LMH6655MAX/NOPB [TI]

双通道、低功耗、250MHz、低噪声放大器 | D | 8 | -40 to 85;
LMH6655MAX/NOPB
型号: LMH6655MAX/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双通道、低功耗、250MHz、低噪声放大器 | D | 8 | -40 to 85

放大器 光电二极管
文件: 总35页 (文件大小:1660K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LMH6654, LMH6655  
SNOS956E JUNE 2001REVISED AUGUST 2014  
LMH6654, LMH6655 Single and Dual Low Power, 250 MHz, Low Noise Amplifiers  
1 Features  
3 Description  
The LMH6654 and LMH6655 single and dual high  
speed voltage feedback amplifiers are designed to  
have unity-gain stable operation with a bandwidth of  
250 MHz. They operate from ±2.5 V to ±6 V and each  
channel consumes only 4.5 mA. The amplifiers  
feature very low voltage noise and wide output swing  
to maximize signal-to-noise ratio, and possess a true  
single supply capability with input common mode  
voltage range extending 150 mV below negative rail  
and within 1.3 V of the positive rail. The high speed  
and low power combination of the LMH6654 and  
LMH6655 make these products an ideal choice for  
many portable, high speed applications where power  
is at a premium.  
1
(VS = ±5 V, TJ = 25 °C, Typical Values Unless  
Specified)  
Voltage Feedback Architecture  
Unity Gain Bandwidth 250 MHz  
Supply Voltage Range ±2.5V to ±6V  
Slew Rate 200 V/µsec  
Supply Current 4.5 mA/channel  
Input Common Mode Voltage 5.15V to +3.7V  
Output Voltage Swing (RL = 100 ) 3.6V to 3.4V  
Input Voltage Noise 4.5 nV/Hz  
Input Current Noise 1.7 pA/Hz  
Settling Time to 0.01% 25 ns  
The LMH6654 and LMH6655 are built on TI’s  
Advance VIP10™ (Vertically Integrated PNP)  
complementary bipolar process.  
2 Applications  
ADC Drivers  
The LMH6654 is packaged in 5-Pin SOT-23 and 8-  
Pin SOIC. The LMH6655 is packaged in 8-Pin  
VSSOP (DGK) and 8-Pin SOIC.  
Consumer Video  
Active Filters  
Device Information(1)  
Pulse Delay Circuits  
xDSL Receiver  
Pre-amps  
PART NUMBER  
LMH6654  
PACKAGE  
BODY SIZE (NOM)  
4.90 mm x 3.91 mm  
2.90 mm x 1.60 mm  
4.90 mm x 3.91 mm  
3.00 mm x 3.00 mm  
SOIC (8)  
LMH6654  
SOT-23 (5)  
SOIC (8)  
LMH6655  
LMH6655  
VSSOP (8)  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
Figure 1. Input Voltage and Curernt Noise vs.  
Frequency (Vs= ±5V)  
100  
100  
10  
1
10  
e
n
i
n
1
100k  
FREQUENCY (Hz)  
100  
1k  
10k  
1M  
10M  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
LMH6654, LMH6655  
SNOS956E JUNE 2001REVISED AUGUST 2014  
www.ti.com  
Table of Contents  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 Handling Ratings....................................................... 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 ±5V Electrical Characteristics ................................... 5  
6.6 5V Electrical Characteristics ..................................... 7  
6.7 Typical Characteristics.............................................. 9  
7
Application and Implementation ........................ 16  
7.1 Application Information............................................ 16  
7.2 Typical Application .................................................. 16  
Power Supply Recommendations...................... 20  
8.1 Power Dissipation ................................................... 20  
Layout ................................................................... 20  
9.1 Layout Guidelines ................................................... 20  
8
9
10 Device and Documentation Support ................. 21  
10.1 Documentation Support ........................................ 21  
10.2 Electrostatic Discharge Caution............................ 21  
10.3 Glossary................................................................ 21  
11 Mechanical, Packaging, and Orderable  
