LMH1297RTVR [TI]

具有集成时钟恢复器的 12G 超高清 SDI 双向 I/O | RTV | 32 | -40 to 85;
LMH1297RTVR
型号: LMH1297RTVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成时钟恢复器的 12G 超高清 SDI 双向 I/O | RTV | 32 | -40 to 85

时钟 电视
文件: 总53页 (文件大小:2174K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMH1297  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
带有集成时钟恢复器LMH1297 12G UHD-SDI I/O  
1 特性  
3 说明  
• 带有集成时钟恢复器的用户可配置型自适应电缆均  
衡器或电缆驱动器  
LMH1297 带有集成时钟恢复器的 12G UHD-SDI  
75双向 I/O。此器件可以在输入模式下配置为自适应  
电缆均衡器也可以在输出模式下配置为双电缆驱动  
允许系统设计人员灵活地将单个 BNC 用作输入或  
输出端口从而简化 UHD 视频硬件设计。集成的时钟  
恢复器在两种模式下均可锁定到所有支持的高达  
11.88Gbps SMPTE 数据速率。此双I/O 具有片上  
75终端和回损补偿网络满足严格的 SMPTE 回损  
要求。  
• 支ST-2082-1 (12G)ST-2081-1 (6G)、  
ST-424 (3G)ST-292 (HD) ST-259 (SD)  
• 兼DVB-ASI AES10 (MADI)  
• 集成时钟恢复器锁定11.88Gbps5.94Gbps、  
2.97Gbps1.485Gbps 1.001 分频子速率和  
270Mbps SMPTE 速率  
• 片75终端和回损补偿网络  
EQ均衡器模式:  
额外的 75驱动器输出可让 LMH1297 支持各种系统  
功能。在 EQ均衡器模式下该第二个 75驱动  
器可用作环通输出。在电缆驱动器 (CD) 模式下该  
75驱动器可用作第二个扇出电缆驱动器。主机侧  
100驱动器也可在 CD 模式下用作环回输出从而用  
于监控。  
– 带有集成时钟恢复器的自适应电缆均衡器  
– 具有去加重功能100Ω出驱动器  
– 时钟恢复75Ω通输出  
EQ 模式电缆传输距离  
Belden 1694ASDI_OUT):  
11.88Gbps 75m  
5.94Gbps 120m  
2.97Gbps 200m  
1.485Gbps 300m  
270Mbps 600m  
• 电缆驱动(CD) 模式:  
器件信息(1)  
封装尺寸标称值)  
器件型号  
LMH1297  
封装  
QFN (32)  
5.00mm × 5.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 带有集成时钟恢复器的双路差分输出电缆驱动器  
– 自适PCB 输入均衡器  
– 时钟恢复100Ω回输出  
Cable  
EQ  
100-Ω  
Driver  
M
U
X
SDI_IO  
OUT0  
M
U
X
CDR  
TX_RX  
75Ω出端的自动预加重和转换率控制  
75100输出端的极性反转  
• 没有输入信号时自动进入省电工作模式  
– 功耗25 mW典型值)  
Cable  
Driver  
PCB  
EQ  
IN0  
Cable  
Driver  
SDI_OUT  
Control  
• 通ENABLE 引脚进行断电控制  
2.5V 单电源  
Power  
Management  
Serial  
Interface  
LDO  
Control Logic  
EQ 模式功率耗散275 mW典型值)  
CD 模式功率耗散305 mW典型值)  
• 可通过引脚、SPI SMBus 接口进行编程  
• 工作温度范围-40°C +85°C  
5mm × 5 mm32 QFN 封装  
Copyright © 2016, Texas Instruments Incorporated  
2 应用  
简化版方框图  
SMPTE 兼容串行数字接口  
UHDTV/4K/8K/HDTV/SDTV 视频  
IP 媒体网关  
数字视频处理和编辑  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNLS545  
 
 
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
Table of Contents  
8.3 Feature Description...................................................18  
8.4 Device Functional Modes..........................................26  
8.5 Register Maps...........................................................31  
9 Application and Implementation..................................32  
9.1 Application Information............................................. 32  
9.2 Typical Applications.................................................. 33  
10 Power Supply Recommendations..............................41  
11 Layout...........................................................................42  
11.1 Layout Guidelines................................................... 42  
11.2 Layout Example...................................................... 44  
12 Device and Documentation Support..........................45  
12.1 Documentation Support.......................................... 45  
12.2 接收文档更新通知................................................... 45  
12.3 支持资源..................................................................45  
12.4 Trademarks.............................................................45  
12.5 Electrostatic Discharge Caution..............................45  
12.6 术语表..................................................................... 45  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 7  
7.1 Absolute Maximum Ratings........................................ 7  
7.2 ESD Ratings............................................................... 7  
7.3 Recommended Operating Conditions.........................7  
7.4 Thermal Information....................................................8  
7.5 Electrical Characteristics.............................................8  
7.6 Recommended SMBus Interface Timing  
Specifications.............................................................. 14  
7.7 Serial Parallel Interface (SPI) Timing  
Specifications.............................................................. 14  
7.8 Typical Characteristics..............................................16  
8 Detailed Description......................................................17  
8.1 Overview...................................................................17  
8.2 Functional Block Diagram.........................................17  
Information.................................................................... 45  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision D (May 2020) to Revision E (July 2022)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 在整个数据表中添加了包容性术语......................................................................................................................1  
Changed CDON_IN0 and CDOFF_IN0 Test Condition to "11.88 Gbps PRBS10 pattern"........................................ 8  
Removed 12G/6G from VDC_WANDER Test Condition.......................................................................................... 8  
Added table note to Serial Parallel Interface (SPI) Timing Specifications........................................................ 14  
Updated Line-Side Adaptive Cable Equalizer (SDI_IO+ in EQ mode)............................................................. 21  
Updated Line-Side Output Cable Driver (SDI_IO+ in CD mode, SDI_OUT+ in EQ or CD mode)....................23  
Changes from Revision C (July 2019) to Revision D (May 2020)  
Page  
Changed HBM ESD rating and added pin 27 description ..................................................................................7  
Changes from Revision B (September 2017) to Revision C (July 2019)  
Page  
• 首次公开发布的文档........................................................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMH1297  
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
5 说明)  
片上时钟恢复器可减弱高频抖动并使用纯净的低抖动时钟完全重新生成数据。此时钟恢复器具有内置环路滤波  
且不需要任何输入参考时钟。LMH1297 还有内部眼图张开度监视器和可编程引脚以便进行 CDR 锁定指  
示、输入载波检测或硬件中断从而支持系统诊断和电路板启动。  
LMH1297 2.5V 单电源供电运行。其采用小尺5mm × 5mm 32 QFN 封装。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMH1297  
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
6 Pin Configuration and Functions  
1
24  
23  
22  
21  
20  
19  
18  
SDI_IO+  
SDI_VOD  
OUT0+  
OUT0-  
VDD_CDR  
VSS  
2
SDI_IO-  
3
VSS  
4
OUT0_SEL  
LMH1297  
5
EQ/CD_SEL  
6
IN0+  
VSS  
7
8
IN0-  
SDI_OUT-  
SDI_OUT+  
EP = VSS  
17  
OUT_CTRL  
Copyright © 2016, Texas Instruments Incorporated  
6-1. RTV Package 32-Pin QFN (Top View)  
6-1. Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
HIGH-SPEED DIFFERENTIAL I/OS  
SDI_IO+  
1
2
7
I/O, Analog  
I/O, Analog  
O, Analog  
Single-ended complementary inputs or outputs with on-chip 75-termination at SDI_IO+ and  
SDI_IO. SDI_IO± include integrated return loss networks designed to meet the SMPTE  
input and output return loss requirements. Connect SDI_IO+ to a BNC through a 4.7-µF, AC-  
coupling capacitor. SDI_IOshould be similarly AC-coupled and terminated with an external  
4.7-µF capacitor and 75-Ωresistor to GND.  
SDI_IO–  
SDI_OUT–  
EQ mode:  
SDI_IO+ is the 75-Ωinput port of the adaptive cable equalizer for SMPTE video applications.  
CD mode:  
SDI_IO+ is the 75-Ωoutput port of the cable driver for SMPTE video applications.  
Single-ended complementary outputs with on-chip 75-termination at SDI_OUT+ and  
SDI_OUT. SDI_OUT± include integrated return loss networks designed to meet the  
SMPTE output return loss requirements. SDI_OUT± is used as a second cable driver.  
Connect SDI_OUT+ to a BNC through a 4.7-µF, AC-coupling capacitor. SDI_OUTshould  
be similarly AC-coupled and terminated with an external 4.7-µF capacitor and 75-Ωresistor  
to GND.  
EQ mode:  
SDI_OUT+  
8
O, Analog  
SDI_OUT± can be enabled as a loop-through 75-Ωoutput port. It outputs the reclocked data  
from the adaptive cable equalizer to form a loop-through output with adaptive cable equalizer,  
reclocker, and cable driver.  
CD mode:  
SDI_OUT± is the second 75-Ωfan-out cable driver.  
18  
19  
22  
23  
I, Analog  
I, Analog  
O, Analog  
O, Analog  
IN0–  
Differential inputs from host video processor. On-chip 100-differential termination. Requires  
external 4.7-µF, AC-coupling capacitors for SMPTE applications.  
IN0+  
OUT0–  
OUT0+  
Differential outputs to host video processor. On-chip 100-differential termination. Requires  
external 4.7-µF, AC-coupling capacitors for SMPTE applications.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMH1297  
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
6-1. Pin Functions (continued)  
PIN  
NAME  
I/O(1)  
DESCRIPTION  
NO.  
4
CONTROL PINS  
OUT0_SEL enables the use of the 100-host-side output driver at OUT0±.  
See 8-3 for details.  
OUT0_SEL is internally pulled high by default (OUT0 disabled).  
OUT0_SEL  
EQ/CD_SEL  
I, LVCMOS  
I, LVCMOS  
EQ/CD_SEL selects the signal direction of the LMH1297 bidirectional I/O. It configures the  
LMH1297 as an adaptive equalizer (EQ mode) or as a cable driver (CD mode).  
See 8-2 for details.  
5
EQ/CD_SEL is internally pulled low by default (EQ mode).  
HOST_EQ0 selects the driver output amplitude and de-emphasis level for OUT0± (in EQ  
mode) and equalizer setting for IN0± (in CD mode).  
See 8-5 and 8-10 for details.  
HOST_EQ0  
MODE_SEL  
SDI_OUT_SEL  
9
I, 4-LEVEL  
I, 4-LEVEL  
I, LVCMOS  
MODE_SEL enables the SPI or SMBus serial control interface.  
See 8-11 for details.  
12  
14  
SDI_OUT_SEL enables the use of the 75-output driver at SDI_OUT±.  
See 8-3 for details.  
SDI_OUT_SEL is internally pulled high by default (SDI_OUT disabled).  
OUT_CTRL selects the signal being routed to the output. It is used to enable or bypass the  
reclocker and to enable or bypass the cable equalizer.  
See 8-7 for details.  
OUT_CTRL  
SDI_VOD  
17  
24  
I, 4-LEVEL  
I, 4-LEVEL  
SDI_VOD selects one of four output amplitudes for the cable drivers at SDI_IO± and  
SDI_OUT±.  
See 8-8 for details.  
LOCK_N is the reclocker lock indicator. LOCK_N is pulled low when the reclocker has  
acquired lock condition. LOCK_N is a 3.3-V tolerant, open-drain output. It requires an external  
resistor to a logic supply.  
LOCK_N can be reconfigured to indicate Carrier Detector (CD_N) or Interrupt (INT_N)  
through register programming. See 8.3.10.  
O, LVCMOS,  
OD  
LOCK_N  
ENABLE  
27  
32  
A logic-high at ENABLE enables normal operation for the LMH1297. A logic-low at ENABLE  
places the LMH1297 in Power-Down mode.  
I, LVCMOS  
ENABLE is internally pulled high by default.  
SPI SERIAL CONTROL INTERFACE, MODE_SEL = F (FLOAT)  
SS_N is the Target Select. When SS_N is at logic Low, it enables SPI access to the LMH1297  
target device.  
SS_N  
11  
I, LVCMOS  
SS_N is a 2.5-V LVCMOS input and is internally pulled high by default.  
MOSI is the SPI serial control data input to the LMH1297 target device when the SPI bus is  
enabled. MOSI is a 2.5-V LVCMOS input.  
An external pullup resistor is recommended.  
MOSI  
MISO  
SCK  
13  
28  
29  
I, LVCMOS  
O, LVCMOS  
I, LVCMOS  
MISO is the SPI serial control data output from the LMH1297 target device.  
MISO is a 2.5-V LVCMOS output.  
SCK is the SPI serial input clock to the LMH1297 target device when the SPI interface is  
enabled. SCK is a 2.5-V LVCMOS input.  
An external pullup resistor is recommended.  
SMBUS SERIAL CONTROL INTERFACE, MODE_SEL = L (1 KΩTO VSS)  
ADDR[1:0] are 4-level straps, read into the device at power up. They are used to select one  
of the 16 supported SMBus addresses when SMBus is enabled. See 8-12 for details.  
ADDR0  
SDA  
11  
13  
28  
29  
Strap, 4-LEVEL  
SDA is the SMBus bidirectional data line to or from the LMH1297 target device when SMBus  
is enabled. SDA is an open-drain I/O and requires an external pullup resistor to the SMBus  
termination voltage. SDA is 3.3-V tolerant.  
I/O, LVCMOS,  
OD  
ADDR[1:0] are 4-level straps, read into the device at power up. They are used to select one  
of the 16 supported SMBus addresses when SMBus is enabled. See 8-12 for details.  
ADDR1  
SCL  
Strap, 4-LEVEL  
SCL is the SMBus input clock to the LMH1297 target device when SMBus is enabled. It is  
driven by a LVCMOS open-drain driver from the SMBus controller. SCL requires an external  
pullup resistor to the SMBus termination voltage. SCL is 3.3-V tolerant.  
I/O, LVCMOS,  
OD  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMH1297  
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
6-1. Pin Functions (continued)  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
RESERVED  
RSV1  
RSV2  
RSV3  
RSV4  
RSV5  
10  
15  
16  
25  
26  
Reserved pins. Do not connect.  
Ground reference.  
POWER  
VSS  
3, 6, 20  
21  
I, Ground  
I, Power  
I, Power  
VDD_CDR powers the reclocker circuitry. It is connected to the same 2.5-V ± 5% supply as  
VIN.  
VDD_CDR  
VIN  
30  
VIN is connected to an external 2.5-V ± 5% power supply.  
VDD_LDO is the output of the internal 1.8-V LDO regulator. VDD_LDO output requires an  
external 1-µF and 0.1-µF bypass capacitor to VSS. The internal LDO is designed to power  
internal circuitry only.  
VDD_LDO  
EP  
31  
O, Power  
I, Ground  
EP is the exposed pad at the bottom of the RTV package. The exposed pad should be  
connected to the VSS plane through a 3 × 3 via array.  
(1) I = input, O = output, I/O = input or output, OD = open drain, LVCMOS = 2-state logic, 4-LEVEL = 4-state logic  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LMH1297  
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
30  
MAX  
2.75  
2.75  
2.75  
4
UNIT  
V
Supply voltage (VIN, VDD_CDR)  
Input voltage for 4-level pins  
V
Input/output voltage for 2-level control pins  
SMBus input/output voltage (SDA, SCL)  
SPI input/output voltage (SS_N, MISO, MOSI, and SCK)  
High-speed input/output voltage (IN0±, SDI_IO±, OUT0±, SDI_OUT±)  
Input current (IN0±, SDI_IO±)  
V
V
2.75  
2.75  
30  
V
V
mA  
°C  
°C  
Operating junction temperature  
125  
150  
Storage temperature, Tstg  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
All pins except 13, 27, and  
29  
±6000  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
V
Pins 13, 27, and 29  
±5000  
±1500  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.375  
2.375  
0.72  
0.36  
300  
NOM  
MAX  
2.625  
3.6  
UNIT  
V
Supply voltage  
VIN, VDD_CDR to VSS  
2.5  
VDDSMBUS  
SMBus: SDA, SCL open-drain termination voltage  
V
Normal mode  
0.8  
0.4  
0.88  
0.44  
850  
Source launch amplitude before  
coaxial cable to SDI_IO+  
VSDI_IO_LAUNCH  
Vp-p  
Splitter mode  
Before 5-inch board trace to IN0±  
Before 20-inch board trace to IN0±  
VIN0_LAUNCH  
Source differential launch amplitude  
mVp-p  
650  
1000  
110  
TJUNCTION  
TAMBIENT  
Operating junction temperature  
Ambient temperature  
°C  
°C  
25  
< 20  
< 10  
85  
40  
50 Hz to 1 MHz, sinusoidal  
NTpsmax  
Maximum supply noise(1)  
mVp-p  
1.1 MHz to 50 MHz, sinusoidal  
(1) The sum of the DC supply voltage and AC supply noise should not exceed the recommended supply voltage range.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMH1297  
 
