LMH6572MQ/NOPB [TI]

具有三路 2:1 高速多路复用器的 350MHz 高速运算放大器 | DBQ | 16 | -40 to 85;
LMH6572MQ/NOPB
型号: LMH6572MQ/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有三路 2:1 高速多路复用器的 350MHz 高速运算放大器 | DBQ | 16 | -40 to 85

放大器 光电二极管 运算放大器 复用器
文件: 总26页 (文件大小:1726K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMH6572  
ZHCSIP3G JUNE 2005REVISED AUGUST 2018  
LMH6572 三通道 2:1 高速视频多路复用器  
1 特性  
3 说明  
1
350MHz250mV3dB 带宽  
LMH6572 是一款经过优化的高性能模拟多路复用器,  
适用于专业级视频应用和其他高保真度、高带宽模拟  
应用。LMH6572 可在 2VPP 输出信号电平提供  
290MHz 带宽。140MHz 0.1dB 带宽和 1500V/µs  
的压摆率使得该部件适用于高清电视 (HDTV) 和高分辨  
率多媒体视频 应用。  
290MHz2VPP3dB 带宽  
10ns 通道开关时间  
90dB 通道到通道隔离(在 5MHz 条件下)  
0.02% 差分增益,0.02° 差分相位  
0.1dB 增益平坦度:140MHz  
1400V/μs 压摆率  
LMH6572 针对 NTSC PAL 视频信号的差分增益误  
差和差分相位误差分别为 0.02% 0.02°,支持复合  
视频 应用 ,同时可驱动后部端接的单个 75负载。  
LM6572 可提供 80mA 线性输出电流来驱动多个视频  
负载 应用。  
宽电源电压范围:  
6V (±3V) 12V (±6V)  
10MHz 时为 78dB HD2  
10MHz 时为 75dB HD3  
2 应用  
LMH6572 具有 2V/V (+6dBv) 的内部增益,能够以  
1V/V (0dBv) 的净增益驱动后部端接传输线。  
RGB 视频路由器  
多输入视频监控器  
容错数据开关  
LMH6572 可提供 SSOP 封装。  
器件信息(1)  
器件型号  
LMH6572  
封装  
SSOP (16)  
封装尺寸(标称值)  
4.90mm × 3.90mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNCS102  
 
 
 
 
LMH6572  
ZHCSIP3G JUNE 2005REVISED AUGUST 2018  
www.ti.com.cn  
目录  
7.1 Overview ................................................................. 11  
7.2 Feature Description................................................. 11  
Power Supply Recommendations...................... 15  
8.1 Power Dissipation ................................................... 15  
8.2 ESD Protection........................................................ 15  
Layout ................................................................... 16  
9.1 Layout Guidelines ................................................... 16  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 ±5V Electrical Characteristics ................................... 5  
6.6 ±3.3V Electrical Characteristics ................................ 7  
6.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 11  
8
9
10 器件和文档支持 ..................................................... 17  
10.1 接收文档更新通知 ................................................. 17  
10.2 社区资源................................................................ 17  
10.3 ....................................................................... 17  
10.4 静电放电警告......................................................... 17  
10.5 术语表 ................................................................... 17  
11 机械、封装和可订购信息....................................... 17  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision F (May 2013) to Revision G  
Page  
已删除 预览水印...................................................................................................................................................................... 1  
已添加 器件信息 表、引脚配置和功能 部分、ESD 额定值 表、特性 说明 部分、电源建议 部分、布局 部分、器件和  
文档支持 部分以及机械、封装和可订购信息 部分 ................................................................................................................. 1  
Deleted bolding from Electrical Characteristics specifications, added temperature range to test conditions for clarification 5  
Changed Overview title from General Information .............................................................................................................. 11  
Changed Layout Considerations title to Layout Guidelines.................................................................................................. 16  
Changes from Revision E (April 2013) to Revision F  
Page  
Changed layout of National Semiconductor Data Sheet to TI format .................................................................................. 16  
2
Copyright © 2005–2018, Texas Instruments Incorporated  
 