Information ........................................................... 21  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision D (March 2013) to Revision E  
Page  
Changed data sheet structure and organization. Added, updated, or renamed the following sections: Device  
Information Table, Application and Implementation; Power Supply Recommendations; Device and Documentation  
Support; Mechanical, Packaging, and Ordering Information. Deleted Switching Characteristics due to redundancy. ......... 1  
Changed from Junction Temperature Range to "Operating Temperature Range" ................................................................ 4  
Deleted TJ = 25°C................................................................................................................................................................... 5  
Deleted TJ = 25°C .................................................................................................................................................................. 7  
Changes from Revision C (March 2013) to Revision D  
Page  
Changed layout of National Data Sheet to TI format ........................................................................................................... 19  
2
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6654 LMH6655  
 
LMH6654, LMH6655  
www.ti.com  
SNOS956E JUNE 2001REVISED AUGUST 2014  
5 Pin Configuration and Functions  
5-Pin (LMH6654)  
Package DBV  
Top View  
8-Pin (LMH6654)  
Package D  
8-Pin (LMH6655)  
SOIC and VSSOP (DGK)  
Top View  
Top View  
1
1
8
8
+
+
5
1
OUT A  
V
V
N/C  
N/C  
OUTPUT  
A
+
7
2
-
V
-
-IN  
+
2
3
4
7
6
5
-IN A  
+IN A  
OUT B  
-IN B  
-
2
V
6
5
3
4
OUTPUT  
N/C  
+
+IN  
-
+
B
4
3
-IN  
-
+IN  
+
-
V
-
+IN B  
V
Pin Functions  
PIN  
LMH6654  
LMH6655  
DGK  
I/O  
DESCRIPTION  
NAME  
DBV  
D
-IN  
4
3
2
3
I
I
Inverting Input  
+IN  
Non-inverting Input  
ChA Inverting Input  
-IN A  
+IN A  
-IN B  
+IN B  
N/C  
2
3
6
5
I
I
ChA Non-inverting Input  
ChB Inverting Input  
ChB Non-inverting Input  
No Connection  
ChA Output  
I
I
1, 5, 8  
––  
O
O
O
I
OUT A  
OUT B  
OUTPUT  
V-  
1
7
ChB Output  
1
2
5
6
4
7
Output  
4
8
Negative Supply  
Positive Supply  
V+  
I
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LMH6654 LMH6655  
LMH6654, LMH6655  
SNOS956E JUNE 2001REVISED AUGUST 2014  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VIN Differential  
±1.2  
V
(2)  
Output Short Circuit Duration  
Supply Voltage (V+ V)  
See  
13.2  
V
V
V+ +0.5  
Voltage at Input pins  
V- -0.5  
Junction Temperature(3)  
150  
235  
260  
°C  
°C  
°C  
Infrared or Convection (20 sec.)  
Soldering Information  
Wave Soldering (10 sec.)  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature  
at 150°C.  
(3) The maximum power dissipation is a function of TJ(MAX), RθJA and TA. The maximum allowable power dissipation at any ambient  
temperature is PD = (TJ(MAX) TA)/RθJA. All numbers apply for packages soldered directly onto a PC board.  
6.2 Handling Ratings  
MIN  
MAX  
UNIT  
Tstg  
Storage temperature range  
65  
150  
°C  
Human body model (HBM),  
2000  
200  
per ANSI/ESDA/JEDEC JS-001, all pins(2)  
V(ESD)  
Electrostatic discharge(1)  
V
Machine model (MM)(3)  
(1) Human body model, 1.5 kin series with 100 pF. Machine model: 0in series with 100 pF.  
(2) JEDEC document JEP155 states that 2000-V HBM allows safe manufacturing with a standard ESD control process.  
(3) JEDEC document JEP157 states that 200-V MM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
±2.5  
40  
NOM  
MAX  
±6.0  
85  
UNIT  
V
Supply Voltage (V+ - V)  
Operating Temperature Range  
°C  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test  
conditions, see the Electrical Characteristics Table.  