 
 
 
 
 
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
7.4 Thermal Information  
LMH1297  
RTV (QFN)  
32 PINS  
32.5  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
15.0  
6.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJT  
6.5  
ψJB  
RθJC(bot)  
1.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER  
Power dissipation, EQ Mode,  
Measured with PRBS10,  
CDR Locked to 11.88 Gbps,  
VOD = default,  
HEO/VEO lock monitor  
disabled  
SDI_OUT± disabled  
OUT0± enabled  
275  
418  
mW  
mW  
PDEQ_MODE  
SDI_OUT± enabled  
OUT0± enabled  
SDI_IO± enabled  
SDI_OUT± disabled  
OUT0± disabled  
305  
350  
442  
485  
mW  
mW  
mW  
mW  
SDI_IO± enabled  
SDI_OUT± disabled  
OUT0± enabled  
Power dissipation, CD Mode,  
Measured with PRBS10,  
CDR Locked to 11.88 Gbps,  
VOD = default,  
PDCD_MODE  
SDI_IO± enabled  
SDI_OUT± enabled  
OUT0± disabled  
HEO/VEO lock monitor  
disabled  
SDI_IO± enabled  
SDI_OUT± enabled  
OUT0± enabled  
EQ Mode, Power Save Mode,  
ENABLE = H, no signal applied at SDI_IO+  
25  
25  
mW  
mW  
mA  
Power dissipation,  
Power Save Mode  
PDZ  
CD Mode, Power Save Mode,  
ENABLE = H, no signal applied at IN0±  
Current consumption, EQ  
Mode,  
SDI_OUT± disabled  
OUT0± enabled  
110  
137  
200  
Measured with PRBS10,  
CDR Locked to 11.88 Gbps,  
VOD = default,  
IDDEQ_MODE  
SDI_OUT± enabled  
OUT0± enabled  
167  
mA  
HEO/VEO lock monitor  
disabled  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMH1297  
 