LMH6572  
www.ti.com.cn  
ZHCSIP3G JUNE 2005REVISED AUGUST 2018  
5 Pin Configuration and Functions  
DBQ Package  
16-Pin SSOP  
Top View  
Truth Table  
SEL  
0
EN  
OUT  
CH 1  
0
0
1
1
CH 0  
X
Disable  
Copyright © 2005–2018, Texas Instruments Incorporated  
3
LMH6572  
ZHCSIP3G JUNE 2005REVISED AUGUST 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)(2)  
see  
MIN  
MAX  
13.2  
130  
UNIT  
V
Supply Voltage (V+ V)  
(3)  
IOUT  
mA  
V
Input Voltage Range  
Maximum Junction Temperature(4)  
±(VS)  
+150  
+150  
°C  
Storage temperature, Tstg  
–65  
°C  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but specific performance is not ensured. For ensured specifications, see the Electrical  
Characteristics tables.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(3) The maximum output current (IOUT) is determined by the device power dissipation limitations. See the Power Dissipation section for  
more details. A short circuit condition should be limited to 5 seconds or less.  
(4) Human Body Model, 1.5 kin series with 100 pF. Machine Model 0 in series with 200 pF.  
6.2 ESD Ratings  
VALUE  
±2000  
±200  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Machine model (MM)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
(1)  
see  
MIN  
–40  
6
NOM  
MAX  
85  
UNIT  
°C  
Operating Temperature  
Supply Voltage Range  
12  
V
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but specific performance is not ensured. For ensured specifications, see the Electrical  
Characteristics tables.  
6.4 Thermal Information  
LMH6572  
THERMAL METRIC(1)  
DBQ (SSOP)  
16 PINS  
125  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
RθJC(top)  
36  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2005–2018, Texas Instruments Incorporated  
LMH6572  
www.ti.com.cn  
ZHCSIP3G JUNE 2005REVISED AUGUST 2018  
6.5 ±5V Electrical Characteristics  
VS = ±5 V and RL = 100 , (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY DOMAIN PERFORMANCE  
SSBW  
LSBW  
–3 dB Bandwidth  
–3 dB Bandwidth(2)  
VOUT = 0.25 VPP  
350  
290  
MHz  
MHz  
MHz  
VOUT = 2 VPP  
250  
.1 dBBW 0.1 dB Bandwidth  
VOUT = 0.25 VPP  
140  
DG  
DP  
Differential Gain  
RL = 150 , f = 4.43 MHz  
RL = 150 , f = 4.43 MHz  
0.02%  
0.02  
Differential Phase  
deg  
TIME DOMAIN RESPONSE  
TRS  
Channel to Channel Switching Time  
Logic Transition to 90% Output  
10  
11  
ns  
ns  
ns  
ns  
Enable and Disable Times  
Rise and Fall Time  
Settling Time to 0.05%  
Overshoot  
Logic Transition to 90% or 10% Output  
TRL  
TSS  
OS  
2-V Step  
2-V Step  
4-V Step  
4-V Step  
1.5  
17  
5%  
1400  
SR  
Slew Rate(2)  
1200  
V/µs  
DISTORTION  
HD2  
HD3  
IMD  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
3rd Order Intermodulation Products  
2 VPP , 10 MHz  
78  
75  
80  
dBc  
dBc  
dBc  
2 VPP , 10 MHz  
10 MHz, Two tones 2 VPP at Output  
EQUIVALENT INPUT NOISE  
VN  
Voltage  
Current  
>1 MHz, Input Referred  
>1 MHz, Input Referred  
5
5
nVHz  
pA/Hz  
ICN  
STATIC, DC PERFORMANCE  
GAIN  
Voltage Gain  
2.0  
V/V  
No load, with respect to nominal gain of  
2.00 V/V  
±0.3%  
±0.5%  
±0.7%  
Gain Error(3)  
No load, with respect to nominal gain of  
2.00 V/V, TA = –40°C to +85°C  
±0.3%  
0.3%  
RL = 50 , with respect to nominal gain  
of 2.00 V/V  
Gain Error  
VIN = 0 V  
1
1
±14  
VIO  
Output Offset Voltage(3)  
Average Drift  
mV  
µV/°C  
µA  
VIN = 0 V, TA = –40°C to +85°C  
±17.5  
DVIO  
IBN  
27  
VIN = 0 V  
1.4  
1.4  
7
±5.0  
±5.6  
Input Bias Current(3)(4)  
Average Drift  
VIN = 0 V, TA = –40°C to +85°C  
DIBN  
PSRR  
nA/°C  
dB  
DC, Input referred  
50  
48  
20  
20  
54  
Power Supply Rejection Ratio(3)  
DC, Input referred, TA = –40°C to +85°C  
No load  
54  
23  
25  
28.5  
2.2  
ICC  
Supply Current(3)  
mA  
No load, TA = –40°C to +85°C  
No load  
23  
2.0  
2.0  
Supply Current Disabled(3)  
Logic High Threshold(3)  
mA  
V
No load, TA = –40°C to +85°C  
Select and Enable Pins  
2.3  
VIH  
2.0  
(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very  
limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables under  
conditions of internal self heating where TJ > TA. See the Power Dissipation section for information on temperature de-rating of this  
device. Minimum and maximum ratings are based on product testing, characterization and simulation. Individual parameters are tested  
as noted.  
(2) Parameters ensured by design.  
(3) Parameters ensured by electrical testing at 25° C.  
(4) Positive Value is current into device.  
Copyright © 2005–2018, Texas Instruments Incorporated  
5
LMH6572  
ZHCSIP3G JUNE 2005REVISED AUGUST 2018  
www.ti.com.cn  
±5V Electrical Characteristics (continued)  
VS = ±5 V and RL = 100 , (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP  
MAX  
UNIT  
VIL  
IiL  
Logic Low Threshold(3)  
Select and Enable Pins  
0.8  
±5.0  
±15  
200  
V
Logic Input = 0 V  
1  
1  
Logic Pin Input Current Low(4)  
µA  
Logic Input = 0 V, TA = –40°C to +85°C  
Logic Input = 2.0 V  
112  
100  
150  
IiH  
Logic Pin Input Current High(4)  
µA  
Logic Input = 2.0 V, TA = –40°C to  
+85°C  
150  
210  
MISCELLANEOUS PERFORMANCE  
650  
620  
800  
800  
940  
Internal Feedback and Gain Set  
Resistor Values  
RF  
TA = –40°C to +85°C  
1010  
Internal Feedback and Gain Set  
Resistors in Series to Ground  
RODIS  
Disabled Output Resistance  
1.3  
1.6  
1.88  
kΩ  
RIN+  
CIN  
Input Resistance  
Input Capacitance  
Output Resistance  
100  
0.9  
kΩ  
pF  
ROUT  
0.26  
±3.9  
±3.9  
±3.53  
±3.53  
±2.5  
±80  
No Load  
±3.83  
±3.80  
±3.52  
±3.5  
±2  
VO  
V
No Load, TA = –40°C to +85°C  
RL = 100 Ω  
Output Voltage Range  
VOL  
CMIR  
IO  
V
V
RL = 100 , TA = –40°C to +85°C  
Input Voltage Range  
VIN = 0 V  
+70  
Linear Output Current(3)(4)  
mA  
VIN = 0 V, TA = –40°C to +85°C  
VIN = ±2 V, Output Shorted to Ground  
VIN = 2 VPP at 5 MHz  
40  
±80  
ISC  
Short Circuit Current(5)  
±230  
-90  
mA  
dBc  
dBc  
dBc  
XTLK  
XTLK  
XTLK  
Channel to Channel Crosstalk  
Channel to Channel Crosstalk  
All Hostile Crosstalk  
VIN = 2 VPP at 100 MHz  
-54  
In A, C, Out B, VIN = 2 VPP at 5 MHz  
-95  
