LMH6401 [TI]

4.5GHz 超宽带数字可变增益放大器;
LMH6401
型号: LMH6401
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4.5GHz 超宽带数字可变增益放大器

放大器
文件: 总49页 (文件大小:2458K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
LMH6401 直流至 4.5GHz、全差分数字可变增益放大器  
1 特性  
3 说明  
1
3dB 带宽:4.5GHz26dB 增益时)  
增益范围:–6dB 26dB(步长为 1dB)  
LMH6401 是一款面向直流到射频 (RF)、中频 (IF) 和  
高速时域应用的宽带、数控可变增益放大器 (DVGA)。  
对于需要自动增益控制 (AGC) 的直流或交流耦合应用  
而言,该器件是一款理想的 ADC 驱动器。  
差分输入阻抗:100Ω  
支持共模控制的差分输出  
最大增益条件下的失真(VO = 2 VPPDRL =  
200):  
该器件对噪声和失真性能进行了优化,以便驱动超宽带  
ADC。 放大器在最大增益条件下的噪声系数为 8dB,  
1GHz 满量程信号电平条件下的谐波失真为 -  
63dBc。 该器件支持单电源和分离电源供电,以驱动  
ADC。 该器件提供了共模参考输入引脚,以便使放大  
器输出共模符合 ADC 输入要求。  
200MHzHD2 –73dBcHD3 –80dBc  
500 MHzHD2 –68dBcHD3 –72dBc  
1 GHzHD2 –63dBcHD3 –63dBc  
2 GHzHD2 –58dBcHD3 –54dBc  
输出 IP3:  
该器件通过 SPI™ 接口执行增益控制,并且支持 32dB  
的增益范围(–6dB 26dB,步长为 1dB)。 此外,  
还可以通过外部 PD 引脚或串行外设接口 (SPI) 控制提  
供掉电功能。  
200MHz 时为 43dBm  
1GHz 时为 33dBm  
2GHz 时为 27dBm  
输出 IP2:  
200MHz 时为 67dBm  
这一性能水平在 345mW 的低功耗下才能实现。 器件  
工作的环境温度范围为 –40°C 85°C。  
1GHz 时为 60dBm  
2GHz 时为 52dBm  
器件信息(1)  
1GHzRS = 100Ω 时的噪声系数为 8dB  
82ps 上升/下降时间脉冲响应  
供电电源:5.0V/69mA  
器件型号  
LMH6401  
封装  
UQFN (16)  
封装尺寸(标称值)  
3.00mm x 3.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
支持单电源和 (±) 分离电源供电:  
直流和交流耦合应用  
谐波失真与频率间的关系 (VO = 2 VPPD  
)
0
采用先进的互补 BiCMOS 工艺制成  
HD2  
HD3  
-10  
3mm × 3mm 超薄四方扁平无引线 (UQFN)-16 封装  
-20  
-30  
-40  
2 应用  
-50  
-60  
测试和测量  
-70  
超宽带模数转换器 (ADC) 驱动器  
通信接收器  
-80  
-90  
-100  
-110  
10  
射频 (RF) 采样子系统  
表面声波 (SAW) 滤波缓冲器和驱动器  
国防设备和雷达  
100  
1000 2000  
D038  
Frequency (MHz)  
IF 采样接收器应用  
LMH6401  
1-dB Attenuator Steps  
0 dB to 32 dB  
Zin ~ 100 Ÿ  
10 Ÿ  
INP  
OUTP  
Ultra-  
Wideband  
ADC  
Av =  
26 dB  
RF  
INM  
OUTM  
10 Ÿ  
PD  
CS  
SCLK  
SDI  
VOCM  
LO  
SPI  
SDO  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBOS730  
 
 
 
 
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Options....................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 SPI Timing Requirements ......................................... 8  
7.7 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 16  
8.1 Setup Diagrams ...................................................... 16  
8.2 Output Measurement Reference Points.................. 17  
8.3 ATE Testing and DC Measurements ...................... 17  
8.4 Frequency Response ............................................. 17  
8.5 Distortion................................................................. 17  
8.6 Noise Figure............................................................ 18  
9
Detailed Description ............................................ 19  
9.1 Overview ................................................................. 19  
9.2 Functional Block Diagram ....................................... 19  
9.3 Feature Description................................................. 20  
9.4 Device Functional Modes........................................ 20  
9.5 Programming........................................................... 20  
9.6 Register Maps......................................................... 23  
10 Application and Implementation........................ 26  
10.1 Application Information.......................................... 26  
10.2 Typical Application ................................................ 30  
10.3 Do's and Don'ts .................................................... 35  
11 Power-Supply Recommendations ..................... 36  
11.1 Single-Supply Operation ....................................... 36  
11.2 Split-Supply Operation .......................................... 36  
12 Layout................................................................... 37  
12.1 Layout Guidelines ................................................. 37  
12.2 Layout Examples................................................... 38  
13 器件和文档支持 ..................................................... 39  
13.1 文档支持................................................................ 39  
13.2 社区资源................................................................ 39  
13.3 ....................................................................... 39  
13.4 静电放电警告......................................................... 39  
13.5 术语表 ................................................................... 39  
14 机械、封装和可订购信息....................................... 40  
8
8.7 Pulse Response, Slew Rate, and Overdrive Recovery  
................................................................................. 18  
8.8 Power Down............................................................ 18  
8.9 VOCM Frequency Response .................................. 18  
4 修订历史记录  
Changes from Original (April 2015) to Revision A  
Page  
已发布为量产数................................................................................................................................................................... 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
LMH6401  
www.ti.com.cn  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
5 Device Options  
Table 1. FDA Device Companion  
DEVICE  
LMH5401  
LMH3401  
LMH6554  
BW (AV = 12 dB)  
6.2 GHz  
DISTORTION  
NOISE  
–75-dBc HD2, –75-dBc HD3 at 500 MHz  
–79-dBc HD2, –77-dBc HD3 at 500 MHz  
–79-dBc HD2, –70-dBc HD3 at 250 MHz  
1.25 nV/Hz  
1.4 nV/Hz  
0.9 nV/Hz  
7 GHz, G = 16 dB  
1.6 GHz  
Table 2. DVGA Device Comparison  
DEVICE  
LMH6517  
LMH6521  
LMH6881  
MAX GAIN, BW  
22 dB, 1.2 GHz  
26 dB, 1.2 GHz  
26 dB, 2.4 GHz  
DISTORTION  
NOISE FIGURE  
43-dBm OIP3 at 200 MHz, –74-dBc HD3 at 200 MHz  
49-dBm OIP3 at 200 MHz, –84-dBc HD3 at 200 MHz  
42-dBm OIP3 at 200 MHz, –76-dBc HD3 at 200 MHz  
5.5 dB  
7.3 dB  
9.7 dB  
Copyright © 2015, Texas Instruments Incorporated  
3
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
6 Pin Configuration and Functions  
RMZ Package  
UQFN-16  
Top View  
VS-  
16  
CS  
15  
SCLK  
14  
VS+  
13  
1-dB Attenuator Steps  
0 dB to 32 dB  
GND  
1
SDI  
INP  
12  
11  
10  
10 Ÿꢀ  
OUTP  
OUTM  
2
3
Av = 26 dB  
INM  
10 Ÿꢀ  
SDO  
4
GND  
9
5
6
7
8
VS-  
PD  
VOCM  
VS+  
Pin Functions  
PIN  
NAME  
FUNCTION  
DESCRIPTION  
NO.  
1
2
3
4
5
SDI  
INP  
Input  
Input  
Serial interface input data  
Positive input pin  
INM  
SDO  
VS–  
Input  
Negative input pin  
Output  
Power  
Serial interface output data  
Negative supply voltage  
Power-down pin.  
6
PD  
Input  
0 = amplifier enabled, 1 = amplifier disabled  
7
8
9
VOCM  
VS+  
Input  
Power  
Power  
Output  
Output  
Power  
Power  
Input  
Input pin to set amplifier output common-mode voltage  
Positive supply voltage  
Ground  
GND  
OUTM  
OUTP  
GND  
VS+  
10  
11  
12  
13  
14  
15  
16  
Negative output pin  
Positive output pin  
Ground  
Positive supply voltage  
Serial interface clock  
Chip select  
SCLK  
CS  
Input  
VS–  
Power  
Negative supply voltage  
4
Copyright © 2015, Texas Instruments Incorporated  
LMH6401  
www.ti.com.cn  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
VS–  
MAX  
5.5  
UNIT  
V
Supply voltage  
V = (VS+) – (VS–)  
Digital input pins  
VS+  
2.1  
V
Maximum input difference voltage  
Maximum input voltage  
V
VS+  
150  
125  
85  
V
Maximum junction, TJ  
°C  
°C  
°C  
°C  
Maximum junction, continuous operation, long-term reliability  
Temperature  
Operating free-air, TA  
Storage, Tstg  
–40  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.0  
NOM  
MAX  
UNIT  
Supply voltage  
5.0  
5.25  
V
V
Minimum operating positive (VS+) supply voltage  
Ambient operating air temperature, TA  
Operating junction temperature, TJ  
2.0  
–40  
–40  
25  
85  
°C  
°C  
125  
7.4 Thermal Information  
LMH6401  
THERMAL METRIC(1)  
RMZ (UQFN)  
UNIT  
16 PINS  
78  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
43  
24  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.3  
ψJB  
24  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2015, Texas Instruments Incorporated  
5
 