6.4 Thermal Information  
SOIC (D)  
8 PINS  
172  
VSSOP (DGK)  
8 PINS  
SOT-23 (D)  
5 PINS  
265  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
235  
°C/W  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6654 LMH6655  
LMH6654, LMH6655  
www.ti.com  
SNOS956E JUNE 2001REVISED AUGUST 2014  
6.5 ±5V Electrical Characteristics  
Unless otherwise specified, all limits ensured for V+ = +5V, V= 5V, VCM = 0V, AV = +1, RF = 25for gain = +1, RF = 402Ω  
for gain +2, and RL = 100Ω. Boldface limits apply at the temperature extremes.  
PARAMETER  
DYNAMIC PERFORMANCE  
TEST CONDITIONS  
MIN(1)  
TYP(2)  
MAX(1)  
UNIT  
AV = +1  
250  
130  
52  
AV = +2  
AV = +5  
AV = +10  
fCL  
Close Loop Bandwidth  
MHz  
26  
Gain Bandwidth Product  
Bandwidth for 0.1 dB Flatness  
Phase Margin  
A
V +5  
260  
18  
MHz  
MHz  
deg  
GBWP  
AV +1  
φm  
50  
(3)  
SR  
Slew Rate  
AV = +1, VIN = 2 VPP  
AV = +1, 2V Step  
200  
V/µs  
Settling Time  
0.01%  
25  
ns  
tS  
0.1%  
Rise Time  
Fall Time  
15  
1.4  
1.2  
ns  
ns  
ns  
tr  
tf  
AV = +1, 0.2V Step  
AV = +1, 0.2V Step  
DISTORTION and NOISE RESPONSE  
en  
in  
Input Referred Voltage Noise  
Input-Referred Current Noise  
Second Harmonic Distortion  
Third Harmonic Distortion  
f 0.1 MHz  
4.5  
1.7  
nV/Hz  
pA/Hz  
f 0.1 MHz  
AV = +1, f = 5 MHz  
VO = 2 VPP, RL = 100Ω  
80  
85  
dBc  
dB  
Input Referred, 5 MHz,  
Channel-to-Channel  
Xt  
Crosstalk (for LMH6655 only)  
80  
DG  
DP  
Differential Gain  
AV = +2, NTSC, RL = 150Ω  
AV = +2, NTSC, RL = 150Ω  
0.01%  
0.025  
Differential Phase  
deg  
INPUT CHARACTERISTICS  
3  
4  
3
4
VOS  
Input Offset Voltage  
Input Offset Average Drift  
Input Bias Current  
VCM = 0V  
±1  
6
mV  
µV/°C  
µA  
(4)  
TC VOS  
IB  
VCM = 0V  
12  
18  
VCM = 0V  
VCM = 0V  
5
1  
2  
1
2
IOS  
RIN  
Input Offset Current  
Input Resistance  
0.3  
µA  
Common Mode  
Differential Mode  
Common Mode  
Differential Mode  
4
20  
1.8  
1
MΩ  
kΩ  
CIN  
Input Capacitance  
pF  
dB  
V
Input Referred,  
VCM = 0V to 5V  
70  
68  
CMRR  
CMVR  
Common Mode Rejection Ration  
Input Common- Mode Voltage Range  
90  
5.15  
5.0  
CMRR 50 dB  
3.5  
3.7  
TRANSFER CHARACTERISTICS  
AVOL Large Signal Voltage Gain  
VO = 4 VPP, RL = 100Ω  
60  
58  
67  
dB  
(1) All limits are specified by testing or statistical analysis.  
(2) Typical Values represent the most likely parametric norm.  
(3) Slew rate is the slower of the rising and falling slew rates. Slew rate is rate of change from 10% to 90% of output voltage step.  
(4) Offset voltage average drift is determined by dividing the change in VOS at temperature extremes into the total temperature change.  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LMH6654 LMH6655  
LMH6654, LMH6655  
SNOS956E JUNE 2001REVISED AUGUST 2014  
www.ti.com  
±5V Electrical Characteristics (continued)  
Unless otherwise specified, all limits ensured for V+ = +5V, V= 5V, VCM = 0V, AV = +1, RF = 25for gain = +1, RF = 402Ω  
for gain +2, and RL = 100Ω. Boldface limits apply at the temperature extremes.  
