LMH0397RTVT [TI]

具有集成时钟恢复器的 3G SDI 双向 I/O | RTV | 32 | -40 to 85;
LMH0397RTVT
型号: LMH0397RTVT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成时钟恢复器的 3G SDI 双向 I/O | RTV | 32 | -40 to 85

时钟 电视
文件: 总52页 (文件大小:2507K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
具有集成时钟恢复器的 LMH0397 3G-SDI 双向 I/O  
1 特性  
2 应用  
1
带有集成时钟恢复器的用户可配置型自适应电缆均  
衡器或电缆驱动器  
SMPTE 兼容串行数字接口 (SDI)  
广播视频路由器、交换机、分配放大器和监视器  
IP 媒体网关  
支持 ST-424 (3G)ST-292 (HD) ST-259 (SD)  
兼容 DVB-ASI AES10 (MADI)  
数字视频处理和编辑  
集成时钟恢复器锁定为 2.97Gbps1.485Gbps 或  
1.001 分频子速率和 270Mbps SMPTE 速率  
3 说明  
片上 75终端和回损补偿网络  
EQ(均衡器)模式:  
LMH0397 是带有集成时钟恢复器的 3G SDI-SDI 75Ω  
双向 I/O。此器件可以在输入模式下配置为自适应电缆  
均衡器,也可以在输出模式下配置为双电缆驱动器,允  
许系统设计人员灵活地将单个 BNC 用作输入或输出端  
口,从而简化 HD-SDI 视频硬件设计。集成的时钟恢  
复器在两种模式下均可锁定到所有支持的高达  
2.97Gbps SMPTE 数据速率。此双向 I/O 具有片上  
75终端和回损补偿网络,满足严格的 SMPTE 回损  
要求。  
带有集成时钟恢复器的自适应电缆均衡器  
具有去加重功能的 100Ω 输出驱动器  
时钟恢复型 75Ω 环通输出  
EQ 模式电缆传输距离  
Belden 1694A,禁用 SDI_OUT):  
2.97Gbps 时为 200m  
1.485Gbps 时为 300m  
270Mbps 时为 600m  
额外的 75驱动器输出可让 LMH0397 支持各种系统  
功能。在 EQ(均衡器)模式下,该第二个 75驱动  
器可用作环通输出。在电缆驱动器 (CD) 模式下,该  
75驱动器可用作第二个扇出电缆驱动器。主机侧  
100驱动器也可在 CD 模式下用作环回输出,从而用  
于监控。  
CD(电缆驱动器)模式:  
带有集成时钟恢复器的双路差分输出电缆驱动器  
自适应 PCB 输入均衡器  
时钟恢复型 100Ω 环回输出  
75Ω 输出端的自动预加重和转换率控制  
75100输出端的极性反转  
器件信息(1)  
没有输入信号时自动进入省电工作模式  
器件型号  
LMH0397  
封装  
WQFN (32)  
封装尺寸(标称值)  
功率耗散:25mW(典型值)  
5.00mm × 5.00mm  
通过 ENABLE 引脚进行断电控制  
2.5V 单电源  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
EQ 模式功耗:275mW(典型值)  
CD 模式功耗:290mW(典型值)  
简化方框图  
可通过引脚、SPI SMBus 接口进行编程  
工作温度范围:-40°C +85°C  
Cable  
EQ  
100-Ω  
Driver  
M
U
X
SDI_IO  
OUT0  
M
U
X
CDR  
TX_RX  
5mm × 5mm 32 引脚 WQFN 封装  
Cable  
Driver  
LMH1297 引脚兼容,便于轻松升级至 12G-SDI  
PCB  
EQ  
IN0  
Cable  
Driver  
SDI_OUT  
Control  
Power  
Management  
Serial  
Interface  
LDO  
Control Logic  
Copyright © 2016, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNLS558  
 
 
 
 
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 24  
8.5 Register Maps ........................................................ 28  
Application and Implementation ........................ 29  
9.1 Application Information............................................ 29  
9.2 Typical Applications ................................................ 30  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information.................................................. 8  
7.5 Electrical Characteristics........................................... 8  
9
10 Power Supply Recommendations ..................... 36  
11 Layout................................................................... 36  
11.1 Layout Guidelines ................................................. 36  
11.2 Layout Example .................................................... 38  
12 器件和文档支持 ..................................................... 39  
12.1 器件支持................................................................ 39  
12.2 文档支持 ............................................................... 39  
12.3 接收文档更新通知 ................................................. 39  
12.4 支持资源................................................................ 39  
12.5 ....................................................................... 39  
12.6 静电放电警告......................................................... 39  
12.7 出口管制提示......................................................... 39  
12.8 Glossary................................................................ 39  
13 机械、封装和可订购信息....................................... 40  
13.1 Package Option Addendum .................................. 41  
7.6 Recommended SMBus Interface Timing  
Specifications........................................................... 13  
7.7 Serial Parallel Interface (SPI) Timing  
Specifications........................................................... 13  
7.8 Typical Characteristics............................................ 15  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
8.2 Functional Block Diagram ....................................... 16  
8.3 Feature Description................................................. 17  
8
4 修订历史记录  
Changes from Revision A (June 2017) to Revision B  
Page  
首次公开发布 .......................................................................................................................................................................... 1  
2
版权 © 2017–2019, Texas Instruments Incorporated  
 
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
5 说明 (续)  
片上时钟恢复器可减弱高频抖动并使用纯净的低抖动时钟完全重新生成数据。此时钟恢复器具有内置环路滤波器,  
且不需要任何输入参考时钟。LMH0397 还有内部眼图张开度监视器和可编程引脚,以便进行 CDR 锁定指示、输  
入载波检测或硬件中断,从而支持系统诊断和电路板启动。  
LMH0397 2.5V 单电源供电运行。该器件采用小尺寸 5mm × 5mm 32 引脚 WQFN 封装。LMH0397 还与  
LMH1297 的引脚兼容。  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
RTV Package  
32-Pin WQFN  
Top View  
1
24  
23  
22  
21  
20  
19  
18  
SDI_IO+  
SDI_VOD  
OUT0+  
OUT0-  
VDD_CDR  
VSS  
2
SDI_IO-  
3
VSS  
4
OUT0_SEL  
LMH0397  
5
EQ/CD_SEL  
6
IN0+  
VSS  
7
8
IN0-  
SDI_OUT-  
SDI_OUT+  
EP = VSS  
17  
OUT_CTRL  
Copyright © 2016, Texas Instruments Incorporated  
Pin Functions  
PIN  
NAME  
HIGH-SPEED DIFFERENTIAL I/OS  
I/O(1)  
DESCRIPTION  
NO.  
SDI_IO+  
SDI_IO–  
SDI_OUT+  
1
2
8
I/O, Analog  
Single-ended complementary inputs or outputs with on-chip 75-termination at SDI_IO+ and  
SDI_IO–. SDI_IO± include integrated return loss networks designed to meet the SMPTE input  
and output return loss requirements. Connect SDI_IO+ to a BNC through a 4.7-µF,  
AC-coupling capacitor. SDI_IO– should be similarly AC-coupled and terminated with an  
external 4.7-µF capacitor and 75-Ω resistor to GND.  
I/O, Analog  
O, Analog  
EQ Mode:  
SDI_IO+ is the 75-Ω input port of the adaptive cable equalizer for SMPTE video applications.  
CD Mode:  
SDI_IO+ is the 75-Ω output port of the cable driver for SMPTE video applications.  
Single-ended complementary outputs with on-chip 75-termination at SDI_OUT+ and  
SDI_OUT–. SDI_OUT± include integrated return loss networks designed to meet the SMPTE  
output return loss requirements. SDI_OUT± is used as a second cable driver. Connect  
SDI_OUT+ to a BNC through a 4.7-µF, AC-coupling capacitor. SDI_OUT– should be similarly  
AC-coupled and terminated with an external 4.7-µF capacitor and 75-Ω resistor to GND.  
EQ Mode:  
SDI_OUT± can be enabled as a loop-through 75-Ω output port. It outputs the reclocked data  
from the adaptive cable equalizer to form a loop-through output with adaptive cable equalizer,  
reclocker, and cable driver.  
SDI_OUT–  
7
O, Analog  
CD Mode:  
SDI_OUT± is the second 75-Ω fan-out cable driver.  
IN0–  
18  
19  
22  
23  
I, Analog  
I, Analog  
O, Analog  
O, Analog  
Differential inputs from host video processor. On-chip 100-differential termination. Requires  
external 4.7-µF, AC-coupling capacitors for SMPTE applications.  
IN0+  
OUT0–  
OUT0+  
Differential outputs to host video processor. On-chip 100-differential termination. Requires  
external 4.7-µF, AC-coupling capacitors for SMPTE applications.  
(1) I = Input, O = Output, I/O = Input or Output, OD = Open Drain, LVCMOS = 2-State Logic, 4-LEVEL = 4-State Logic  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
Pin Functions (continued)  
PIN  
NAME  
I/O(1)  
DESCRIPTION  
NO.  
4
CONTROL PINS  
OUT0_SEL enables the use of the 100-host-side output driver at OUT0±.  
See Table 3 for details.  
OUT0_SEL is internally pulled high by default (OUT0 disabled).  
OUT0_SEL  
EQ/CD_SEL  
I, LVCMOS  
I, LVCMOS  
EQ/CD_SEL selects the signal direction of the LMH0397 bidirectional I/O. It configures the  
LMH0397 as an adaptive equalizer (EQ Mode) or as a cable driver (CD Mode).  
See Table 2 for details.  
5
EQ/CD_SEL is internally pulled low by default (EQ Mode).  
HOST_EQ0 selects the driver output amplitude and de-emphasis level for OUT0± (in EQ  
Mode) and equalizer setting for IN0± (in CD Mode).  
See Table 5 and Table 10 for details.  
HOST_EQ0  
MODE_SEL  
SDI_OUT_SEL  
9
I, 4-LEVEL  
I, 4-LEVEL  
I, LVCMOS  
MODE_SEL enables the SPI or SMBus serial control interface.  
See Table 11 for details.  
12  
14  
SDI_OUT_SEL enables the use of the 75-output driver at SDI_OUT±.  
See Table 3 for details.  
SDI_OUT_SEL is internally pulled high by default (SDI_OUT disabled).  
OUT_CTRL selects the signal being routed to the output. It is used to enable or bypass the  
reclocker and to enable or bypass the cable equalizer.  
See Table 7 for details.  
OUT_CTRL  
SDI_VOD  
17  
24  
I, 4-LEVEL  
I, 4-LEVEL  
SDI_VOD selects one of four output amplitudes for the cable drivers at SDI_IO± and  
SDI_OUT±.  
See Table 8 for details.  
LOCK_N is the reclocker lock indicator. LOCK_N is pulled low when the reclocker has  
acquired lock condition. LOCK_N is a 3.3-V tolerant, open-drain output. It requires an external  
resistor to a logic supply.  
LOCK_N can be reconfigured to indicate Carrier Detector (CD_N) or Interrupt (INT_N)  
through register programming. See Status Indicators and Interrupts.  
O, LVCMOS,  
OD  
LOCK_N  
ENABLE  
27  
32  
A logic-high at ENABLE enables normal operation for the LMH0397. A logic-low at ENABLE  
places the LMH0397 in Power-Down Mode.  
I, LVCMOS  
ENABLE is internally pulled high by default.  
SPI SERIAL CONTROL INTERFACE, MODE_SEL = F (FLOAT)  
SS_N is the Slave Select. When SS_N is at logic Low, it enables SPI access to the LMH0397  
slave device.  
SS_N  
11  
I, LVCMOS  
SS_N is a 2.5-V LVCMOS input and is internally pulled high by default.  
MOSI is the SPI serial control data input to the LMH0397 slave device when the SPI bus is  
enabled. MOSI is a 2.5-V LVCMOS input.  
An external pullup resistor is recommended.  
MOSI  
MISO  
SCK  
13  
28  
29  
I, LVCMOS  
O, LVCMOS  
I, LVCMOS  
MISO is the SPI serial control data output from the LMH0397 slave device.  
MISO is a 2.5-V LVCMOS output.  
SCK is the SPI serial input clock to the LMH0397 slave device when the SPI interface is  
enabled. SCK is a 2.5-V LVCMOS input.  
An external pullup resistor is recommended.  
SMBUS SERIAL CONTROL INTERFACE, MODE_SEL = L (1 KΩ TO VSS)  
ADDR[1:0] are 4-level straps, read into the device at power up. They are used to select one  
of the 16 supported SMBus addresses when SMBus is enabled. See Table 12 for details.  
ADDR0  
11  
13  
28  
29  
Strap, 4-LEVEL  
SDA is the SMBus bidirectional data line to or from the LMH0397 slave device when SMBus  
is enabled. SDA is an open-drain I/O and requires an external pullup resistor to the SMBus  
termination voltage. SDA is 3.3-V tolerant.  
I/O, LVCMOS,  
OD  
SDA  
ADDR[1:0] are 4-level straps, read into the device at power up. They are used to select one  
of the 16 supported SMBus addresses when SMBus is enabled. See Table 12 for details.  
ADDR1  
SCL  
Strap, 4-LEVEL  
SCL is the SMBus input clock to the LMH0397 slave device when SMBus is enabled. It is  
driven by a LVCMOS open-drain driver from the SMBus master. SCL requires an external  
pullup resistor to the SMBus termination voltage. SCL is 3.3-V tolerant.  
I/O, LVCMOS,  
OD  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
RESERVED  
RSV1  
NO.  
10  
15  
16  
25  
26  
RSV2  
RSV3  
Reserved pins. Do not connect.  
Ground reference.  
RSV4  
RSV5  
POWER  
VSS  
3, 6, 20  
21  
I, Ground  
I, Power  
I, Power  
VDD_CDR powers the reclocker circuitry. It is connected to the same 2.5-V ± 5% supply as  
VIN.  
VDD_CDR  
VIN  
30  
VIN is connected to an external 2.5-V ± 5% power supply.  
VDD_LDO is the output of the internal 1.8-V LDO regulator. VDD_LDO output requires an  
external 1-µF and 0.1-µF bypass capacitor to VSS. The internal LDO is designed to power  
internal circuitry only.  
VDD_LDO  
EP  
31  
O, Power  
I, Ground  
EP is the exposed pad at the bottom of the RTV package. The exposed pad should be  
connected to the VSS plane through a 3 × 3 via array.  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–30  
MAX  
2.75  
2.75  
2.75  
4
UNIT  
V
Supply voltage (VIN, VDD_CDR)  
Input voltage for 4-level pins  
V
Input or output voltage for 2-level control pins  
SMBus input or output voltage (SDA, SCL)  
SPI input or output voltage (SS_N, MISO, MOSI, and SCK)  
High-speed input or output voltage (IN0±, SDI_IO±, OUT0±, SDI_OUT±)  
Input current (IN0±, SDI_IO±)  
V
V
2.75  
2.75  
30  
V
V
mA  
°C  
°C  
Operating junction temperature  
125  
150  
Storage temperature, Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±6000  
±5500  
±1500  
UNIT  
All pins except 13 and 29  
Pins 13 and 29  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.375  
2.375  
0.72  
NOM  
MAX  
2.625  
3.6  
UNIT  
V
Supply voltage  
VIN, VDD_CDR to VSS  
2.5  
VDDSMBUS  
SMBus: SDA, SCL open-drain termination voltage  
V
Normal mode  
Splitter mode  
0.8  
0.4  
0.88  
0.44  
Source launch amplitude before  
coaxial cable to SDI_IO+  
VSDI_IO_LAUNCH  
Vp-p  
0.36  
VIN0_LAUNCH  
TJUNCTION  
TAMBIENT  
Source differential launch amplitude  
Operating junction temperature  
Ambient temperature  
300  
500  
1000 mVp-p  
110  
85  
°C  
°C  
–40  
25  
< 20  
< 10  
50 Hz to 1 MHz, sinusoidal  
NTpsmax  
Maximum supply noise(1)  
mVp-p  
1.1 MHz to 50 MHz, sinusoidal  
(1) The sum of the DC supply voltage and AC supply noise must not exceed the recommended supply voltage range.  
Copyright © 2017–2019, Texas Instruments Incorporated  
7
 