(5) The maximum output current (IOUT) is determined by the device power dissipation limitations. See the Power Dissipation section for  
more details. A short circuit condition should be limited to 5 seconds or less.  
6
Copyright © 2005–2018, Texas Instruments Incorporated  
LMH6572  
www.ti.com.cn  
ZHCSIP3G JUNE 2005REVISED AUGUST 2018  
6.6 ±3.3V Electrical Characteristics  
VS = ±3.3 V, RL = 100 Ω (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY DOMAIN PERFORMANCE  
SSBW  
LSBW  
3 dB Bandwidth  
3 dB Bandwidth  
VOUT = 0.25 VPP  
360  
270  
MHz  
MHz  
MHz  
dB  
VOUT = 2.0 VPP  
0.1 dBBW 0.1 dB Bandwidth  
VOUT = 0.5 VPP  
80  
GFP  
DG  
DP  
Peaking  
DC to 200 MHz  
0.3  
Differential Gain  
Differential Phase  
RL = 150 , f = 4.43 MHz  
RL = 150 , f = 4.43 MHz  
0.02%  
0.03  
deg  
TIME DOMAIN RESPONSE  
TRL  
TSS  
OS  
Rise and Fall Time  
Settling Time to 0.05%  
Overshoot  
2-V Step  
2-V Step  
2-V Step  
2-V Step  
2.0  
15  
ns  
ns  
5%  
SR  
Slew Rate  
1000  
V/µs  
DISTORTION  
HD2  
HD3  
IMD  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
3rd Order Intermodulation Products  
2 VPP, 10 MHz  
70  
74  
-79  
dBc  
dBc  
dBc  
2 VPP, 10 MHz  
10 MHz, Two tones 2 VPP at Output  
STATIC, DC PERFORMANCE  
GAIN  
VIO  
Voltage Gain  
2.0  
1
V/V  
mV  
µV/°C  
µA  
Output Offset Voltage  
Average Drift  
Input Bias Current(2)  
VIN = 0 V  
VIN = 0 V  
DVIO  
IBN  
36  
2
DIBN  
PSRR  
ICC  
Average Drift  
24  
54  
20  
nA/°C  
dB  
Power Supply Rejection Ratio  
Supply Current  
DC, Input Referred  
RL = ∞  
mA  
V
VIH  
Logic High Threshold  
Logic Low Threshold  
Select and Enable Pins  
Select and Enable Pins  
1.3  
VIL  
0.4  
V
MISCELLANEOUS PERFORMANCE  
RIN+  
CIN  
Input Resistance  
Input Capacitance  
Output Resistance  
100  
0.9  
kΩ  
pF  
ROUT  
VO  
0.27  
±2.5  
±2.2  
±1.2  
±60  
No Load  
V
Output Voltage Range  
VOL  
CMIR  
IO  
RL = 100 Ω  
V
Input Voltage Range  
V
Linear Output Current  
Short Circuit Current  
VIN = 0V  
mA  
mA  
dBc  
ISC  
VIN = ±1V, Output Shorted to Ground  
5 MHz  
±150  
-90  
XTLK  
Channel to Channel Crosstalk  
(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very  
limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables under  
conditions of internal self heating where TJ > TA. See the Power Dissipation section for information on temperature de-rating of this  
device. Minimum and maximum ratings are based on product testing, characterization and simulation. Individual parameters are tested  
as noted.  
(2) Positive Value is current into device.  
Copyright © 2005–2018, Texas Instruments Incorporated  
7
LMH6572  
ZHCSIP3G JUNE 2005REVISED AUGUST 2018  
www.ti.com.cn  
6.7 Typical Characteristics  
VS = ±5 V and RL = 100 (unless otherwise noted)  
Figure 1. Frequency Response vs VOUT  
Figure 2. Frequency Response vs VOUT  
Load = 1 k|| CL  
Figure 3. Frequency Response vs Capacitive Load  
Figure 4. Suggested RS vs Capacitive Load  
Figure 6. Harmonic Distortion vs Output Voltage  
Figure 5. Harmonic Distortion vs Output Voltage  
8
Copyright © 2005–2018, Texas Instruments Incorporated  
LMH6572  
www.ti.com.cn  
ZHCSIP3G JUNE 2005REVISED AUGUST 2018  
Typical Characteristics (continued)  
VS = ±5 V and RL = 100 (unless otherwise noted)  
Figure 8. Harmonic Distortion vs Frequency  
Figure 7. Harmonic Distortion vs Frequency  
Figure 9. Harmonic Distortion vs Supply Voltage  
Figure 10. Channel Switching Time  
Figure 11. Disable Time  
Figure 12. Pulse Response  
Copyright © 2005–2018, Texas Instruments Incorporated  
9
LMH6572  
ZHCSIP3G JUNE 2005REVISED AUGUST 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
VS = ±5 V and RL = 100 (unless otherwise noted)  
Figure 14. PSRR  
Figure 13. Crosstalk  
Figure 15. PSRR  
Figure 16. Closed-Loop Output Impedance  
Figure 17. Closed-Loop Output Impedance  
10  
Copyright © 2005–2018, Texas Instruments Incorporated  
LMH6572  
www.ti.com.cn  
ZHCSIP3G JUNE 2005REVISED AUGUST 2018  
7 Detailed Description  
7.1 Overview  
The LMH6572 is a high-speed triple 2:1 analog multiplexer, optimized for very high speed and low distortion.  
With a fixed gain of 2 and excellent AC performance, the LMH6572 is ideally suited for switching high resolution,  
presentation grade video signals. The LMH6572 has no internal ground reference. Single or split supply  
configurations are both possible. The LMH6572 features very high speed channel switching and disable times.  
When disabled the LMH6572 output is high impedance, making multiplexer expansion possible by combining  
multiple devices.  
7.2 Feature Description  
7.2.1 Single Supply Operation  
The LMH6572 uses mid-supply referenced circuits for the select and disable pins. In order to use the LMH6572  
in single supply configuration, it is necessary to use a circuit similar to Figure 19. In this configuration the logical  
inputs are compatible with high breakdown open collector TTL, or open drain CMOS logic. In addition, the default  
logic state is reversed since there is a pull-up resistor on those pins. Single supply operation also requires the  
input to be biased to within the common mode input range of roughly ±2V from the mid-supply point.  
7.2.2 Video Performance  
The LMH6572 has been designed to provide excellent performance with production quality video signals in a  
wide variety of formats such as HDTV and High Resolution VGA. Best performance will be obtained with back-  
terminated loads. The back termination reduces reflections from the transmission line and effectively masks  
transmission line and other parasitic capacitances from the amplifier output stage. Figure 18 shows a typical  
configuration for driving a 75-cable. The output buffer is configured for a gain of 2, so using back terminated  
loads will give a net gain of 1.  
Figure 18. Typical Application  
Figure 19. Single Supply Application  
7.2.3 Gain Accuracy  
The gain accuracy of the LMH6572 is accurate to ±0.5% (0.3% typical) and stable over temperature. The internal  
gain setting resistors, RF and RG, match very well; however, over process and temperature their absolute value  
will change.  
Copyright © 2005–2018, Texas Instruments Incorporated  
11  
 