PARAMETER  
OUTPUT CHARACTERISTICS  
TEST CONDITIONS  
MIN(1)  
TYP(2)  
MAX(1)  
UNIT  
3.4  
3.2  
Output Swing High  
Output Swing Low  
Output Swing High  
Output Swing Low  
No Load  
3.6  
3.9  
3.4  
3.7  
3.5  
VO  
No Load  
V
3.2  
3.0  
RL = 100Ω  
RL = 100Ω  
3.4  
3.2  
3.6  
280  
185  
Sourcing, VO = 0V  
ΔVIN = 200 mV  
145  
130  
(5)  
ISC  
Short Circuit Current  
mA  
Sinking, VO = 0V  
ΔVIN = 200 mV  
100  
80  
Sourcing, VO = +3V  
Sinking, VO = 3V  
AV = +1, f <100 kHz  
80  
120  
IOUT  
RO  
Output Current  
mA  
Output Resistance  
0.08  
POWER SUPPLY  
Input Referred,  
VS = ±5V to ±6V  
dB  
PSRR  
IS  
Power Supply Rejection Ratio  
Supply Current (per channel)  
60  
76  
6
7
4.5  
mA  
(5) Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature  
at 150°C.  
6
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6654 LMH6655  
LMH6654, LMH6655  
www.ti.com  
SNOS956E JUNE 2001REVISED AUGUST 2014  
6.6 5V Electrical Characteristics  
Unless otherwise specified, all limits ensured for V+ = +5V, V= 0V, VCM = 2.5V, AV = +1, RF = 25 for gain = +1,  
RF = 402Ω for gain +2, and RL = 100Ω to V+/2. Boldface limits apply at the temperature extremes.  
PARAMETER  
DYNAMIC PERFORMANCE  
TEST CONDITIONS  
MIN(1)  
TYP(2)  
MAX(1)  
UNIT  
AV = +1  
230  
120  
50  
AV = +2  
AV = +5  
AV = +10  
fCL  
Close Loop Bandwidth  
MHz  
25  
GBWP  
Gain Bandwidth Product  
Bandwidth for 0.1 dB Flatness  
Phase Margin  
A
V +5  
250  
17  
MHz  
MHz  
deg  
V/µs  
ns  
AV = +1  
φm  
48  
(3)  
SR  
Slew Rate  
AV = +1, VIN = 2 VPP  
AV = +1, 2V Step  
190  
Settling Time  
0.01%  
30  
tS  
0.1%  
Rise Time  
Fall Time  
20  
1.5  
ns  
ns  
ns  
tr  
tf  
AV = +1, 0.2V Step  
AV = +1, 0.2V Step  
1.35  
DISTORTION and NOISE RESPONSE  
en  
in  
Input Referred Voltage Noise  
Input Referred Current Noise  
Second Harmonic Distortion  
Third Harmonic Distortion  
f 0.1 MHz  
4.5  
1.7  
nV/Hz  
pA/Hz  
f 0.1 MHz  
AV = +1, f = 5 MHz  
VO = 2 VPP, RL = 100Ω  
Input Referred, 5 MHz  
65  
70  
78  
dBc  
dB  
Xt  
Crosstalk (for LMH6655 only)  
INPUT CHARACTERISTICS  
5  
6.5  
5
6.5  
VOS  
Input Offset Voltage  
Input Offset Average Drift  
Input Bias Current  
VCM = 2.5V  
±2  
6
mV  
µV/°C  
µA  
(4)  
TC VOS  
IB  
VCM = 2.5V  
12  
18  
VCM = 2.5V  
VCM = 2.5V  
6
2  
3  
2
3
IOS  
RIN  
Input Offset Current  
Input Resistance  
0.5  
µA  
Common Mode  
Differential Mode  
Common Mode  
Differential Mode  
4
20  
1.8  
1
MΩ  
kΩ  
CIN  
Input Capacitance  
pF  
dB  
V
Input Referred,  
VCM = 0V to 2.5V  
70  
68  
CMRR  
CMVR  
Common Mode Rejection Ration  
Input Common Mode Voltage Range  
90  
CMRR 50 dB  
0.15  
0
3.5  
3.7  
TRANSFER CHARACTERISTICS  
AVOL Large Signal Voltage Gain  
VO = 1.6 VPP, RL = 100Ω  
58  
55  
64  
dB  
(1) All limits are specified by testing or statistical analysis.  