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
7.5 Electrical Characteristics  
At TA = 25°C, VS– = –2.5 V, VS+ = 2.5 V, VOCM = 0 V, RLOAD = 200-Ω differential (Ro(internal, diff) = 20 Ω), VO = 2 VPPD, and AV  
= 26 dB, unless otherwise noted.  
TEST  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(1)  
DYNAMIC PERFORMANCE  
SSBW  
LSBW  
Small-signal, –3-dB bandwidth  
AV = 26 dB, VO = 200 mVPPD  
AV = 26 dB, VO = 2.0 VPPD  
AV = 26 dB, VO = 2.0 VPPD  
VO = 2-V step  
4.5  
4.5  
GHz  
GHz  
MHz  
V/µs  
ps  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
Large-signal, –3-dB bandwidth  
Bandwidth for 0.1-dB flatness  
Slew rate  
500  
18200  
82  
SR  
tR, tF  
Rise and fall time  
VO = 2-V step, 10% to 90%  
Overdrive = ±0.5 V  
Overdrive recovery  
Output balance error  
Settling time to 1%  
600  
–47  
700  
–73  
–68  
–63  
–58  
–80  
–72  
–63  
–54  
67  
ps  
f = 1 GHz  
dB  
ts  
VO = 2-V step, RL= 200 Ω  
f = 200 MHz, VO = 2.0 VPPD  
f = 500 MHz, VO = 2.0 VPPD  
f = 1 GHz, VO = 2.0 VPPD  
ps  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
HD2  
Second-harmonic distortion  
Third-harmonic distortion  
f = 2 GHz, VO = 2.0 VPPD  
f = 200 MHz, VO = 2.0 VPPD  
f = 500 MHz, VO = 2.0 VPPD  
f = 1 GHz, VO = 2.0 VPPD  
HD3  
OIP2  
OIP3  
f = 2 GHz, VO = 2.0 VPPD  
f = 200 MHz, PO = –2 dBm per tone  
f = 500 MHz, PO = –2 dBm per tone  
f = 1 GHz, PO = –2 dBm per tone  
f = 2 GHz, PO = –2 dBm per tone  
f = 200 MHz, PO = –2 dBm per tone  
f = 500 MHz, PO = –2 dBm per tone  
f = 1 GHz, PO = –2 dBm per tone  
f = 2 GHz, PO = –2 dBm per tone  
65  
Output second-order intercept point  
Output third-order intercept point  
60  
52  
43  
40  
33  
27  
Second-order intermodulation  
distortion  
IMD2  
IMD3  
P1dB  
f = 500 MHz, VO = 1.0 VPP per tone  
f = 500 MHz, VO = 1.0 VPP per tone  
–68  
–83  
dBc  
dBc  
dBm  
C
C
C
Third-order intermodulation  
distortion  
f = 500 MHz, power measured at amplifier  
output  
1-dB compression point  
Noise figure  
18.3  
f = 200 MHz  
7.7  
8
dB  
dB  
C
C
C
C
C
NF  
RS = 100 Ω  
f = 1 GHz  
Output-referred noise voltage  
Reverse transmission (S12)  
Input return loss (S11)  
AV = 26 dB, f > 1 MHz  
f = 1 GHz  
30.4  
–65  
–15  
nV/Hz  
dB  
S12  
S11  
100-Ω system, f = 2 GHz  
dB  
GAIN PARAMETERS  
Maximum voltage gain  
25.5  
–7.5  
26.0  
–6.0  
32  
26.5  
–4.5  
dB  
dB  
dB  
dB  
A
A
C
A
Minimum voltage gain  
Gain range  
Gain step size  
0.9  
1
1.1  
0.5  
AV = 26 dB to 10 dB  
(referenced to 26-dB gain)  
–0.5  
dB  
A
Cumulative gain error  
AV = 26 dB to –6 dB  
(referenced to 26-dB gain)  
–1  
1
dB  
ns  
A
C
Gain step transition time  
1
(1) Test levels: (A) 100% DC tested at 25°C unless otherwise specified. Over-temperature limits by characterization and simulation. (B)  
Limits set by bench verification and simulation. (C) Typical value only for information.  
6
Copyright © 2015, Texas Instruments Incorporated  
 
LMH6401  
www.ti.com.cn  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
Electrical Characteristics (continued)  
At TA = 25°C, VS– = –2.5 V, VS+ = 2.5 V, VOCM = 0 V, RLOAD = 200-Ω differential (Ro(internal, diff) = 20 Ω), VO = 2 VPPD, and AV  
= 26 dB, unless otherwise noted.  
TEST  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(1)  
ANALOG INPUT CHARACTERISTICS  
Ri  
Input resistance  
Differential  
Differential  
85  
100  
0.8  
112  
0.3  
Ω
pF  
V
A
C
A
Ci  
Input capacitance  
VICM  
Input common-mode voltage  
Self-biased to mid-supply  
Differential gain shift < 1 dB  
–0.3  
Low-level input common-mode  
voltage range  
VICLR  
VICHR  
(VS–) + 1.5  
(VS+) – 1.5  
V
V
C
C
High-level input common-mode  
voltage range  
Differential gain shift < 1 dB  
ANALOG OUTPUT CHARACTERISTICS  
Ro  
Output resistance  
Differential  
18  
(VS+) – 1.1  
38.4  
20  
25  
Ω
V
A
A
A
C
A
VOL  
Low-level output voltage range  
High-level output voltage range  
Maximum output voltage swing  
Common-mode rejection ratio  
Low-level clipping level  
High-level clipping level  
Differential  
(VS–) + 1 (VS–) + 1.1  
VOH  
VOM  
CMRR  
(VS+) – 1  
6.0  
V
VPPD  
dB  
±0.3-V input common-mode shift  
45  
POWER SUPPLY  
VS  
Supply voltage [V = (VS+) – (VS–)]  
4.0  
2.0  
5.0  
5.25  
V
V
A
A
Minimum positive (VS+) supply  
voltage  
VS–, measured at 1-kHz sine-wave  
VS+, measured at 1-kHz sine-wave  
PD = 0 (device enabled)  
66  
66  
60  
1
70  
70  
69  
7
dB  
dB  
A
A
A
A
PSRR  
IQ  
Power-supply rejection ratio  
Quiescent current  
78  
12  
mA  
mA  
PD = 1 (device disabled)  
OUTPUT COMMON-MODE CONTROL (VOCM Pin)  
SSBW  
Small-signal bandwidth  
VOCM voltage range low  
VOCM voltage range high  
Output offset voltage  
VOCM gain  
VOCM = 200 mVPP  
VOCM gain < 2%  
VOCM gain < 2%  
All gain settings  
160  
MHz  
V
C
A
A
A
C
A
–0.5  
–40  
–10  
1
0.5  
40  
V
VOO  
mV  
V
1.0  
VOCM  
Common-mode offset voltage  
VOCM pin driven to GND  
10  
mV  
POWER DOWN (PD Pin)  
Power-down quiescent current  
7
80  
70  
10  
12  
mA  
µA  
ns  
A
A
C
C
PD bias current  
Turn-on time delay  
PD = 2.5 V  
100  
Time to VO = 90% of final value  
Time to VO = 10% of original value  
Turn-off time delay  
ns  
DIGITAL INPUT/OUTPUT  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
Referred to GND  
Referred to GND  
1 kΩ to GND  
1.2  
1.4  
VS+  
0.8  
V
V
V
V
A
A
A
A
VOH  
VOL  
1 kΩ to GND  
0.4  
Copyright © 2015, Texas Instruments Incorporated  
7
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
7.6 SPI Timing Requirements(1)  
At TA = 25°C, VS– = –2.5 V, VS+ = 2.5 V, VOCM = 0 V, RLOAD = 200-Ω differential (Ro(internal, diff) = 20 Ω), VO = 2 VPPD, and AV  
= 26 dB, unless otherwise noted. Limits set by bench verification and simulation.  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
fs_c  
tPH  
SCLK frequency  
SCLK pulse duration, high  
SCLK pulse duration, low  
SDI setup  
50  
10  
10  
3
tPL  
ns  
tSU  
ns  
tH  
SDO hold  
3
ns  
tIZ  
SDO tri-state  
3
5
3
3
ns  
tODZ  
tOZD  
tOD  
tCSS  
tCSH  
tIAG  
SDO driven to tri-state(2)  
SDO tri-state to driven  
SDO output delay(2)  
CS setup(3)  
ns  
ns  
ns  
3
3
ns  
CS hold  
ns  
Inter-access gap  
20  
ns  
(1) Ensured by design.  
(2) Reference to negative edge of SCLK.  
(3) Reference to positive edge of SCLK.  
8
Copyright © 2015, Texas Instruments Incorporated  
LMH6401  
www.ti.com.cn  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
7.7 Typical Characteristics  
At TA = 25°C, VS– = –2.5 V, VS+ = 2.5 V, VOCM = 0 V, RLOAD = 200-Ω differential (Ro(internal, diff) = 20 Ω), VO = 2 VPPD, and AV  
= 26 dB, unless otherwise noted. Differential input and output, and input and output pins referenced to mid-supply, unless  
otherwise noted. Measured using an EVM as discussed in the Parameter Measurement Information section.  
30  
25  
20  
15  
10  
5
30  
29  
28  
27  
26  
25  
24  
MaxGain  
-40°C  
25°C  
85°C  
0
-5  
-10  
10  
100  
1000  
10000 24000  
10  
100  
1000  
10000  
Frequency (MHz)  
Frequency (MHz)  
D013  
D021  
Figure 1. Voltage Gain vs Frequency (1-dB Gain Steps)  
Figure 2. Maximum Gain vs Temperature  
40  
0
-5  
200 MHz  
500 MHz  
1000 MHz  
2000 MHz  
20  
0
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-20  
-40  
-60  
Sdd21  
Sdd12  
Sdd11  
Sdd22  
-80  
-100  
50  
100  
1000  
10000  
-6  
-2  
2
6
10  
14  
18  
22  
26  
Frequency (MHz)  
Voltage Gain (dB)  
D027  
D042  
Figure 3. S-Parameters vs Frequency  
Figure 4. Input Return Loss vs Gain Settings  
10  
0
50  
45  
40  
35  
30  
25  
20  
-10  
-20  
-30  
-40  
No Cap  
1 pF  
2.4pF  
4.7pF  
10pF  
Gain = 26dB  
Gain = 18dB  
Gain = 10dB  
Gain = 2dB  
10  
100  
1000  
10000  
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
D024  
D018  
PO = –2 dBm per tone  
Figure 5. Frequency Response vs Capacitive Load  
Figure 6. Output IP3 vs Frequency and Gain Settings  
Copyright © 2015, Texas Instruments Incorporated  
9
 
 
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VS– = –2.5 V, VS+ = 2.5 V, VOCM = 0 V, RLOAD = 200-Ω differential (Ro(internal, diff) = 20 Ω), VO = 2 VPPD, and AV  
= 26 dB, unless otherwise noted. Differential input and output, and input and output pins referenced to mid-supply, unless  
otherwise noted. Measured using an EVM as discussed in the Parameter Measurement Information section.  
50  
45  
40  
35  
30  
25  
20  
44  
42  
40  
38  
36  
34  
-40°C  
25°C  
85°C  
4.0 V  
5.0 V  
5.25 V  
10  
100  
1000 2000  
-45  
-25  
-5  
15  
35  
55  
75  
90  
Frequency (MHz)  
Temperature (°C)  
D019  
D020  
PO = –2 dBm per tone  
f = 500 MHz, PO = –2 dBm per tone  
Figure 7. Output IP3 vs Frequency and Temperature  
Figure 8. Output IP3 vs Supply Voltage and Temperature  
-10  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
IMD2  
IMD3  
200 MHz  
500 MHz  
1000 MHz  
2000 MHz  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
10  
-2 -1  
0
1
2
3
4
5
6
7
8
9
10  
100  
1000 2000  
Total Output Power per tone (dBm)  
Frequency (MHz)  
D022  
D023  
PO = –2 dBm per tone  
Figure 9. Output IP3 vs Total Output Power per Tone  
Figure 10. Intermodulation Distortion vs Frequency  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
Gain = 26dB  
Gain = 14dB  
Gain = 2dB  
Gain = -6dB  
Gain = 26dB  
Gain = 14dB  
Gain = 2dB  
Gain = -6dB  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
10  
100  
1000 2000  
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
D003  
D004  
Figure 11. Second-Order Harmonic Distortion vs Frequency  
Figure 12. Third-Order Harmonic Distortion vs Frequency  
10  
Copyright © 2015, Texas Instruments Incorporated  
LMH6401  
www.ti.com.cn  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
Typical Characteristics (continued)  
At TA = 25°C, VS– = –2.5 V, VS+ = 2.5 V, VOCM = 0 V, RLOAD = 200-Ω differential (Ro(internal, diff) = 20 Ω), VO = 2 VPPD, and AV  
= 26 dB, unless otherwise noted. Differential input and output, and input and output pins referenced to mid-supply, unless  
otherwise noted. Measured using an EVM as discussed in the Parameter Measurement Information section.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
10  
100  
1000 2000  
10  
100  
1000 2000  
Frequency (MHz)  
Frequency (MHz)  
D005  
D006  
Figure 13. Second-Order Harmonic Distortion vs Frequency  
Figure 14. Third-Order Harmonic Distortion vs Frequency  
-30  
0
HD2  
HD3  
HD2  
HD3  
-10  
-40  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-50  
-60  
-70  
-80  
-90  
-6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
1
2
3
4
5
Voltage Gain (dB)  
Differential Output Voltage Swing (V)  
D001  
D002  
f = 500 MHz  
f = 500 MHz  
Figure 15. Harmonic Distortion vs Gain Settings  
Figure 16. Harmonic Distortion vs Differential VPP  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
Gain = 26dB  
Gain = 14dB  
Gain = 2dB  
Gain = 26dB  
Gain = 14dB  
Gain = 2dB  
-45  
-25  
-5  
15  
35  
55  
75  
90  
-45  
-25  
-5  
15  
35  
55  
75  
90  
Temperature (°C)  
Temperature (°C)  
D009  
D010  
f = 500 MHz  
f = 500 MHz  
Figure 17. Second-Order Harmonic Distortion vs  
Temperature  
Figure 18. Third-Order Harmonic Distortion vs  
Temperature  
Copyright © 2015, Texas Instruments Incorporated  
11  
 