LMH6572  
ZHCSIP3G JUNE 2005REVISED AUGUST 2018  
www.ti.com.cn  
Feature Description (continued)  
7.2.4 Expanding the Multiplexer  
It is possible to build higher density multiplexers by paralleling several LMH6572s. Figure 20 shows a 4:1 RGB  
MUX using two LMH6572s:  
Figure 20. RGB MUX Using Two LMH6572's  
If it is important in the end application to make sure that no two inputs are presented to the output at the same  
time, an optional delay block can be added prior to the ENABLE(EN) pin of each device, as shown. Figure 21  
shows one possible approach to this delay circuit. The delay circuit shown will delay ENABLE’s H to L transitions  
(R1 and C1 decay) but will not delay its L to H transition.  
Figure 21. Delay Circuit Implementation  
R2 should be kept small compared to R1 in order to not reduce the ENABLE voltage and to produce little or no  
delay to the ENABLE L to H transition.  
With the ENABLE pin putting the output stage into a high impedance state, several LMH6572’s can be tied  
together to form a larger input MUX. However, there is a slight loading effect on the active output caused by the  
off-channel feedback and gain set resistors, as shown in Figure 21. Figure 22 is assuming there are four  
LMH6572 devices tied together to form a triple 8:1 MUX. With the internal resistors valued at approximately  
800, the gain error is about -0.57 dB, or about 6%.  
12  
Copyright © 2005–2018, Texas Instruments Incorporated  
 