(2) Typical Values represent the most likely parametric norm.  
(3) Slew rate is the slower of the rising and falling slew rates. Slew rate is rate of change from 10% to 90% of output voltage step.  
(4) Offset voltage average drift is determined by dividing the change in VOS at temperature extremes into the total temperature change.  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LMH6654 LMH6655  
LMH6654, LMH6655  
SNOS956E JUNE 2001REVISED AUGUST 2014  
www.ti.com  
5V Electrical Characteristics (continued)  
Unless otherwise specified, all limits ensured for V+ = +5V, V= 0V, VCM = 2.5V, AV = +1, RF = 25 for gain = +1,  
RF = 402Ω for gain +2, and RL = 100Ω to V+/2. Boldface limits apply at the temperature extremes.  
PARAMETER  
OUTPUT CHARACTERISTICS  
TEST CONDITIONS  
MIN(1)  
TYP(2)  
MAX(1)  
UNIT  
3.6  
3.4  
Output Swing High  
Output Swing Low  
Output Swing High  
Output Swing Low  
No Load  
3.75  
0.9  
1.1  
1.3  
VO  
No Load  
V
3.5  
3.35  
RL = 100Ω  
RL = 100Ω  
3.70  
1
1.3  
1.45  
Sourcing , VO = 2.5V  
ΔVIN = 200 mV  
90  
80  
170  
140  
(5)  
ISC  
Short Circuit Current  
mA  
Sinking, VO = 2.5V  
ΔVIN = 200 mV  
70  
60  
Sourcing, VO = +3.5V  
Sinking, VO = 1.5V  
AV = +1, f <100 kHz  
30  
60  
IOUT  
RO  
Output Current  
mA  
Output Resistance  
.08  
POWER SUPPLY  
Input Referred ,  
VS = ± 2.5V to ± 3V  
dB  
PSRR  
IS  
Power Supply Rejection Ratio  
Supply Current (per channel)  
60  
75  
6
7
4.5  
mA  
(5) Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature  
at 150°C.  
8
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6654 LMH6655  
LMH6654, LMH6655  
www.ti.com  
SNOS956E JUNE 2001REVISED AUGUST 2014  
6.7 Typical Characteristics  
25°C, V+ = ±5 V, V= 5, RF = 25 Ω for gain = +1, RF = 402 Ω for gain +2 and RL = 100 , unless otherwise specified.  
4
2
9
6
0
3
-2  
0
-4  
-3  
V
= ±2.5V  
V
= ±2.5V  
S
S
-6  
-6  
-8  
-9  
V
= ±5V  
V = ±5V  
S
S
-10  
-12  
-14  
-16  
-12  
-15  
-18  
-21  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 2. Closed Loop Bandwidth (G = +1)  
Figure 3. Closed Loop Bandwidth (G = +2)  
24  
19  
25  
20  
V
S
= ±5V  
V
S
= ±5V  
14  
9
15  
10  
5
4
-1  
0
-6  
-5  
V
S
= ±2.5V  
V
= ±2.5V  
S
-11  
-16  
-21  
-26  
-10  
-15  
-20  
-25  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (dB)  
FREQUENCY (Hz)  
Figure 4. Closed Loop Bandwidth (G = +5)  
Figure 5. Closed Loop Bandwidth (G = +10)  
5
5.0  
4.9  
4.8  
4.7  
4.9  
85°C  
4.8  
4.7  
V
= ±5V  
4.6  
4.5  
S
4.6  
4.5  
4.4  
4.3  
4.2  
4.4  
25°C  
4.3  
-40°C  
4.2  
V
S
= 5V  
4.1  
4
5
6
7
8
9
10 11 12  
-60 -40 -20  
0
20 40 60 80 100  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 6. Supply Current per Channel  
vs. Supply Voltage  
Figure 7. Supply Current per Channel  
vs. Temperature  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LMH6654 LMH6655  
LMH6654, LMH6655  
SNOS956E JUNE 2001REVISED AUGUST 2014  
www.ti.com  
Typical Characteristics (continued)  
25°C, V+ = ±5 V, V= 5, RF = 25 Ω for gain = +1, RF = 402 Ω for gain +2 and RL = 100 , unless otherwise specified.  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