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
7.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SDI_IO± enabled  
SDI_OUT± disabled  
OUT0± disabled  
122  
146  
mA  
Current consumption, CD  
Mode,  
Measured with PRBS10,  
CDR Locked to 11.88 Gbps,  
VOD = default,  
SDI_IO± enabled  
SDI_OUT± disabled  
OUT0± enabled  
140  
177  
194  
166  
211  
230  
mA  
mA  
mA  
IDDCD_MODE  
SDI_IO± enabled  
SDI_OUT± enabled  
OUT0± disabled  
HEO/VEO lock monitor  
disabled  
SDI_IO± enabled  
SDI_OUT± enabled  
OUT0± enabled  
EQ Mode, Power Save Mode,  
ENABLE = H, no signal applied at SDI_IO+  
10  
10  
10  
10  
mA  
mA  
Current consumption,  
Power Save Mode  
IDDZ  
CD Mode, Power Save Mode,  
ENABLE = H, no signal applied at IN0±  
EQ Mode, Power-Down Mode,  
ENABLE = L, no signal applied at SDI_IO+  
30  
30  
Current consumption,  
Power-Down Mode  
IDDZ_PD  
mA  
CD Mode, Power-Down Mode,  
ENABLE = L, no signal applied at IN0±  
Current consumption, EQ Mode SDI_OUT± disabled  
205  
mA  
mA  
CDR acquiring lock to 11.88  
Gbps,  
VOD = default,  
OUT0± enabled  
IDDTRANS_EQ  
SDI_OUT± enabled  
OUT0± enabled  
260  
200  
HEO/VEO lock monitor enabled  
SDI_IO± enabled  
SDI_OUT± disabled  
OUT0± disabled  
mA  
mA  
mA  
mA  
SDI_IO± enabled  
SDI_OUT± disabled  
OUT0± enabled  
Current consumption, CD Mode  
CDR acquiring lock to 11.88  
Gbps,  
VOD = default,  
HEO/VEO lock monitor enabled  
225  
271  
290  
IDDTRANS_CD  
SDI_IO± enabled  
SDI_OUT± enabled  
OUT0± disabled  
SDI_IO± enabled  
SDI_OUT± enabled  
OUT0± enabled  
LVCMOS DC SPECIFICATIONS  
2-level input (SS_N, SCK, MOSI, EQ/  
CD_SEL, SDI_OUT_SEL, OUT0_SEL,  
ENABLE)  
0.72 ×  
VIN  
VIN +  
0.3  
V
V
V
V
VIH  
Logic high input voltage  
0.7 ×  
VIN  
2-level input (SCL, SDA)  
3.6  
2-level input (SS_N, SCK, MOSI, EQ/  
CD_SEL, SDI_OUT_SEL, OUT0_SEL,  
ENABLE, SCL, SDA)  
0.3 ×  
VIN  
VIL  
Logic low input voltage  
Logic high output voltage  
0
0.8 ×  
VIN  
VOH  
VIN  
IOH = 2 mA, (MISO)  
0.2 ×  
VIN  
IOL = 2 mA, (MISO)  
0
V
V
VOL  
Logic low output voltage  
IOL = 3 mA, (LOCK_N, SDA)  
0.4  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMH1297  
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
7.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LVCMOS (EQ/CD_SEL, SDI_OUT_SEL,  
ENABLE)  
15  
µA  
LVCMOS (OUT0_SEL)  
65  
10  
15  
10  
µA  
µA  
µA  
µA  
Input high leakage current  
(Vinput = VIN)  
IIH  
LVCMOS (LOCK_N)  
SPI mode: LVCMOS (SS_N, SCK, MOSI)  
SMBus mode: LVCMOS (SCL, SDA)  
LVCMOS (EQ/CD_SEL, SDI_OUT_SEL,  
ENABLE)  
µA  
50  
LVCMOS (OUT0_SEL)  
µA  
µA  
µA  
µA  
µA  
15  
10  
15  
50  
10  
Input low leakage current  
(Vinput = GND)  
LVCMOS (LOCK_N)  
IIL  
SPI mode: LVCMOS (SCK, MOSI)  
SPI mode: LVCMOS (SS_N)  
SMBus mode: LVCMOS (SCL, SDA)  
4-LEVEL LOGIC DC SPECIFICATIONS (APPLY TO ALL 4-LEVEL INPUT CONTROL PINS)  
Measured voltage at 4-level pin with  
external 1 kΩto VIN  
VLVL_H  
VLVL_F  
VLVL_R  
VLVL_L  
LEVEL-H input voltage  
LEVEL-F default voltage  
LEVEL-R input voltage  
LEVEL-L input voltage  
VIN  
V
V
V
V
2/3 ×  
VIN  
Measured voltage 4-level pin at default  
Measured voltage at 4-level pin with  
external 20 kΩto VSS  
1/3 ×  
VIN  
Measured voltage at 4-level pin with  
external 1 kΩto VSS  
0
4-levels (HOST_EQ0, MODE_SEL,  
OUT_CTRL, SDI_VOD)  
20  
20  
45  
45  
80  
80  
µA  
µA  
µA  
µA  
Input high leakage current  
(Vinput = VIN)  
IIH  
SMBus mode: 4-levels (ADDR0, ADDR1)  
4-levels (HOST_EQ0, MODE_SEL,  
OUT_CTRL, SDI_VOD)  
160  
160  
93  
93  
40  
40  
Input low leakage current  
(Vinput = GND)  
IIL  
SMBus mode: 4-levels (ADDR0, ADDR1)  
RECEIVER SPECIFICATIONS (SDI_IO+, EQ MODE)  
DC input single-ended  
RSDI_IO_TERM  
SDI_IO+ and SDI_IOto internal common  
mode bias  
63  
75  
87  
Ω
termination  
S11, 5 MHz to 1.485 GHz  
S11, 1.485 GHz to 3 GHz  
S11, 3 GHz to 6 GHz  
dB  
dB  
dB  
dB  
30  
22  
12  
8  
Input return loss at SDI_IO+  
reference to 75 Ω(1)  
RLSDI_IO_S11  
S11, 6 GHz to 12 GHz  
SDI_IO+ DC common-mode  
voltage  
Input DC common-mode voltage at  
SDI_IO+ or SDI_IO- to GND  
VSDI_IO_CM  
1.4  
100  
50  
V
SD, input signal at SDI_IO+,  
Input launch amplitude = 800 mVp-p  
mVp-p  
mVp-p  
VSDI_IO_WANDER Input DC wander  
HD, 3G, 6G, 12G, input signal at SDI_IO+,  
Input launch amplitude = 800 mVp-p  
RECEIVER SPECIFICATIONS (IN0±, CD MODE)  
RIN0_TERM  
DC input differential termination  
80  
100  
22  
16  
10  
120  
Measured across IN0+ to IN0–  
SDD11, 10 MHz 2.8 GHz  
SDD11, 2.8 GHz 6 GHz  
SDD11, 6 GHz 11.1 GHz  
Ω
dB  
dB  
dB  
RLIN0_SDD11  
Input differential return loss(1)  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMH1297  
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
7.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Differential to common-mode  
input conversion(1)  
RLIN0_SCD11  
VIN0_CM  
SCD11, 10 MHz to 11.1 GHz  
dB  
21  
Input common-mode voltage at IN0+ or  
IN0to GND  
DC common-mode voltage  
2.06  
20  
V
Signal detect (default)  
Assert ON threshold level for  
IN0±  
CDON_IN0  
11.88 Gbps PRBS10 pattern  
11.88 Gbps PRBS10 pattern  
mVp-p  
Signal detect (default)  
Deassert OFF threshold level  
for IN0±  
CDOFF_IN0  
18  
mVp-p  
DRIVER OUTPUT (SDI_IO+ AND SDI_OUT+, CD MODE)  
DC output single-ended  
termination  
SDI_IO+ and SDI_IO,  
SDI_OUT+ and SDI_OUTto VIN  
ROUT_TERM  
63  
75  
87  
Ω
Measure AC signal at SDI_IO+ and  
SDI_OUT+, with SDI_IOand SDI_OUT–  
AC terminated with 75 Ω  
840  
mVp-p  
SDI_VOD = H  
Output single-ended output  
voltage  
VODCD_OUTP  
SDI_VOD = F  
SDI_VOD = R  
SDI_VOD = L  
720  
800  
880  
760  
880  
mVp-p  
mVp-p  
mVp-p  
Measure AC signal at SDI_IOand  
SDI_OUT-, with SDI_IO+ and SDI_OUT+  
AC terminated with 75 Ω  
840  
mVp-p  
SDI_VOD = H  
Output single-ended output  
voltage  
VODCD_OUTN  
SDI_VOD = F  
SDI_VOD = R  
SDI_VOD = L  
720  
800  
880  
760  
880  
mVp-p  
mVp-p  
mVp-p  
Output pre-emphasis boost amplitude at  
SDI_IO+ and SDI_OUT+, programmed to  
maximum setting through register,  
measured at SDI_VOD=F  
PRECD_OUTP  
Output pre-emphasis  
Output pre-emphasis  
2
2
dB  
dB  
ps  
Output pre-emphasis boost amplitude at  
SDI_IOand SDI_OUT, programmed to  
maximum setting through register,  
measured at SDI_VOD=F  
PRECD_OUTN  
Measured with PRBS10 pattern, default  
VOD at 20% 80% amplitude, default pre-  
emphasis enabled  
34  
42  
11.88 Gbps  
tR_F_SDI  
Output rise and fall time(1)  
5.94 Gbps  
2.97 Gbps  
1.485 Gbps  
270 Mbps  
36  
59  
43  
67  
ps  
ps  
ps  
ps  
60  
73  
400  
550  
700  
Measured with PRBS10 pattern, default  
VOD at 20% 80% amplitude, default pre-  
emphasis enabled  
3
18  
ps  
11.88 Gbps  
Output rise and fall time  
mismatch(1)  
tR_F_DELTA  
5.94 Gbps  
2.97 Gbps  
1.485 Gbps  
270 Mbps  
2.7  
0.8  
0.8  
72  
12  
11  
ps  
ps  
ps  
ps  
12  
150  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMH1297  
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
7.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measured with PRBS10 pattern, default  
VOD, default pre-emphasis enabled(3)  
12G/6G/3G/HD/SD  
Output overshoot or  
undershoot(1)  
VOVERSHOOT  
5%  
VDC_OFFSET  
VDC_WANDER  
DC offset  
12G/6G/3G/HD/SD  
±0.2  
20  
V
DC wander  
3G/HD/SD with EQ pathological pattern  
S22, 5 MHz to 1.485 GHz  
S22, 1.485 GHz to 3 GHz  
S22, 3 GHz to 6 GHz  
mV  
dB  
dB  
dB  
dB  
25  
22  
12  
8  
Output return loss at SDI_IO+  
and SDI_OUT+ reference to 75  
Ω(1)  
RLCD_S22  
S22, 6 GHz to 12 GHz  
DRIVER OUTPUT (OUT0±, EQ AND CD MODE)  
DC output differential  
ROUT0_TERM  
80  
100  
410  
120  
620  
Measured across OUT0+ and OUT0–  
Ω
termination  
Measured with 8T pattern  
HOST_EQ0 = H  
mVp-p  
Output differential voltage at  
HOST_EQ0 = F  
HOST_EQ0 = R  
HOST_EQ0 = L  
485  
560  
635  
810  
mVp-p  
mVp-p  
mVp-p  
VODOUT0  
OUT0±  
Measured with 8T pattern  
HOST_EQ0 = H  
410  
mVp-p  
De-emphasized output  
VODOUT0_DE  
HOST_EQ0 = F  
HOST_EQ0 = R  
HOST_EQ0 = L  
550  
545  
532  
mVp-p  
mVp-p  
mVp-p  
differential voltage at OUT0±  
Measured with 8T Pattern, 20% 80%  
amplitude  
tR/tF  
Output rise and fall time  
45  
ps  
Measured with the device powered up and  
outputs a 10-MHz clock signal  
dB  
24  
SDD22, 10 MHz 2.8 GHz  
RLOUT0-SDD22  
Output differential return loss(1)  
dB  
dB  
SDD22, 2.8 GHz 6 GHz  
SDD22, 6 GHz 11.1 GHz  
16  
15  
Measured with the device powered up and  
outputs a 10-MHz clock signal.  
SCC22, 10 MHz 4.75 GHz  
dB  
12  
Output common-mode return  
loss(1)  
RLOUT0-SCC22  
dB  
SCC22, 4.75 GHz 11.1 GHz  
9  
AC common-mode voltage on  
OUT0±(1)  
VOUT0_CM  
Default setting, PRBS31, 11.88 Gbps  
8
mV (rms)  
RECLOCKER OUTPUT JITTER (EQ MODE)  
Measured at OUT0±, with SDI_OUT  
disabled (BER 1E-12), PRBS10,  
TX launch amplitude = 800 mVp-p before  
cable to SDI_IO+  
0.14  
0.18  
11.88 Gbps: 75-m Belden 1694A  
Total jitter, reclocked output(1)  
TJEQ_MODE  
UIp-p  
(2)  
5.94 Gbps: 120-m Belden 1694A  
2.97 Gbps: 200-m Belden 1694A  
1.485 Gbps: 300-m Belden 1694A  
270 Mbps: 600-m Belden 1694A  
0.1  
0.1  
0.1  
0.11  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LMH1297  
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
7.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measured at OUT0±, with SDI_OUT  
disabled (BER 1E-12), PRBS10,  
TX launch amplitude = 800 mVp-p before  
cable to SDI_IO+  
TJRAW  
Total jitter, with CDR bypassed  
0.2  
UIp-p  
125 Mbps: 600-m Belden 1694A  
RECLOCKER OUTPUT JITTER (CD MODE)  
Measured at SDI_IO+ and SDI_OUT+,  
OUT0± disabled  
PRBS10, 3G/HD/SD12G/6G/3G/HD/SD  
AJCD_MODE  
Alignment jitter(1)  
Timing jitter(1)  
0.1  
0.14  
UI  
UI  
Measured at SDI_IO+ and SDI_OUT+,  
OUT0± disabled  
TMJCD_MODE  
0.45  
PRBS10, 12G/6G/3G/HD/SD  
RECLOCKER SPECIFICATIONS (EQ MODE UNLESS OTHERWISE SPECIFIED)  
SMPTE 12G, /1  
SMPTE 12G, /1.001  
SMPTE 6G, /1  
11.88  
11.868  
5.94  
Gbps  
Gbps  
Gbps  
Gbps  
Gbps  
Gbps  
Gbps  
Gbps  
Mbps  
SMPTE 6G, /1.001  
5.934  
2.97  
LOCKRATE  
Reclocker lock data rates  
SMPTE 3G, /1  
SMPTE 3G, /1.001  
SMPTE HD, /1  
2.967  
1.485  
1.4835  
270  
SMPTE HD, /1.001  
SMPTE SD, /1  
Reclocker automatically goes to  
bypass  
BYPASSRATE  
MADI  
125  
Mbps  
Applied 0.2 UI input sinusoidal jitter,  
measure 3-dB bandwidth on input-to-  
output jitter transfer  
13  
MHz  
11.88 Gbps  
BWPLL  
PLL Bandwidth  
5.94 Gbps  
2.97 Gbps  
1.485 Gbps  
270 Mbps  
7
5
3
1
MHz  
MHz  
MHz  
MHz  
11.88 Gbps, 5.94 Gbps, 2.97 Gbps,  
1.485 Gbps, 270 Mbps  
JPEAKING  
PLL jitter peaking  
<0.3  
dB  
Sinusoidal jitter tolerance,  
tested at 3G, 6G and 12G,  
SJ amplitude swept from 1 MHz to 80 MHz,  
tested at BER 1E-12, cable equalizer at  
SDI_IO+ bypassed  
JTOL_IN  
SDI_IO+ input jitter tolerance  
0.65  
UI  
SMPTE supported data rates, disable  
HEO/VEO monitor, cable equalizer at  
SDI_IO+ bypassed  
TLOCK  
Lock time  
5
5
ms  
ms  
°C  
Adaptation time for cable equalizer at  
SDI_IO+, reclocker bypassed  
TADAPT  
EQ adapt time at EQ Mode  
VCO temperature lock range  
Measured with temperature ramp of 5°C per  
min, ramp up and down, 40°C to 85°C  
operating range at 11.88 Gbps  
TEMPLOCK  
125  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMH1297  
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
7.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Measured from SDI_IO+ to OUT0, 11.88  
Gbps, SDI_IO+, 75-m Belden 1694A at  
SDI_IO+  
1.4 UI +  
465  
ps  
TLATEQ_MODE  
Reclocker latency at EQ Mode  
Measured from SDI_IO+ to SDI_OUT+,  
11.88 Gbps, SDI_IO+, 75-m Belden 1694A  
at SDI_IO+  
1.7 UI +  
415  
ps  
Measured from IN0± to SDI_IO+, 11.88  
Gbps  
1.5 UI +  
175  
ps  
ps  
TLATCD_MODE  
Reclocker latency at CD Mode  
Measured from IN0± to SDI_OUT+, 11.88  
Gbps  
1.6 UI +  
130  
(1) This parameter is measured with the LMH1297EVM (Evaluation board for LMH1297).  
(2) This limit is ensured by bench characterization and is not production tested.  
(3) VOVERSHOOT overshoot/undershoot maximum measurements are largely affected by the PCB layout and input test pattern. The  
maximum value specified in 7.5 for VOVERSHOOT is based on bench evaluation across temperature and supply voltages with the  
LMH1297EVM.  
7.6 Recommended SMBus Interface Timing Specifications  
over recommended operating supply and temperature ranges unless otherwise specified(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
FSCL  
TBUF  
SMBUS SCL frequency  
10  
400  
kHz  
Bus free time between stop and start  
condition  
1.3  
µs  
See 7-1.  
THD:STA  
TSU:STA  
TSU:STO  
THD:DAT  
TSU:DAT  
TLOW  
Hold time after (repeated) start condition.  
Repeated start condition setup time  
Stop condition setup time  
Data hold time  
After this period, the first clock is generated.  
0.6  
0.6  
0.6  
0
µs  
µs  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
See 7-1.  
See 7-1.  
See 7-1.  
See 7-1.  
See 7-1.  
See 7-1.  
See 7-1.  
See 7-1.  
Data setup time  
100  
1.3  
0.6  
Clock low period  
THIGH  
TR  
Clock high period  
Clock and data rise time  
Clock and data fall time  
300  
300  
TF  
Time from minimum VDDIO to SMBus valid  
write or read access  
TPOR  
SMBus ready time after POR  
50  
ms  
(1) These parameters support SMBus 2.0 specifications.  
7.7 Serial Parallel Interface (SPI) Timing Specifications  
over recommended operating supply and temperature ranges unless otherwise specified(1) (2)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
FSCK  
TPH  
SPI SCK frequency  
20  
MHz  
% SCK  
period  
SCK pulse width high  
SCK pulse width low  
40  
40  
See 7-2 and 7-3  
% SCK  
period  
TPL  
TSU  
MOSI setup time  
MOSI hold time  
SS setup time  
SS hold time  
SS off time  
4
4
ns  
ns  
ns  
ns  
µs  
See 7-2 and 7-3  
See 7-2 and 7-3  
TH  
TSSSU  
TSSH  
TSSOF  
14  
4
1
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMH1297  
 
 
 
 
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
over recommended operating supply and temperature ranges unless otherwise specified(1) (2)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
20  
MAX  
UNIT  
ns  
TODZ  
TOZD  
TOD  
MISO driven-to-tristate time  
MISO tristate-to-driven time  
MISO output delay time  
10  
ns  
See 7-2 and 7-3  
15  
ns  
(1) Typical SPI load capacitance is 2 pF.  
(2) It is recommended to initiate SPI access 16 mS after power up.  
ttLOW  
t
tR  
tHIGH  
SCL  
SDA  
ttHD:STA  
t
tHD:DAT  
tSU:STA  
tF  
tSU:STO  
ttBUF  
t
tSU:DAT  
SP  
ST  
ST  
SP  
7-1. SMBus Timing Parameters  
tSSOF  
tSSH  
SS_N  
SCK  
tPL  
tSSSU  
tPH  
tH  
tSU  
HiZ  
MOSI  
MISO  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
tODZ  
HiZ  
R/W  
A7'  
A6'  
A5'  
A4'  
A3'  
A2'  
A1'  
A0'  
D7'  
D6'  
D5'  
D4'  
D3'  
D2'  
D1'  
D0'  
7-2. SPI Timing Parameters (Write Operation)  
tSSOF  
SS_N  
(host)  
tSSOF  
tSSSU  
tPH  
tPL  
tSSH  
SCK  
(host)  
tH  
8X1“  
17X1“  
tSU  
MOSI  
(host)  
A7 A6 A5 A4 A3 A2 A1 A0  
1
tOD  
tODZ  
tOZD  
MISO  
(device)  
A7' A6' A5' A4' A3' A2' A1' A0' D7' D6' D5' D4' D3' D2' D1' D0'  
1
Don‘t Care  
7-3. SPI Timing Parameters (Read Operation)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMH1297  
 