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VS– = –2.5 V, VS+ = 2.5 V, VOCM = 0 V, RLOAD = 200-Ω differential (Ro(internal, diff) = 20 Ω), VO = 2 VPPD, and AV  
= 26 dB, unless otherwise noted. Differential input and output, and input and output pins referenced to mid-supply, unless  
otherwise noted. Measured using an EVM as discussed in the Parameter Measurement Information section.  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Gain = 26dB  
Gain = 14dB  
Gain = 2dB  
Gain = 26dB  
Gain = 14dB  
Gain = 2dB  
-45  
-25  
-5  
15  
35  
55  
75  
90  
-45  
-25  
-5  
15  
35  
55  
75  
90  
Temperature (°C)  
Temperature (°C)  
D007  
D008  
f = 500 MHz, (VS+) – (VS–) = 4 V  
f = 500 MHz, (VS+) – (VS–) = 4 V  
Figure 19. Second-Order Harmonic Distortion vs  
Temperature  
Figure 20. Third-Order Harmonic Distortion vs  
Temperature  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
HD2  
HD3  
HD2  
HD3  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
-1.5  
-1  
-0.5  
0
0.5  
1
1.5  
Output Common Mode Control (V)  
Input Common Mode Control (V)  
D011  
D012  
f = 500 MHz  
f = 500 MHz, gain = –6 dB  
Figure 21. Harmonic Distortion vs  
Output Common-Mode Voltage  
Figure 22. Harmonic Distortion vs Input CM Voltage  
24  
22  
20  
18  
16  
14  
12  
24  
22  
20  
18  
16  
14  
12  
4.0 V  
5.0 V  
5.25 V  
4.0 V  
5.0 V  
5.25 V  
10  
100  
1000 2000  
-45  
-25  
-5  
15  
35  
55  
75  
90  
Frequency (MHz)  
Temperature (°C)  
D039  
D040  
Figure 23. Output P1dB vs Frequency  
Figure 24. Output P1dB vs Temperature  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
LMH6401  
www.ti.com.cn  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
Typical Characteristics (continued)  
At TA = 25°C, VS– = –2.5 V, VS+ = 2.5 V, VOCM = 0 V, RLOAD = 200-Ω differential (Ro(internal, diff) = 20 Ω), VO = 2 VPPD, and AV  
= 26 dB, unless otherwise noted. Differential input and output, and input and output pins referenced to mid-supply, unless  
otherwise noted. Measured using an EVM as discussed in the Parameter Measurement Information section.  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
10  
5
-40°C  
25°C  
85°C  
50 MHz  
500 MHz  
1000 MHz  
2000 MHz  
6
4
10  
100  
1000 2000  
-6  
-2  
2
6
10  
14  
18  
22  
26  
Frequency (MHz)  
Voltage Gain (dB)  
D014  
D015  
Figure 25. Noise Figure vs Frequency  
Figure 26. Noise Figure vs Gain Settings  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-10  
-20  
-30  
-40  
-50  
10  
100  
Frequency (MHz)  
1000  
5000  
10  
100  
Frequency (MHz)  
1000  
5000  
D025  
D026  
Scc21 / Sdd21  
Sdc21/Sdd21  
Figure 27. CMRR vs Frequency  
Figure 28. Output Balance Error vs Frequency  
0.22  
4
1.4  
4.2  
Vin  
Vout  
Vin  
Vout  
1.2  
1
3.6  
3
0.8  
0.6  
0.4  
0.2  
0
2.4  
1.8  
1.2  
0.6  
0
0.11  
0
2
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.6  
-1.2  
-1.8  
-2.4  
-3  
-0.11  
-0.22  
-2  
-1.2  
-1.4  
-3.6  
-4.2  
-4  
Time (1 nsec/div)  
Time (1 nsec/div)  
D029  
D030  
Figure 29. Overdrive Recovery (AV = 26 dB)  
Figure 30. Overdrive Recovery (AV = 10 dB)  
Copyright © 2015, Texas Instruments Incorporated  
13  
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, VS– = –2.5 V, VS+ = 2.5 V, VOCM = 0 V, RLOAD = 200-Ω differential (Ro(internal, diff) = 20 Ω), VO = 2 VPPD, and AV  
= 26 dB, unless otherwise noted. Differential input and output, and input and output pins referenced to mid-supply, unless  
otherwise noted. Measured using an EVM as discussed in the Parameter Measurement Information section.  
250  
200  
150  
100  
50  
0.4  
0.3  
0.2  
0.1  
0
16  
12  
8
R
jX  
|Z|  
4
0
-0.1  
-0.2  
-0.3  
-0.4  
-4  
-8  
-12  
-16  
0
Gain error  
Phase error  
-50  
-6 -4 -2  
0
2
4
6
8
10 12 14 16 18 20 22 24 26  
10  
100  
Frequency (MHz)  
1000  
5000  
Voltage Gain (dB)  
D043  
D016  
f = 500 MHz  
Figure 31. Cumulative Gain and Phase Step Error vs  
Gain Settings  
Figure 32. Input Impedance vs Frequency  
120  
90  
85  
80  
75  
70  
65  
60  
55  
R
jX  
|Z|  
4.0 V  
5.0 V  
5.25 V  
100  
80  
60  
40  
20  
0
-20  
-40  
10  
100  
Frequency (MHz)  
1000  
5000  
-45  
-25  
-5  
15  
35  
55  
75  
90  
Temperature (°C)  
D017  
D041  
Figure 33. Output Impedance vs Frequency  
Figure 34. Supply Current vs Temperature  
0.3  
3
2.5  
2.4  
Vin  
Output  
2VppOut  
4VppOut  
PowerDown Pin  
2
1.5  
1
2
0.2  
0.1  
0
2
1.6  
1.2  
0.8  
0.4  
0
1
0
0.5  
0
-0.1  
-0.2  
-0.3  
-1  
-2  
-0.5  
-1  
-3  
-0.4  
Time (1 nsec/div)  
Time (20 nsec/div)  
D037  
D028  
Figure 35. Output Step Response  
Figure 36. Power-Down Transition Response  
14  
Copyright © 2015, Texas Instruments Incorporated  
LMH6401  
www.ti.com.cn  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
Typical Characteristics (continued)  
At TA = 25°C, VS– = –2.5 V, VS+ = 2.5 V, VOCM = 0 V, RLOAD = 200-Ω differential (Ro(internal, diff) = 20 Ω), VO = 2 VPPD, and AV  
= 26 dB, unless otherwise noted. Differential input and output, and input and output pins referenced to mid-supply, unless  
otherwise noted. Measured using an EVM as discussed in the Parameter Measurement Information section.  
2.5  
2.5  
2.5  
2.5  
SCLK  
SCLK  
Vo(pp)diff  
Vo(pp)diff  
2
2
2
2
1.5  
1
1.5  
1
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-0.5  
-1  
-0.5  
-1  
Time (5 nsec/div)  
Time (5 nsec/div)  
D031  
D032  
Figure 37. Gain Switching Response (AV = 26 dB to 18 dB)  
Figure 38. Gain Switching Response (AV = 18 dB to 26 dB)  
2.5  
2.5  
2.5  
2.5  
SCLK  
SCLK  
Vo(pp)diff  
Vo(pp)diff  
2
1.5  
1
2
2
1.5  
1
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-0.5  
-1  
-0.5  
-1  
Time (5 nsec/div)  
Time (5 nsec/div)  
D035  
D036  
Figure 39. Gain Switching Response (AV = 26 dB to 10 dB)  
Figure 40. Gain Switching Response (AV = 10 dB to 26 dB)  
2.5  
2.5  
2.5  
2.5  
SCLK  
SCLK  
Vo(pp)diff  
Vo(pp)diff  
2
1.5  
1
2
2
1.5  
1
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0.5  
0
0.5  
0
-0.5  
-1  
-0.5  
-1  
-0.5  
-1  
-0.5  
-1  
Time (5 nsec/div)  
Time (5 nsec/div)  
D033  
D034  
Figure 41. Gain Switching Response (AV = 26 dB to 2 dB)  
Figure 42. Gain Switching Response (AV = 2 dB to 26 dB)  
Copyright © 2015, Texas Instruments Incorporated  
15  
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Setup Diagrams  
LMH6401EVM  
VS+  
Vector Network  
Vector Network  
Analyzer  
Analyzer  
PD  
LMH6401  
50  
10 ꢀ  
50 ꢀ  
40 ꢀ  
40 ꢀ  
Port 1  
Port 3  
Port 2  
INP  
INM  
OUTP  
+
-
+
-
OUT_AMP  
10 ꢀ  
OUT_LOAD  
Port 4  
OUTM  
VOCM  
50 ꢀ  
50 ꢀ  
Test Equipment  
Test Equipment  
with 50-Ÿꢀ,QSXWV, Outputs  
with 50-Ÿꢀ,QSXWV, Outputs  
SPI  
VS-  
GND  
USB  
Figure 43. Frequency Response Differential Test Setup  
LMH6401EVM  
VS+  
PD  
LMH6401  
2:1, ZO = 50 Ÿꢀ  
ZO = 50 Ÿ, 1:2  
6-dB Pads  
10  
40 ꢀ  
40 ꢀ  
INP  
INM  
OUTP  
0º  
0º  
50 ꢀ  
50 ꢀ  
+
-
DC Block  
6-dB Pads  
6-dB Pads  
OUT_AMP  
10 ꢀ  
180º  
180º  
OUTM  
VOCM  
Signal Generator  
with 50-Ÿꢀ2XWSXWV  
Spectrum Analyzer  
with 50-Ÿꢀ,QSXWV  
Band-Pass  
Filter  
BAL-0010  
BAL-0010  
SPI  
VS-  
GND  
USB  
Figure 44. Single-Tone Harmonic Distortion Test Setup  
LMH6401EVM  
VS+  
50  
PD  
LMH6401  
2:1, ZO = 50 Ÿꢀ  
ZO = 50 Ÿ, 1:2  
Signal Generator  
with 50-Ÿꢀ2XWSXWV  
10 ꢀ  
40 ꢀ  
40 ꢀ  
INP  
INM  
OUTP  
0º  
0º  
50 ꢀ  
6-dB  
Attenuation  
Pads  
+
-
Band-Pass  
Filter  
BAL-0010  
6-dB Pads  
OUT_AMP  
10 ꢀ  
DC Block  
180º  
180º  
OUTM  
VOCM  
Spectrum Analyzer  
with 50-Ÿꢀ,QSXWV  
BAL-0010  
BAL-0010  
50 ꢀ  
SPI  
VS-  
GND  
Signal Generator  
with 50-Ÿꢀ2XWSXWV  
USB  
Figure 45. Two-Tone Linearity Test Setup (OIP3, OIP2)  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
LMH6401  
www.ti.com.cn  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
Setup Diagrams (continued)  
LMH6401EVM  
VS+  
PD  
LMH6401  
2:1, ZO = 50 Ÿꢀ  
ZO = 50 Ÿ, 1:2  
10  
40 ꢀ  
40 ꢀ  
INP  
INM  
OUTP  
0º  
0º  
50 ꢀ  
50 ꢀ  
+
-
346B  
Noise Source  
+
-
OUT_AMP  
10 ꢀ  
OUT_LOAD  
180º  
180º  
OUTM  
VOCM  
Agilent E4443A  
Agilent E4443A  
with 50-Ÿꢀ,QSXWV  
with 50-Ÿꢀ2XWSXWV  
BAL-0010  
BAL-0010  
SPI  
GND  
VS-  
USB  
Figure 46. Noise Figure Test Setup  
8.2 Output Measurement Reference Points  
The LMH6401 has two on-chip, 10-Ω output resistors. When matching the output to a 100-Ω load, the evaluation  
module (EVM) uses an external 40-Ω resistor on each output leg to complete the output matching. Having on-  
chip output resistors creates two potential reference points for measuring the output voltage. The first reference  
point is at the internal amplifier output (OUT_AMP), and the second reference point is at the externally-matched  
100-Ω load (OUT_LOAD). The measurements in the Electrical Characteristics table and in the Typical  
Characteristics section are referred to the (OUT_AMP) reference point unless otherwise specified. The  
conversion between reference points is a straightforward correction of 3 dB for power and 6 dB for voltage, as  
shown in Equation 1 and Equation 2. The measurements are referenced to OUT_AMP when not specified.  
VOUT_LOAD = (VOUT_AMP – 6 dB)  
POUT_LOAD = (POUT_AMP – 3 dB)  
(1)  
(2)  
8.3 ATE Testing and DC Measurements  
All production testing and dc parameters are measured on automated test equipment capable of dc  
measurements only. Some measurements (such as voltage gain) are referenced to the output of the internal  
amplifier and do not include losses attributed to the on-chip output resistors. The Electrical Characteristics values  
specify these conditions. When the measurement is referred to the amplifier output, the output resistors are not  
included in the measurement. If the measurement is referred to the device pins, then the output resistor loss is  
included in the measurement.  
8.4 Frequency Response  
This test is done by running an S-parameter sweep on a 4-port differential network analyzer using the standard  
EVM with no baluns; see Figure 43. The inputs and outputs of the EVM are connected to the network analyzer  
using 50-coaxial cables with all the ports set to a characteristic impedance (ZO) of 50 Ω.  
The frequency response test with capacitive load is done by soldering the capacitor across the LMH6401 output  
pins. In this configuration, the on-chip, 10-Ω resistors on each output leg isolate the capacitive load from the  
amplifier output pins.  
8.5 Distortion  
The standard EVM is used for measuring both the single-tone harmonic distortion and two-tone intermodulation  
distortion; see Figure 44 and Figure 45, respectively. The distortion is measured with differential input signals to  
the LMH6401. In order to interface with single-ended test equipment, external baluns (1:2, ZO = 50 Ω) are  
required between the EVM output ports and the test equipment. The Typical Characteristics plots are created  
with Marki™ baluns, model number BAL-0010. These baluns are used to combine two single tones in the two-  
tone test plots as well as convert the single-ended input to differential output for harmonic distortion tests. The  
use of 6-dB attenuator pads on both the inputs and outputs is recommended to provide a balanced match  
between the external balun and the EVM.  
Copyright © 2015, Texas Instruments Incorporated  
17  
 