 
LMH6572  
www.ti.com.cn  
ZHCSIP3G JUNE 2005REVISED AUGUST 2018  
Feature Description (continued)  
Figure 22. Multiplexer Input Expansion by Combining Outputs  
An alternate approach would be to tie the outputs directly together and let all devices share a common back  
termination resistor in order to alleviate the gain error issue above.  
The drawback in this case is the increased capacitive load presented to the output of each LMH6572 due to the  
offstate capacitance of the LMH6572.  
Copyright © 2005–2018, Texas Instruments Incorporated  
13  
LMH6572  
ZHCSIP3G JUNE 2005REVISED AUGUST 2018  
www.ti.com.cn  
Feature Description (continued)  
7.2.5 Other Applications  
The LMH6572 may be utilized in systems that involve a single RGB channel as well whenever there is a need to  
switch between different “flavors” of a single RGB input.  
Here are some examples:  
1. RGB positive polarity, negative polarity switch  
2. RGB full resolution, high-pass filter switch  
In each of these applications, the same RGB input occupies one set of inputs to the LMH6572 and the other  
“flavor” would be tied to the other input set.  
7.2.5.1 Driving Capacitive Loads  
Capacitive output loading applications will benefit from the use of a series output resistor. Figure 23 shows the  
use of a series output resistor, ROUT, to stabilize the amplifier output under capacitive loading. Capacitive loads of  
5 to 120 pF are the most critical, causing ringing, frequency response peaking and possible oscillation. Figure 24  
gives a recommended value for selecting a series output resistor for mitigating capacitive loads. The values  
suggested in the charts are selected for .5 dB or less of peaking in the frequency response. This gives a good  
compromise between settling time and bandwidth. For applications where maximum frequency response is  
needed and some peaking is tolerable, the value of ROUT can be reduced slightly from the recommended values.  
Figure 23. Decoupling Capacitive Loads  
Figure 25. Frequency Response vs Capacitive Load  
Figure 24. Recommended ROUT vs Capacitive Load  
14  
Copyright © 2005–2018, Texas Instruments Incorporated  
 