 
 
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
7.8 Typical Characteristics  
TA = 25°C and VIN = VDD_CDR = 2.5 V (unless otherwise noted)  
7-4. EQ Mode at 11.88 Gbps, Measured at  
OUT0±, 75-m Belden 1694A Before SDI_IO+  
7-5. CD Mode at 11.88 Gbps, Measured at  
SDI_IO+, 20-in. FR4 Before IN0±  
1.0  
0
DE = 0  
DE = 1  
DE = 2  
DE = 3  
DE = 4  
DE = 5  
DE = 6  
DE = 7  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
œ2  
œ4  
œ6  
œ8  
œ10  
œ12  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
VOD Register Settings  
VOD Register Settings  
C002  
C001  
7-7. OUT0 De-Emphasis vs. OUT0 VOD and DE  
7-6. OUT0 VOD vs. OUT0 VOD and DE Register  
Register Settings  
Settings  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
SDI_IO+ (EQ Mode)  
SDI_IO+ (CD Mode)  
SDI_OUT+ (EQ or CD Mode)  
SMPTE RL Specification Limit  
0
2
4
6
8
10  
12  
Frequency (GHz)  
C001  
Measured with LMH1297EVM  
7-8. Return Loss (RL) vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LMH1297  
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
8 Detailed Description  
8.1 Overview  
The LMH1297 is a 12G UHD-SDI 75-bidirectional I/O with integrated reclocker. This device can be configured  
either as an adaptive cable equalizer or as a cable driver with integrated reclocker, supporting all SMPTE video  
rates up to 11.88 Gbps. The bidirectional I/O has an on-chip 75-termination and return loss compensation  
network that provides ease of use and meets stringent SMPTE return loss requirements. The LMH1297 allows  
system designers the flexibility to use a single BNC either as an input or output port, simplifying UHD video  
hardware designs.  
Equalizer mode (EQ mode): SDI_IO+ is configured as a 75-adaptive cable equalizer. The input signal then  
goes through a reclocker, followed by a 100-driver with de-emphasis at OUT0±. A second 75-cable driver  
provides a reclocked loop-through output of SDI_IO+ at SDI_OUT+. This second signal path from SDI_IO+ to  
SDI_OUT+ forms a SDI cable loop-through.  
Cable Driver mode (CD mode): SDI_IO+ is configured as a 75-cable driver with a reclocked signal sourced  
from IN0±. SDI_OUT+ serves as a second 75-cable driver to offer 1:2 fan-out buffering from IN0± to SDI_IO+  
and SDI_OUT+. The 100-driver at OUT0± can be used as a host-side loop-back output for monitoring  
purposes.  
The on-chip reclocker attenuates high-frequency jitter and fully regenerates the data using a clean, low-jitter  
clock. The reclocker has a built-in loop filter and does not require any input reference clock. The LMH1297 also  
has an internal eye opening monitor and a programmable pin for CDR lock indication, input carrier detect, or  
hardware interrupts to support system diagnostics and board bring-up.  
The LMH1297 is powered from a single 2.5-V supply with an on-chip 1.8-V LDO regulator. The operating state of  
the LMH1297 can be configured through control pins, SPI, or SMBus serial control interface. In the absence of  
an input signal, the LMH1297 automatically goes into Power Save mode. Users can also set the device into  
power-down operation through the ENABLE control pin. The LMH1297 is offered in a small 5-mm × 5-mm, 32-  
pin QFN package.  
8.2 Functional Block Diagram  
Cable  
EQ  
100-Ω  
Driver  
M
U
X
SDI_IO  
OUT0  
M
U
X
CDR  
TX_RX  
Cable  
Driver  
PCB  
EQ  
IN0  
Cable  
Driver  
SDI_OUT  
Control  
Power  
Management  
Serial  
Interface  
LDO  
Control Logic  
Copyright © 2016, Texas Instruments Incorporated  
8-1. LMH1297 Block Diagram Overview  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMH1297  
 
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
备注  
Only one I/O path can be active at a time. In EQ mode, the cable equalizer at SDI_IO is enabled, and  
the SDI_IO cable driver is powered down. In CD mode, the cable driver at SDI_IO is enabled, and the  
SDI_IO cable equalizer is powered down.  
8.3 Feature Description  
The LMH1297 data path consists of several key blocks as shown in the functional block diagram. These key  
blocks are:  
4-Level Input Pins and Thresholds  
Equalizer (EQ) and Cable Driver (CD) Mode Control  
Input Carrier Detect  
6-dB Splitter Mode Launch Ampiltude for SDI_IO+ (EQ Mode Only)  
Continuous Time Linear Equalizer (CTLE)  
Clock and Data (CDR) Recovery  
Internal Eye Opening Monitor (EOM)  
Output Function Control  
Output Driver Control  
Status Indicators and Interrupts  
8.3.1 4-Level Input Pins and Thresholds  
The 4-level input configuration pins use a resistor divider to provide four logic states for each control pin. There  
is an internal 30-kpullup and a 60-kpulldown connected to the control pin that sets the default voltage at 2/3  
× VIN. These resistors are combined with the external resistor to achieve the desired voltage level. By using the  
1-kpulldown, 20-kpulldown, no connect, and 1-kpullup, the optimal voltage levels for each of the four input  
states are achieved as shown in 8-1.  
8-1. 4-Level Control Pin Settings  
LEVEL  
SETTING  
NOMINAL PIN VOLTAGE  
H
F
R
L
VIN  
2/3 × VIN  
1/3 × VIN  
0
Tie 1 kΩto VIN  
Float (leave pin open)  
Tie 20 kΩto VSS  
Tie 1 kΩto VSS  
Typical 4-Level Input Thresholds:  
Internal Threshold between L and R = 0.2 × VIN  
Internal Threshold between R and F = 0.5 × VIN  
Internal Threshold between F and H = 0.8 × VIN  
8.3.2 Equalizer (EQ) and Cable Driver (CD) Mode Control  
The input and output signal flow of the LMH1297 is determined by the EQ/CD_SEL, OUT0_SEL, and  
SDI_OUT_SEL pins.  
8.3.2.1 EQ/CD_SEL Control  
The EQ/CD_SEL pin selects the I/O as either an input (EQ mode) or an output (CD mode). The logic level  
applied to the EQ/CD_SEL pin automatically powers down the unused I/O direction. For example, if the  
LMH1297 is in EQ mode (EQ/CD_SEL = L), then the SDI_IO cable driver is powered down.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMH1297  
 
 
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
8-2. EQ/CD_SEL Pin Settings  
EQ/CD_SEL  
INPUT  
MODE  
NOTES  
75-video input to SDI_IO+.  
L
SDI_IO+  
EQ mode  
CD mode  
OUT0± automatically enabled.  
SDI_IO Cable Driver powered down.  
100-input to IN0±.  
SDI_IO+ enabled as a cable driver output.  
SDI_OUT programmable as a secondary cable driver output.  
SDI_IO Equalizer powered down.  
H
IN0±  
The EQ/CD_SEL pin should be strapped at power up for normal operation. After power up, the EQ/CD_SEL pin  
state can be dynamically changed from EQ mode to CD mode and vice versa. When changing the EQ/CD_SEL  
state after power up, the signal flow to the reclocker is momentarily disturbed, and the chip automatically initiates  
a CDR reset to relock to the new input signal.  
8.3.2.2 OUT0_SEL and SDI_OUT_SEL Control  
The OUT0_SEL and SDI_OUT_SEL pins work in conjunction with the EQ/CD_SEL pin to select the LMH1297  
data-path routes. 8-3 shows all possible signal path combinations and typical use cases for each  
configuration.  
8-3. LMH1297 Signal Path Combinations  
LINE SIDE  
HOST SIDE  
EQ/CD_SEL  
(MODE)  
MAIN  
OUTPUT  
OUT0_SEL SDI_OUT_SEL  
INPUT  
LOOP-THRU LOOP-BACK TYPICAL APPLICATION  
OUTPUT  
OUTPUT  
X
X
H
L
SDI_IO+  
SDI_IO+  
OUT0±  
OUT0±  
Adaptive cable equalizer  
L
Adaptive cable equalizer with line-side loop-through  
output  
(EQ mode)  
SDI_OUT±  
H
H
L
H
L
IN0±  
IN0±  
IN0±  
IN0±  
SDI_IO+  
SDI_IO+  
SDI_IO+  
SDI_IO+  
Single cable driver  
SDI_OUT±  
SDI_OUT±  
Dual cable drivers  
H
(CD mode)  
H
L
OUT0±  
OUT0±  
Single cable driver with host-side loop-back enabled  
Dual cable drivers with host-side loop-back enabled  
L
8.3.3 Input Carrier Detect  
SDI_IO (in EQ mode) and IN0 have a carrier detect circuit to monitor the presence or absence of an input signal.  
When the input signal amplitude for the selected input exceeds the carrier detect assert threshold, the LMH1297  
operates in normal operation mode.  
In the absence of an input signal, the LMH1297 automatically goes into Power Save mode to conserve power  
dissipation. When a valid signal is detected, the LMH1297 automatically exits Power Save mode and returns to  
the normal operation mode. If the ENABLE pin is pulled low, the LMH1297 is forced into Power-Down mode. In  
Power Save mode, both the carrier detect circuit and the serial interface remain active. In Power-Down mode,  
only the serial interface remains active.  
Users can monitor the status of the carrier detect through register programming. This can be done either by  
configuring the LOCK_N pin to output the CD_N status or by monitoring the carrier detect status register.  
8-4. Input Carrier Detect Modes of Operation  
ENABLE  
EQ/CD_SEL  
SIGNAL INPUT  
OPERATING MODE  
EQ mode, normal operation  
Carrier detector at SDI_IO+  
Serial interface active  
H
L
75-video input at SDI_IO+  
OUT0 automatically enabled, regardless of OUT0_SEL setting  
Power Save mode  
H
L
No signal at SDI_IO+  
Carrier detector at SDI_IO+  
Serial interface active  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMH1297  
 
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
8-4. Input Carrier Detect Modes of Operation (continued)  
ENABLE  
EQ/CD_SEL  
SIGNAL INPUT  
OPERATING MODE  
CD mode, normal operation  
Carrier detector at IN0±  
Serial interface active  
H
H
100-signal input at IN0±  
Power Save mode  
H
L
H
X
No signal at IN0±  
Carrier detector at IN0±  
Serial interface active  
Power Down mode  
Forced device power down  
Serial interface active  
Input signal ignored  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LMH1297  
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
8.3.4 6-dB Splitter Mode Launch Amplitude for SDI_IO+ (EQ Mode Only)  
When placed in EQ mode, the LMH1297 equalizes data transmitted into SDI_IO through a coaxial cable driven  
by a SMPTE compatible cable driver with launch amplitude of 800 mVp-p ± 10%. In applications where a 1:2  
passive splitter is used, the signal amplitude is reduced by half due to the 6-dB insertion loss of the splitter. The  
LMH1297 can support 6-dB splitter mode for the SDI_IO input through register control. For more information,  
refer to the LMH1297 Programming Guide.  
8.3.5 Continuous Time Linear Equalizer (CTLE)  
The LMH1297 has two continuous time linear equalizer (CTLE) blocks, one for SDI_IO in EQ mode and another  
for IN0 in CD mode. The CTLE compensates for frequency-dependent loss due to the transmission media prior  
to the device input. The CTLE accomplishes this by applying variable gain to the input signal, thereby boosting  
higher frequencies more than lower frequencies. The CTLE block extends the signal bandwidth, restores the  
signal amplitude, and reduces ISI caused by the transmission medium.  
8.3.5.1 Line-Side Adaptive Cable Equalizer (SDI_IO+ in EQ mode)  
If the LMH1297 is placed in EQ mode (EQ/CD_SEL = L), adaptive cable equalization is enabled for SDI_IO.  
While the LMH1297 is in EQ mode, IN0 EQ is powered down.  
SDI_IO has an on-chip 75-Ω termination to the input common-mode voltage and includes a series return loss  
compensation network for meeting stringent SMPTE return loss requirements (see 7-8). The cable equalizer  
is designed with high gain and low noise circuitry to compensate for the insertion loss of a coaxial cable (such as  
Belden 1694A), which is widely used in broadcast video infrastructures.  
8.3.5.2 Host-Side Adaptive PCB Trace Equalizer (IN0± in CD Mode)  
If the LMH1297 is placed in CD mode (EQ/CD_SEL = H), then PCB trace equalization is enabled for IN0. While  
the LMH1297 is in CD mode, SDI_IO EQ is powered down.  
IN0 has an on-chip 100-Ω termination and is designed for AC coupling, requiring a 4.7-μF, AC-coupling  
capacitor for minimizing base-line wander. The PCB equalizer can compensate up to 20 inches of board trace at  
data rates up to 11.88 Gbps. There are two adapt modes for IN0: AM0 manual mode and AM1 adaptive mode. In  
AM0 manual mode, fixed EQ boost settings are applied through user-programmable control. In AM1 adaptive  
mode, state machines automatically find the optimal EQ boost from a set of 16 predetermined settings defined in  
Registers 0x40-0x4F.  
In CD mode, the HOST_EQ0 pin determines the IN0 adapt mode and EQ boost level. For normal operation,  
HOST_EQ0 = F is recommended. HOST_EQ0 pin logic settings are shown in 8-5. These HOST_EQ0 pin  
settings can be overridden by register control. For more information, refer to the LMH1297 Programming Guide.  
8-5. HOST_EQ0 Pin EQ Settings in CD mode (EQ/CD_SEL = H)  
RECOMMENDED BOARD  
HOST_EQ0(1) IN0± EQ BOOST(2)  
TRACE IN0±(3)  
H
All Rates: AM0 Manual mode, EQ=0x00  
< 1 inch  
Normal Operation  
F
12G to 3G Rates: AM1 Adaptive mode  
1.5G, 270M Rates: AM0 Manual mode, EQ= 0x00  
0-20 inches  
R
L
All Rates: AM0 Manual mode, EQ=0x80  
All Rates: AM0 Manual mode, EQ=0x90  
10-15 inches  
20 inches  
(1) The HOST_EQ0 pin is also used to set OUT0 VOD and de-emphasis values. See 8.3.9.2 for  
more information.  
(2) When the LMH1297 is in EQ mode, IN0 EQ settings are ignored, because IN0 EQ is powered  
down.  
(3) Recommended board trace at 11.88 Gbps.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMH1297  
 