 
 
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
8.6 Noise Figure  
This test is done by matching the input of the LMH6401 to a 50-Ω noise source using a 1:2 balun (see  
Figure 46), with the noise figure being referred to the input impedance (RS = 100 Ω). As noted in Figure 46, an  
Agilent E4443A with NF features is used for the testing.  
8.7 Pulse Response, Slew Rate, and Overdrive Recovery  
For time-domain measurements, the standard EVM is driven through a balun again to convert a single-ended  
output from the test equipment to the differential inputs of the LMH6401. The differential outputs are directly  
connected to the oscilloscope inputs, with the differential signal response calculated using trace math from the  
two separate oscilloscope inputs.  
8.8 Power Down  
The standard EVM is used for this test by completely removing the shorting block on jumper JPD. A high-speed,  
50-Ω pulse generator is used to drive the PD pin, which toggles the output signal on or off depending upon the  
PD pin voltage.  
8.9 VOCM Frequency Response  
The standard EVM is used for this test. A network analyzer is connected to the VOCM input of the EVM and the  
EVM outputs are connected to the network analyzer with 50-coaxial cables. The network analyzer analysis  
mode is set to single-ended input and differential output, and the output common-mode response is measured  
with respect to the single-ended input (Scs21). The input signal frequency is swept with the signal level set for  
100 mV (–16 dBm). Note that the common-mode control circuit gain is approximately one.  
18  
Copyright © 2015, Texas Instruments Incorporated  
LMH6401  
www.ti.com.cn  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
9 Detailed Description  
9.1 Overview  
The LMH6401 is a very high-performance, differential I/O, digitally-controlled variable gain amplifier (DVGA). The  
device is optimized for radio frequency (RF), intermediate frequency (IF), or high-speed time-domain applications  
with 3-dB bandwidths up to 4.5 GHz. The device is ideal for dc- or ac-coupled applications requiring a variable  
gain stage when driving an analog-to-digital converter (ADC).  
The LMH6401 is best suited to optimize system linearity and noise performance over the entire gain range in the  
RF and IF bands. Operating on a nominal 5-V supply or ±2.5-V split supplies, the device consists of an  
attenuator stage followed by a fixed-gain amplifier to provide voltage gain control from –6 dB to 26 dB in 1-dB  
steps (as shown in the Functional Block Diagram section) with an overall 32-dB gain range. The variable gain  
control for the device is offered through the digital serial peripheral interface (SPI) register. The device has a  
unique attenuator ladder architecture providing dynamic range improvements where the overall noise figure (NF)  
remains relatively constant for the first 5-dB attenuator steps, with NF degrading proportional to the attenuator  
steps on the sixth step. This behavior repeats over the entire gain range; see Figure 26.  
The device has a differential input impedance of 100-Ω and is intended to be driven differentially by a matched  
100-Ω differential source impedance for the best linearity and noise performance. The LMH6401 has two on-chip,  
10-Ω resistors, one on each output (as shown in the Functional Block Diagram section). For most load  
conditions, the 10-Ω resistors are only a partial termination. Consequently, external termination resistors are  
required in most applications. See Table 11 for common load values and the matching resistors.  
The LMH6401 supports a common-mode reference input (VOCM) pin to align the amplifier output common-mode  
with the subsequent stage (ADC) input requirements. The output common-mode of the LMH6401 is self-biased  
to mid-supply when the VOCM pin is not driven externally. The device can be operated on a power-supply  
voltage range of 4.0 V to 5.25 V and supports both single- and split-supply operation. For correct digital  
operation, the positive supply must not be below 2 V for ground reference logic. A power-down feature is also  
available through the SPI register and the external PD pin.  
9.2 Functional Block Diagram  
VS+  
ZIN ~ 100 Ÿꢀ  
INM  
10 Ÿꢀ  
OUTM  
Fixed Gain (AV)  
0-dB to 32-dB  
Attenuation in 1-dB  
Steps  
= 26 dB  
INP  
OUTP  
10 Ÿꢀ  
Gain  
Control  
Thermal  
POR  
Feedback Gain  
and Frequency  
Control Circuit  
CS, SCK, SDI  
SDO  
SPI Decoder  
VS+  
VS+  
-
VOCM  
Error  
Amplifier  
Power Down  
50 NŸꢀ  
+
VOCM  
50 NŸꢀ  
PD  
Buffer  
VS-  
VS-  
Copyright © 2015, Texas Instruments Incorporated  
19  
 
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
9.3 Feature Description  
The LMH6401 includes the following features:  
Fully-differential amplifier  
Digitally-controlled variable gain: –6 dB to 26 dB in 1-dB steps  
Output common-mode control  
Single- or split-supply operation  
Large-signal bandwidth of 4.5 GHz  
Usable bandwidth up to 2 GHz  
Power-down control  
9.4 Device Functional Modes  
9.4.1 Power-On Reset (POR)  
The LMH6401 has a built-in, power-on reset (POR) that sets the device registers to their default state (see  
Table 3) on power-up. Note that the LMH6401 register information is lost each time power is removed. When  
power is reapplied, the POR ensures the device enters a default state. Power glitches (of sufficient duration) can  
also initiate the POR and return the device to a default state.  
9.4.2 Power-Down (PD)  
The device supports power-down control using an external power-down (PD) pin or by writing a logic high to bit 6  
of SPI register 2h (see the Register Maps section). The external PD is an active high pin. When left floating, the  
device defaults to an on condition when the PD pin defaults to logic low as a result of the internal pulldown  
resistor. The device PD thresholds are noted in the Electrical Characteristics table. The device consumes  
approximately 7 mA in power-down mode. Note that the SPI register contents are preserved in power-down  
mode.  
9.4.3 Thermal Feedback Control  
The LMH6401 has a thermal feedback gain and frequency control feature that allows for improved low-frequency  
settling performance. The Thermal Feedback Gain Control and Thermal Feedback Frequency Control registers  
set through the SPI control this feature. The default setting is described in Table 3. Graphs are Included in the  
Application and Implementation section that illustrate how the thermal feedback gain and frequency control  
allows for enhanced performance.  
9.4.4 Gain Control  
The LMH6401 gain can be controlled from 26-dB gain (0-dB attenuation) to –6-dB gain in 1-dB steps by digitally  
programming the SPI register 2h. See the Register Maps section for more details.  
9.5 Programming  
9.5.1 Details of the Serial Interface  
The LMH6401 has a set of internal registers that can be accessed by the serial interface controlled by the CS  
(chip select), SCLK (serial interface clock), SDI (serial interface input data), and SDO (serial interface readback  
data) pins. Serial input to the device is enabled when CS is low. SDI serial data are latched at every SCLK rising  
edge when CS is active (low). Serial data are loaded into the register at every 16th SCLK rising edge when CS is  
low. When the word length exceeds a multiple of 16 bits, the excess bits are ignored. Data can be loaded in  
multiples of 16-bit words within a single active CS pulse. The first eight bits form the register address and the  
remaining eight bits form the register data. The interface can function with SCLK frequencies from 50 MHz down  
to very low speeds (of a few Hertz) and also with a non-50% SCLK duty cycle. A summary of the LMH6401 SPI  
protocol follows:  
SPI-1.1 compliant interface  
SPI register contents protected in power-down  
SPI-controlled power-down  
Powered from the main VS+ power supply  
1.8-V logic compliant  
20  
Copyright © 2015, Texas Instruments Incorporated  
LMH6401  
www.ti.com.cn  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
Programming (continued)  
9.5.2 Timing Diagrams  
Figure 47 and Figure 48 show timing diagrams for the SPI write and read bus cycles, respectively. Figure 49 and  
Figure 50 show timing diagrams for the write and read operations, respectively, of the LMH6401. Figure 51 and  
Figure 52 illustrate example SPI stream write and read timing diagrams, respectively. Refer to the Electrical  
Characteristics table for SPI timing requirements.  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDO  
Figure 47. SPI Write Bus Cycle  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDO  
Figure 48. SPI Read Bus Cycle  
tPL  
tPH  
SCLK  
tSU  
tH  
SDI  
Valid Data  
Figure 49. Write Operation Timing Diagram  
tCSH tCSS  
tCSH tCSS  
CS  
1st  
15th  
8th  
Clock  
Clock  
Clock  
SCLK  
tOZD  
tOD  
tODZ  
Hi-Z  
Valid  
Data  
Valid  
Data  
Valid  
Data  
SDO  
SDI  
Hi-Z  
Valid  
Data  
Figure 50. Read Operation Timing Diagram  
Copyright © 2015, Texas Instruments Incorporated  
21  
 