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
7.4 Thermal Information  
LMH0397  
RTV (WQFN)  
32 PINS  
32.5  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
15.0  
6.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
6.5  
RθJC(bot)  
1.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER  
Power dissipation, EQ Mode,  
Measured with PRBS10,  
CDR Locked to 2.97 Gbps,  
VOD = default,  
SDI_OUT± disabled  
OUT0± enabled  
275  
405  
mW  
mW  
PDEQ_MODE  
SDI_OUT± enabled  
OUT0± enabled  
HEO/VEO lock monitor disabled  
SDI_IO± enabled  
SDI_OUT± disabled  
OUT0± disabled  
290  
335  
415  
460  
mW  
mW  
mW  
mW  
SDI_IO± enabled  
SDI_OUT± disabled  
OUT0± enabled  
Power dissipation, CD Mode,  
Measured with PRBS10,  
CDR Locked to 2.97 Gbps,  
VOD = default,  
PDCD_MODE  
SDI_IO± enabled  
SDI_OUT± enabled  
OUT0± disabled  
HEO/VEO lock monitor disabled  
SDI_IO± enabled  
SDI_OUT± enabled  
OUT0± enabled  
EQ Mode, Power Save Mode,  
ENABLE = H, no signal applied at SDI_IO+  
25  
25  
Power dissipation,  
Power Save Mode  
PDZ  
mW  
CD Mode, Power Save Mode,  
ENABLE = H, no signal applied at IN0±  
Current consumption, EQ Mode, SDI_OUT± disabled  
110  
131  
191  
mA  
mA  
OUT0± enabled  
Measured with PRBS10,  
CDR Locked to 2.97 Gbps,  
VOD = default,  
IDDEQ_MODE  
SDI_OUT± enabled  
OUT0± enabled  
162  
116  
HEO/VEO lock monitor disabled  
SDI_IO± enabled  
SDI_OUT± disabled  
OUT0± disabled  
137  
157  
196  
217  
mA  
mA  
mA  
mA  
SDI_IO± enabled  
SDI_OUT± disabled  
OUT0± enabled  
Current consumption, CD Mode,  
Measured with PRBS10,  
CDR Locked to 2.97 Gbps,  
VOD = default,  
HEO/VEO lock monitor disabled  
CD Mode  
134  
166  
184  
IDDCD_MODE  
SDI_IO± enabled  
SDI_OUT± enabled  
OUT0± disabled  
SDI_IO± enabled  
SDI_OUT± enabled  
OUT0± enabled  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
EQ Mode, Power Save Mode,  
ENABLE = H, no signal applied at SDI_IO+  
10  
Current consumption,  
Power Save Mode  
IDDZ  
mA  
CD Mode, Power Save Mode,  
ENABLE = H, no signal applied at IN0±  
10  
10  
10  
EQ Mode, Power-Down Mode,  
ENABLE = L, no signal applied at SDI_IO+  
30  
30  
Current consumption,  
Power-Down Mode  
IDDZ_PD  
mA  
CD Mode, Power-Down Mode,  
ENABLE = L, no signal applied at IN0±  
Current consumption, EQ Mode SDI_OUT± disabled  
189  
mA  
mA  
OUT0± enabled  
CDR acquiring lock to 2.97  
Gbps,  
VOD = default,  
IDDTRANS_EQ  
SDI_OUT± enabled  
OUT0± enabled  
257  
200  
HEO/VEO lock monitor enabled  
SDI_IO± enabled  
SDI_OUT± disabled  
OUT0± disabled  
mA  
mA  
mA  
mA  
SDI_IO± enabled  
SDI_OUT± disabled  
OUT0± enabled  
Current consumption, CD Mode  
CDR acquiring lock to 2.97  
Gbps,  
VOD = default,  
HEO/VEO lock monitor enabled  
222  
271  
290  
IDDTRANS_CD  
SDI_IO± enabled  
SDI_OUT± enabled  
OUT0± disabled  
SDI_IO± enabled  
SDI_OUT± enabled  
OUT0± enabled  
LVCMOS DC SPECIFICATIONS  
2-level input (SS_N, SCK, MOSI,  
EQ/CD_SEL, SDI_OUT_SEL, OUT0_SEL,  
ENABLE)  
0.72 ×  
VIN  
VIN +  
0.3  
VIH  
Logic high input voltage  
V
0.7 ×  
VIN  
2-level input (SCL, SDA)  
3.6  
2-level input (SS_N, SCK, MOSI,  
EQ/CD_SEL, SDI_OUT_SEL, OUT0_SEL,  
ENABLE, SCL, SDA)  
0.3 ×  
VIN  
VIL  
Logic low input voltage  
Logic high output voltage  
0
V
V
0.8 ×  
VIN  
VOH  
IOH = –2 mA, (MISO)  
VIN  
0.2 ×  
VIN  
IOL = 2 mA, (MISO)  
0
VOL  
Logic low output voltage  
V
IOL = 3 mA, (LOCK_N, SDA)  
0.4  
LVCMOS (EQ/CD_SEL, SDI_OUT_SEL,  
ENABLE)  
15  
LVCMOS (OUT0_SEL)  
65  
10  
15  
10  
Input high leakage current  
(Vinput = VIN)  
IIH  
µA  
LVCMOS (LOCK_N)  
SPI mode: LVCMOS (SS_N, SCK, MOSI)  
SMBus mode: LVCMOS (SCL, SDA)  
LVCMOS (EQ/CD_SEL, SDI_OUT_SEL,  
ENABLE)  
–50  
LVCMOS (OUT0_SEL)  
–15  
–10  
–15  
–50  
–10  
Input low leakage current  
(Vinput = GND)  
LVCMOS (LOCK_N)  
IIL  
µA  
SPI mode: LVCMOS (SCK, MOSI)  
SPI mode: LVCMOS (SS_N)  
SMBus mode: LVCMOS (SCL, SDA)  
Copyright © 2017–2019, Texas Instruments Incorporated  
9
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
4-LEVEL LOGIC DC SPECIFICATIONS (APPLY TO ALL 4-LEVEL INPUT CONTROL PINS)  
Measured voltage at 4-level pin with  
VLVL_H  
VLVL_F  
V LVL_R  
VLVL_L  
LEVEL-H input voltage  
LEVEL-F default voltage  
LEVEL-R input voltage  
LEVEL-L input voltage  
VIN  
V
V
V
V
external 1 kΩ to VIN  
2/3 ×  
VIN  
Measured voltage 4-level pin at default  
Measured voltage at 4-level pin with  
external 20 kΩ to VSS  
1/3 ×  
VIN  
Measured voltage at 4-level pin with  
external 1 kΩ to VSS  
0
4-levels (HOST_EQ0, MODE_SEL,  
OUT_CTRL, SDI_VOD)  
20  
20  
45  
45  
80  
80  
Input high leakage current  
(Vinput = VIN)  
IIH  
µA  
µA  
SMBus mode: 4-levels (ADDR0, ADDR1)  
4-levels (HOST_EQ0, MODE_SEL,  
OUT_CTRL, SDI_VOD)  
–160  
–160  
–93  
–93  
–40  
–40  
Input low leakage current  
(Vinput = GND)  
IIL  
SMBus mode: 4-levels (ADDR0, ADDR1)  
RECEIVER SPECIFICATIONS (SDI_IO+, EQ MODE)  
DC input single-ended  
RSDI_IO_TERM  
SDI_IO+ and SDI_IO– to internal common  
mode bias  
63  
75  
87  
Ω
dB  
V
termination  
S11, 5 MHz to 1.485 GHz  
S11, 1.485 GHz to 3 GHz  
–30  
–22  
Input return loss at SDI_IO+  
RLSDI_IO_S11  
reference to 75 Ω(1)  
SDI_IO+ DC common-mode  
Input DC common-mode voltage at  
SDI_IO+ or SDI_IO– to GND  
VSDI_IO_CM  
voltage  
1.4  
100  
50  
SD, input signal at SDI_IO+,  
Input launch amplitude = 800 mVp-p  
VSDI_IO_WANDER Input DC wander  
mVp-p  
HD, 3G input signal at SDI_IO+,  
Input launch amplitude = 800 mVp-p  
RECEIVER SPECIFICATIONS (IN0±, CD MODE)  
RIN0_TERM  
DC input differential termination Measured across IN0+ to IN0–  
80  
100  
–22  
120  
Ω
RLIN0_SDD11  
Input differential return loss(1)  
SDD11, 10 MHz to 2.8 GHz  
dB  
Differential to common-mode  
input conversion(1)  
RLIN0_SCD11  
VIN0_CM  
SCD11, 10 MHz to 11.1 GHz  
–21  
dB  
V
Input common-mode voltage at IN0+ or  
IN0– to GND  
DC common-mode voltage  
2.06  
Signal detect (default)  
Assert ON threshold level for  
IN0±  
2.97 Gbps, EQ and PLL pathological  
pattern  
CDON_IN0  
20  
18  
mVp-p  
mVp-p  
Signal detect (default)  
Deassert OFF threshold level  
for IN0±  
2.97 Gbps, EQ and PLL pathological  
pattern  
CDOFF_IN0  
DRIVER OUTPUT (SDI_IO+ AND SDI_OUT+, CD MODE)  
SDI_IO+ and SDI_IO–,  
SDI_OUT+ and SDI_OUT– to VIN  
DC output single-ended  
termination  
ROUT_TERM  
63  
75  
87  
Ω
Measure AC signal at SDI_IO+ and  
SDI_OUT+, with SDI_IO– and SDI_OUT–  
AC terminated with 75 Ω  
840  
SDI_VOD = H  
VODCD_OUTP  
Output single-ended voltage  
mVp-p  
SDI_VOD = F  
SDI_VOD = R  
SDI_VOD = L  
720  
800  
880  
760  
880  
(1) This parameter is measured with the LMH1297EVM (Evaluation board for LMH0397).  
10  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measure AC signal at SDI_IO– and  
SDI_OUT-, with SDI_IO+ and SDI_OUT+  
AC terminated with 75 Ω  
840  
SDI_VOD = H  
VODCD_OUTN  
Output single-ended voltage  
mVp-p  
SDI_VOD = F  
SDI_VOD = R  
SDI_VOD = L  
720  
800  
880  
760  
880  
Output pre-emphasis boost amplitude at  
SDI_IO+ and SDI_OUT+, programmed to  
maximum setting through register,  
measured at SDI_VOD=F  
PRECD_OUTP  
Output pre-emphasis  
Output pre-emphasis  
2
2
dB  
dB  
Output pre-emphasis boost amplitude at  
SDI_IO– and SDI_OUT–, programmed to  
maximum setting through register,  
measured at SDI_VOD=F  
PRECD_OUTN  
Measured with PRBS10 pattern, default  
VOD at 20% – 80% amplitude, default pre-  
emphasis enabled  
59  
67  
tR_F_SDI  
Output rise and fall time(1)  
ps  
ps  
2.97 Gbps  
1.485 Gbps  
270 Mbps  
60  
73  
400  
550  
700  
Measured with PRBS10 pattern, default  
VOD at 20% – 80% amplitude, default pre-  
emphasis enabled  
0.8  
11  
Output rise and fall time  
mismatch(1)  
tR_F_DELTA  
2.97 Gbps  
1.485 Gbps  
270 Mbps  
0.8  
72  
12  
150  
Measured with PRBS10 pattern, default  
VOD, default pre-emphasis enabled(2)  
3G/HD/SD  
VOVERSHOOT  
Output overshoot or undershoot  
5%  
VDC_OFFSET  
VDC_WANDER  
DC offset  
3G/HD/SD  
±0.2  
20  
V
DC wander  
3G/HD/SD with EQ pathological pattern  
S22, 5 MHz to 1.485 GHz  
mV  
dB  
Output return loss at SDI_IO+  
and SDI_OUT+ reference to 75  
Ω(1)  
–25  
RLCD_S22  
S22, 1.485 GHz to 3 GHz  
–22  
dB  
DRIVER OUTPUT (OUT0±, EQ AND CD MODE)  
DC output differential  
ROUT0_TERM  
Measured across OUT0+ and OUT0–  
80  
100  
410  
120  
620  
Ω
termination  
Measured with 8T pattern  
HOST_EQ0 = H  
Output differential voltage at  
HOST_EQ0 = F  
HOST_EQ0 = R  
HOST_EQ0 = L  
485  
560  
635  
810  
VODOUT0  
OUT0±  
mVp-p  
Measured with 8T pattern  
HOST_EQ0 = H  
410  
De-emphasized output  
VODOUT0_DE  
HOST_EQ0 = F  
HOST_EQ0 = R  
HOST_EQ0 = L  
550  
545  
532  
mVp-p  
ps  
differential voltage at OUT0±  
Measured with 8T Pattern, 20% to 80%  
amplitude  
tR/tF  
Output rise and fall time  
45  
(2) VOVERSHOOT overshoot or undershoot maximum measurements are largely affected by the PCB layout and input test pattern. The  
maximum value specified in Electrical Characteristics for VOVERSHOOT is based on bench evaluation across temperature and supply  
voltages with the LMH1297EVM.  
Copyright © 2017–2019, Texas Instruments Incorporated  
11  
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measured with the device powered up and  
RLOUT0-SDD22  
Output differential return loss(1) outputs a 10-MHz clock signal.  
SDD22, 10 MHz to 2.8 GHz  
–24  
dB  
Measured with the device powered up and  
outputs a 10-MHz clock signal.  
SCC22, 10 MHz to 4.75 GHz  
Output common-mode return  
loss(1)  
RLOUT0-SCC22  
–12  
8
dB  
AC common-mode voltage on  
OUT0±(1)  
VOUT0_CM  
Default setting, PRBS31, 2.97 Gbps  
mV (rms)  
RECLOCKER OUTPUT JITTER (EQ MODE)  
Measured at OUT0±, with SDI_OUT  
disabled (BER 1E-12), PRBS10,  
TX launch amplitude = 800 mVp-p before  
cable to SDI_IO+  
0.1  
TJEQ_MODE  
Total jitter, reclocked output(1)  
UIp-p  
UIp-p  
2.97 Gbps: 200-m Belden 1694A  
1.485 Gbps: 300-m Belden 1694A  
270 Mbps: 600-m Belden 1694A  
0.1  
0.11  
Measured at OUT0±, with SDI_OUT  
disabled (BER 1E-12), PRBS10,  
Total jitter, with CDR bypassed TX launch amplitude = 800 mVp-p before  
cable to SDI_IO+  
TJRAW  
0.2  
125 Mbps: 600-m Belden 1694A  
RECLOCKER OUTPUT JITTER (CD MODE)  
Measured at SDI_IO+ and SDI_OUT+,  
OUT0± disabled  
PRBS10, 3G/HD/SD  
AJCD_MODE  
Alignment jitter(1)  
Timing jitter(1)  
0.1  
0.14  
UI  
UI  
Measured at SDI_IO+ and SDI_OUT+,  
OUT0± disabled  
TMJCD_MODE  
0.45  
PRBS10, 3G/HD/SD  
RECLOCKER SPECIFICATIONS (EQ MODE UNLESS OTHERWISE SPECIFIED)  
SMPTE 3G, /1  
2.97  
2.967  
1.485  
1.4835  
270  
SMPTE 3G, /1.001  
Gbps  
LOCKRATE  
BYPASSRATE  
BWPLL  
Reclocker lock data rates  
SMPTE HD, /1  
SMPTE HD, /1.001  
SMPTE SD, /1  
Mbps  
Mbps  
Reclocker automatically goes to  
bypass  
MADI  
125  
Applied 0.2 UI input sinusoidal jitter,  
measure –3-dB bandwidth on input-to-  
output jitter transfer  
5
PLL Bandwidth  
MHz  
2.97 Gbps  
1.485 Gbps  
3
1
270 Mbps  
JPEAKING  
PLL jitter peaking  
2.97 Gbps, 1.485 Gbps, 270 Mbps  
<0.3  
dB  
UI  
Sinusoidal jitter tolerance,  
tested at 3G,  
SJ amplitude swept from 1 MHz to 80 MHz,  
tested at BER 1E-12, cable equalizer at  
SDI_IO+ bypassed  
JTOL_IN  
SDI_IO+ input jitter tolerance  
0.65  
SMPTE supported data rates, disable  
HEO/VEO monitor, cable equalizer at  
SDI_IO+ bypassed  
TLOCK  
Lock time  
5
5
ms  
ms  
°C  
Adaptation time for cable equalizer at  
SDI_IO+, reclocker bypassed  
TADAPT  
EQ adapt time at EQ Mode  
VCO temperature lock range  
Measured with temperature ramp of 5°C  
per minute, ramp up and down, –40°C to  
85°C operating range at 2.97 Gbps  
TEMPLOCK  
125  
12  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measured from SDI_IO+ to OUT0, 2.97  
Gbps, SDI_IO+,  
75-m Belden 1694A at SDI_IO+  
1.4 UI +  
465  
TLATEQ_MODE  
Reclocker latency at EQ Mode  
ps  
Measured from SDI_IO+ to SDI_OUT+,  
2.97 Gbps, SDI_IO+, 75-m Belden 1694A  
at SDI_IO+  
1.7 UI +  
415  
Measured from IN0± to SDI_IO+, 2.97  
Gbps  
1.5 UI +  
175  
TLATCD_MODE  
Reclocker latency at CD Mode  
ps  
Measured from IN0± to SDI_OUT+, 2.97  
Gbps  
1.6 UI +  
130  
7.6 Recommended SMBus Interface Timing Specifications  
over recommended operating supply and temperature ranges unless otherwise specified(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
FSCL  
TBUF  
SMBUS SCL frequency  
10  
400  
kHz  
Bus free time between stop and start  
condition  
See Figure 1.  
1.3  
0.6  
µs  
µs  
After this period, the first clock is  
generated.  
THD:STA  
Hold time after (repeated) start condition.  
TSU:STA  
TSU:STO  
THD:DAT  
TSU:DAT  
TLOW  
Repeated start condition setup time  
Stop condition setup time  
Data hold time  
See Figure 1.  
See Figure 1.  
See Figure 1.  
See Figure 1.  
See Figure 1.  
See Figure 1.  
See Figure 1.  
See Figure 1.  
0.6  
0.6  
0
µs  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
Data setup time  
100  
1.3  
0.6  
Clock low period  
THIGH  
TR  
Clock high period  
Clock and data rise time  
Clock and data fall time  
300  
300  
TF  
Time from minimum VDDIO to SMBus  
valid write or read access  
TPOR  
SMBus ready time after POR  
50  
ms  
(1) These parameters support SMBus 2.0 specifications.  
7.7 Serial Parallel Interface (SPI) Timing Specifications  
over recommended operating supply and temperature ranges unless otherwise specified(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
FSCK  
TPH  
SPI SCK frequency  
20  
MHz  
% SCK  
period  
SCK pulse width high  
SCK pulse width low  
40  
40  
See Figure 2 and Figure 3.  
% SCK  
period  
TPL  
TSU  
MOSI setup time  
4
4
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
See Figure 2 and Figure 3.  
See Figure 2 and Figure 3.  
TH  
MOSI hold time  
TSSSU  
TSSH  
TSSOF  
TODZ  
TOZD  
TOD  
SS setup time  
14  
4
SS hold time  
SS off time  
1
MISO driven-to-tristate time  
MISO tristate-to-driven time  
MISO output delay time  
20  
10  
15  
See Figure 2 and Figure 3.  
(1) Typical SPI load capacitance is 2 pF.  
Copyright © 2017–2019, Texas Instruments Incorporated  
13  
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
ttLOW  
t
tR  
tHIGH  
SCL  
SDA  
ttHD:STA  
t
tHD:DAT  
tSU:STA  
tF  
tSU:STO  
ttBUF  
t
tSU:DAT  
SP  
ST  
ST  
SP  
Figure 1. SMBus Timing Parameters  
tSSOF  
tSSH  
SS_N  
SCK  
tPL  
tSSSU  
tPH  
tH  
tSU  
HiZ  
MOSI  
MISO  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
tODZ  
HiZ  
R/W  
A7'  
A6'  
A5'  
A4'  
A3'  
A2'  
A1'  
A0'  
D7'  
D6'  
D5'  
D4'  
D3'  
D2'  
D1'  
D0'  
Figure 2. SPI Timing Parameters (Write Operation)  
tSSOF  
SS_N  
(host)  
tSSOF  
tSSSU  
tPH  
tPL  
tSSH  
SCK  
(host)  
tH  
8X1“  
17X1“  
tSU  
MOSI  
(host)  
A7 A6 A5 A4 A3 A2 A1 A0  
1
tOD  
tODZ  
tOZD  
MISO  
(device)  
A7' A6' A5' A4' A3' A2' A1' A0' D7' D6' D5' D4' D3' D2' D1' D0'  
1
Don‘t Care  
Figure 3. SPI Timing Parameters (Read Operation)  
14  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
7.8 Typical Characteristics  
TA = 25°C and VIN = VDD_CDR = 2.5 V (unless otherwise noted)  
Figure 4. EQ Mode at 2.97 Gbps, Measured at OUT0±,  
200-m Belden 1694A Before SDI_IO+  
Figure 5. CD Mode at 2.97 Gbps, Measured at SDI_IO+,  
20-in. FR4 Before IN0±  
1.0  
0
DE = 0  
DE = 1  
DE = 2  
DE = 3  
DE = 4  
DE = 5  
DE = 6  
DE = 7  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
œ2  
œ4  
œ6  
œ8  
œ10  
œ12  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
VOD Register Settings  
VOD Register Settings  
C001  
C002  
Figure 6. OUT0 VOD vs. OUT0 VOD and DE  
Register Settings  
Figure 7. OUT0 De-Emphasis vs. OUT0 VOD and DE  
Register Settings  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
SDI_IO+ (EQ Mode)  
SDI_IO+ (CD Mode)  
SDI_OUT+ (EQ or CD Mode)  
SMPTE RL Specification Limit  
0
0.5  
1
1.5  
Frequency (GHz)  
2
2.5  
3
C001  
Measured with LMH1297EVM  
Figure 8. Return Loss (RL) vs Frequency  
Copyright © 2017–2019, Texas Instruments Incorporated  
15  
 