0
V
= ±5V  
S
-40°C  
-0.2  
-40°C  
-0.4  
-0.6  
-0.8  
25°C  
85°C  
85°C  
25°C  
-1  
-1.2  
0
1
2
3
4
5
6
7
8
4
5
6
7
8
9
10 11 12  
V
(V)  
CM  
V
(V)  
SUPPLY  
Figure 9. Offset Voltage  
vs. Common Mode  
Figure 8. Offset Voltage  
vs. Supply Voltage (VCM = 0V)  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
7
6
5
V
= ±2.5V  
S
I
BIAS  
4
3
2
-40°C  
25°C  
0.5  
V
OS  
85°C  
3
1
0
0
1
1.5  
2
2.5  
3.5  
-50  
0
50  
100  
TEMPERATURE (°C)  
V
(V)  
CM  
Figure 11. Bias Current and Offset Voltage  
vs. Temperature  
Figure 10. Offset Voltage  
vs. Common Mode  
7
-40°C  
V
S
= 5V  
6
5
25°C  
4
85°C  
3
2
1
0
-1  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
V
CM  
(V)  
Figure 13. Bias Current  
vs. Common Mode Voltage  
Figure 12. Bias Current  
vs. Common Mode Voltage  
10  
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6654 LMH6655  
LMH6654, LMH6655  
www.ti.com  
SNOS956E JUNE 2001REVISED AUGUST 2014  
Typical Characteristics (continued)  
25°C, V+ = ±5 V, V= 5, RF = 25 Ω for gain = +1, RF = 402 Ω for gain +2 and RL = 100 , unless otherwise specified.  
120  
110  
100  
CMRR  
90  
PSRR  
80  
70  
AoL @ ±5V  
AoL @ 5V  
60  
-50  
0
50  
100  
TIME (12.5 ns/div)  
TEMPERATURE (°C)  
Figure 15. Inverting Large Signal Pulse Response  
(VS = 5V)  
Figure 14. AOL, PSRR and CMRR  
vs. Temperature  
TIME (12.5 ns/div)  
TIME (12.5 ns/div)  
Figure 16. Inverting Large Signal Pulse Response  
(VS = ±5V)  
Figure 17. Non-Inverting Large Signal Pulse Response  
(VS = 5V)  
TIME (12.5 ns/div)  
TIME (12.5 ns/div)  
Figure 18. Non-Inverting Large Signal Pulse Response  
(VS = ±5V)  
Figure 19. Non-Inverting Small Signal Pulse Response  
(VS = 5V)  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LMH6654 LMH6655  
LMH6654, LMH6655  
SNOS956E JUNE 2001REVISED AUGUST 2014  
www.ti.com  
Typical Characteristics (continued)  
25°C, V+ = ±5 V, V= 5, RF = 25 Ω for gain = +1, RF = 402 Ω for gain +2 and RL = 100 , unless otherwise specified.  
TIME (12.5 ns/div)  
TIME (12.5 ns/div)  
Figure 20. Non-Inverting Small Signal Pulse Response  
(VS = ±5V)  
Figure 21. Inverting Small Signal Pulse Response  
(VS = 5V)  
100  
100  
10  
1
10  
e
n
i
n
1
100k  
10k  
FREQUENCY (Hz)  
100  
1k  
1M  
10M  
TIME (12.5 ns/div)  
Figure 23. Input Voltage and Current Noise  
vs. Frequency (VS = 5V)  
Figure 22. Inverting Small Signal Pulse Response  
(VS = ±5V)  
100  
100  
10  
1
-30  
-40  
-50  
-60  
3RD  
10  
-70  
e
n
2ND  
-80  
-90  
-100  
-110  
i
n
1
100k  
FREQUENCY (Hz)  
100  
1k  
10k  
1M  
10M  
0.1  
1
10  
100  
FREQUENCY (MHz)  
Figure 24. Input Voltage and Current Noise  
vs. Frequency (VS = ±5V)  
Figure 25. Harmonic Distortion  
vs. Frequency  
G = +1, VO = 2 VPP, VS = 5V  
12  
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6654 LMH6655  
LMH6654, LMH6655  
www.ti.com  
SNOS956E JUNE 2001REVISED AUGUST 2014  
Typical Characteristics (continued)  
25°C, V+ = ±5 V, V= 5, RF = 25 Ω for gain = +1, RF = 402 Ω for gain +2 and RL = 100 , unless otherwise specified.  