 
 
 
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
Programming (continued)  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
SCLK  
Addr N  
D4 D3  
Addr N+1  
D4 D3  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D2  
D1  
D0  
D7  
D6  
D5  
D2  
D1  
D0  
SDI  
SDO  
Figure 51. SPI Streaming Write Example  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
SCLK  
Addr N  
Addr N+1  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
SDI  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDO  
Figure 52. SPI Streaming Read Example  
22  
Copyright © 2015, Texas Instruments Incorporated  
LMH6401  
www.ti.com.cn  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
9.6 Register Maps  
Table 3 lists the SPI register map.  
Table 3. SPI Register Map  
ADDRESS  
R/W  
REGISTER  
DEFAULT (Hex)  
(A[6:0])  
0
R
Revision ID  
Product ID  
03h  
1
R
00h  
2
R/W  
R/W  
R/W  
R/W  
R
Gain Control  
20h (minimum gain)  
3
4
Reserved  
8Ch  
27h  
45h  
00h  
Thermal feedback gain control  
Thermal feedback frequency control  
Reserved  
5
6-127  
9.6.1 Revision ID (address = 0h, Read-Only) [default = 03h]  
Figure 53. Revision ID  
7
6
5
4
3
2
1
0
Revision ID  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-1b  
R-1b  
LEGEND: R = Read only; -n = value after reset  
Table 4. Revision ID Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-0  
Revision ID  
R
00000011 Revision identification bits.  
9.6.2 Product ID (address = 1h, Read-Only) [default = 00h]  
Figure 54. Product ID  
7
6
5
4
3
2
1
0
Product ID  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
LEGEND: R = Read only; -n = value after reset  
Table 5. Product ID Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-0  
Product ID  
R
00000000 Product identification bits.  
Copyright © 2015, Texas Instruments Incorporated  
23  
 
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
9.6.3 Gain Control (address = 2h) [default = 20h]  
Figure 55. Gain Control  
7
6
5
4
3
2
1
0
Reserved  
R/W-0b  
Power Down  
R/W-0b  
Gain Control  
R/W-1b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 6. Gain Control Field Description  
Bit  
Field  
Type  
Default  
Description  
7
Reserved  
R/W  
0
Reserved, always program to 0  
0 = Active  
1 = Power down  
6
Power Down  
Gain Control  
R/W  
R/W  
0
5-0  
100000  
Gain control (see Table 10 for gain settings)  
9.6.4 Reserved (address = 3h) [default = 8Ch]  
Figure 56. Reserved  
7
6
5
4
3
2
1
0
Reserved  
R/W-1b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-1b  
R/W-0b  
R/W-0b  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 7. Reserved Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-0  
Reserved  
R/W  
10001100 Reserved  
9.6.5 Thermal Feedback Gain Control (address = 4h) [default = 27h]  
Figure 57. Thermal Feedback Gain Control  
7
6
5
4
3
2
1
0
Reserved  
R/W-0b  
Reserved  
R/W-0b  
Thermal SD  
R/W-1b  
Thermal Feedback Gain Control  
R/W-0b R/W-1b R/W-1b  
R/W-0b  
R/W-1b  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 8. Thermal Feedback Gain Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-6  
Reserved  
R/W  
00  
Reserved, always program to 00  
0 = Thermal feedback control enabled  
1 = Thermal feedback control disabled  
5
Thermal SD  
R/W  
R/W  
1
00000 = Minimum thermal feedback gain (see Figure 61)  
11111 = Maximum thermal feedback gain (see Figure 61)  
4-0  
Thermal Feedback Gain Control  
00111  
24  
Copyright © 2015, Texas Instruments Incorporated  
 
LMH6401  
www.ti.com.cn  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
9.6.6 Thermal Feedback Frequency Control (address = 5h) [default = 45h]  
Figure 58. Thermal Feedback Frequency Control  
7
6
5
4
3
2
1
0
Reserved  
R/W-0b  
Reserved  
R/W-1b  
Reserved  
R/W-0b  
Thermal Feedback Frequency Control  
R/W-0b R/W-1b R/W-0b  
R/W-0b  
R/W-1b  
LEGEND: R/W = Read/Write; -n = value after reset  
Table 9. Thermal Feedback Frequency Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-5  
Reserved  
R/W  
010  
Reserved, always program to 010  
Thermal Feedback Frequency  
Control  
00000 = Minimum thermal feedback frequency (see Figure 62)  
11111 = Maximum thermal feedback frequency (see Figure 62)  
4-0  
R/W  
00101  
Table 10. Gain Control Register Controls  
ATTENUATION (dB)  
GAIN (dB)  
REGISTER SETTING (Address = 02h)  
0
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h-3Fh  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
8
7
6
5
4
3
2
1
0
–1  
–2  
–3  
–4  
–5  
–6  
Copyright © 2015, Texas Instruments Incorporated  
25  
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
10.1.1 Analog Input Characteristics  
The LMH6401 is a single-channel device with analog input signal pins (INP and INM) that denote the positive  
and negative input pins, respectively. The device inputs can be either ac- or dc-coupled. In order to dc-couple the  
inputs, care must be taken to ensure the common-mode voltage is set within the input common-mode range of  
the device, as described in the Electrical Characteristics table. For optimal linearity and noise performance, TI  
recommends setting the input common-mode voltage as close to mid-supply as possible. The LMH6401 device  
can be ac-coupled at the inputs using input capacitors that allow the inputs to self-bias close to mid-supply and  
isolates the common-mode voltage of the driving circuitry. The LMH6401 inputs must be driven differentially. For  
single-ended input source applications, care must be taken to select an appropriate balun or fully-differential  
amplifier (such as the LMH3401 or LMH5401) that can convert single-ended signals into differential signals with  
minimal distortion.  
At maximum gain, the digital attenuator is set to 0-dB attenuation, the input signal is much smaller than the  
output, and the maximum output voltage swing is limited by the output stage of the device. At minimum gain,  
however, the maximum output voltage swing is limited by the input stage because the output is 6 dB lower than  
the inputs. In the minimum gain configuration, the input signal begins to clip against the electrostatic discharge  
(ESD) protection diodes before the output reaches maximum swing limits. This clipping is a result of the input  
signal being unable to swing below the negative supply voltage and being unable to exceed the positive supply  
voltage because of the protection diodes. For linear operation, care must be taken to ensure that the input is kept  
within the maximum input voltage ratings, as described in the Absolute Maximum Ratings table. The supply  
voltage imposes the limit for the input voltage swing because the input stage self-biases to approximately mid-  
rail.  
The device input impedance is set by the internal input termination resistors to a nominal value of 100 .  
Process variations result in a range of values, as described in the Electrical Characteristics table. The input  
impedance is also affected by device parasitic reactance at higher frequencies, thus shifting the impedance away  
from a nominal 100 . The LMH6401 exhibits a well-matched, 100-differential input impedance in the usable  
bandwidth, achieving a –15-dB input return loss at 2 GHz across the gain settings; see Figure 3. Figure 59  
illustrates a Smith chart plot of the LMH6401 differential input impedance referenced to a 100-Ω characteristic  
impedance.  
26  
Copyright © 2015, Texas Instruments Incorporated  
LMH6401  
www.ti.com.cn  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
Application Information (continued)  
Figure 59. Smith Chart Showing Differential Input Impedance (zO = 100 )  
10.1.2 Analog Output Characteristics  
The LMH6401, as with most RF amplifiers, has two 10-Ω, on-chip resistors on each output leg to provide  
isolation from board parasitics at the output pins; see the Functional Block Diagram section. When designing a  
filter between the LMH6401 and the interfacing circuitry (ADC), the filter source impedance must be calculated by  
taking into account the two 10-Ω, on-chip resistors. Table 11 shows the calculated external source impedance  
values (RO+ and RO–) required for various matched filter loads (RL). An important note is that the filter design  
between the LMH6401 and the ADC is not limited to a matched filter, and source impedance values (RO+ and  
RO–) can be reduced to achieve higher swing at the filter outputs. Achieving lower loss in the filter source  
impedance resistors or higher swing at the filter outputs is often desirable because the amplifier must output  
reduced swing to maintain the same full-scale input at the ADC and, thus, better linearity performance. An  
example 370-MHz, un-matched, low-pass filter between the LMH6401 and ADS54J60 is illustrated in Figure 64,  
with (RO+ and RO–) set to 20 Ω and RL set to 100 Ω.  
Table 11. Load Component Values(1)  
RO+ AND RO– FOR A MATCHED TOTAL LOAD RESISTANCE AT  
LOAD (RL)  
50 Ω  
TERMINATION  
AMPLIFIER OUTPUT  
TERMINATION LOSS  
15 Ω  
100 Ω  
200 Ω  
400 Ω  
800 Ω  
2000 Ω  
6 dB  
6 dB  
6 dB  
6 dB  
6 dB  
100 Ω  
200 Ω  
400 Ω  
1 kΩ  
40 Ω  
90 Ω  
190 Ω  
490 Ω  
(1) The total load includes termination resistors.  
Copyright © 2015, Texas Instruments Incorporated  
27  
 