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LMH0397 is a 3G-SDI 75-bidirectional I/O with integrated reclocker. The LMH0397 allows system  
designers the flexibility to use a single BNC either as an input or output port, simplifying HD video hardware  
designs.  
8.1.1 Equalizer Mode (EQ Mode)  
SDI_IO+ is configured as a 75-adaptive cable equalizer. The input signal then goes through a reclocker,  
followed by a 100-driver with de-emphasis at OUT0±. A second 75-cable driver provides a reclocked loop-  
through output of SDI_IO+ at SDI_OUT+. This second signal path from SDI_IO+ to SDI_OUT+ forms a SDI cable  
loop-through.  
8.1.2 Cable Driver Mode (CD Mode)  
SDI_IO+ is configured as a 75-cable driver with a reclocked signal sourced from IN0±. SDI_OUT+ serves as a  
second 75-cable driver to offer 1:2 fan-out buffering from IN0± to SDI_IO+ and SDI_OUT+. The 100-driver  
at OUT0± can be used as a host-side loopback output for monitoring purposes.  
8.2 Functional Block Diagram  
Cable  
EQ  
100-Ω  
Driver  
M
U
X
SDI_IO  
OUT0  
M
U
X
CDR  
TX_RX  
Cable  
Driver  
PCB  
EQ  
IN0  
Cable  
Driver  
SDI_OUT  
Control  
Power  
Management  
Serial  
Interface  
LDO  
Control Logic  
Copyright © 2016, Texas Instruments Incorporated  
Figure 9. LMH0397 Block Diagram Overview  
NOTE  
Only one I/O path can be active at a time. In EQ Mode, the cable equalizer at SDI_IO is  
enabled, and the SDI_IO cable driver is powered down. In CD Mode, the cable driver at  
SDI_IO is enabled, and the SDI_IO cable equalizer is powered down.  
16  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
8.3 Feature Description  
The LMH0397 data path consists of several key blocks as shown in the functional block diagram. These key  
blocks are:  
4-Level Input Pins and Thresholds  
Equalizer (EQ) and Cable Driver (CD) Mode Control  
Input Carrier Detect  
–6-dB Splitter Mode Launch Amplitude for SDI_IO+ (EQ Mode Only)  
Continuous Time Linear Equalizer (CTLE)  
Clock and Data (CDR) Recovery  
Internal Eye Opening Monitor (EOM)  
Output Function Control  
Output Driver Control  
Status Indicators and Interrupts  
8.3.1 4-Level Input Pins and Thresholds  
The 4-level input configuration pins use a resistor divider to provide four logic states for each control pin. There is  
an internal 30-kpullup and a 60-kpulldown connected to the control pin that sets the default voltage at 2/3 ×  
VIN. These resistors, together with the external resistor, combine to achieve the desired voltage level. By using  
the 1-kpulldown, 20-kpulldown, no connect, and 1-kpullup, the optimal voltage levels for each of the four  
input states are achieved as shown in Table 1.  
Table 1. 4-Level Control Pin Settings  
LEVEL  
SETTING  
Tie 1 kΩ to VIN  
NOMINAL PIN VOLTAGE  
H
F
R
L
VIN  
2/3 × VIN  
1/3 × VIN  
0
Float (leave pin open)  
Tie 20 kΩ to VSS  
Tie 1 kΩ to VSS  
Typical 4-Level Input Thresholds:  
Internal Threshold between L and R = 0.2 × VIN  
Internal Threshold between R and F = 0.5 × VIN  
Internal Threshold between F and H = 0.8 × VIN  
8.3.2 Equalizer (EQ) and Cable Driver (CD) Mode Control  
The input and output signal flow of the LMH0397 is determined by the EQ/CD_SEL, OUT0_SEL, and  
SDI_OUT_SEL pins.  
8.3.2.1 EQ/CD_SEL Control  
The EQ/CD_SEL pin selects the I/O as either an input (EQ Mode) or an output (CD Mode). The logic level  
applied to the EQ/CD_SEL pin automatically powers down the unused I/O direction. For example, if the  
LMH0397 is in EQ Mode (EQ/CD_SEL = L), the SDI_IO cable driver is powered down as shown in Table 2.  
Table 2. EQ/CD_SEL Pin Settings  
EQ/CD_SEL  
INPUT  
MODE  
NOTES  
75-video input to SDI_IO+.  
L
SDI_IO+  
EQ Mode OUT0± automatically enabled.  
SDI_IO Cable Driver powered down.  
100-input to IN0±.  
SDI_IO+ enabled as a cable driver output.  
SDI_OUT programmable as a secondary cable driver output.  
H
IN0±  
CD Mode  
SDI_IO Equalizer powered down.  
Copyright © 2017–2019, Texas Instruments Incorporated  
17  
 