 
 
 
 
 
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
8.3.6 Clock and Data (CDR) Recovery  
After the input signal passes through the CTLE, the equalized data is fed into the clock and data recovery (CDR)  
block. Using an internal PLL, the CDR locks to the incoming equalized data and recovers a clean internal clock  
to re-sample the equalized data. The LMH1297 CDR is able to tolerate high input jitter, tracking low-frequency  
input jitter below the PLL bandwidth while reducing high-frequency input jitter above the PLL bandwidth. The  
supported data rates are listed in 8-6.  
8-6. Supported Data Rates  
INPUT  
DATA RATE  
11.88 Gbps, 5.94 Gbps, 2.97 Gbps, 1.485 Gbps, 270 Mbps(1)  
125 Mbps  
RECLOCKER  
Enable  
SDI_IO+ (EQ mode),  
IN0± (CD mode)  
Bypass  
(1) The LMH1297 supports divide-by-1.001 lock rates for 11.88 Gbps, 5.94 Gbps, 2.97 Gbps, and  
1.485 Gbps.  
8.3.7 Internal Eye Opening Monitor (EOM)  
The LMH1297 has an on-chip eye opening monitor (EOM) that can be used to analyze, monitor, and diagnose  
the post-equalized waveform, just prior to the CDR reclocker. The EOM is operational for 2.97 Gbps and higher  
data rates.  
The EOM monitors the post-equalized waveform in a time window that spans one unit interval and a configurable  
voltage range that spans up to ±400 mV. The time window and voltage range are divided into 64 steps, so the  
result of the eye capture is a 64 × 64 matrix of hits, where each point represents a specific voltage and phase  
offset relative to the main data sampler. The number of hits registered at each point needs to be taken in context  
with the total number of bits observed at that voltage and phase offset to determine the corresponding probability  
for that point.  
The resulting 64 × 64 matrix produced by the EOM can be processed by software and visualized in a number of  
ways. 8-2 and 8-3 show two common ways to visualize this data. These diagrams depict examples of eye  
monitor plots implemented by software. The first plot is an example using the EOM data to plot a basic eye using  
ASCII characters, which can be useful for diagnostic software. The second plot shows the first derivative of the  
EOM data, revealing the density of hits and the actual waveforms and crossings that comprise the eye.  
8-2. Internal Input Eye Monitor Plot  
8-3. Internal Eye Monitor Hit Density Plot  
A common measurement performed by the EOM is the horizontal and vertical eye opening. The horizontal eye  
opening (HEO) represents the width of the post-equalized eye at 0-V differential amplitude, measured in unit  
intervals or picoseconds (ps). The vertical eye opening (VEO) represents the height of the post-equalized eye,  
measured midway between the mean zero crossing of the eye. This position in time approximates the CDR  
sampling phase. HEO and VEO measurements can be read back through register control.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMH1297  
 
 
 
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
8.3.8 Output Function Control  
The LMH1297 output function control for data routed to outputs SDI_IO (in CD mode), SDI_OUT, and OUT0 is  
configured by the OUT_CTRL pin. The OUT_CTRL pin determines whether to bypass the input equalizer,  
reclocker, or both. In normal operation (OUT_CTRL = F), both input equalizer and reclocker are enabled.  
8-7 lists the OUT_CTRL pin logic settings. These settings can be overridden through register control by  
applying the appropriate override bit values. For more information, refer to the LMH1297 Programming Guide.  
8-7. OUT_CTRL Settings for Bypass Modes  
EQ/CD_SEL  
(MODE)  
SDI_IO+ CABLE  
EQUALIZER  
IN0± PCB  
EQUALIZER  
OUT_CTRL  
RECLOCKER SUMMARY  
Input SDI_IO cable equalizer bypassed  
Reclocker enabled  
H
Bypass  
Enable  
N/A  
N/A  
Enable  
Enable  
Normal operation  
Input SDI_IO cable equalizer enabled  
Reclocker enabled  
F
L
(EQ mode)  
Input SDI_IO cable equalizer bypassed  
Reclocker bypassed  
R
L
Bypass  
Enable  
N/A  
N/A  
Bypass  
Bypass  
Input SDI_IO cable equalizer enabled  
Reclocker bypassed  
Normal operation  
H, F  
R, L  
N/A  
N/A  
Enable  
Enable  
Enable  
Bypass  
Input IN0 equalizer enabled  
Reclocker enabled  
H
(CD mode)  
Input IN0 equalizer enabled in AM0 manual mode.  
IN0 EQ settings configurable by HOST_EQ0 pin.  
Reclocker bypassed  
8.3.9 Output Driver Control  
8.3.9.1 Line-Side Output Cable Driver (SDI_IO+ in CD mode, SDI_OUT+ in EQ or CD mode)  
The LMH1297 has two output cable driver (CD) blocks, one for SDI_IO in CD mode and another for SDI_OUT.  
These SDI outputs are designed to drive 75-single-ended coaxial cables at data rates up to 11.88 Gbps. Both  
SDI_IO and SDI_OUT feature an integrated 75-termination and return loss compensation network for meeting  
stringent SMPTE return loss requirements (see 7-8).  
8.3.9.1.1 Output Amplitude (VOD)  
In CD mode (EQ/CD_SEL = H), SDI_IO is enabled as an SDI cable driver output. In either CD or EQ mode,  
SDI_OUT is an SDI cable driver output. In EQ mode, SDI_OUT serves as a loop-through output, and in CD  
mode, SDI_OUT serves as a secondary cable driver output.  
SDI_IO (in CD mode) and SDI_OUT are designed for transmission across 75-Ω single-ended impedance. The  
nominal SDI cable driver output amplitude (VOD) is 800 mVp-p single-ended. In the presence of long output  
cable lengths or crosstalk, the SDI_VOD pin can be used to optimize the cable driver output with respect to the  
nominal amplitude. 8-8 details VOD settings that can be applied to both SDI_IO and SDI_OUT. The SDI_VOD  
pin can be overridden through register control. In addition, the nominal VOD amplitude can be changed by  
register control. For more information, refer to the LMH1297 Programming Guide.  
8-8. SDI_VOD Settings for Line-Side Output Amplitude  
SDI_VOD  
DESCRIPTION  
H
F
R
L
about +5% of nominal  
800 mVp-p (nominal)  
about +10% of nominal  
about 5% of nominal  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMH1297  
 
 
 
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
8.3.9.1.2 Output Pre-Emphasis  
In addition to SDI cable driver VOD control, the LMH1297 can add pre-emphasis on the cable driver output to  
improve output signal integrity when the reclocker recovers a UHD (12G, 6G) or HD (3G, 1.5G) input data rate.  
By default, the LMH1297 in CD mode automatically enables pre-emphasis to SDI_IO at UHD (12G, 6G) rates,  
and pre-emphasis is disabled at SDI_IO for all other data rates. To minimize the effects of crosstalk on SDI_IO in  
either EQ or CD mode, pre-emphasis is disabled by default at SDI_OUT for all data rates. When enabled, the  
amount of pre-emphasis applied to the cable driver outputs is determined by register control. If the reclocker is  
bypassed or if the user desires to disable automatic pre-emphasis, pre-emphasis can be enabled manually  
through register control. For more information, refer to the LMH1297 Programming Guide.  
8.3.9.1.3 Output Slew Rate  
SMPTE specifications require different output driver rise and fall times depending on the operating data rate. To  
meet these requirements, the output edge rate of SDI_IO and SDI_OUT is automatically programmed according  
to the signal recovered by the reclocker. Typical edge rates at the cable driver output are shown in 8-9.  
8-9. SDI_IO and SDI_OUT Output Edge Rate  
CABLE DRIVER OUTPUT  
DETECTED DATA RATE  
EDGE RATE (TYP)  
11.88 Gbps  
5.94 Gbps  
2.97 Gbps  
1.485 Gbps  
270 Mbps  
34 ps  
36 ps  
59 ps  
60 ps  
550 ps  
If the reclocker is bypassed, users must program the desired edge rate manually through register control. For  
more information, refer to the LMH1297 Programming Guide.  
8.3.9.1.4 Output Polarity Inversion  
Polarity inversion is supported on both SDI_IO and SDI_OUT outputs through register control.  
8.3.9.2 Host-Side 100-Output Driver (OUT0± in EQ or CD mode)  
OUT0 is a 100-driver output. In EQ mode, OUT0 serves as a host-side output from the SDI_IO cable  
equalizer. In CD mode, OUT0 serves as a host-side loop-back output. OUT0 also supports polarity inversion.  
备注  
In EQ mode, OUT0 is enabled by default, regardless of the logic applied to the OUT0_SEL pin.  
The driver offers users the capability to select higher output amplitude and de-emphasis levels for longer board  
trace that connects the drivers to their downstream receivers. Driver de-emphasis provides transmitter  
equalization to reduce the ISI caused by the board trace.  
In EQ mode, the HOST_EQ0 pin determines the output amplitude (VOD) and de-emphasis levels applied to the  
OUT0 PCB driver. In CD mode, the VOD and de-emphasis levels for OUT0 are set by default to 570 mVp-p and  
0.4 dB. These settings can be changed through register control if desired.  
8-10 details the OUT0 VOD and de-emphasis settings that can be applied. The HOST_EQ0 pin settings can  
be overridden by register control. When these parameters are controlled by registers, the VOD and de-emphasis  
levels can be programmed independently. For more information, refer to the LMH1297 Programming Guide.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LMH1297  
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
8-10. HOST_EQ0 Pin VOD and DEM Settings  
EQ/CD_SEL  
(MODE)  
OUT0± VOD  
(mVp-p)  
OUT0± DEM  
(dB)  
RECOMMENDED BOARD  
TRACE AT OUT0±(2)  
HOST_EQ(1)  
H
F
R
L
400  
570  
660  
830  
0
< 1 inch  
1-2 inches  
4-5 inches  
8-10 inches  
0.4  
2.1  
4.4  
L
(EQ mode)  
H
X
570  
1-2 inches  
0.4  
(CD mode)  
(1) The HOST_EQ0 pin is also used to set the IN0 EQ values when the LMH1297 is in CD mode. See  
8.3.5.2 for more information.  
(2) Recommended board trace at 11.88 Gbps.  
8.3.10 Status Indicators and Interrupts  
The LOCK_N pin is a 3.3-V tolerant, active-low, open-drain output. An external resistor to the logic supply is  
required. The LOCK_N pin can be configured to indicate reclocker lock, input carrier detect, or an interrupt  
event.  
8.3.10.1 LOCK_N (Lock Indicator)  
By default, LOCK_N is the reclocker lock indicator, and this pin asserts low when the LMH1297 achieves lock to  
a valid SMPTE data rate. The LOCK_N pin functionality can also be configured through register control to  
indicate CD_N (carrier detect) or INT_N (interrupt) events. For more information about how to reconfigure the  
LOCK_N pin functionality, refer to the LMH1297 Programming Guide.  
8.3.10.2 CD_N (Carrier Detect)  
The LOCK_N pin can be reconfigured through register control to indicate a CD_N (carrier detect) event. When  
configured as a CD_N output, the pin asserts low at the end of adaptation after a valid signal is detected by the  
carrier detect circuit of the selected input. Under register control, this pin can be reconfigured to indicate CD_N  
for SDI_IO (in EQ mode) or IN0 (in CD mode). For more information about how to configure the LOCK_N pin for  
CD_N functionality, refer to the LMH1297 Programming Guide.  
8.3.10.3 INT_N (Interrupt)  
The LOCK_N pin can be configured to indicate an INT_N (interrupt) event. When configured as an INT_N  
output, the pin asserts low when an interrupt occurs, according to the programmed interrupt masks. Seven  
separate masks can be programmed through register control as interrupt sources:  
If there is a loss of signal (LOS) event on SDI_IO in EQ mode (2 separate masks).  
If there is a loss of signal (LOS) event on IN0 in CD mode (2 separate masks).  
If HEO or VEO falls below a certain threshold after CDR is locked (1 mask).  
If a CDR Lock event has occurred (2 separate masks).  
INT_N is a sticky bit, meaning that it will flag after an interrupt occurs and will not clear until read-back. Once the  
Interrupt Status Register is read, the INT_N pin will assert high again. For more information about how to  
configure the LOCK_N pin for INT_N functionality, refer to the LMH1297 Programming Guide.  
8.3.11 Additional Programmability  
The LMH1297 supports extended programmability through SPI or SMBus serial control interface. Such added  
programmability includes:  
Cable EQ Index (CEI)  
Digital MUTEREF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LMH1297  
 