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
The LMH6401 can be either dc- or ac-coupled at the outputs. For dc-coupled applications, the device provides  
an option to control the output common-mode voltage using the VOCM pin. Device performance is optimal when  
the output common-mode voltage is within ±0.5 V of mid-supply (see Figure 21) and performance degrades  
outside the range when the output swing approaches clipping levels. The LMH6401 can achieve a maximum  
output swing of 6 VPPD with the output common-mode voltage centered at mid-supply.  
Note that by default, the output common-mode voltage is set to mid-supply before the two 10-Ω, on-chip  
resistors; see the Functional Block Diagram section. On a single-supply operation when dc-coupling the device  
outputs to an ADC using common-mode, level-shifting resistors, the output common-mode voltage and resistor  
values being calculated must include the two internal 10-Ω resistors in the equation. When operating the  
LMH6401 on split supplies and dc-coupling the outputs, TI recommends matching the output common-mode  
voltage of the LMH6401 with the input common-mode voltage of the ADC. A simple design procedure is to select  
the supply voltages (VS+ and VS–) such that the default output common-mode voltage being set is equal to the  
input common-mode voltage of the ADC. As illustrated in Figure 66, the supplies of the LMH6401 are selected  
such that the default output common-mode voltage is set to mid-supply or 1.23 V, which is within the input  
common-mode voltage range of the ADC (1.185 V to 1.265 V).  
10.1.2.1 Driving Capacitive Loads  
With high-speed signal paths, capacitive loading at the output is highly detrimental to the signal path, as shown  
in Figure 60. The device on-chip resistors are included in order to isolate the parasitic capacitance associated  
with the package and the printed circuit board (PCB) pads that the device is soldered to. However, designers  
must make every effort to reduce parasitic loading on the amplifier output pins. The LMH6401 is stable with most  
capacitive loads up to 10 pF; however, bandwidth suffers with capacitive loading on the output.  
10  
0
-10  
-20  
No Cap  
1 pF  
2.4pF  
-30  
4.7pF  
10pF  
-40  
10  
100  
1000  
10000  
Frequency (MHz)  
D024  
Figure 60. Frequency Response vs Capacitive Load  
10.1.3 Thermal Feedback Control  
The LMH6401 can be used to optimize long-term settling responses using thermal feedback gain and frequency  
control registers. These registers are disabled on power-up and can be enabled by clearing the thermal SD bit;  
see the Thermal Feedback Gain Control register. The thermal feedback gain control bits increase the low-  
frequency gain and the thermal feedback frequency control bits shift the boost frequency. The thermal feedback  
gain and frequency registers both have a range of 32 steps. When the function is enabled, there is a small initial  
gain offset to optimize the control range. The thermal feedback off condition is illustrated in the gain control plot  
(Figure 61), along with a sweep of gain settings of 0, 4, 8…28, and 31 with a 0 register value representing the  
minimum gain setting. The frequency control is illustrated in Figure 62 with the optimal gain setting from the gain  
sweep over the values of 0, 4, 8…28, and 31 with a 0 register value representing the minimum frequency boost  
setting.  
28  
Copyright © 2015, Texas Instruments Incorporated  
 
LMH6401  
www.ti.com.cn  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
10.1.3.1 Step Response Optimization using Thermal Feedback Control  
The LMH6401 has an adjustable frequency compensation scheme that is designed to dramatically improve the  
step response for long-term settling. The structure of the LMH6401 gives the best distortion performance for  
signals ranging from dc to 2 GHz over a wide range of gain settings. Thermal heating causes a small change in  
gain at low frequencies close to 500 kHz. This change in gain is shown in Figure 61 in the ac response for the  
trace labeled Thermal Feedback OFF. The amount of gain change is approximately 0.18 dB at maximum gain.  
This gain change resulting from thermal heating leads to approximately 1.7% overshoot that settles over a  
relatively long time period. A patent pending technique is added that allows for the reduction of this overshoot to  
approximately 0.35%, thus eliminating the long-term settling and still retaining the wide dynamic performance  
range. The circuit also corrects for small systematic changes that occur at different gain settings and tracks  
temperature changes as well. This low-frequency gain correction is accomplished by the addition of a circuit that  
alters the gain at low frequencies to nearly eliminate the variation from low to high frequencies.  
The step response optimization circuit is disabled on power-up and can be enabled by clearing bit 5 in the  
Thermal Feedback Gain Control register (register 4h). The power-on default setting for thermal gain and  
frequency are adjusted for the evaluation board for typical silicon performance. These registers are made  
available for customization in the final system because board layout characteristics or other components in the  
system can change the required correction needed.  
Figure 63 demonstrates the initial step response and the corrected response that corresponds to the default  
register values for a typical device on the evaluation board displaying long-term settling correction.  
26.2  
26.16  
26.12  
26.08  
26.04  
26  
26.16  
26.12  
26.08  
26.04  
26  
Max Frequency  
Max Gain  
25.96  
25.92  
25.88  
25.84  
25.8  
25.96  
25.92  
25.88  
Min Gain  
10  
Thermal Feedback OFF  
Min Frequency  
1
100  
1000  
10000  
100000  
1
10  
100  
1000  
10000  
100000  
Frequency (kHz)  
Frequency (kHz)  
D047  
D048  
Figure 61. Thermal Gain Control Sweep (Frequency = 9)  
Figure 62. Thermal Frequency Control Sweep (Gain = 10)  
1.02  
Uncorrected  
Corrected  
1.015  
1.01  
1.005  
1
0.995  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Time (usec)  
1
D049  
Figure 63. Long-Term Settling Response using Thermal Feedback  
(Gain = 10, Frequency = 9)  
Copyright © 2015, Texas Instruments Incorporated  
29  
 
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
10.1.4 Thermal Considerations  
The LMH6401 is packaged in a space-saving UQFN package that has a thermal coefficient (RθJA) of 78°C/W.  
Limit the total power dissipation in order to keep the device junction temperature below 150°C for instantaneous  
power and below 125°C for continuous power.  
10.2 Typical Application  
The LMH6401 is designed and optimized for the highest performance when driving differential input ADCs.  
Figure 64 shows a block diagram of the LMH6401 driving an ADC with a fourth-order, low-pass filter. The  
primary interface circuit between the amplifier and the ADC is usually an antialiasing filter to suppress high-  
frequency harmonics aliasing into the ADC FFT spectrum. The interface circuit also provides a means to bias the  
signal to the input common-mode voltage required by the ADC. Filters range from single-order real RC poles to  
higher-order RLC filters, depending on the application requirements. Output resistors (RO) in series with the  
amplifier outputs isolate the amplifier from any capacitive load presented by the filter.  
5 V  
Driving Circuit  
7.5 nH  
18 nH  
Ro+ = 20 Ÿꢀ  
10 Ÿꢀ  
LMH6401  
10 Ÿꢀ  
5 Ÿꢀ  
5 Ÿꢀ  
Tx Line, ZO = 50 Ÿ  
50 Ÿꢀ  
50 Ÿꢀ  
2.8 pF ||1.2 NŸꢀ  
54 Ÿꢀ  
54 Ÿꢀ  
6.3 pF  
ADS41B49  
ADS54J60  
+
9 pF  
2.5 V  
VOCM  
Ro- = 20 Ÿꢀ  
7.5 nH  
18 nH  
ZIN ~ 100 Ÿ  
VOCM  
0.01 PF  
0.01 PF  
Figure 64. The LMH6401 Driving an ADS54J60 with a 370 MHz Fourth-Order Chebyshev Low-Pass Filter  
Low distortion and low noise figure, along-with low power dissipation make the LMH6401 an ideal device for use  
in front-end radio applications. Figure 65 shows a block diagram of a one-transmit and one-receive (1T/1R) radio  
architecture with a digital pre-distortion path, where the LMH6401 can be used as a variable-gain IF amplifier on  
both the transmit and receive signal chain.  
Receive Path  
Demodulator  
LMH6401  
ADC  
LNA  
LO1  
CLK1  
Modulator  
LMH6401  
DAC  
PA  
LO2  
CLK2  
LO3  
CLK3  
ADC  
LMH6401  
Demodulator  
Transmit Path  
Figure 65. 1T/1R with Digital Pre-Distortion Front-End Radio Application  
30  
Copyright © 2015, Texas Instruments Incorporated  
 
 
LMH6401  
www.ti.com.cn  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
Typical Application (continued)  
10.2.1 Design Requirements  
Table 12 shows example design requirements for an amplifier in an oscilloscope front-end application; the  
LMH6401 meets these requirements.  
Table 12. Example Design Requirements for an Oscilloscope Front-End application  
SPECIFICATION  
DESIGN REQUIREMENTS  
4.0 V to 5.25 V with typically less than a 100-mA current and  
split-supply operation supported  
Supply voltage and current  
Usable input frequency range  
Voltage gain and gain range  
DC to 2 GHz  
26-dB to 10-dB voltage gain with x2 attenuation supported  
(ideal 32-dB gain range)  
OIP3 (PO= –2 dBm per tone, RL= 200 Ω) and noise figure (RS = 100 Ω) at 1 GHz  
Rise and fall time (VO= 2-V step) from 10% to 90%  
Settling time to 1% of VO = 2-V step  
> 30 dBm and less than 10 dB, respectively.  
Less than 100 ps  
Less than 1 ns with long-term settling correction required  
10.2.2 Detailed Design Procedure  
10.2.2.1 Driving ADCs  
When the amplifier is driving an ADC, the key points to consider for implementation are the signal-to-noise ratio  
(SNR), spurious-free dynamic range (SFDR), and ADC input considerations, as described in this section.  
A typical application of the LMH6401 involves driving an ultra-wideband, 12-bit ADC (such as the ADC12J4000),  
as shown in Figure 66. The LMH6401 can drive the full Nyquist bandwidth of ADCs with sampling rates up to  
4 GSPS. If the front-end bandwidth of the ADC is more than 2 GHz, use a simple noise filter to improve SNR.  
Otherwise, the ADC can be connected directly to the amplifier output pins with appropriate matching resistors to  
limit the full-scale input of the ADC. Note that the LMH6401 inputs must be driven differentially using a balun or  
fully-differential amplifiers (FDAs). For dc-coupled applications, an FDA (such as the LMH3401 or LMH5401) that  
can convert a single-ended input to a differential output with low distortion is preferred.  
VS+ = 3.73 V  
VS+ = 3.73 V  
1.23 V  
LMH5401  
RF  
25 Ÿꢀ  
RT  
RO+ = 40 Ÿꢀ  
10 Ÿꢀ  
IN  
1.5 pF (2)  
95 Ÿꢀ  
RG  
10 Ÿꢀ  
10 Ÿꢀ  
0 Ÿꢀ  
0 Ÿꢀ  
-
+
-
ADC12J4000  
ADS41B49  
LMH6401  
+
RG  
VOCM  
RM  
10 Ÿꢀ  
RO- = 40 Ÿꢀ  
~ 100 Ÿꢀ  
RF  
25 Ÿꢀ  
VOCM  
0.01 PF  
VS- = -1.27 V  
VS- = -1.27 V  
Figure 66. DC-Coupled Oscilloscope Front-End Application  
Copyright © 2015, Texas Instruments Incorporated  
31  
 