-30  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
2ND  
-40  
-50  
-60  
-70  
3RD  
-80  
3RD  
-90  
2ND  
-100  
-110  
-60 -40 -20  
0
20 40 60 80 100  
0.1  
1
10  
100  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
Figure 27. Harmonic Distortion  
vs. Temperature  
VS = 5V, f = 5 MHz, VO = 2 VPP  
Figure 26. Harmonic Distortion  
vs. Frequency  
G = +1, VO = 2 VPP, VS = ±5V  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
2ND  
3RD  
3RD  
2ND  
1
2
3
4
5
6
7
8
9
10  
-60 -40 -20  
0
20 40 60 80 100  
GAIN (V/V)  
TEMPERATURE (°C)  
Figure 29. Harmonic Distortion  
vs. Gain  
VS = 5V, f = 5 MHz, VO = 2 VPP  
Figure 28. Harmonic Distortion  
vs. Temperature  
VS = ±5V, f = 5 MHz, VO = 2 VPP  
-45  
-50  
-30  
-40  
-50  
2ND  
-55  
-60  
2ND  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-60  
-70  
-80  
3RD  
3RD  
-90  
-100  
1
2
3
4
5
6
7
8
9
10  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
OUTPUT SWING (V  
)
PP  
GAIN (V/V)  
Figure 30. Harmonic Distortion  
vs. Gain  
Figure 31. Harmonic Distortion  
vs. Output Swing  
VS = ±5V, f = 5 MHz, VO = 2 VPP  
(G = +2, VS = 5V, f = 5 MHz)  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LMH6654 LMH6655  
LMH6654, LMH6655  
SNOS956E JUNE 2001REVISED AUGUST 2014  
www.ti.com  
Typical Characteristics (continued)  
25°C, V+ = ±5 V, V= 5, RF = 25 Ω for gain = +1, RF = 402 Ω for gain +2 and RL = 100 , unless otherwise specified.  
100  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
NEGATIVE  
90  
80  
70  
2ND  
60  
50  
POSITIVE  
40  
30  
3RD  
20  
10  
0
10k  
1M  
10  
1k  
100k  
10M  
100  
0
1
2
3
4
5
6
7
8
FREQUENCY (Hz)  
OUTPUT SWING (V  
)
PP  
Figure 33. PSRR vs. Frequency  
Figure 32. Harmonic Distortion  
vs. Output Swing  
(G = +2, VS = ±5V, f = 5 MHz)  
5
4
120  
100  
80  
V
S
= ±5V  
3
60  
2
1
0
40  
20  
0
V
= 5V  
S
V
= ±5V  
S
100  
1k  
FREQUENCY  
10  
10k 100k  
1M 10M  
1
k
.01  
0.1  
1
10  
100  
OUTPUT SINKING CURRENT (mA)  
Figure 34. CMRR vs. Frequency  
Figure 35. Output Sinking Current  
5
4
-20  
-30  
V
S
= 5V  
-40  
-50  
3
-60  
-70  
V
= ±5V  
S
2
1
0
-80  
-90  
-100  
-110  
-120  
V
= 5V  
S
1
k
.01  
0.1  
1
10  
100  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
OUTPUT SOURCING CURRENT (mA)  
Figure 37. CrossTalk  
Figure 36. Output Sourcing Current  
vs. Frequency (LMH6655 only)  
14  
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6654 LMH6655  
LMH6654, LMH6655  
www.ti.com  
SNOS956E JUNE 2001REVISED AUGUST 2014  
Typical Characteristics (continued)  
25°C, V+ = ±5 V, V= 5, RF = 25 Ω for gain = +1, RF = 402 Ω for gain +2 and RL = 100 , unless otherwise specified.  