 
LMH6572  
www.ti.com.cn  
ZHCSIP3G JUNE 2005REVISED AUGUST 2018  
8 Power Supply Recommendations  
8.1 Power Dissipation  
The LMH6572 is optimized for maximum speed and performance in the small form factor of the standard SSOP  
package. To achieve its high level of performance, the LMH6572 consumes 23 mA of quiescent current, which  
cannot be neglected when considering the total package power dissipation limit. To ensure maximum output  
drive and highest performance, thermal shutdown is not provided. Therefore, it is of utmost importance to make  
sure that the TJMAX is never exceeded due to the overall power dissipation.  
Follow these steps to determine the Maximum power dissipation for the LMH6572:  
1. Calculate the quiescent (no-load) power:  
PAMP = ICC* (VS)  
where  
VS = V+ - V−  
(1)  
2. Calculate the RMS power dissipated in the output stage:  
PD (rms) = rms [(VS - VOUT) * IOUT  
]
where  
VOUT and IOUT are the voltage across and the current through the external load  
VS is the total supply voltage  
(2)  
(3)  
3. Calculate the total RMS power:  
PT = PAMP + PD  
The maximum power that the LMH6572 package can dissipate at a given temperature can be derived with the  
following equation:  
PMAX = (150°C – TAMB)/ θJA  
where  
TAMB = Ambient temperature (°C)  
θJA = Thermal resistance, from junction to ambient, for a given package (°C/W)  
For the SSOP package θJA is 125 °C/W  
(4)  
8.2 ESD Protection  
The LMH6572 is protected against electrostatic discharge (ESD) on all pins. The LMH6572 will survive 2000V  
Human Body model and 200V Machine model events. Under normal operation the ESD diodes have no effect on  
circuit performance. There are occasions, however, when the ESD diodes will be evident. If the LMH6572 is  
driven by a large signal while the device is powered down the ESD diodes will conduct. The current that flows  
through the ESD diodes will either exit the chip through the supply pins or will flow through the device, hence it is  
possible to power up a chip with a large signal applied to the input pins. Shorting the power pins to each other  
will prevent the chip from being powered up through the input.  
Copyright © 2005–2018, Texas Instruments Incorporated  
15  
LMH6572  
ZHCSIP3G JUNE 2005REVISED AUGUST 2018  
www.ti.com.cn  
9 Layout  
9.1 Layout Guidelines  
Whenever questions about layout arise, use the LMH730151 evaluation board as a guide. To reduce parasitic  
capacitances, ground and power planes should be removed near the input and output pins. For long signal paths  
controlled impedance lines should be used, along with impedance matching elements at both ends. Bypass  
capacitors should be placed as close to the device as possible. Bypass capacitors from each rail to ground are  
applied in pairs. The larger electrolytic bypass capacitors can be located farther from the device; however, the  
smaller ceramic capacitors should be placed as close to the device as possible. In Figure 18 and Figure 19, the  
capacitor between V+ and Vis optional, but is recommended for best second harmonic distortion. Another way  
to enhance performance is to use pairs of 0.01 μF and 0.1 μF ceramic capacitors for each supply bypass.  
9.1.1 Evaluation Boards  
Texas Instruments provides the following evaluation boards as a guide for high frequency layout and as an aid in  
device testing and characterization. Many of the datasheet plots were measured with these boards.  
DEVICE  
PACKAGE  
EVALUATION BOARD PART NUMBER  
LMH6572  
SSOP  
LMH730151  
An evaluation board can be shipped when a device sample request is placed with Texas Instruments.  
16  
版权 © 2005–2018, Texas Instruments Incorporated  
LMH6572  
www.ti.com.cn  
ZHCSIP3G JUNE 2005REVISED AUGUST 2018  
10 器件和文档支持  
10.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
10.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
10.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
10.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
10.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
11 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2005–2018, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH6572MQ/NOPB  
LMH6572MQX/NOPB  
ACTIVE  
SSOP  
SSOP  
DBQ  
16  
16  
95  
RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
LH65  
72MQ  
ACTIVE  
DBQ  
2500 RoHS & Green  
SN  
LH65  
72MQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMH6572MQX/NOPB  
SSOP  
DBQ  
16  
2500  
330.0  
12.4  
6.5  
5.4  
2.0  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SSOP DBQ 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
LMH6572MQX/NOPB  
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
DBQ SSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LMH6572MQ/NOPB  
16  
95  
495  
8
4064  
3.05  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DBQ0016A  
SSOP - 1.75 mm max height  
SCALE 2.800  
SHRINK SMALL-OUTLINE PACKAGE  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
14X .0250  
[0.635]  
16  
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.175  
[4.45]  
8
9
16X .008-.012  
[0.21-0.30]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.007 [0.17]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
GAGE PLANE  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.035  
[0.41-0.88]  
DETAIL A  
TYPICAL  
(.041 )  
[1.04]  
4214846/A 03/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 inch, per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MO-137, variation AB.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SEE  
DETAILS  
SYMM  
1
16  
16X (.016 )  
[0.41]  
14X (.0250 )  
[0.635]  
8
9
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.002 MAX  
[0.05]  
ALL AROUND  
.002 MIN  
[0.05]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214846/A 03/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SYMM  
1
16  
16X (.016 )  
[0.41]  
SYMM  
14X (.0250 )  
[0.635]  
9
8
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:8X  
4214846/A 03/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LMH6572MQX