 
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
10.2.2.1.1 SNR Considerations  
The signal-to-noise ratio (SNR) of the amplifier and filter can be calculated from the amplitude of the signal and  
the bandwidth of the filter. The noise from the amplifier is band-limited by the filter with the equivalent brick-wall  
filter bandwidth. The amplifier and filter noise can be calculated using Equation 3:  
V2  
VO  
O
SNRAMP+FILTER = 10 × log  
= 20 × log  
e2  
eFILTEROUT  
FILTEROUT  
where:  
eFILTEROUT = eNAMPOUT ENB,  
eNAMPOUT = the output noise density of the LMH6401 (30.4 nV/Hz) at AV = 26 dB,  
ENB = the brick-wall equivalent noise bandwidth of the filter, and  
VO = the amplifier output signal.  
(3)  
For example, with a first-order (N = 1) band-pass or low-pass filter with a 1000-MHz cutoff, ENB is 1.57 • f–3dB  
=
1.57 • 1000 MHz = 1570 MHz. For second-order (N = 2) filters, ENB is 1.22 • f–3dB. When the filter order  
increases, ENB approaches f–3dB (N = 3 ENB = 1.15 • f–3dB; N = 4 ENB = 1.13 • f–3dB). Both VO and  
eFILTEROUT are in RMS voltages. For example, with a 2-VPP (0.707 VRMS) output signal and a 1000-MHz first-  
order, low-pass filter, the SNR of the amplifier and filter is 55.4 dB with eFILTEROUT = 30.4 nV/Hz • 1570 MHz =  
1204.5 μVRMS  
.
The SNR of the amplifier, filter, and ADC sum in RMS fashion, as shown in Equation 4 (SNR values in dB):  
-SNRAMP+FILTER  
-SNRADC  
10  
10  
SNRSYSTEM = -20 × log  
10  
+ 10  
(4)  
This formula shows that if the SNR of the amplifier and filter equals the SNR of the ADC, the combined SNR is  
3 dB lower (worse). Thus, for minimal degradation (< 1 dB) on the ADC SNR, the SNR of the amplifier and filter  
must be 10 dB greater than the ADC SNR. The combined SNR calculated in this manner is usually accurate to  
within ±1 dB of the actual implementation.  
10.2.2.1.2 SFDR Considerations  
The SFDR of the amplifier is usually set by the second- or third-harmonic distortion for single-tone inputs, and by  
the second-order or third-order intermodulation distortion for two-tone inputs. Harmonics and second-order  
intermodulation distortion can be filtered to some degree, but third-order intermodulation spurs cannot be filtered.  
The ADC generates the same distortion products as the amplifier, but also generates additional spurs (not  
harmonically related to the input signal) as a result of sampling and clock feed through.  
When the spurs from the amplifier and filter are known, each individual spur can be directly added to the same  
spur from the ADC, as shown in Equation 5, to estimate the combined spur (spur amplitudes in dBc):  
-HDxAMP+FILTER  
-HDxADC  
20  
20  
HDxSYSTEM = -20 × log  
10  
+ 10  
(5)  
This calculation assumes the spurs are in phase, but usually provides a good estimate of the final combined  
distortion.  
For example, if the spur of the amplifier and filter equals the spur of the ADC, then the combined spur is 6 dB  
higher. To minimize the amplifier contribution (< 1 dB) to the overall system distortion, the spur from the amplifier  
and filter must be approximately 15 dB lower in amplitude than that of the converter. The combined spur  
calculated in this manner is usually accurate to within ±6 dB of the actual implementation; however, higher  
variations can be detected as a result of phase shift in the filter, especially in second-order harmonic  
performance.  
This worst-case spur calculation assumes that the amplifier and filter spur of interest is in phase with the  
corresponding spur in the ADC, such that the two spur amplitudes can be added linearly. There are two phase-  
shift mechanisms that cause the measured distortion performance of the amplifier-ADC chain to deviate from the  
expected performance calculated using Equation 5; one is the common-mode phase shift and other is the  
differential phase shift.  
32  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
LMH6401  
www.ti.com.cn  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
Common-mode phase shift is the phase shift detected equally in both branches of the differential signal path  
including the filter. Common-mode phase shift nullifies the basic assumption that the amplifier, filter, and ADC  
spur sources are in phase. This phase shift can lead to better performance than predicted when the spurs  
become phase shifted, and there is the potential for cancellation when the phase shift reaches 180°. However,  
there is a significant challenge in designing an amplifier-ADC interface circuit to take advantage of a common-  
mode phase shift for cancellation: the phase characteristics of the ADC spur sources are unknown, thus the  
necessary phase shift in the filter and signal path for cancellation is also unknown.  
Differential phase shift is the difference in the phase response between the two branches of the differential filter  
signal path. Differential phase shift in the filter is a result of mismatched components caused by nominal  
tolerances and can severely degrade the even harmonic distortion of the amplifier-ADC chain. This effect has the  
same result as mismatched path lengths for the two differential traces, and causes more phase shift in one path  
than the other. Ideally, the phase responses over frequency through the two sides of a differential signal path are  
identical, such that even harmonics remain optimally out of phase and cancel when the signal is taken  
differentially. However, if one side has more phase shift than the other, then the even harmonic cancellation is  
not as effective.  
Single-order RC filters cause very little differential phase shift with nominal tolerances of 5% or less, but higher-  
order LC filters are very sensitive to component mismatch. For instance, a third-order Butterworth band-pass  
filter with a 100-MHz center frequency and a 20-MHz bandwidth shows as much as 20° of differential phase  
imbalance in a SPICE Monte Carlo analysis with 2% component tolerances. Therefore, although a prototype may  
work, production variance is unacceptable. For ac-coupled or dc-coupled applications where a transformer or  
balun cannot be used, using first- or second-order filters is recommended to minimize the effect of differential  
phase shift.  
10.2.2.1.3 ADC Input Common-Mode Voltage Considerations—AC-Coupled Input  
When interfacing to an ADC, the input common-mode voltage range of the ADC must be taken into account for  
proper operation. In an ac-coupled application between the amplifier and the ADC, the input common-mode  
voltage bias of the ADC can be accomplished in different ways. Some ADCs use internal bias networks such that  
the analog inputs are automatically biased to the required input common-mode voltage if the inputs are ac-  
coupled with capacitors (or if the filter between the amplifier and ADC is a band-pass filter). Other ADCs supply  
their required input common-mode voltage from a reference voltage output pin (often termed CM or VCM). With  
these ADCs, the ac-coupled input signal can be re-biased to the input common-mode voltage by connecting  
resistors from each input to the CM output of the ADC, as shown in Figure 67. AC coupling provides dc common-  
mode isolation between the amplifier and the ADC; thus, the output common-mode voltage of the amplifier is a  
don’t care for the ADC.  
RO  
RCM  
AIN+  
Amp  
ADC  
CM  
AIN-  
RCM  
RO  
Figure 67. Biasing AC-Coupled ADC Inputs Using the ADC CM Output  
10.2.2.1.4 ADC Input Common-Mode Voltage Considerations—DC-Coupled Input  
DC-coupled applications vary in complexity and requirements, depending on the ADC (a split supply for the CMV  
is applicable). One typical requirement is resolving the mismatch between the common-mode voltage of the  
driving amplifier and the ADC. Devices such as the ADC12J4000 require a nominal 1.23-V input common-mode,  
whereas other devices such as the ADS54J60 require a nominal 2.1-V input common-mode. The simplest  
approach when dc-coupling the LMH6401 with the input common-mode voltage of the ADC is to select the  
supply voltages (VS+) and (VS–) such that the default output common-mode voltage being set is equal to the  
input common-mode voltage of the ADC; see Figure 66. The default common-mode voltage being set can be  
controlled externally using the VOCM pin. The device performance is optimal when the output common-mode  
voltage is within ±0.5 V of mid-supply and degrades outside the range when the output swing approaches  
clipping levels.  
Copyright © 2015, Texas Instruments Incorporated  
33  
 
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
A second approach is shown in Figure 68 when dc-coupling on a single supply, where a resistor network can be  
used to perform the common-mode level shift. This resistor network consists of the amplifier series output  
resistors and pullup or pulldown resistors to a reference voltage. This resistor network introduces signal  
attenuation that may prevent the use of the full-scale input range of the ADC. ADCs with an input common-mode  
closer to the typical 2.5-V output common-mode of the LMH6401 are easier to dc-couple, and require little or no  
level shifting.  
VREF = GND  
LMH6401  
+5 V  
RP  
RO  
VADC+  
VAMP+  
10 Ÿꢀ  
10 Ÿꢀ  
RIN  
C
ADC  
ADS41B49  
IN  
VAMP-  
VADC-  
RO  
RP  
GND  
VREF = GND  
Figure 68. Resistor Network to DC Level-Shift Common-Mode Voltage using VREF as GND  
For common-mode analysis of the circuit in Figure 68, assume that VAMP± = VCM and VADC± = VCM (the  
specification for the ADC input common-mode voltage). Note that the VAMP± common-mode voltage is set before  
the two internal 10-Ω resistors, making these resistors necessary to include in the common-mode level-shift  
resistor calculation. VREF is chosen to be a voltage within the system higher than VCM (such as the ADC or  
amplifier analog supply) or ground, depending on whether the voltage must be pulled up or down, respectively;  
RO is chosen to be a reasonable value, such as 24.9 Ω. With these known values, RP can be found by using  
Equation 6:  
RP= (10 + RO) × (VADC – VREF) / (VAMP – VADC  
)
(6)  
Shifting the common-mode voltage with the resistor network comes at the expense of signal attenuation.  
Modeling the ADC input as the parallel combination of a resistance (RIN) and capacitance (CIN) using values  
taken from the ADC data sheet, the approximate differential input impedance (ZIN) for the ADC can be calculated  
at the signal frequency. The effect of CIN on the overall calculation of gain is typically minimal and can be ignored  
for simplicity (that is, ZIN = RIN). The ADC input impedance creates a divider with the resistor network; the gain  
(attenuation) for this divider can be calculated by Equation 7:  
Gain = (2RP || ZIN) / (20 + 2RO + 2RP || ZIN)  
(7)  
With ADCs that have internal resistors that bias the ADC input to the ADC input common-mode voltage, the  
effective RIN is equal to twice the value of the bias resistor. For example, the ADS54J60 has a 0.6-kΩ resistor  
tying each input to the ADC VCM; therefore, the effective differential RIN is 1.2 kΩ.  
The introduction of the RP resistors also modifies the effective load that must be driven by the amplifier.  
Equation 8 shows the effective load created when using the RP resistors.  
RL = 20 + 2RO + 2RP || ZIN  
(8)  
The RP resistors function in parallel to the ADC input such that the effective load (output current) at the amplifier  
output is increased. Higher current loads limit the LMH6401 differential output swing.  
Using the gain and knowing the full-scale input of the ADC (VADC FS), the required amplitude to drive the ADC  
with the network can be calculated using Equation 9:  
VADC FS  
VAMP PP  
=
GAIN  
(9)  
As with any design, testing is recommended to validate whether the specific design goals are met.  
34  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
 