 
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
8.3.11.1 Cable EQ Index (CEI)  
The Cable EQ Index (CEI) indicates the cable EQ boost index used at SDI_IO+ in EQ mode. CEI is accessible  
through ConfigIO Page Reg 0x25[5:0]. The 6-bit setting ranges in decimal value from 0 to 55 (000000'b to  
110111'b in binary), with higher values corresponding to larger gain applied at the SDI_IO+ input.  
8.3.11.2 Digital MUTEREF  
Digital MUTEREF ConfigIO Page Reg 0x03[5:0] sets the threshold for the maximum cable length at SDI_IO+ to  
be equalized before muting the outputs. The MUTEREF register value is directly proportional to the cable length  
being equalized. MUTEREF is data rate dependent. Follow the steps below to set the MUTEREF register setting  
for any desired SDI rate:  
1. Connect the desired input cable length at which the driver output needs to be muted.  
2. Send video patterns to SDI_IO+ at the SD rate (270 Mbps). At SD, the Cable EQ Index (CEI) has the largest  
dynamic range.  
3. Read back ConfigIO Page Reg 0x25[5:0] to record the CEI value.  
4. Copy the CEI value, and write this value to Digital MUTEREF ConfigIO Page Reg 0x03[5:0].  
8.4 Device Functional Modes  
The LMH1297 operates in one of two modes: System Management Bus (SMBus) or Serial Peripheral Interface  
(SPI) mode. To determine the mode of operation, the proper setting must be applied to the MODE_SEL pin at  
power up, as detailed in 8-11.  
8-11. MODE_SEL Pin Settings  
LEVEL  
DESCRIPTION  
H
F
R
L
Reserved for factory testing do not use  
Selects SPI Interface for register access  
Reserved for factory testing do not use  
Selects SMBus Interface for register access  
8.4.1 System Management Bus (SMBus) Mode  
The SMBus interface can also be used to control the device. If MODE_SEL = Low (1 kΩ to VSS), Pins 13 and  
29 are configured as SDA and SCL. Pins 11 and 28 are address straps ADDR0 and ADDR1 during power up.  
The maximum operating speed supported on the SMBUS pins is 400 kHz.  
8-12. SMBus Device Target Addresses(1)  
ADDR0  
ADDR1  
7-BIT TARGET  
8-BIT WRITE  
(LEVEL)  
(LEVEL)  
ADDRESS [HEX]  
COMMAND [HEX]  
L
L
L
R
F
H
L
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
5A  
5C  
5E  
60  
62  
64  
66  
68  
6A  
6C  
6E  
70  
72  
74  
L
L
R
R
R
R
F
F
F
F
H
H
R
F
H
L
R
F
H
L
R
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LMH1297  
 
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
8-12. SMBus Device Target Addresses(1) (continued)  
ADDR0  
ADDR1  
7-BIT TARGET  
8-BIT WRITE  
(LEVEL)  
(LEVEL)  
ADDRESS [HEX]  
COMMAND [HEX]  
H
H
F
3B  
3C  
76  
78  
H
(1) The 8-bit write command consists of the 7-bit target address (Bits 7:1) with 0 appended to the LSB  
to indicate an SMBus write. For example, if the 7-bit target address is 0x2D (010 1101'b), the 8-bit  
write command is 0x5A (0101 1010'b).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LMH1297  
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
8.4.1.1 SMBus Read and Write Transaction  
SMBus is a two-wire serial interface through which various system component chips can communicate with the  
controller. Target devices are identified by having a unique device address. The two-wire serial interface consists  
of SCL and SDA signals. SCL is a clock output from the controller to all of the target devices on the bus. SDA is  
a bidirectional data signal between the controller and target devices. The LMH1297 SMBus SCL and SDA  
signals are open-drain and require external pullup resistors.  
Start and Stop:  
The controller generates Start and Stop patterns at the beginning and end of each transaction.  
Start: High-to-low transition (falling edge) of SDA while SCL is high.  
Start: High-to-low transition (falling edge) of SDA while SCL is high.  
SDA  
SCL  
S
P
Start  
Condition  
Stop  
Condition  
8-4. Start and Stop Conditions  
The controller generates nine clock pulses for each byte transfer. The 9th clock pulse constitutes the ACK cycle.  
The transmitter releases SDA to allow the receiver to send the ACK signal. An ACK is recorded when the device  
pulls SDA low, while a NACK is recorded if the line remains high.  
ACK Signal  
from Receiver  
SDA  
MSB  
SCL  
1
2
3 - 6  
7
8
9
1
2
3 - 8  
9
S
P
ACK  
ACK  
Start  
Condition  
Stop  
Condition  
Byte Complete  
Interrupt Within  
Receiver  
Clock Line Held Low  
by Receiver While  
Interrupt Serviced  
8-5. Acknowledge (ACK)  
8.4.1.1.1 SMBus Write Operation Format  
Writing data to a target device consists of three parts, as illustrated in 8-6:  
1. The controller begins with a start condition followed by the target device address with the R/ W bit set to 0’  
b.  
2. After an ACK from the target device, the 8-bit register word address is written.  
3. After an ACK from the target device, the 8-bit data is written, followed by a stop condition.  
Device  
Address  
Word Address  
Data  
SDA  
Line  
8-6. SMBus Write Operation  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LMH1297  
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
8.4.1.1.2 SMBus Read Operation Format  
SMBus read operation consists of four parts, as illustrated in 8-7:  
1. The controller begins with a start condition, followed by the target device address with the R/ W bit set to 0'b.  
2. After an ACK from the target device, the 8-bit register word address is written.  
3. After an ACK from the target device, the controller initiates a restart condition, followed by the Target  
address with the R/ W bit set to 1'b.  
4. After an ACK from the target device, the 8-bit data is read-back. The last ACK is high if there are no more  
bytes to read, and the last read is followed by a stop condition.  
Device  
Address  
Device  
Address  
Word Address (n)  
Data (n)  
SDA  
Line  
Set word address in the device  
that will be read following restart  
and repeat of device address  
8-7. SMBus Read Operation  
8.4.2 Serial Peripheral Interface (SPI) Mode  
If MODE_SEL = F or H, the LMH1297 is in SPI mode. In SPI mode, the following pins are used for SPI bus  
communication:  
MOSI (Pin 13): Controller Output Target Input  
MISO (Pin 28): Controller Input Target Output  
SS_N (Pin 11): Target Select (Active Low)  
SCK (Pin 29): Serial Clock (Input to the LMH1297 target device)  
8.4.2.1 SPI Read and Write Transactions  
Each SPI transaction to a single device is 17 bits long and is framed by SS_N when asserted low. The MOSI  
input is ignored, and the MISO output is floated whenever SS_N is deasserted (high).  
The bits are shifted in left-to-right. The first bit is R/ W, which is 1'b for read and 0'b for write. Bits A7-A0 are the  
8-bit register address, and bits D7-D0 are the 8-bit read or write data. The previous SPI command, address, and  
data are shifted out on MISO as the current command, address, and data are shifted in on MOSI. In all SPI  
transactions, the MISO output signal is enabled asynchronously when SS_N asserts low. The contents of a  
single MOSI or MISO transaction frame are shown in 8-8.  
8-8. 17-Bit Single SPI Transaction Frame  
R/W  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LMH1297  
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
8.4.2.2 SPI Write Transaction Format  
For SPI writes, the R/W bit is 0'b. SPI write transactions are 17 bits per device, and the command is executed on  
the rising edge of SS_N. The SPI transaction always starts on the rising edge of the clock.  
The signal timing for a SPI Write transaction is shown in 7-2. The prime values on MISO (for example, A7')  
reflect the contents of the shift register from the previous SPI transaction and are do not care for the current  
transaction.  
tSSOF  
tSSH  
SS_N  
SCK  
tPL  
tSSSU  
tPH  
tH  
tSU  
HiZ  
MOSI  
MISO  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
tODZ  
HiZ  
R/W  
A7'  
A6'  
A5'  
A4'  
A3'  
A2'  
A1'  
A0'  
D7'  
D6'  
D5'  
D4'  
D3'  
D2'  
D1'  
D0'  
8-9. Signal Timing for a SPI Write Transaction  
8.4.2.3 SPI Read Transaction Format  
A SPI read transaction is 34 bits per device and consists of two 17-bit frames. The first 17-bit read transaction  
frame shifts in the address to be read, followed by a dummy transaction second frame to shift out 17-bit read  
data. The R/W bit is 1'b for the read transaction, as shown in 7-3.  
The first 17 bits from the read transaction specifies 1-bit of R/W and 8-bits of address A7-A0 in the first 8 bits.  
The eight 1s following the address are ignored. The second dummy transaction acts like a read operation on  
address 0xFF and needs to be ignored. However, the transaction is necessary to shift out the read data D7-D0 in  
the last 8 bits of the MISO output. As with the SPI Write, the prime values on MISO during the first 16 clocks are  
listed as do not care for this portion of the transaction. The values shifted out on MISO during the last 17 clocks  
reflect the read address and 8-bit read data for the current transaction.  
tSSOF  
SS_N  
(host)  
tSSOF  
tSSSU  
tPH  
tPL  
tSSH  
SCK  
(host)  
tH  
8X1“  
17X1“  
tSU  
MOSI  
(host)  
A7 A6 A5 A4 A3 A2 A1 A0  
1
tOD  
tODZ  
tOZD  
MISO  
(device)  
A7' A6' A5' A4' A3' A2' A1' A0' D7' D6' D5' D4' D3' D2' D1' D0'  
1
Don‘t Care  
8-10. Signal Timing for a SPI Read Transaction  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LMH1297  
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
8.4.2.4 SPI Daisy Chain  
The LMH1297 supports SPI daisy-chaining among multiple devices, as shown in 8-11.  
MISO  
Device 1  
Device 2  
Device 3  
Device N  
Host  
LMH1297  
LMH1297  
LMH1297  
LMH1297  
. . .  
MOSI  
MOSI  
MISO  
MOSI  
MISO  
MOSI  
MISO  
MOSI  
MISO  
SCK  
SS  
8-11. Daisy-Chain Configuration  
Each LMH1297 device is directly connected to the SCK and SS_N pins of the host. The first LMH1297 device in  
the chain is connected to the hosts MOSI pin, and the last device in the chain is connected to the hosts  
MISO pin. The MOSI pin of each intermediate LMH1297 device in the chain is connected to the MISO pin of the  
previous LMH1297 device, thereby creating a serial shift register. In a daisy-chain configuration of N × LMH1297  
devices, the host conceptually sees a shift register of length 17 × N for a basic SPI transaction, during which  
SS_N is asserted low for 17 × N clock cycles.  
8.5 Register Maps  
The LMH1297 register map is divided into three register pages. These register pages are used to control  
different aspects of the LMH1297 functionality. A brief summary of the pages is shown below:  
1. Share Register Page: this page corresponds to global parameters, such as LMH1297 device ID, I/O  
direction override, and LOCK_N status configuration. This is the default page at start-up. Access this page  
by setting Reg 0xFF[2:0] = 000b.  
2. CTLE/CDR Register Page: this page corresponds to IN0 PCB CTLE, input and output mux settings, CDR  
settings, and output interrupt overrides. Access this page by setting Reg 0xFF[2:0] = 100b.  
3. ConfigIO Register Page: this page corresponds to SDI_IO Cable Equalizer settings. This page also  
controls the OUT0, SDI_IO, and SDI_OUT driver output settings. Access this page by setting Reg 0xFF[2:0]  
= 101b.  
For the complete register map, typical device configurations, and proper register reset sequencing, refer to the  
LMH1297 Programming Guide.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LMH1297  
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
9.1.1 SMPTE Requirements and Specifications  
SMPTE specifies several key requirements for the Serial Digital Interface to transport digital video over coaxial  
cables. Such requirements include return loss, AC coupling, and data rate dependency with rise and fall times.  
1. Return Loss: this specification details how closely the port resembles 75-Ωimpedance across a specified  
frequency band. The LMH1297 features a built-in 75-return-loss network on SDI_IO and SDI_OUT to  
minimize parasitics and improve overall signal integrity.  
2. AC Coupling: AC-coupling capacitors are required for transporting uncompressed serial data streams with  
heavy low-frequency content. The use of 4.7-μF, AC-coupling capacitors is recommended to avoid low-  
frequency DC wander.  
3. Rise/Fall Time: output 75-signals are required to meet certain rise and fall timing depending on the data  
rate. This improves the eye opening observed for the receiving device. The LMH1297 SDI_IO (in CD mode)  
and SDI_OUT cable drivers feature automatic edge rate adjustment to meet SMPTE rise and fall time  
requirements.  
TI recommends placing the LMH1297 as close as possible to the 75-Ω BNC ports to meet SMPTE  
specifications.  
9.1.2 Low-Power Optimization in CD Mode  
In CD mode, the LMH1297 IN0 CTLE operates in either AM1 Adaptive mode or AM0 Manual mode. When  
operating in AM1, the LMH1297 uses HEO/VEO Lock Monitoring as a key parameter to achieve lock. HEO/VEO  
Lock Monitoring determines the CTLE boost setting that produces the best horizontal and vertical eye opening  
after the CTLE. Once AM1 adaptation is complete and the LMH1297 asserts CDR lock at the optimal IN0 CTLE  
setting, HEO/VEO Lock Monitoring is no longer required to maintain lock. Therefore, HEO/VEO Lock Monitoring  
can be disabled by setting CTLE/CDR Reg 0x3E[7] = 0'b after lock is declared. Disabling HEO/VEO Lock  
Monitoring optimizes power dissipation in CD mode, reducing the overall power by approximately 25 mW.  
When operating in AM0, the LMH1297 does not use HEO/VEO Lock Monitoring, because the IN0 CTLE setting  
is set manually by the user. In AM0, HEO/VEO Lock Monitoring can be disabled at any time.  
9.1.3 Optimized Loop Bandwidth Settings for Arria 10 FPGA Applications  
The LMH1297 default loop bandwidth setting is optimized for a wide variety of applications. For applications  
using the Intel Arria 10 FPGA, further optimization of the loop bandwidth in CD mode may be required. Refer to  
the LMH1297 Programming Guide for detailed register settings when using the LMH1297 in CD mode with the  
Arria 10 FPGA.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LMH1297  
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
9.2 Typical Applications  
The LMH1297 is a bidirectional I/O with integrated reclocker that supports SDI data rates up to 11.88 Gbps. This  
device supports multiple configurations and can be programmed as a cable equalizer or cable driver. 9-1  
shows a typical application circuit for the LMH1297.  
Specific examples of typical applications for the LMH1297 as a bidirectional I/O and cable equalizer with loop-  
through are detailed in the following subsections.  
2.5 V  
Place 0.1-µF Capacitors  
close to each supply pin  
4.7 µF  
100-Coupled Trace  
VDD_CDR  
VIN  
VDD_LDO  
(1.8 V)  
Line-Side I/O  
SDI_IO+  
SDI_IO-  
RX+  
RX-  
OUT0+  
OUT0-  
75-BNC  
4.7 µF  
SS_N  
75 Ω  
RSV1  
RSV2  
RSV3  
RSV4  
RSV5  
SCK  
Host-Side FPGA/  
Video Processor  
MOSI  
VIN  
MISO  
LMH1297  
EP  
VSS  
VSS  
VSS  
200 Ω  
MODE_SEL  
LOCK_N  
Level F (SPI Mode)  
LED  
100-Coupled Trace  
Line-Side Output  
SDI_OUT+  
SDI_OUT-  
TX+  
TX-  
IN0+  
IN0-  
75-BNC  
4.7 µF  
4.7 µF  
75 Ω  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
VIN  
Optional pullup or pulldown  
resistors for 4-Level Strap  
Configuration Pins  
Optional pullup or pulldown  
resistors for 2-Level Strap  
Configuration Pins  
1 k  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
1 kꢀ  
Level H = 1 kΩ to VIN  
Level F = No Connect  
Level R = 20 kΩ to VSS  
Level L = 1 kΩ to VSS  
Level H = 1 kΩ to VIN  
Level L = 1 kΩ to VSS  
1 kꢀ  
or  
1 kꢀ  
or  
1 kꢀ  
or  
1 kꢀ  
20 kꢀ  
20 kꢀ  
20 kꢀ  
*Internally pulled high  
**Internally pulled low  
Copyright © 2016, Texas Instruments Incorporated  
9-1. LMH1297 Typical Application Circuit  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LMH1297  
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
9.2.1 Bidirectional I/O  
The LMH1297 can be configured as a bidirectional I/O to improve BNC port function flexibility. In EQ mode, the  
LMH1297 equalizes 75-SDI input data at SDI_IO and outputs from OUT0 to an FPGA Rx. SDI_OUT is used  
as an optional loop-through SDI output. In CD mode, the LMH1297 equalizes 100-SDI input data at IN0 and  
uses the dual cable drivers at SDI_IO and SDI_OUT to drive out the SDI signal. OUT0 can be used as a loop-  
back output for system monitoring.  
9-2 shows a typical application where an LMH1297 is used alongside an SDI FPGA to enable bidirectional I/O  
port functionality.  
IN0  
SDI_IO  
75-Ω SDI Input or  
Output  
LMH1297  
Rx: EQ  
Mode  
Tx: CD  
Mode  
SerDes Tx  
SDI FPGA  
OUT0  
SDI_OUT  
75-Ω SDI Output  
SerDes Rx  
Copyright © 2016, Texas Instruments Incorporated  
9-2. LMH1297 Bidirectional I/O Application  
9.2.1.1 Design Requirements  
For general LMH1297 design requirements, reference the guidelines in 9-1.  
For bidirectional I/O application-specific requirements, reference the guidelines in 9-2.  
9-1. LMH1297 General Design Requirements  
DESIGN PARAMETER  
SDI_IO+, SDI_OUT+ AC-coupling capacitors  
SDI_IO, SDI_OUTAC-coupling capacitors  
IN0± and OUT0± AC-coupling capacitors  
Input and Output Terminations  
REQUIREMENTS  
4.7-μF capacitors recommended  
4.7-μF capacitors recommended, AC terminated with 75 Ωto VSS.  
4.7-μF capacitors recommended  
Input and output terminations provided internally. Do not add external terminations.  
10-μF and 1-μF bulk capacitors; place close to each device.  
0.1-μF capacitor; place close to each supply pin.  
DC power supply decoupling capacitors  
VDD_LDO decoupling capacitors  
MODE_SEL Pin  
1-μF and 0.1-μF capacitors; place as close as possible to the device VDD_LDO pin.  
SPI: Leave MODE_SEL unconnected (Level F)  
SMBus: Connect 1 kto VSS (Level L)  
11.88 Gbps, 5.94 Gbps, 2.97 Gbps, 1.485 Gbps, or Divide-by-1.001 sub-rates and 270  
Mbps.  
For all other input data rates, the reclocker is automatically bypassed.  
Input Reclocked Data Rate (SDI_IO in EQ mode  
or IN0 in CD mode)  
9-2. LMH1297 Bidirectional I/O Requirements  
DESIGN PARAMETER  
EQ/CD_SEL Pin  
REQUIREMENTS  
1 kto VSS (Level L) when SDI_IO is used as a cable EQ input  
1 kto VIN (Level H) when SDI_IO is used as a cable driver output  
1 kto VSS (Level L) to enable OUT0 for monitoring purposes  
1 kto VIN (Level H) to disable OUT0 (available only in CD mode)  
OUT0_SEL Pin  
1 kto VSS (Level L) to enable cable loop-through (EQ mode) or secondary cable  
output (CD mode)  
1 kto VIN (Level H) to disable cable loop-through (EQ mode) or secondary cable  
output (CD mode)  
SDI_OUT_SEL Pin  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LMH1297  
 