Triple 2:1 High Speed Video Multiplexer
NSC

LMH6572MQX/NOPB

IC TRIPLE 2-CHANNEL, VIDEO MULTIPLEXER, PDSO16, SSOP-16, Multiplexer or Switch
NSC

LMH6572MQX/NOPB

具有三路 2:1 高速多路复用器的 350MHz 高速运算放大器 | DBQ | 16 | -40 to 85
TI

LMH6572_05

Triple 2:1 High Speed Video Multiplexer
NSC

LMH6574

4:1 High Speed Video Multiplexer
NSC

LMH6574

具有 4:1 高速多路复用器的 500MHz 高速运算放大器
TI

LMH6574MA

4:1 High Speed Video Multiplexer
NSC

LMH6574MA

具有 4:1 高速多路复用器的 500MHz 高速运算放大器 | D | 14 | -40 to 85
TI

LMH6574MA/NOPB

IC 4-CHANNEL, VIDEO MULTIPLEXER, PDSO14, SOIC-14, Multiplexer or Switch
NSC

LMH6574MA/NOPB

具有 4:1 高速多路复用器的 500MHz 高速运算放大器 | D | 14 | -40 to 85
TI

LMH6574MAX

4:1 High Speed Video Multiplexer
NSC

LMH6574MAX/NOPB

IC 4-CHANNEL, VIDEO MULTIPLEXER, PDSO14, SOIC-14, Multiplexer or Switch
NSC