 
 
 
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
The EQ/CD_SEL pin should be strapped at power up for normal operation. After power up, the EQ/CD_SEL pin  
state can be dynamically changed from EQ Mode to CD Mode and vice versa. When changing the EQ/CD_SEL  
state after power up, the signal flow to the reclocker is momentarily disturbed, and the chip automatically initiates  
a CDR reset to relock to the new input signal.  
8.3.2.2 OUT0_SEL and SDI_OUT_SEL Control  
The OUT0_SEL and SDI_OUT_SEL pins work in conjunction with the EQ/CD_SEL pin to select the LMH0397  
data-path routes. Table 3 shows all possible signal path combinations and typical use cases for each  
configuration.  
Table 3. LMH0397 Signal Path Combinations  
LINE SIDE  
HOST SIDE  
EQ/CD_SEL  
(MODE)  
MAIN  
OUTPUT  
OUT0_SEL SDI_OUT_SEL  
INPUT  
LOOP-THRU LOOPBACK TYPICAL APPLICATION  
OUTPUT  
OUTPUT  
X
X
H
L
SDI_IO+  
SDI_IO+  
OUT0±  
OUT0±  
Adaptive cable equalizer  
L
Adaptive cable equalizer with line-side loop-through  
output  
(EQ Mode)  
SDI_OUT±  
H
H
L
H
L
IN0±  
IN0±  
IN0±  
IN0±  
SDI_IO±  
SDI_IO±  
SDI_IO±  
SDI_IO±  
Single cable driver  
SDI_OUT±  
SDI_OUT±  
Dual cable drivers  
H
(CD Mode)  
H
L
OUT0±  
OUT0±  
Single cable driver with host-side loopback enabled  
Dual cable drivers with host-side loopback enabled  
L
8.3.3 Input Carrier Detect  
SDI_IO (in EQ Mode) and IN0 have a carrier detect circuit to monitor the presence or absence of an input signal.  
When the input signal amplitude for the selected input exceeds the carrier detect assert threshold, the LMH0397  
operates in normal operation mode.  
In the absence of an input signal, the LMH0397 automatically goes into Power Save Mode to conserve power  
dissipation. When a valid signal is detected, the LMH0397 automatically exits Power Save Mode and returns to  
the normal operation mode. If the ENABLE pin is pulled low, the LMH0397 is forced into Power-Down Mode. In  
Power Save Mode, both the carrier detect circuit and the serial interface remain active. In Power-Down Mode,  
only the serial interface remains active.  
Users can monitor the status of the carrier detect through register programming. This can be done either by  
configuring the LOCK_N pin to output the CD_N status or by monitoring the carrier detect status register. See  
Table 4 for more details.  
Table 4. Input Carrier Detect Modes of Operation  
ENABLE  
EQ/CD_SEL  
SIGNAL INPUT  
OPERATING MODE  
EQ Mode, normal operation  
Carrier detector at SDI_IO+  
Serial interface active  
H
L
75-video input at SDI_IO+  
OUT0 automatically enabled, regardless of OUT0_SEL setting  
Power Save Mode  
H
H
H
L
L
H
H
X
No signal at SDI_IO+  
100-signal input at IN0±  
No signal at IN0±  
Carrier detector at SDI_IO+  
Serial interface active  
CD Mode, normal operation  
Carrier detector at IN0±  
Serial interface active  
Power Save Mode  
Carrier detector at IN0±  
Serial interface active  
Power-Down Mode  
Forced device power down  
Serial interface active  
Input signal ignored  
18  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
8.3.4 –6-dB Splitter Mode Launch Amplitude for SDI_IO+ (EQ Mode Only)  
When placed in EQ Mode, the LMH0397 equalizes data transmitted into SDI_IO through a coaxial cable driven  
by a SMPTE compatible cable driver with launch amplitude of 800 mVp-p ± 10%. In applications where a 1:2  
passive splitter is used, the signal amplitude is reduced by half due to the 6-dB insertion loss of the splitter. The  
LMH0397 can support –6-dB splitter mode for the SDI_IO input through register control. For more information,  
refer to the LMH0397 Programming Guide (SNLU225).  
8.3.5 Continuous Time Linear Equalizer (CTLE)  
The LMH0397 has two continuous time linear equalizer (CTLE) blocks, one for SDI_IO in EQ Mode and another  
for IN0 in CD Mode. The CTLE compensates for frequency-dependent loss due to the transmission media before  
the device input. The CTLE accomplishes this by applying variable gain to the input signal, thereby boosting  
higher frequencies more than lower frequencies. The CTLE block extends the signal bandwidth, restores the  
signal amplitude, and reduces ISI caused by the transmission medium.  
8.3.5.1 Line-Side Adaptive Cable Equalizer (SDI_IO+ in EQ Mode)  
If the LMH0397 is placed in EQ Mode (EQ/CD_SEL = L), adaptive cable equalization is enabled for SDI_IO.  
While the LMH0397 is in EQ Mode, IN0 EQ is powered down.  
SDI_IO has an on-chip 75-Ω termination to the input common-mode voltage and includes a series return loss  
compensation network for meeting stringent SMPTE return loss requirements (see Figure 8). The adaptive cable  
equalizer is designed for AC coupling, requiring a 4.7-μF, AC-coupling capacitor for minimizing base-line wander  
due to the rare-occurring pathological bit pattern. The cable equalizer is designed with high gain and low noise  
circuitry to compensate for the insertion loss of a coaxial cable, such as Belden 1694A, which is widely used in  
broadcast video infrastructures.  
Internal control loops are used to monitor the input signal quality and automatically select the optimal EQ boost  
and DC offset compensation. The LMH0397 is designed to handle the stringent pathological patterns defined in  
the SMPTE RP 198 and SMPTE RP 178 standards.  
8.3.5.2 Host-Side Adaptive PCB Trace Equalizer (IN0± in CD Mode)  
If the LMH0397 is placed in CD Mode (EQ/CD_SEL = H), PCB trace equalization is enabled for IN0. While the  
LMH0397 is in CD Mode, SDI_IO EQ is powered down.  
IN0 has an on-chip 100-Ω termination and is designed for AC coupling, requiring a 4.7-μF, AC-coupling capacitor  
for minimizing base-line wander. The PCB equalizer can compensate board trace insertion losses of –17 dB at  
data rates up to 2.97 Gbps. There are two adapt modes for IN0: AM0 manual mode and AM1 adaptive mode. In  
AM0 manual mode, fixed EQ boost settings are applied through user-programmable control. In AM1 adaptive  
mode, state machines automatically find the optimal EQ boost from a set of 16 predetermined settings defined in  
Registers 0x40-0x4F.  
In CD Mode, the HOST_EQ0 pin determines the IN0 adapt mode and EQ boost level. For normal operation,  
HOST_EQ0 = F is recommended. HOST_EQ0 pin logic settings are shown in Table 5. These HOST_EQ0 pin  
settings can be overridden by register control. For more information, refer to the LMH0397 Programming Guide  
(SNLU225).  
Table 5. HOST_EQ0 Pin EQ Settings in CD Mode (EQ/CD_SEL = H)  
RECOMMENDED INSERTION  
HOST_EQ0(1) IN0± EQ BOOST(2)  
LOSS  
BEFORE IN0±(3)  
H
F
All Rates: AM0 Manual Mode, EQ=0x00  
< –4 dB  
Normal Operation  
3G Rate: AM1 Adaptive Mode  
1.5G, 270M Rates: AM0 Manual Mode, EQ= 0x00  
0 to –17 dB  
R
L
All Rates: AM0 Manual Mode, EQ=0x80  
All Rates: AM0 Manual Mode, EQ=0x90  
–8 dB  
–10 dB  
(1) The HOST_EQ0 pin is also used to set OUT0 VOD and de-emphasis values. See Host-Side 100-  
Output Driver (OUT0± in EQ or CD Mode) for more information.  
(2) When the LMH0397 is in EQ Mode, IN0 EQ settings are ignored, because IN0 EQ is powered down.  
(3) Recommended insertion loss at 2.97 Gbps.  
Copyright © 2017–2019, Texas Instruments Incorporated  
19  
 