 
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
9.2.1.2 Detailed Design Procedure  
The design procedure for bidirectional I/O applications is as follows:  
1. Select a power supply that meets the DC and AC requirements in 7.3.  
2. Choose a small 0402 surface mount ceramic capacitor for AC-coupling capacitors to maintain characteristic  
impedance.  
3. Choose a high-quality, 75-ΩBNC connector that is capable of supporting 11.88-Gbps applications. Consult  
a BNC supplier regarding insertion loss, impedance specifications, and recommended footprint for meeting  
SMPTE return loss.  
4. Follow detailed high-speed layout recommendations provided in 11.1 to ensure optimal signal quality  
when interconnecting 75-and 100-signals to the LMH1297.  
5. Determine whether SPI or SMBus communication is necessary. If the LMH1297 must be programmed with  
settings other than what is offered by pin control, users must use SPI or SMBus mode for additional  
programming.  
6. Configure EQ/CD_SEL, OUT0_SEL, and SDI_OUT_SEL pins according to the desired default use case. In a  
bidirectional I/O application, the EQ/CD_SEL pin or register settings may be modified to switch between EQ  
mode and CD mode.  
7. Configure the LMH1297 in EQ mode. Tune the HOST_EQ0 100-driver control pin to equalize the PCB  
output trace following OUT0±. Use register control for more tuning options if necessary.  
8. Configure the LMH1297 in CD mode. Tune the SDI_VOD output amplitude control pin for optimal signal  
quality depending on the cable length attached at SDI_IO+ and SDI_OUT+. Use register control for more  
tuning options if necessary.  
9.2.1.3 Application Curves  
Depending on operation in EQ or CD mode, the LMH1297 performance was measured with the test setups  
shown in 9-3 and 9-4.  
CC  
75 Q/}ꢀÆ /ꢀꢁoꢂ  
LMH1297  
Pattern  
Generator  
SDI_IO+  
OUT0  
Oscilloscope  
VO = 800 mVp-p,  
PRBS10  
9-3. Test Setup for LMH1297 in EQ Mode  
LMH1297  
SDI_IO+  
Pattern  
Generator  
TL  
Differential 100  
FR4 Channel  
IN0  
Oscilloscope  
VOD = 800 mVp-p,  
PRBS10  
9-4. Test Setup for LMH1297 in CD Mode  
The eye diagrams in this subsection show how the LMH1297 improves overall signal integrity in the data path for  
75-Ω coax at SDI_IO+ when operating in EQ mode and 100-Ω differential FR4 PCB trace at IN0± when  
operating in CD mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LMH1297  
 
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
EQ mode, measured at OUT0± HOST_EQ0 = F,  
SDI_OUT_SEL = H, OUT_CTRL = F  
CD mode, measured at SDI_IO+ HOST_EQ0 = F,  
SDI_OUT_SEL = H, OUT_CTRL = F  
9-5. 11.88 Gbps, CC = 75-m Belden 1694A,  
9-6. 11.88 Gbps, TL = 20" FR4, Reclocked  
Reclocked  
EQ mode, measured at OUT0± HOST_EQ0 = F,  
SDI_OUT_SEL = H, OUT_CTRL = F  
CD mode, measured at SDI_IO+ HOST_EQ0 = F,  
SDI_OUT_SEL = H, OUT_CTRL = F  
9-7. 5.94 Gbps, CC = 120-m Belden 1694A,  
9-8. 5.94 Gbps, TL = 20" FR4, Reclocked  
Reclocked  
EQ mode, measured at OUT0± HOST_EQ0 = F,  
SDI_OUT_SEL = H, OUT_CTRL = F  
CD mode, measured at SDI_IO+ HOST_EQ0 = F,  
SDI_OUT_SEL = H, OUT_CTRL = F  
9-9. 2.97 Gbps, CC = 200-m Belden 1694A,  
9-10. 2.97 Gbps, TL = 20" FR4, Reclocked  
Reclocked  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: LMH1297  
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
EQ mode, measured at OUT0± HOST_EQ0 = F,  
CD mode, measured at SDI_IO+ HOST_EQ0 = F,  
SDI_OUT_SEL = H, OUT_CTRL = F  
SDI_OUT_SEL = H, OUT_CTRL = F  
9-11. 1.485 Gbps, CC = 300-m Belden 1694A,  
9-12. 1.485 Gbps, TL = 20" FR4, Reclocked  
Reclocked  
EQ mode, measured at OUT0± HOST_EQ0 = F,  
SDI_OUT_SEL = H, OUT_CTRL = F  
CD mode, measured at SDI_IO+ HOST_EQ0 = F,  
SDI_OUT_SEL = H, OUT_CTRL = F  
9-13. 270 Mbps, CC = 600-m Belden 1694A,  
9-14. 270 Mbps, TL = 20" FR4, Reclocked  
Reclocked  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: LMH1297  
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
9.2.2 Cable Equalizer With Loop-Through  
The LMH1297 can be configured as a cable equalizer with loop-through output. In EQ mode, the LMH1297  
takes in SDI data at the SDI_IO adaptive cable equalizer input and outputs the reclocked SDI signal at OUT0.  
Meanwhile, a redundant reclocked loop-through SDI signal is output on SDI_OUT for system monitoring  
purposes.  
9-15 shows a typical application of an LMH1297 as a cable loop-through device. In this example, the  
LMH1297 provides an SDI input to the SDI FPGA. Concurrently, the equalized and reclocked SDI_IO signal is  
sent to the loop-through SDI_OUT cable driver output. Meanwhile, the FPGA sends post-processed SDI data out  
on an LMH1218 cable driver with integrated reclocker.  
SDI_IO  
75-Ω SDI  
Input  
OUT0  
LMH1297  
Config IO  
EQ Mode  
SerDes Rx  
SDI FPGA  
SDI_OUT  
OUT0  
75-Ω SDI  
Loop-Thru  
IN0  
75-Ω SDI  
Output  
SerDes Tx  
LMH1218  
CD +  
Reclocker  
Copyright © 2016, Texas Instruments Incorporated  
9-15. LMH1297 Cable Loop-Through Application  
9.2.2.1 Design Requirements  
See 9-1 in Bidirectional I/O Design Requirements for general LMH1297 design requirements.  
For cable equalizer with loop-through application-specific requirements, reference the guidelines in 9-3.  
9-3. LMH1297 Cable Loop-Through Requirements  
DESIGN PARAMETER  
REQUIREMENTS  
EQ/CD_SEL Pin  
1 kto VSS (Level L) to enable SDI_IO as a cable EQ input  
1 kto VSS (Level L) to enable OUT0 as PCB output to the FPGA  
1 kto VSS (Level L) to enable SDI_OUT as a loop-through output  
OUT0_SEL Pin  
SDI_OUT_SEL Pin  
9.2.2.2 Detailed Design Procedure  
See Bidirectional I/O Detailed Design Procedure and follow Steps 1-5. Refer to additional steps below for cable  
equalizer with loop-through applications.  
1. Configure EQ/CD_SEL and SDI_OUT_SEL pins according to the desired default use case. In a cable loop-  
through application, the EQ/CD_SEL pin must be set to Level L so that the LMH1297 operates in EQ mode.  
Also note that in EQ mode, OUT0 is always enabled, regardless of the logic applied to OUT0_SEL.  
2. Tune the HOST_EQ0 100-driver control pin to equalize the PCB output trace following OUT0±. Use  
register control for more tuning options if necessary.  
9.2.2.3 Application Curves  
In EQ mode, the LMH1297 SDI_OUT performance was measured with the test setup shown in 9-16.  
CC  
75 Q/}ꢀÆ /ꢀꢁoꢂ  
LMH1297  
SDI_OUT+  
Pattern  
Generator  
SDI_IO+  
Oscilloscope  
VO = 800 mVp-p,  
PRBS10  
9-16. Test Setup for LMH1297 Loop-Through in EQ Mode  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: LMH1297  
 
