9. Power supply bypass capacitors should be placed close to the supply pins. They are commonly placed at the  
bottom layer and share the ground of the EP.  
10.2 Layout Example  
The following example layout demonstrates the high speed signal trace routing to the LMH0324.  
1. BNC footprint and anti-pad: Consult BNC manufacturer for proper size.  
2. Anti-pad under passive components.  
3. 75-single-ended trace.  
4. 100-coupled trace.  
5. Vias with solder mask.  
2
2
1
4
4
3
3
5
2
26. LMH0324 PCB Layout Example  
版权 © 2016–2018, Texas Instruments Incorporated  
31  
LMH0324  
ZHCSIC8B APRIL 2016REVISED JUNE 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
32  
版权 © 2016–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH0324RTWR  
LMH0324RTWT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
L0324A2  
L0324A2  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMH0324RTWR  
LMH0324RTWT  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000  
250  
330.0  
178.0  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
1.3  
1.3  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMH0324RTWR  
LMH0324RTWT  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000  
250  
356.0  
208.0  
356.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RTW0024A  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.5  
(0.1) TYP  
EXPOSED  
THERMAL PAD  
7
12  
20X 0.5  
6
13  
2X  
25  
2.5  
2.6 0.1  
1
18  
0.3  
24X  
0.2  
24  
19  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
C
0.05  
0.5  
0.3  
24X  
4222815/A 03/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTW0024A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.6)  
SYMM  
24  
19  
24X (0.6)  
1
18  
24X (0.25)  
(1.05)  
SYMM  
25  
(3.8)  
20X (0.5)  
(R0.05)  
TYP  
6
13  
(
0.2) TYP  
VIA  
7
12  
(1.05)  
(3.8)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222815/A 03/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTW0024A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.15)  
(0.675) TYP  
19  
(R0.05) TYP  
24  
24X (0.6)  
1
18  
24X (0.25)  
(0.675)  
TYP  
SYMM  
20X (0.5)  
25  
(3.8)  
6
13  
METAL  
TYP  
7
12  
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 25:  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4222815/A 03/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LMH0324RTWT

3G HD/SD 低功耗 SDI 自适应电缆均衡器 | RTW | 24 | -40 to 85
TI

LMH0336

3 Gbps HD/SD SDI Low Power Reclocker
TI

LMH0340

3G, HD, SD, DVB-ASI SDI Serializer and Driver with LVDS Interface
NSC

LMH0340

具有 LVDS 接口的 3G HD/SD DVB-ASI SDI 串行器和驱动器
TI

LMH0340SQ

3G, HD, SD, DVB-ASI SDI Serializer and Driver with LVDS Interface
NSC

LMH0340SQ/NOPB

3 Gbps, HD, SD, DVB-ASI SDI Serializer and Cable Driver With LVDS Interface
TI

LMH0340SQE

3 Gbps, HD, SD, DVB-ASI SDI Serializer and Cable Driver with LVDS Interface
NSC

LMH0340SQE

3 Gbps, HD, SD, DVB-ASI SDI Serializer and Cable Driver With LVDS Interface
TI

LMH0340SQE/NOPB

3 Gbps, HD, SD, DVB-ASI SDI Serializer and Cable Driver With LVDS Interface
TI

LMH0340SQX

3 Gbps, HD, SD, DVB-ASI SDI Serializer and Cable Driver with LVDS Interface
NSC

LMH0340SQX/NOPB

3 Gbps, HD, SD, DVB-ASI SDI Serializer and Cable Driver With LVDS Interface
TI

LMH0340_0706

3G, HD, SD, DVB-ASI SDI Serializer and Driver with LVDS Interface
NSC