 
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
8.3.6 Clock and Data (CDR) Recovery  
After the input signal passes through the CTLE, the equalized data is fed into the clock and data recovery (CDR)  
block. Using an internal PLL, the CDR locks to the incoming equalized data and recovers a clean internal clock  
to re-sample the equalized data. The LMH0397 CDR is able to tolerate high input jitter, tracking low-frequency  
input jitter below the PLL bandwidth while reducing high-frequency input jitter above the PLL bandwidth. The  
supported data rates are listed in Table 6.  
Table 6. Supported Data Rates  
INPUT  
DATA RATE  
2.97 Gbps, 1.485 Gbps, 270 Mbps(1)  
125 Mbps  
RECLOCKER  
Enable  
SDI_IO+ (EQ Mode),  
IN0± (CD Mode)  
Bypass  
(1) The LMH0397 supports divide-by-1.001 lock rates for 2.97 Gbps, and 1.485 Gbps.  
8.3.7 Internal Eye Opening Monitor (EOM)  
The LMH0397 has an on-chip eye opening monitor (EOM) that can be used to analyze, monitor, and diagnose  
the post-equalized waveform, just before the CDR reclocker. The EOM is operational for 2.97 Gbps and higher  
data rates.  
The EOM monitors the post-equalized waveform in a time window that spans one unit interval and a configurable  
voltage range that spans up to ±400 mV. The time window and voltage range are divided into 64 steps, so the  
result of the eye capture is a 64 × 64 matrix of hits, where each point represents a specific voltage and phase  
offset relative to the main data sampler. The number of hits registered at each point must be taken in context  
with the total number of bits observed at that voltage and phase offset to determine the corresponding probability  
for that point.  
The resulting 64 × 64 matrix produced by the EOM can be processed by software and visualized in a number of  
ways. Two common ways to visualize this data are shown in Figure 10 and Figure 11. These diagrams depict  
examples of eye monitor plots implemented by software. The first plot is an example using the EOM data to plot  
a basic eye using ASCII characters, which can be useful for diagnostic software. The second plot shows the first  
derivative of the EOM data, revealing the density of hits and the actual waveforms and crossings that comprise  
the eye.  
Figure 10. Internal Input Eye Monitor Plot  
Figure 11. Internal Eye Monitor Hit Density Plot  
A common measurement performed by the EOM is the horizontal and vertical eye opening. The horizontal eye  
opening (HEO) represents the width of the post-equalized eye at 0-V differential amplitude, measured in unit  
intervals or picoseconds (ps). The vertical eye opening (VEO) represents the height of the post-equalized eye,  
measured midway between the mean zero crossing of the eye. This position in time approximates the CDR  
sampling phase. HEO and VEO measurements can be read back through register control.  
20  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
8.3.8 Output Function Control  
The LMH0397 output function control for data routed to outputs SDI_IO (in CD Mode), SDI_OUT, and OUT0 is  
configured by the OUT_CTRL pin. The OUT_CTRL pin determines whether to bypass the input equalizer,  
reclocker, or both. In normal operation (OUT_CTRL = F), both input equalizer and reclocker are enabled.  
OUT_CTRL pin logic settings are shown in Table 7. These settings can be overridden through register control by  
applying the appropriate override bit values. For more information, refer to the LMH0397 Programming Guide  
(SNLU225).  
Table 7. OUT_CTRL Settings for Bypass Modes  
EQ/CD_SEL  
(MODE)  
SDI_IO+ CABLE  
EQUALIZER  
IN0± PCB  
EQUALIZER  
OUT_CTRL  
RECLOCKER SUMMARY  
Input SDI_IO cable equalizer bypassed  
Reclocker enabled  
H
Bypass  
N/A  
Enable  
Enable  
Normal operation  
Input SDI_IO cable equalizer enabled  
Reclocker enabled  
F
Enable  
N/A  
L
(EQ Mode)  
Input SDI_IO cable equalizer bypassed  
Reclocker bypassed  
R
L
Bypass  
Enable  
N/A  
N/A  
Bypass  
Bypass  
Input SDI_IO cable equalizer enabled  
Reclocker bypassed  
Normal operation  
H, F  
R, L  
N/A  
N/A  
Enable  
Enable  
Enable  
Bypass  
Input IN0 equalizer enabled  
Reclocker enabled  
H
(CD Mode)  
Input IN0 equalizer enabled in AM0 manual mode.  
IN0 EQ settings configurable by HOST_EQ0 pin.  
Reclocker bypassed  
8.3.9 Output Driver Control  
8.3.9.1 Line-Side Output Cable Driver (SDI_IO+ in CD Mode, SDI_OUT+ in EQ or CD Mode)  
The LMH0397 has two output cable driver (CD) blocks, one for SDI_IO in CD Mode and another for SDI_OUT.  
These SDI outputs are designed to drive 75-single-ended coaxial cables at data rates up to 2.97 Gbps. Both  
SDI_IO and SDI_OUT feature an integrated 75-termination and return loss compensation network for meeting  
stringent SMPTE return loss requirements (see Figure 8). The cable drivers are designed for AC coupling,  
requiring a 4.7-μF, AC-coupling capacitor for minimizing base-line wander due to the rare-occurring pathological  
bit pattern.  
8.3.9.1.1 Output Amplitude (VOD)  
In CD Mode (EQ/CD_SEL = H), SDI_IO is enabled as an SDI cable driver output. In either CD or EQ Mode,  
SDI_OUT is an SDI cable driver output. In EQ Mode, SDI_OUT serves as a loop-through output, and in CD  
Mode, SDI_OUT serves as a secondary cable driver output.  
SDI_IO (in CD Mode) and SDI_OUT are designed for transmission across 75-Ω single-ended impedance. The  
nominal SDI cable driver output amplitude (VOD) is 800 mVp-p single-ended. In the presence of long output  
cable lengths or crosstalk, the SDI_VOD pin can be used to optimize the cable driver output with respect to the  
nominal amplitude. Table 8 details VOD settings that can be applied to both SDI_IO and SDI_OUT. The  
SDI_VOD pin can be overridden through register control. In addition, the nominal VOD amplitude can be  
changed by register control. For more information, refer to the LMH0397 Programming Guide (SNLU225).  
Table 8. SDI_VOD Settings for Line-Side Output Amplitude  
SDI_VOD  
DESCRIPTION  
H
F
R
L
about +5% of nominal  
800 mVp-p (nominal)  
about +10% of nominal  
about –5% of nominal  
Copyright © 2017–2019, Texas Instruments Incorporated  
21  
 
 
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
8.3.9.1.2 Output Pre-Emphasis  
In addition to SDI cable driver VOD control, the LMH0397 can add pre-emphasis on the cable driver output to  
improve output signal integrity when the reclocker recovers an HD (3G, 1.5G) input data rate. By default, the  
LMH0397 in CD Mode automatically disables pre-emphasis at SDI_IO for all data rates. When enabled, the  
amount of pre-emphasis applied to the cable driver outputs is determined by register control. If the reclocker is  
bypassed or if the user desires to disable automatic pre-emphasis, pre-emphasis can be enabled manually  
through register control. For more information, refer to the LMH0397 Programming Guide (SNLU225).  
8.3.9.1.3 Output Slew Rate  
SMPTE specifications require different output driver rise and fall times depending on the operating data rate. To  
meet these requirements, the output edge rate of SDI_IO and SDI_OUT is automatically programmed according  
to the signal recovered by the reclocker. Typical edge rates at the cable driver output are shown in Table 9.  
Table 9. SDI_IO and SDI_OUT Output Edge Rate  
CABLE DRIVER OUTPUT  
DETECTED DATA RATE  
EDGE RATE (TYPICAL)  
2.97 Gbps  
1.485 Gbps  
270 Mbps  
59 ps  
60 ps  
550 ps  
If the reclocker is bypassed, users must program the desired edge rate manually through register control. For  
more information, refer to the LMH0397 Programming Guide (SNLU225).  
8.3.9.1.4 Output Polarity Inversion  
Polarity inversion is supported on both SDI_IO and SDI_OUT outputs through register control.  
8.3.9.2 Host-Side 100-Output Driver (OUT0± in EQ or CD Mode)  
OUT0 is a 100-driver output. In EQ Mode, OUT0 serves as a host-side output from the SDI_IO cable  
equalizer. In CD Mode, OUT0 serves as a host-side loopback output. OUT0 also supports polarity inversion.  
NOTE  
In EQ Mode, OUT0 is enabled by default, regardless of the logic applied to the  
OUT0_SEL pin.  
The driver offers users the capability to select higher output amplitude and de-emphasis levels for longer board  
trace that connects the drivers to their downstream receivers. Driver de-emphasis provides transmitter  
equalization to reduce the ISI caused by the board trace.  
In EQ Mode, the HOST_EQ0 pin determines the output amplitude (VOD) and de-emphasis levels applied to the  
OUT0 PCB driver. In CD Mode, the VOD and de-emphasis levels for OUT0 are set by default to 570 mVp-p and  
–0.4 dB. These settings can be changed through register control if desired.  
Table 10 details the OUT0 VOD and de-emphasis settings that can be applied. The HOST_EQ0 pin settings can  
be overridden by register control. When these parameters are controlled by registers, the VOD and de-emphasis  
levels can be programmed independently. For more information, refer to the LMH0397 Programming Guide  
(SNLU225).  
22  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
Table 10. HOST_EQ0 Pin VOD and DEM Settings  
EQ/CD_SEL  
(MODE)  
OUT0± VOD  
(mVp-p)  
OUT0± DEM  
(dB)  
HOST_EQ(1)  
H
F
R
L
400  
570  
660  
830  
0
–0.4  
–2.1  
–4.4  
L
(EQ Mode)  
H
X
570  
–0.4  
(CD Mode)  
(1) The HOST_EQ0 pin is also used to set the IN0 EQ values when the LMH0397 is in CD Mode. See  
Host-Side Adaptive PCB Trace Equalizer (IN0± in CD Mode) for more information.  
8.3.10 Status Indicators and Interrupts  
The LOCK_N pin is a 3.3-V tolerant, active-low, open-drain output. An external resistor to the logic supply is  
required. The LOCK_N pin can be configured to indicate reclocker lock, input carrier detect, or an interrupt event.  
8.3.10.1 LOCK_N (Lock Indicator)  
By default, LOCK_N is the reclocker lock indicator, and this pin asserts low when the LMH0397 achieves lock to  
a valid SMPTE data rate. The LOCK_N pin functionality can also be configured through register control to  
indicate CD_N (carrier detect) or INT_N (interrupt) events. For more information about how to reconfigure the  
LOCK_N pin functionality, refer to the LMH0397 Programming Guide (SNLU225).  
8.3.10.2 CD_N (Carrier Detect)  
The LOCK_N pin can be reconfigured through register control to indicate a CD_N (carrier detect) event. When  
configured as a CD_N output, the pin asserts low at the end of adaptation after a valid signal is detected by the  
carrier detect circuit of the selected input. Under register control, this pin can be reconfigured to indicate CD_N  
for SDI_IO (in EQ Mode) or IN0 (in CD Mode). For more information about how to configure the LOCK_N pin for  
CD_N functionality, refer to the LMH0397 Programming Guide (SNLU225).  
8.3.10.3 INT_N (Interrupt)  
The LOCK_N pin can be configured to indicate an INT_N (interrupt) event. When configured as an INT_N output,  
the pin asserts low when an interrupt occurs, according to the programmed interrupt masks. Seven separate  
masks can be programmed through register control as interrupt sources:  
If there is a loss of signal (LOS) event on SDI_IO in EQ Mode (2 separate masks).  
If there is a loss of signal (LOS) event on IN0 in CD Mode (2 separate masks).  
If HEO or VEO falls below a certain threshold after CDR is locked (1 mask).  
If a CDR Lock event has occurred (2 separate masks).  
INT_N is a sticky bit, meaning that it will flag after an interrupt occurs and will not clear until read-back. Once the  
Interrupt Status Register is read, the INT_N pin will assert high again. For more information about how to  
configure the LOCK_N pin for INT_N functionality, refer to the LMH0397 Programming Guide (SNLU225).  
8.3.11 Additional Programmability  
The LMH0397 supports extended programmability through SPI or SMBus serial control interface. Such added  
programmability includes:  
Cable EQ Index (CEI)  
Digital MUTEREF  
8.3.11.1 Cable EQ Index (CEI)  
The Cable EQ Index (CEI) indicates the cable EQ boost index used at SDI_IO+ in EQ Mode. CEI is accessible  
through ConfigIO Page Reg 0x25[5:0]. The 6-bit setting ranges in decimal value from 0 to 55 (000000'b to  
110111'b in binary), with higher values corresponding to larger gain applied at the SDI_IO+ input.  
Copyright © 2017–2019, Texas Instruments Incorporated  
23  
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
8.3.11.2 Digital MUTEREF  
Digital MUTEREF ConfigIO Page Reg 0x03[5:0] sets the threshold for the maximum cable length at SDI_IO+ to be  
equalized before muting the outputs. The MUTEREF register value is directly proportional to the cable length  
being equalized. MUTEREF is data rate dependent. Perform the steps that follow to set the MUTEREF register  
setting for any desired SDI rate:  
1. Connect the desired input cable length at which the driver output must be muted.  
2. Send video patterns to SDI_IO+ at the SD rate (270 Mbps). At SD, the Cable EQ Index (CEI) has the largest  
dynamic range.  
3. Read back ConfigIO Page Reg 0x25[5:0] to record the CEI value.  
4. Copy the CEI value, and write this value to Digital MUTEREF ConfigIO Page Reg 0x03[5:0].  
8.4 Device Functional Modes  
The LMH0397 operates in one of two modes: System Management Bus (SMBus) or Serial Peripheral Interface  
(SPI) mode. To determine the mode of operation, the proper setting must be applied to the MODE_SEL pin at  
power up, as detailed in Table 11.  
Table 11. MODE_SEL Pin Settings  
LEVEL  
DESCRIPTION  
H
F
R
L
Reserved for factory testing – do not use  
Selects SPI Interface for register access  
Reserved for factory testing – do not use  
Selects SMBus Interface for register access  
8.4.1 System Management Bus (SMBus) Mode  
The SMBus interface can also be used to control the device. If MODE_SEL = Low (1 kΩ to VSS), Pins 13 and 29  
are configured as SDA and SCL. Pins 11 and 28 are address straps ADDR0 and ADDR1 during power up. The  
maximum operating speed supported on the SMBUS pins is 400 kHz. See Table 12 for more information.  
Table 12. SMBus Device Slave Addresses(1)  
ADDR0  
ADDR1  
7-BIT SLAVE  
8-BIT WRITE  
(LEVEL)  
(LEVEL)  
ADDRESS [HEX]  
COMMAND [HEX]  
L
L
L
R
F
H
L
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
5A  
5C  
5E  
60  
62  
64  
66  
68  
6A  
6C  
6E  
70  
72  
74  
76  
78  
L
L
R
R
R
R
F
F
F
F
H
H
H
H
R
F
H
L
R
F
H
L
R
F
H
(1) The 8-bit write command consists of the 7-bit slave address (Bits 7:1) with 0 appended to the LSB to  
indicate an SMBus write. For example, if the 7-bit slave address is 0x2D (010 1101'b), the 8-bit write  
command is 0x5A (0101 1010'b).  
24  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
8.4.1.1 SMBus Read and Write Transaction  
SMBus is a 2-wire serial interface through which various system component chips can communicate with the  
master. Slave devices are identified by having a unique device address. The 2-wire serial interface consists of  
SCL and SDA signals. SCL is a clock output from the master to all of the slave devices on the bus. SDA is a  
bidirectional data signal between the master and slave devices. The LMH0397 SMBus SCL and SDA signals are  
open-drain and require external pullup resistors.  
Start and Stop:  
The master generates Start and Stop patterns at the beginning and end of each transaction, as shown in  
Figure 12.  
Start: High-to-low transition (falling edge) of SDA while SCL is high.  
Start: High-to-low transition (falling edge) of SDA while SCL is high.  
SDA  
SCL  
S
P
Start  
Condition  
Stop  
Condition  
Figure 12. Start and Stop Conditions  
The master generates nine clock pulses for each byte transfer as shown in Figure 13. The 9th clock pulse  
constitutes the ACK cycle. The transmitter releases SDA to allow the receiver to send the ACK signal. An ACK is  
recorded when the device pulls SDA low, while a NACK is recorded if the line remains high.  
ACK Signal  
from Receiver  
SDA  
MSB  
SCL  
1
2
3 - 6  
7
8
9
1
2
3 - 8  
9
S
P
ACK  
ACK  
Start  
Condition  
Stop  
Condition  
Byte Complete  
Interrupt Within  
Receiver  
Clock Line Held Low  
by Receiver While  
Interrupt Serviced  
Figure 13. Acknowledge (ACK)  
8.4.1.1.1 SMBus Write Operation Format  
Writing data to a slave device consists of three parts, as shown in Figure 14:  
1. The master begins with a start condition followed by the slave device address with the R/W bit set to 0’b.  
2. After an ACK from the slave device, the 8-bit register word address is written.  
3. After an ACK from the slave device, the 8-bit data is written, followed by a stop condition.  
Device  
Address  
Word Address  
Data  
SDA  
Line  
Figure 14. SMBus Write Operation  
Copyright © 2017–2019, Texas Instruments Incorporated  
25  
 