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
The eye diagrams in this subsection show the LMH1297 75-Ωloop-through output at SDI_OUT+.  
EQ mode, measured at SDI_OUT+ HOST_EQ0 = F,  
SDI_OUT_SEL = L, OUT_CTRL = F  
EQ mode, measured at SDI_OUT+ HOST_EQ0 = F,  
SDI_OUT_SEL = L, OUT_CTRL = F  
9-17. 11.88 Gbps, CC = 65-m Belden 1694A,  
9-18. 5.94 Gbps, CC = 120-m Belden 1694A,  
Reclocked  
Reclocked  
EQ mode, measured at SDI_OUT+ HOST_EQ0 = F,  
SDI_OUT_SEL = L, OUT_CTRL = F  
EQ mode, measured at SDI_OUT+ HOST_EQ0 = F,  
SDI_OUT_SEL = L, OUT_CTRL = F  
9-19. 2.97 Gbps, CC = 200-m Belden 1694A,  
9-20. 1.485 Gbps, CC = 280-m Belden 1694A,  
Reclocked  
Reclocked  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: LMH1297  
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
EQ mode, measured at SDI_OUT+ HOST_EQ0 = F, SDI_OUT_SEL = L, OUT_CTRL = F  
9-21. 270 Mbps, CC = 600-m Belden 1694A, Reclocked  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: LMH1297  
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
10 Power Supply Recommendations  
The LMH1297 requires decoupling capacitors to ensure a stable power supply. For power supply decoupling,  
0.1-μF surface-mount ceramic capacitors must be placed close to each VDD_CDR, VDD_LDO, and VIN supply  
pin to VSS. Larger bulk capacitors (for example, 10 μF and 1 μF) are recommended for VDD_CDR and VIN.  
2.5 V  
10 µF  
1 µF  
1 µF  
0.1 µF  
0.1 µF  
VDD_CDR  
VIN  
EP  
VDD_LDO  
(1.8 V)  
VSS  
VSS  
VSS  
LMH1297  
1 µF  
0.1 µF  
Copyright © 2016, Texas Instruments Incorporated  
10-1. Recommended Power Supply Decoupling  
Good supply bypassing requires low inductance capacitors. This can be achieved through an array of multiple  
small body size surface-mount bypass capacitors to keep low supply impedance. Better results can be achieved  
through the use of a buried capacitor formed by a VDD and VSS plane separated by 2-4 mil dielectric in a  
printed-circuit board.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: LMH1297  
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
11 Layout  
11.1 Layout Guidelines  
The following guidelines are recommended to optimize the board layout for the LMH1297.  
11.1.1 Board Stack-Up and Ground References  
Choose a suitable board stack-up that supports 75-Ωsingle-ended trace and 100-Ωdifferential trace routing  
on the top layer of the board. This is typically done with a Layer 2 ground plane reference for the 100-Ω  
differential traces and a Layer 3 ground plane reference for the 75-Ωsingle-end traces.  
Maintain a distance of at least 5 times the trace width between signal trace and ground reference if they are  
on the same layer. This prevents unwanted changes in the characteristic impedance.  
Maintain a consistent ground plane reference for each high-speed trace from source to endpoint. Ground  
reference discontinuities lead to characteristic impedance mismatch.  
11.1.2 High-Speed PCB Trace Routing and Coupling  
Observe the following general high-speed recommendations for high-speed trace routing:  
For differential pairs, maintain a uniform width and gap for each differential pair where possible. When traces  
must diverge (for example, due to AC-coupling capacitors), ensure that the traces branch out or merge  
uniformly.  
To prevent reflections due to trace routing, ensure that trace bends are at most 45°. Right angle bends should  
be implemented with at least two 45° corners. Radial bends are ideal.  
Avoid using signal vias. If signal vias must be used, a return path (GND) via must be placed near the signal  
via to provide a consistent ground reference and minimize impedance discontinuities.  
Avoid via stubs by back-drilling as necessary.  
11.1.2.1 SDI_IO± and SDI_OUT±:  
Use an uncoupled trace with 75-Ωsingle-ended impedance for signal routing to SDI_IO± and SDI_OUT±.  
The trace width is typically 8-10 mils with reference to a Layer-3 ground plane.  
11.1.2.2 IN0± and OUT0±:  
Use coupled traces with 100-Ωdifferential impedance for signal routing to IN0± and OUT0±.  
The trace width is typically 5-8 mils with reference to a Layer-2 ground plane.  
11.1.3 Anti-Pads  
Place anti-pads (ground relief) on the power and ground planes directly under the 4.7-μF, AC-coupling  
capacitor and IC landing pads to minimize parasitic capacitance. The size of the anti-pad and the number of  
layers to use the anti-pad depend on the board stack-up and can be determined by a 3-dimension  
electromagnetic simulation tool.  
11.1.4 BNC Connector Layout and Routing  
Use a well-designed BNC footprint to ensure the BNC's signal landing pad achieves 75-Ωcharacteristic  
impedance. BNC suppliers usually provide recommendations on BNC footprint for best results.  
Keep trace length short between the BNC and SDI_IO±. The trace routing for SDI_IO+ and SDI_IOshould  
be as symmetrical as possible, with approximately equal lengths and equal loading. The same is true for  
SDI_OUT+ and SDI_OUT.  
11.1.5 Power Supply and Ground Connections  
Connect each supply pin (VDD_CDR, VIN, VDD_LDO) directly to the power or ground planes with a short  
via. The via is usually placed tangent to the supply pins' landing pads with the shortest trace possible.  
Power supply decoupling capacitors should be a small physical size (0402 or smaller) and placed close to the  
supply pins to minimize inductance. The capacitors are commonly placed on the bottom layer and share the  
ground of the EP (Exposed Pad).  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: LMH1297  
 
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
11.1.6 Footprint Recommendations  
Stencil parameters for the EP (Exposed Pad) such as aperture area ratio and the fabrication process have a  
significant impact on paste deposition. Inspection of the stencil prior to placement of the QFN package is  
highly recommended to improve board assembly yields. If the via and aperture openings are not carefully  
monitored, the solder may flow unevenly through the EP. Stencil parameters for aperture opening and via  
locations are shown in the RTV package drawing in 13.  
The EP of the package must be connected to the ground plane through a 3 × 3 via array. These vias are  
solder-masked to avoid solder flowing into the plated-through holes during the board manufacturing process.  
Details about via dimensions are also shown in the RTV package drawing in 13.  
More information on the QFN style package is provided in QFN/SON PCB Attachment Application Report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: LMH1297  
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
11.2 Layout Example  
The example shown in 11-1 demonstrates the LMH1297 layout guidelines highlighted in 11.1.  
Larger bulk capacitors (10 µF, 1 µF)  
for VIN and VDD_CDR can be  
placed farther from IC.  
BNC Footprint  
Anti-pad  
Zo = 75  
W = 10 mils  
Via to  
VDD_LDO  
Pour  
4.7 µF  
Place 0.1-µF decoupling caps on  
Bottom Layer close to pins. Connect  
to Pour and EP with vias.  
Via to VIN  
Pour  
4.7 µF  
100-coupled  
trace  
4.7 µF  
75  
W = 8 mils  
S = 10 mils  
W = 8 mils  
Solder  
Paste  
Mask  
(Stencil)  
4.7 µF  
4.7 µF  
VSS Via to  
GND  
Via to  
VDD_CDR  
Pour  
W = 8 mils  
S = 10 mils  
W = 8 mils  
4.7 µF  
75 ꢀ  
EP  
(Exposed Pad)  
Via Array on Bottom  
Layer shared with VSS  
pins and decoupling caps  
where applicable  
100-coupled  
trace  
4.7 µF  
4.7 µF  
W = 10 mils  
> 5W  
Zo = 75 ꢀ  
Layer 3 GND Reference for  
75-Single-Ended Traces  
Layer 2 GND Reference for  
100-Differential Traces  
Note: Allhigh speed signal traces are assumed to be on Layer 1 (Top Layer).  
11-1. LMH1297 High-Speed Trace Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: LMH1297  
 
 
LMH1297  
www.ti.com.cn  
ZHCSK26E MARCH 2017 REVISED JULY 2022  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Absolute Maximum Ratings for Soldering  
Texas Instruments, LMH1297 Programming Guide  
Texas Instruments, QFN/SON PCB Attachment Application Report  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: LMH1297  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH1297RTVR  
LMH1297RTVT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RTV  
RTV  
32  
32  
1000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
L1297  
L1297  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMH1297RTVR  
LMH1297RTVT  
WQFN  
WQFN  
RTV  
RTV  
32  
32  
1000  
250  
180.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMH1297RTVR  
LMH1297RTVT  
WQFN  
WQFN  
RTV  
RTV  
32  
32  
1000  
250  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RTV0032E  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.15  
4.85  
B
A
PIN 1 INDEX AREA  
5.15  
4.85  
SIDE WALL LEAD  
METAL THICKNESS  
DIM A  
0.8  
0.7  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(DIM A) TYP  
3.45 0.1  
(0.2) TYP  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
2X  
SYMM  
33  
3.5  
0.30  
32X  
0.18  
24  
0.1  
C A B  
1
0.05  
C
PIN 1 ID  
(OPTIONAL)  
32  
25  
SYMM  
0.5  
0.3  
32X  
4225196/A 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTV0032E  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.24)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225196/A 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTV0032E  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.24)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4225196/A 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LMH1297RTVT

具有集成时钟恢复器的 12G 超高清 SDI 双向 I/O | RTV | 32 | -40 to 85
TI

LMH1980

Auto-Detecting SD/HD/PC Video Sync Separator
NSC

LMH1980

自动检测 SD/HD/PC 视频同步分离器
TI

LMH1980MM

Auto-Detecting SD/HD/PC Video Sync Separator
NSC

LMH1980MM/NOPB

IC SYNC SEPARATOR IC, PDSO10, LEAD FREE, MSOP-10, Signal Separator IC
NSC

LMH1980MM/NOPB

自动检测 SD/HD/PC 视频同步分离器 | DGS | 10 | -40 to 85
TI

LMH1980MMX

Auto-Detecting SD/HD/PC Video Sync Separator
NSC

LMH1980MMX/NOPB

IC SYNC SEPARATOR IC, PDSO10, ROHS COMPLIANT, MSOP-10, Signal Separator IC
NSC

LMH1980MMX/NOPB

自动检测 SD/HD/PC 视频同步分离器 | DGS | 10 | -40 to 85
TI

LMH1981

Multi-Format Video Sync Separator
NSC

LMH1981

多格式视频同步分离器
TI

LMH1981MT

Multi-Format Video Sync Separator
NSC