 
LMH6401  
www.ti.com.cn  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
10.2.3 Application Curves  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
0.3  
0.2  
0.1  
0
3
200 MHz  
500 MHz  
1000 MHz  
2000 MHz  
Vin  
2VppOut  
4VppOut  
2
1
0
-0.1  
-0.2  
-0.3  
-1  
-2  
-3  
-2 -1  
0
1
2
3
4
5
6
7
8
9
10  
Time (1 nsec/div)  
Total Output Power per tone (dBm)  
D022  
D037  
Figure 69. Output IP3 vs Total Output Power per Tone  
Figure 70. Output Pulse Response  
10.3 Do's and Don'ts  
10.3.1 Do:  
Include a thermal analysis at the beginning of the project.  
Use well-terminated transmission lines for all signals.  
Maintain symmetrical input and output trace layouts  
Use solid metal layers for the power supplies.  
Keep signal lines as straight as possible.  
Use split supplies where required.  
10.3.2 Don't:  
Use a lower supply voltage than necessary.  
Use thin metal traces to supply power.  
Forget about the common-mode response of filters and transmission lines.  
Rout digital line traces close to the analog signals and supply line traces  
Copyright © 2015, Texas Instruments Incorporated  
35  
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
11 Power-Supply Recommendations  
The LMH6401 supports both single- or split-supply operation with a total recommended supply operating range  
[(VS+) – (VS–)] from 4.0 V to 5.25 V. Note that supply voltages do not need to be symmetrical when using split  
supplies, provided the total supply voltage is within the recommended operating range. Any combination of  
positive (VS+) and negative (VS–) supply voltages is acceptable, as long as the minimum positive (VS+) supply  
voltage to ground is 2 V, or greater.  
Using a single 5-V power supply gives the best balance of performance and power dissipation. If power  
dissipation is a critical design parameter, a power supply as low as 4.0 V (±2.0 V) can be used. The input  
common-mode and output swing limitations of the device scale with supply voltage. TI recommends studying the  
common-mode voltage and output swing limitations (see the Electrical Characteristics table) before deciding to  
use a lower supply voltage.  
11.1 Single-Supply Operation  
The device supports single-ended supply voltages with VS+ connected to a positive voltage from 4.0 V to 5.25 V  
and VS– connected to ground reference. When using a single supply, check to make sure the input and output  
common-mode voltages are within the operating range of the device. Best performance is achieved when the  
input and output common-mode voltages are centered close to mid-supply.  
11.2 Split-Supply Operation  
Using split supplies provides the most flexibility in system design. To operate on split supplies, apply the positive  
supply voltage to VS+, the negative supply voltage to VS–, and the ground reference to GND. Note that supply  
voltages do not need to be symmetrical, as long as the minimum positive (VS+) supply voltage to ground is 2 V,  
or greater. The split-supply operation is often beneficial when the output common-mode of the device must be  
set to a particular voltage. For best performance (see Figure 21 and Figure 22), TI recommends that the power-  
supply voltages be symmetrical around the desired output common-mode voltage. The input common-mode  
voltage range is much more flexible than the output. For example, if the LMH6401 is used to drive an ADC with a  
1.0-V input common mode, then the ideal supply voltages are 3.5 V and –1.5 V with the output common-mode  
voltage of the LMH6401 centered at 1.0 V for best linearity and noise performance. The GND pin can then be  
connected to the system ground and the PD pin and SPI pins are ground referenced.  
TI recommends powering up the device with low-noise, LDO-type regulators. If a switching-type regulator is used  
to improve system power efficiency, following the switching-type regulator with a low-noise LDO is recommended  
to provide the best possible filtering of the switching noise. An example low-noise switcher and LDO for  
generating negative supply voltages are the LMR70503 and TPS72301, respectively. In a system with multiple  
devices being powered on from the same voltage regulator, a high possibility of noise being coupled between the  
multiple devices exists. Additionally, when operated on a board with high-speed digital signals, isolation must be  
provided between the digital signal noise and the LMH6401 supply pins. Therefore, adding additional series  
ferrite beads or isolation devices and decoupling capacitors is recommended to filter out any power-supply noise  
and improve isolation.  
Power-supply decoupling is critical to filter out high-frequency switching noise coupling into the supply pins.  
Decoupling the supply pins with low ESL, 0306-size ceramic capacitors of X7R-type 0.01-µF and 2200-pF values  
are recommended. In addition to the decoupling capacitors, the supply bypassing can be provided by the PCB,  
as illustrated in Layout Guidelines section.  
36  
Copyright © 2015, Texas Instruments Incorporated  
LMH6401  
www.ti.com.cn  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
12 Layout  
12.1 Layout Guidelines  
When dealing with a device with relatively high gain and bandwidth in excess of 1 GHz, certain board layout  
precautions must be taken to ensure stability and optimum performance. TI recommends that the LMH6401  
board be multi-layered to improve thermal performance, grounding, and power-supply decoupling. The differential  
input and output traces must be symmetrical in order to achieve the best linearity performance.  
By sandwiching the power-supply layer between ground layers on either side (with thin dielectric thicknesses),  
parasitic capacitance between power and ground functions as a distributed, high-resonance frequency capacitor  
to help with power-supply decoupling. The LMH6401 evaluation board includes a total of six layers and the  
positive (VS+) and negative (VS–) power planes are sandwiched in the middle with a board stack-up (dielectric  
thickness), as shown in Figure 71, to help with supply decoupling. Both VS+ and VS– must be connected to the  
internal power planes through multiple vias in the immediate vicinity of the supply pins. In addition, low ESL,  
ceramic, 0.01-μF decoupling capacitors to the supplies are placed on the same layer as the device to provide  
supply decoupling.  
Routing high-frequency signal traces on a PCB requires careful attention to maintain signal integrity. A board  
layout software package can simplify the trace thickness design to maintain impedances for controlled  
impedance signals. In order to isolate the affect of board parasitic on frequency response, TI recommends  
placing the external output matching resistors close to the amplifier output pins. A 0.01-µF bypass capacitor is  
also recommended close to the VOCM pins to suppress high-frequency common-mode noise. Refer to the user  
guide LMH6401EVM Evaluation Module (SLOU406) for more details on board layout and design.  
In order to improve board mechanical reliability, the LMH6401 has square anchor pins on four corners of the  
package that must be soldered to the board for mechanical strength.  
L1 - Top  
L2 - GND  
0.0166"  
0.005"  
L3 ± VS+  
0.0482"  
L4 ± VS-  
0.005"  
L5 ± GND  
0.0166"  
L6 - Bottom  
1-oz. copper on all layers,  
100-ŸꢀGLIIHUHQWLDOꢀWUDFHꢀLPSHGDQFHꢀRQꢀWKHꢀWRSꢀOD\HU,  
and Rogers 4350 dielectric on the top layer.  
Figure 71. Recommended PCB Layer Stack-Up for a Six-Layer Board  
Copyright © 2015, Texas Instruments Incorporated  
37  
 
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
12.2 Layout Examples  
Power connections  
with multiple vias to  
power planes.  
ROUT pads closer to  
device output pins.  
Symmetrical Output  
traces  
Symmetrical Input  
traces  
Supply bypass  
capacitor pads.  
Stitched GND vias  
across signal traces  
provide GND shielding.  
Figure 72. EVM Top Layer  
Figure 73. EVM Second Layer Showing a Solid GND Plane  
38  
版权 © 2015, Texas Instruments Incorporated  
LMH6401  
www.ti.com.cn  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
13 器件和文档支持  
13.1 文档支持  
13.1.1 相关文档ꢀ  
相关文档如下:  
ADS12D1800RF 数据表》,SNAS518  
ADC12J1600 ADC12J2700 数据表》,SLAS969  
ADC12J4000 数据表》,SLAS989  
ADS54J40 数据表》,SBAS714  
ADS54J60 数据表》,SBAS706  
LMH3401 数据表》,SBOS695  
LMH5401 数据表》,SBOS710  
LMH6517 数据表》,SNOSB19  
LMH6521 数据表》,SNOSB47  
LMH6554 数据表》,SNOSB30  
LMH6881 数据表》,SNOSC72  
LMR70503 数据表》,SNVS850  
TPS72301 数据表》,SLVS346  
AN-2188 在放大器和 ADC 之间:管理通信系统中的滤波器损耗》SNOA567  
AN-2235 LMH6517/21/22 和其它高速 IF/RF 反馈放大器的电路板设计》SNOA869  
LMH6401EVM 评估模块》SLOU406  
13.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.3 商标  
E2E is a trademark of Texas Instruments.  
Marki is a trademark of Marki Microwave, Inc.  
SPI is a trademark of Motorola Mobility LLC.  
All other trademarks are the property of their respective owners.  
13.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 ,  
可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
版权 © 2015, Texas Instruments Incorporated  
39  
LMH6401  
ZHCSDQ5A APRIL 2015REVISED MAY 2015  
www.ti.com.cn  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
40  
版权 © 2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH6401IRMZR  
LMH6401IRMZT  
ACTIVE  
ACTIVE  
UQFN-HR  
UQFN-HR  
RMZ  
RMZ  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
MH6401  
MH6401  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMH6401IRMZR  
LMH6401IRMZT  
UQFN-  
HR  
RMZ  
RMZ  
16  
16  
3000  
250  
180.0  
16.5  
3.3  
3.3  
0.75  
8.0  
12.0  
Q2  
UQFN-  
HR  
180.0  
16.5  
3.3  
3.3  
0.75  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMH6401IRMZR  
LMH6401IRMZT  
UQFN-HR  
UQFN-HR  
RMZ  
RMZ  
16  
16  
3000  
250  
205.0  
205.0  
200.0  
200.0  
30.0  
30.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RMZ0016A  
UQFN - 0.65 mm max height  
SCALE 4.000  
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
C
0.65 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 1.5  
SYMM  
(0.15)  
TYP  
(0.125) TYP  
4X ( 0.25)  
5
8
4
9
SYMM  
2X  
1.5  
1
12  
12X 0.5  
0.3  
16X  
0.2  
16  
13  
0.5  
0.3  
0.1  
C A  
C
B
0.6±0.05  
0.05  
15X  
(45 X0.13)  
PIN 1 ID  
4221506/B 01/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RMZ0016A  
UQFN - 0.65 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(R0.05) TYP  
(0.8)  
16  
13  
4X ( 0.25)  
(0.1)  
1
12  
12X (0.5)  
SYMM  
(2.8)  
(2.5)  
16X (0.25)  
15X (0.6)  
4
9
5
8
(2.5)  
(2.8)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221506/B 01/2015  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RMZ0016A  
UQFN - 0.65 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(R0.05) TYP  
(0.8)  
13  
16  
4X ( 0.25)  
(0.1)  
1
12  
12X (0.5)  
SYMM  
(2.8)  
(2.5)  
16X (0.25)  
4
9
15X (0.6)  
5
8
(2.5)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICKNESS  
SCALE:20X  
4221506/B 01/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

LMH6401IRMZR

4.5GHz 超宽带数字可变增益放大器 | RMZ | 16 | -40 to 85
TI

LMH6401IRMZT

4.5GHz 超宽带数字可变增益放大器 | RMZ | 16 | -40 to 85
TI

LMH6502

Wideband, Low Power, Linear-in-dB Variable Gain Amplifier
NSC

LMH6502

宽带、低功耗、dB 线性可变增益放大器
TI

LMH6502MA

Wideband, Low Power, Linear-in-dB Variable Gain Amplifier
NSC

LMH6502MA

LMH6502 Wideband, Low Power, Linear-in-dB Variable Gain Amplifier
TI

LMH6502MA/NOPB

LMH6502 Wideband, Low Power, Linear-in-dB Variable Gain Amplifier
TI

LMH6502MAX

Wideband, Low Power, Linear-in-dB Variable Gain Amplifier
NSC

LMH6502MAX/NOPB

IC SPECIALTY ANALOG CIRCUIT, PDSO14, SOIC-14, Analog IC:Other
NSC

LMH6502MAX/NOPB

LMH6502 Wideband, Low Power, Linear-in-dB Variable Gain Amplifier
TI

LMH6502MT

Wideband, Low Power, Linear-in-dB Variable Gain Amplifier
NSC

LMH6502MT/NOPB

IC SPECIALTY ANALOG CIRCUIT, PDSO14, TSSOP-14, Analog IC:Other
NSC