 
 
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
8.4.1.1.2 SMBus Read Operation Format  
SMBus read operation consists of four parts, as shown in Figure 15:  
1. The master begins with a start condition, followed by the slave device address with the R/W bit set to 0'b.  
2. After an ACK from the slave device, the 8-bit register word address is written.  
3. After an ACK from the slave device, the master initiates a restart condition, followed by the slave address  
with the R/W bit set to 1'b.  
4. After an ACK from the slave device, the 8-bit data is read-back. The last ACK is high if there are no more  
bytes to read, and the last read is followed by a stop condition.  
Device  
Address  
Device  
Address  
Word Address (n)  
Data (n)  
SDA  
Line  
Set word address in the device  
that will be read following restart  
and repeat of device address  
Figure 15. SMBus Read Operation  
8.4.2 Serial Peripheral Interface (SPI) Mode  
If MODE_SEL = F or H, the LMH0397 is in SPI mode. In SPI mode, the following pins are used for SPI bus  
communication:  
MOSI (pin 13): Master Output Slave Input  
MISO (pin 28): Master Input Slave Output  
SS_N (pin 11): Slave Select (Active Low)  
SCK (pin 29): Serial Clock (Input to the LMH0397 Slave Device)  
8.4.2.1 SPI Read and Write Transactions  
Each SPI transaction to a single device is 17 bits long and is framed by SS_N when asserted low. The MOSI  
input is ignored, and the MISO output is floated whenever SS_N is deasserted (high).  
The bits are shifted in left-to-right. The first bit is R/W, which is 1'b for read and 0'b for write. Bits A7-A0 are the  
8-bit register address, and bits D7-D0 are the 8-bit read or write data. The previous SPI command, address, and  
data are shifted out on MISO as the current command, address, and data are shifted in on MOSI. In all SPI  
transactions, the MISO output signal is enabled asynchronously when SS_N asserts low. The contents of a  
single MOSI or MISO transaction frame are shown in Figure 16.  
Figure 16. 17-Bit Single SPI Transaction Frame  
R/W  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
26  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
8.4.2.2 SPI Write Transaction Format  
For SPI writes, the R/W bit is 0'b. SPI write transactions are 17 bits per device, and the command is executed on  
the rising edge of SS_N. The SPI transaction always starts on the rising edge of the clock.  
The signal timing for a SPI Write transaction is shown in Figure 2. The prime values on MISO (for example, A7')  
reflect the contents of the shift register from the previous SPI transaction and are don’t-care for the current  
transaction.  
tSSOF  
tSSH  
SS_N  
SCK  
tPL  
tSSSU  
tPH  
tH  
tSU  
HiZ  
MOSI  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
tODZ  
HiZ  
MISO  
R/W  
A7'  
A6'  
A5'  
A4'  
A3'  
A2'  
A1'  
A0'  
D7'  
D6'  
D5'  
D4'  
D3'  
D2'  
D1'  
D0'  
Figure 17. Signal Timing for a SPI Write Transaction  
8.4.2.3 SPI Read Transaction Format  
A SPI read transaction is 34 bits per device and consists of two 17-bit frames. The first 17-bit read transaction  
frame shifts in the address to be read, followed by a dummy transaction second frame to shift out 17-bit read  
data. The R/W bit is 1'b for the read transaction, as shown in Figure 3.  
The first 17 bits from the read transaction specifies 1 bit of R/W and 8 bits of address A7-A0 in the first 8 bits.  
The eight 1s following the address are ignored. The second dummy transaction acts like a read operation on  
address 0xFF and must be ignored. However, the transaction is necessary to shift out the read data D7-D0 in the  
last 8 bits of the MISO output. As with the SPI Write, the prime values on MISO during the first 16 clocks are  
listed as don’t care for this portion of the transaction. The values shifted out on MISO during the last 17 clocks  
reflect the read address and 8-bit read data for the current transaction.  
tSSOF  
SS_N  
(host)  
tSSOF  
tSSSU  
tPH  
tPL  
tSSH  
SCK  
(host)  
tH  
8X1“  
17X1“  
tSU  
MOSI  
(host)  
A7 A6 A5 A4 A3 A2 A1 A0  
1
tOD  
tODZ  
tOZD  
MISO  
(device)  
A7' A6' A5' A4' A3' A2' A1' A0' D7' D6' D5' D4' D3' D2' D1' D0'  
1
Don‘t Care  
Figure 18. Signal Timing for a SPI Read Transaction  
Copyright © 2017–2019, Texas Instruments Incorporated  
27  
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
8.4.2.4 SPI Daisy Chain  
The LMH0397 supports SPI daisy-chaining among multiple devices, as shown in Figure 19.  
MISO  
Device 1  
Device 2  
Device 3  
Device N  
LMH0397  
MOSI MISO  
Host  
LMH0397  
LMH0397  
LMH0397  
. . .  
MOSI  
MOSI  
MISO  
MOSI  
MISO  
MOSI  
MISO  
SCK  
SS  
Figure 19. Daisy-Chain Configuration  
Each LMH0397 device is directly connected to the SCK and SS_N pins of the host. The first LMH0397 device in  
the chain is connected to the MOSI pin of the host, and the last device in the chain is connected to the MISO pin  
of the host. The MOSI pin of each intermediate LMH0397 device in the chain is connected to the MISO pin of the  
previous LMH0397 device, thereby creating a serial shift register. In a daisy-chain configuration of N × LMH0397  
devices, the host conceptually sees a shift register of length 17 × N for a basic SPI transaction, during which  
SS_N is asserted low for 17 × N clock cycles.  
8.5 Register Maps  
The LMH0397 register map is divided into three register pages. These register pages are used to control  
different aspects of the LMH0397 functionality. A brief summary of the pages follows:  
1. Share Register Page: This page corresponds to global parameters, such as LMH0397 device ID, I/O  
direction override, and LOCK_N status configuration. This is the default page at start-up. Access this page by  
setting Reg 0xFF[2:0] = 000’b.  
2. CTLE/CDR Register Page: This page corresponds to IN0 PCB CTLE, input and output mux settings, CDR  
settings, and output interrupt overrides. Access this page by setting Reg 0xFF[2:0] = 100’b.  
3. ConfigIO Register Page: This page corresponds to SDI_IO Cable Equalizer settings. This page also  
controls the OUT0, SDI_IO, and SDI_OUT driver output settings. Access this page by setting Reg 0xFF[2:0]  
= 101’b.  
For the complete register map, typical device configurations, and proper register reset sequencing, refer to the  
LMH0397 Programming Guide (SNLU225).  
28  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 SMPTE Requirements and Specifications  
SMPTE specifies several key requirements for the Serial Digital Interface to transport digital video over coaxial  
cables. Such requirements include return loss, AC coupling, and data rate dependency with rise and fall times.  
1. Return Loss: This specification details how closely the port resembles 75-Ω impedance across a specified  
frequency band. The LMH0397 features a built-in 75-return-loss network on SDI_IO and SDI_OUT to  
minimize parasitics and improve overall signal integrity.  
2. AC Coupling: AC-coupling capacitors are required for transporting uncompressed serial data streams with  
heavy low-frequency content. The use of 4.7-μF, AC-coupling capacitors is recommended to avoid low-  
frequency DC wander.  
3. Rise/Fall Time: Output 75-signals are required to meet certain rise and fall timing depending on the data  
rate. This improves the eye opening observed for the receiving device. The LMH0397 SDI_IO (in CD Mode)  
and SDI_OUT cable drivers feature automatic edge rate adjustment to meet SMPTE rise and fall time  
requirements.  
TI recommends placing the LMH0397 as close as possible to the 75-Ω BNC ports to meet SMPTE specifications.  
9.1.2 Low-Power Optimization in CD Mode  
In CD Mode, the LMH0397 IN0 CTLE operates in either AM1 Adaptive Mode or AM0 Manual Mode. When  
operating in AM1, the LMH0397 uses HEO/VEO Lock Monitoring as a key parameter to achieve lock. HEO/VEO  
Lock Monitoring determines the CTLE boost setting that produces the best horizontal and vertical eye opening  
after the CTLE. When AM1 adaptation is complete and the LMH0397 asserts CDR lock at the optimal IN0 CTLE  
setting, HEO/VEO Lock Monitoring is no longer required to maintain lock. Therefore, HEO/VEO Lock Monitoring  
can be disabled by setting CTLE/CDR Reg 0x3E[7] = 0'b after lock is declared. Disabling HEO/VEO Lock  
Monitoring optimizes power dissipation in CD Mode, reducing the overall power by approximately 25 mW.  
When operating in AM0, the LMH0397 does not use HEO/VEO Lock Monitoring, because the user manually sets  
the IN0 CTLE setting. In AM0, HEO/VEO Lock Monitoring can be disabled at any time.  
Copyright © 2017–2019, Texas Instruments Incorporated  
29  
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
9.2 Typical Applications  
The LMH0397 is a bidirectional I/O with integrated reclocker that supports SDI data rates up to 2.97 Gbps. This  
device supports multiple configurations and can be programmed as a cable equalizer or cable driver. Figure 20  
shows a typical application circuit for the LMH0397.  
Specific examples of typical applications for the LMH0397 as a bidirectional I/O and cable equalizer with loop-  
through are detailed in the following subsections.  
2.5 V  
Place 0.1-µF Capacitors  
close to each supply pin  
4.7 µF  
100-Coupled Trace  
VDD_CDR  
VIN  
VDD_LDO  
(1.8 V) OUT0+  
Line-Side I/O  
SDI_IO+  
SDI_IO-  
RX+  
RX-  
75-BNC  
OUT0-  
4.7 µF  
SS_N  
75 Ω  
RSV1  
RSV2  
RSV3  
RSV4  
RSV5  
SCK  
Host-Side FPGA/  
Video Processor  
MOSI  
VIN  
MISO  
LMH0397  
EP  
VSS  
VSS  
VSS  
200 Ω  
MODE_SEL  
LOCK_N  
Level F (SPI Mode)  
LED  
100-Coupled Trace  
Line-Side Output  
SDI_OUT+  
SDI_OUT-  
TX+  
TX-  
IN0+  
IN0-  
75-BNC  
4.7 µF  
4.7 µF  
75 Ω  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
Optional pullup or pulldown  
resistors for 4-Level Strap  
Configuration Pins  
Optional pullup or pulldown  
resistors for 2-Level Strap  
Configuration Pins  
1 k  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
Level H = 1 kΩ to VIN  
Level F = No Connect  
Level R = 20 kΩ to VSS  
Level L = 1 kΩ to VSS  
Level H = 1 kΩ to VIN  
Level L = 1 kΩ to VSS  
1 kꢀ  
or  
1 kꢀ  
or  
1 kꢀ  
or  
1 kꢀ  
20 kꢀ  
*Internally pulled high  
**Internally pulled low  
20 kꢀ  
20 kꢀ  
Copyright © 2016, Texas Instruments Incorporated  
Figure 20. LMH0397 Typical Application Circuit  
30  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
Typical Applications (continued)  
9.2.1 Bidirectional I/O  
The LMH0397 can be configured as a bidirectional I/O to improve BNC port function flexibility. In EQ Mode, the  
LMH0397 equalizes 75-SDI input data at SDI_IO and outputs from OUT0 to an FPGA Rx. SDI_OUT is used  
as an optional loop-through SDI output. In CD Mode, the LMH0397 equalizes 100-SDI input data at IN0 and  
uses the dual cable drivers at SDI_IO and SDI_OUT to drive out the SDI signal. OUT0 can be used as a  
loopback output for system monitoring.  
Figure 21 shows a typical application where an LMH0397 is used alongside an SDI FPGA to enable bidirectional  
I/O port functionality.  
IN0  
SDI_IO  
75-Ω SDI Input or  
Output  
LMH0397  
Rx: EQ  
Mode  
SerDes Tx  
SDI FPGA  
OUT0  
SDI_OUT  
Tx: CD  
Mode  
75-Ω SDI Output  
SerDes Rx  
Copyright © 2016, Texas Instruments Incorporated  
Figure 21. LMH0397 Bidirectional I/O Application  
9.2.1.1 Design Requirements  
For general LMH0397 design requirements, see the guidelines in Table 13.  
For bidirectional I/O application-specific requirements, see the guidelines in Table 14.  
Table 13. LMH0397 General Design Requirements  
DESIGN PARAMETER  
SDI_IO+, SDI_OUT+ AC-coupling capacitors  
SDI_IO–, SDI_OUT– AC-coupling capacitors  
IN0± and OUT0± AC-coupling capacitors  
Input and output terminations  
REQUIREMENTS  
4.7-μF capacitors recommended  
4.7-μF capacitors recommended, AC terminated with 75 Ω to VSS.  
4.7-μF capacitors recommended  
Input and output terminations provided internally. Do not add external terminations.  
10-μF and 1-μF bulk capacitors; place close to each device.  
0.1-μF capacitor; place close to each supply pin.  
DC power supply decoupling capacitors  
VDD_LDO decoupling capacitors  
MODE_SEL pin  
1-μF and 0.1-μF capacitors; place as close as possible to the device VDD_LDO pin.  
SPI: Leave MODE_SEL unconnected (Level F)  
SMBus: Connect 1 kto VSS (Level L)  
Input reclocked data rate (SDI_IO in EQ Mode or  
IN0 in CD Mode)  
2.97 Gbps, 1.485 Gbps, or divide-by-1.001 subrates and 270 Mbps.  
For all other input data rates, the reclocker is automatically bypassed.  
Table 14. LMH0397 Bidirectional I/O Requirements  
DESIGN PARAMETER  
EQ/CD_SEL pin  
REQUIREMENTS  
1 kto VSS (Level L) when SDI_IO is used as a cable EQ input  
1 kto VIN (Level H) when SDI_IO is used as a cable driver output  
1 kto VSS (Level L) to enable OUT0 for monitoring purposes  
1 kto VIN (Level H) to disable OUT0 (available only in CD Mode)  
OUT0_SEL pin  
1 kto VSS (Level L) to enable cable loop-through (EQ Mode) or secondary cable  
output (CD Mode)  
1 kto VIN (Level H) to disable cable loop-through (EQ Mode) or secondary cable  
output (CD Mode)  
SDI_OUT_SEL pin  
Copyright © 2017–2019, Texas Instruments Incorporated  
31  
 
 
 
 
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
9.2.1.2 Detailed Design Procedure  
Follow this design procedure for bidirectional I/O applications:  
1. Select a power supply that meets the DC and AC requirements in Recommended Operating Conditions.  
2. Choose a small 0402 surface-mount ceramic capacitor for AC-coupling capacitors to maintain characteristic  
impedance.  
3. Choose a high-quality, 75-Ω BNC connector that can support 2.97-Gbps applications. Consult a BNC  
supplier regarding insertion loss, impedance specifications, and recommended footprint for meeting SMPTE  
return loss.  
4. Follow detailed high-speed layout recommendations provided in Layout Guidelines to ensure optimal signal  
quality when interconnecting 75-and 100-signals to the LMH0397.  
5. Determine whether SPI or SMBus communication is necessary. If the LMH0397 must be programmed with  
settings other than what is offered by pin control, users must use SPI or SMBus Mode for additional  
programming.  
6. Configure EQ/CD_SEL, OUT0_SEL, and SDI_OUT_SEL pins according to the desired default use case. In a  
bidirectional I/O application, the EQ/CD_SEL pin or register settings may be modified to switch between EQ  
Mode and CD Mode.  
7. Configure the LMH0397 in EQ Mode. Tune the HOST_EQ0 100-driver control pin to equalize the PCB  
output trace following OUT0±. Use register control for more tuning options if necessary.  
8. Configure the LMH0397 in CD Mode. Tune the SDI_VOD output amplitude control pin for optimal signal  
quality depending on the cable length attached at SDI_IO+ and SDI_OUT+. Use register control for more  
tuning options if necessary.  
9.2.1.3 Application Curves  
Depending on operation in EQ or CD Mode, the LMH0397 performance was measured with the test setups  
shown in Figure 22 and Figure 23.  
CC  
75-Q /}ꢀÆ /ꢀꢁoꢂ  
LMH0397  
Pattern  
Generator  
SDI_IO+  
OUT0  
Oscilloscope  
VO = 800 mVp-p,  
PRBS10  
Figure 22. Test Setup for LMH0397 in EQ Mode  
LMH0397  
SDI_IO+  
Pattern  
Generator  
TL  
Differential 100-  
FR4 Channel  
IN0  
Oscilloscope  
VOD = 800 mVp-p,  
PRBS10  
Copyright © 2017, Texas Instruments Incorporated  
Figure 23. Test Setup for LMH0397 in CD Mode  
The eye diagrams in this subsection show how the LMH0397 improves overall signal integrity in the data path for  
75-Ω coax at SDI_IO+ when operating in EQ Mode and 100-Ω differential FR4 PCB trace at IN0± when operating  
in CD Mode.  
32  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
 
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
EQ Mode, measured at OUT0±  
CD Mode, measured at SDI_IO+  
HOST_EQ0 = F, SDI_OUT_SEL = H, OUT_CTRL = F  
Figure 24. 2.97 Gbps, CC = 200-m Belden 1694A,  
Reclocked  
HOST_EQ0 = F, SDI_OUT_SEL = H, OUT_CTRL = F  
Figure 25. 2.97 Gbps, TL = 20" FR4, Reclocked  
EQ Mode, measured at OUT0±  
CD Mode, measured at SDI_IO+  
HOST_EQ0 = F, SDI_OUT_SEL = H, OUT_CTRL = F  
Figure 26. 1.485 Gbps, CC = 300-m Belden 1694A,  
Reclocked  
HOST_EQ0 = F, SDI_OUT_SEL = H, OUT_CTRL = F  
Figure 27. 1.485 Gbps, TL = 20" FR4, Reclocked  
EQ Mode, measured at OUT0±  
CD Mode, measured at SDI_IO+  
HOST_EQ0 = F, SDI_OUT_SEL = H, OUT_CTRL = F  
Figure 28. 270 Mbps, CC = 600-m Belden 1694A,  
Reclocked  
HOST_EQ0 = F, SDI_OUT_SEL = H, OUT_CTRL = F  
Figure 29. 270 Mbps, TL = 20" FR4, Reclocked  
Copyright © 2017–2019, Texas Instruments Incorporated  
33  
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
9.2.2 Cable Equalizer With Loop-Through  
The LMH0397 can be configured as a cable equalizer with loop-through output. In EQ Mode, the LMH0397 takes  
in SDI data at the SDI_IO adaptive cable equalizer input and outputs the reclocked SDI signal at OUT0.  
Meanwhile, a redundant reclocked loop-through SDI signal is output on SDI_OUT for system monitoring  
purposes.  
Figure 30 shows a typical application of an LMH0397 as a cable loop-through device. In this example, the  
LMH0397 provides an SDI input to the SDI FPGA. Concurrently, the equalized and reclocked SDI_IO signal is  
sent to the loop-through SDI_OUT cable driver output. Meanwhile, the FPGA sends post-processed SDI data out  
on an LMH1218 cable driver with integrated reclocker.  
SDI_IO  
75-Ω SDI  
Input  
OUT0  
LMH0397  
Config IO  
EQ Mode  
SerDes Rx  
SDI FPGA  
SDI_OUT  
OUT0  
75-Ω SDI  
Loop-Thru  
IN0  
75-Ω SDI  
Output  
SerDes Tx  
LMH0318  
CD +  
Reclocker  
Copyright © 2016, Texas Instruments Incorporated  
Figure 30. LMH0397 Cable Loop-Through Application  
9.2.2.1 Design Requirements  
See Table 13 in Bidirectional I/O Design Requirements for general LMH0397 design requirements.  
For cable equalizer with loop-through application-specific requirements, see the guidelines in Table 15.  
Table 15. LMH0397 Cable Loop-Through Requirements  
DESIGN PARAMETER  
EQ/CD_SEL pin  
REQUIREMENTS  
1 kto VSS (Level L) to enable SDI_IO as a cable EQ input  
1 kto VSS (Level L) to enable OUT0 as PCB output to the FPGA  
1 kto VSS (Level L) to enable SDI_OUT as a loop-through output  
OUT0_SEL pin  
SDI_OUT_SEL pin  
9.2.2.2 Detailed Design Procedure  
See Bidirectional I/O Detailed Design Procedure and follow Steps 1 through 5. See the steps that follow for cable  
equalizer with loop-through applications.  
1. Configure EQ/CD_SEL and SDI_OUT_SEL pins according to the desired default use case. In a cable loop-  
through application, the EQ/CD_SEL pin must be set to Level L so that the LMH0397 operates in EQ Mode.  
Also, OUT0 in EQ Mode is always enabled regardless of the logic applied to OUT0_SEL.  
2. Tune the HOST_EQ0 100-driver control pin to equalize the PCB output trace following OUT0±. Use  
register control for more tuning options if necessary.  
9.2.2.3 Application Curves  
In EQ Mode, the LMH0397 SDI_OUT performance was measured with the test setup shown in Figure 31.  
CC  
75-Ω Coax  
Cable  
LMH0397  
SDI_OUT+  
Pattern  
Generator  
SDI_IO+  
Oscilloscope  
VO = 800 mVp-p,  
PRBS10  
Copyright © 2017, Texas Instruments Incorporated  
Figure 31. Test Setup for LMH0397 Loop-Through in EQ Mode  
34  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
 
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
The eye diagrams in this subsection show the LMH0397 75-Ω loop-through output at SDI_OUT+.  
EQ Mode, measured at SDI_OUT+  
HOST_EQ0 = F, SDI_OUT_SEL = L, OUT_CTRL = F  
Figure 32. 2.97 Gbps, CC = 200-m Belden 1694A,  
Reclocked  
EQ Mode, measured at SDI_OUT+  
HOST_EQ0 = F, SDI_OUT_SEL = L, OUT_CTRL = F  
Figure 33. 1.485 Gbps, CC = 280-m Belden 1694A,  
Reclocked  
EQ Mode, measured at SDI_OUT+  
HOST_EQ0 = F, SDI_OUT_SEL = L, OUT_CTRL = F  
Figure 34. 270 Mbps, CC = 600-m Belden 1694A, Reclocked  
Copyright © 2017–2019, Texas Instruments Incorporated  
35  
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
The LMH0397 requires decoupling capacitors to ensure a stable power supply. For power supply decoupling,  
0.1-μF surface-mount ceramic capacitors must be placed close to each VDD_CDR, VDD_LDO, and VIN supply  
pin to VSS. Larger bulk capacitors (for example, 10 μF and 1 μF) are recommended for VDD_CDR and VIN.  
2.5 V  
10 µF  
1 µF  
1 µF  
0.1 µF  
0.1 µF  
VDD_CDR  
VIN  
EP  
VDD_LDO  
(1.8 V)  
VSS  
VSS  
VSS  
LMH0397  
1 µF  
0.1 µF  
Copyright © 2016, Texas Instruments Incorporated  
Figure 35. Recommended Power Supply Decoupling  
Good supply bypassing requires low inductance capacitors. This can be achieved through an array of multiple  
small body size surface-mount bypass capacitors to keep low supply impedance. Better results can be achieved  
through the use of a buried capacitor formed by a VDD and VSS plane separated by 2-mil to 4-mil dielectric in a  
printed-circuit board.  
11 Layout  
11.1 Layout Guidelines  
The following guidelines are recommended to optimize the board layout for the LMH0397.  
11.1.1 Board Stack-Up and Ground References  
Choose a suitable board stack-up that supports 75-Ω single-ended trace and 100-Ω differential trace routing  
on the top layer of the board. This is typically done with a Layer-2 ground plane reference for the 100-Ω  
differential traces and a Layer-3 ground plane reference for the 75-Ω single-end traces.  
Maintain a distance of at least five times the trace width between signal trace and ground reference if they are  
on the same layer. This prevents unwanted changes in the characteristic impedance.  
Maintain a consistent ground plane reference for each high-speed trace from source to endpoint. Ground  
reference discontinuities lead to characteristic impedance mismatch.  
11.1.2 High-Speed PCB Trace Routing and Coupling  
Observe the following general high-speed recommendations for high-speed trace routing:  
For differential pairs, maintain a uniform width and gap for each differential pair where possible. When traces  
must diverge (for example, due to AC-coupling capacitors), ensure that the traces branch out or merge  
uniformly.  
To prevent reflections due to trace routing, ensure that trace bends are at most 45°. Right-angle bends must  
be implemented with at least two 45° corners. Radial bends are ideal.  
Avoid using signal vias. If signal vias must be used, a return path (GND) via must be placed near the signal  
via to provide a consistent ground reference and minimize impedance discontinuities.  
Avoid via stubs by back-drilling as necessary.  
36  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
Layout Guidelines (continued)  
11.1.2.1 SDI_IO± and SDI_OUT±  
Use an uncoupled trace with 75-Ω single-ended impedance for signal routing to SDI_IO± and SDI_OUT±.  
The trace width is typically 8 to 10 mils with reference to a Layer-3 ground plane.  
11.1.2.2 IN0± and OUT0±  
Use coupled traces with 100-Ω differential impedance for signal routing to IN0± and OUT0±.  
The trace width is typically 5 to 8 mils with reference to a Layer-2 ground plane.  
11.1.3 Anti-Pads  
Place anti-pads (ground relief) on the power and ground planes directly under the 4.7-μF, AC-coupling  
capacitor and IC landing pads to minimize parasitic capacitance. The size of the anti-pad and the number of  
layers to use the anti-pad depend on the board stack-up and can be determined by a 3-dimension  
electromagnetic simulation tool.  
11.1.4 BNC Connector Layout and Routing  
Use a well-designed BNC footprint to ensure the signal landing pad achieves 75-Ω characteristic impedance.  
BNC suppliers usually provide recommendations on BNC footprint for best results.  
Keep trace length short between the BNC and SDI_IO±. The trace routing for SDI_IO+ and SDI_IO– must be  
as symmetrical as possible, with approximately equal lengths and equal loading. The same is true for  
SDI_OUT+ and SDI_OUT–.  
11.1.5 Power Supply and Ground Connections  
Connect each supply pin (VDD_CDR, VIN, VDD_LDO) directly to the power or ground planes with a short via.  
The via is usually placed tangent to the landing pads of the supply pins with the shortest trace possible.  
Power supply decoupling capacitors must be a small physical size (0402 or smaller) and placed close to the  
supply pins to minimize inductance. The capacitors are commonly placed on the bottom layer and share the  
ground of the EP (Exposed Pad).  
11.1.6 Footprint Recommendations  
Stencil parameters for the EP (Exposed Pad) such as aperture area ratio and the fabrication process have a  
significant impact on paste deposition. TI highly recommends inspecting the stencil before setting the  
placement of the WQFN package to improve board assembly yields. If the via and aperture openings are not  
carefully monitored, the solder may flow unevenly through the EP. Stencil parameters for aperture opening  
and via locations are shown in the RTV package drawing in 机械、封装和可订购信息.  
The EP of the package must be connected to the ground plane through a 3 × 3 via array. These vias are  
solder-masked to avoid solder flowing into the plated-through holes during the board manufacturing process.  
Details about via dimensions are also shown in the RTV package drawing in 机械、封装和可订购信息.  
More information on the WQFN style package is provided in QFN/SON PCB Attachment Application Report  
(SLUA271).  
Copyright © 2017–2019, Texas Instruments Incorporated  
37  
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
11.2 Layout Example  
The example shown in Figure 36 demonstrates the LMH0397 layout guidelines highlighted in Layout Guidelines.  
Larger bulk capacitors (10 µF, 1 µF)  
for VIN and VDD_CDR can be  
placed farther from IC.  
BNC Footprint  
Anti-pad  
Zo = 75  
W = 10 mils  
Via to  
VDD_LDO  
Pour  
4.7 µF  
Place 0.1-µF decoupling caps on  
Bottom Layer close to pins. Connect  
to Pour and EP with vias.  
Via to VIN  
Pour  
4.7 µF  
100-coupled  
trace  
4.7 µF  
75 ꢀ  
W = 8 mils  
S = 10 mils  
W = 8 mils  
Solder  
Paste  
Mask  
(Stencil)  
4.7 µF  
4.7 µF  
VSS Via to  
GND  
Via to  
VDD_CDR  
Pour  
W = 8 mils  
S = 10 mils  
W = 8 mils  
4.7 µF  
75 ꢀ  
EP  
(Exposed Pad)  
Via Array on Bottom  
Layer shared with VSS  
pins and decoupling caps  
where applicable  
100-coupled  
trace  
4.7 µF  
4.7 µF  
W = 10 mils  
> 5 W  
Zo = 75 ꢀ  
Layer 3 GND Reference for  
75-Single-Ended Traces  
Layer 2 GND Reference for  
100-Differential Traces  
Note: All high speed signal traces are assumed to be on Layer 1 (Top Layer).  
Figure 36. LMH0397 High-Speed Trace Layout Example  
38  
版权 © 2017–2019, Texas Instruments Incorporated  
 
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
如需开发支持,请参阅以下文档:  
LMH1297。  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
《焊接的绝对最大额定值》(SNOA549)  
LMH0397 编程指南》 (SNLU225)  
QFN/SON PCB 连接应用报告》(SLUA271)  
12.3 接收文档更新通知  
如需接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收  
产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 出口管制提示  
接收方同意:如果美国或其他适用法律限制或禁止将通过本协议的披露方获得的任何产品或技术数据(其中包括软  
件)(见美国、欧盟和其他出口管理条例之定义)、或者其他适用国家条例限制的任何受管制产品或此项技术的任  
何直接产品出口或再出口至任何目的地,那么在没有事先获得美国商务部和其他相关政府机构授权的情况下,接收  
方不得在知情的情况下,以直接或间接的方式将其出口。  
12.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2017–2019, Texas Instruments Incorporated  
39  
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
40  
版权 © 2017–2019, Texas Instruments Incorporated  
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
13.1 Package Option Addendum  
13.1.1 Packaging Information  
Package  
Type  
Package  
Drawing  
Package  
Qty  
Lead/Ball  
Finish(3)  
(1)  
(2)  
(4)  
Orderable Device  
LMH0397RTVR  
LMH0397RTVT  
Status  
Pins  
32  
Eco Plan  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking(5)(6)  
L0397  
Green (RoHS  
& no Sb/Br)  
Level-3-260C-168  
HR  
ACTIVE  
ACTIVE  
WQFN  
RTV  
RTV  
1000  
250  
CU NIPDAU  
CU NIPDAU  
Green (RoHS  
& no Sb/Br)  
Level-3-260C-168  
HR  
WQFN  
32  
-40 to 85  
L0397  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
space  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by  
weight in homogeneous material)  
space  
(3) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the  
finish value exceeds the maximum column width.  
space  
(4) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
space  
(5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device  
space  
(6) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief  
on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third  
parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for  
release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
版权 © 2017–2019, Texas Instruments Incorporated  
41  
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
13.1.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
LMH0397RTVR  
LMH0397RTVT  
WQFN  
WQFN  
RTV  
RTV  
32  
32  
1000  
250  
178.0  
178.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
42  
版权 © 2017–2019, Texas Instruments Incorporated  
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
SPQ  
1000  
250  
Length (mm) Width (mm)  
Height (mm)  
35.0  
LMH0397RTVR  
LMH0397RTVT  
WQFN  
WQFN  
RTV  
RTV  
32  
32  
210.0  
210.0  
185.0  
185.0  
35.0  
版权 © 2017–2019, Texas Instruments Incorporated  
43  
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
44  
版权 © 2017–2019, Texas Instruments Incorporated  
LMH0397  
www.ti.com.cn  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
版权 © 2017–2019, Texas Instruments Incorporated  
45  
LMH0397  
ZHCSKF3B APRIL 2017REVISED OCTOBER 2019  
www.ti.com.cn  
46  
版权 © 2017–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH0397RTVR  
LMH0397RTVT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTV  
RTV  
32  
32  
1000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
L0397  
L0397  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Oct-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMH0397RTVR  
LMH0397RTVT  
WQFN  
WQFN  
RTV  
RTV  
32  
32  
1000  
250  
180.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Oct-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMH0397RTVR  
LMH0397RTVT  
WQFN  
WQFN  
RTV  
RTV  
32  
32  
1000  
250  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LMH060-2000-30F9-20200TW

LED Module with Cree TrueWhite Technology
CREE

LMH060-2000-30F9-20300TW

LED Module with Cree TrueWhite Technology
CREE

LMH060-2000-40F9-20200TW

LED Module with Cree TrueWhite Technology
CREE

LMH060-2000-40F9-20300TW

LED Module with Cree TrueWhite Technology
CREE

LMH060-2900-30F9-20200TW

LED Module with Cree TrueWhite Technology
CREE

LMH060-2900-30F9-20300TW

LED Module with Cree TrueWhite Technology
CREE

LMH060-2900-40F9-20200TW

LED Module with Cree TrueWhite Technology
CREE

LMH060-2900-40F9-20300TW

LED Module with Cree TrueWhite Technology
CREE

LMH0603T-10N-F

SMD Ceramic Multilayer Chip Inductors
LEIDITECH

LMH0603T-12N-F

SMD Ceramic Multilayer Chip Inductors
LEIDITECH

LMH0603T-15N-F

SMD Ceramic Multilayer Chip Inductors
LEIDITECH

LMH0603T-18N-F

SMD Ceramic Multilayer Chip Inductors
LEIDITECH