-20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
25:  
V
= ±5V  
S
-30  
R
ISO  
-
+
-40  
1 k:  
×
-50  
C
L
-60  
-70  
-80  
-90  
-100  
-110  
-120  
100k  
1M  
10M  
100M  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (Hz)  
CAPACITIVE LOAD, C (pF)  
L
Figure 38. CrossTalk  
vs. Frequency (LMH6655 only)  
Figure 39. Isolation Resistance  
vs. Capacitive Load  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
180  
144  
PHASE  
108  
72  
36  
0
-36  
-72  
GAIN  
-108  
-144  
-180  
-10  
-20  
1k  
1M  
FREQUENCY (Hz)  
100M  
500M  
10k  
100k  
10M  
Figure 40. Open Loop Gain and Phase  
vs. Frequency  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LMH6654 LMH6655  
LMH6654, LMH6655  
SNOS956E JUNE 2001REVISED AUGUST 2014  
www.ti.com  
7 Application and Implementation  
7.1 Application Information  
The LMH6654 single and LMH6655 dual high speed, voltage feedback amplifiers are manufactured on TI’s new  
VIP10™ (Vertically Integrated PNP) complementary bipolar process. These amplifiers can operate from ±2.5 V to  
±6 V power supply. They offer low supply current, wide bandwidth, very low voltage noise and large output  
swing. Many of the typical performance plots found in the datasheet can be reproduced if 50 coax and 50 Ω  
RIN/ROUT resistors are used.  
7.2 Typical Application  
7.2.1 Design Requirements  
7.2.1.1 Components Selection and Feedback Resistor  
It is important in high-speed applications to keep all component leads short since wires are inductive at high  
frequency. For discrete components, choose carbon composition axially leaded resistors and micro type  
capacitors. Surface mount components are preferred over discrete components for minimum inductive effect.  
Never use wire wound type resistors in high frequency applications.  
Large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as  
ringing or oscillation in high-speed amplifiers. Keep resistors as low as possible consistent with output loading  
consideration. For a gain of 2 and higher, 402 feedback resistor used for the typical performance plots gives  
optimal performance. For unity gain follower, a 25 feedback resistor is recommended rather than a direct short.  
This effectively reduces the Q of what would otherwise be a parasitic inductance (the feedback wire) into the  
parasitic capacitance at the inverting input.  
7.2.2 Detailed Design Procedure  
7.2.2.1 Driving Capacitive Loads  
Capacitive loads decrease the phase margin of all op amps. The output impedance of a feedback amplifier  
becomes inductive at high frequencies, creating a resonant circuit when the load is capacitive. This can lead to  
overshoot, ringing and oscillation. To eliminate oscillation or reduce ringing, an isolation resistor can be placed as  
shown in Figure 41 below. At frequencies above  
1
F =  
2 S RISO CLOAD  
(1)  
the load impedance of the Amplifier approaches RISO. The desired performance depends on the value of the  
isolation resistor. The isolation resistance vs. capacitance load graph in the typical performance characteristics  
provides the means for selection of the value of RS that provides 3 dB peaking in closed loop AV = 1 response.  
In general, the bigger the isolation resistor, the more damped the pulse response becomes. For initial evaluation,  
a 50isolation resistor is recommended.  
25:  
-
R
ISO  
V
OUT  
+
V
IN  
Figure 41. Isolation Resistor Placement  
16  
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6654 LMH6655  
 
LMH6654, LMH6655  
www.ti.com  
SNOS956E JUNE 2001REVISED AUGUST 2014  
Typical Application (continued)  
7.2.2.2 Bias Current Cancellation  
In order to cancel the bias current errors of the non-inverting configuration, the parallel combination of the gain  
setting Rg and feedback Rf resistors should equal the equivalent source resistance Rseq as defined in Figure 42.  
Combining this constraint with the non-inverting gain equation, allows both Rf and Rg to be determined explicitly  
from the following equations:  
Rf = AVRseq and Rg = Rf/(AV1)  
(2)  
For inverting configuration, bias current cancellation is accomplished by placing a resistor Rb on the non-inverting  
input equal in value to the resistance seen by the inverting input (Rf//(Rg+Rs). The additional noise contribution of  
Rb can be minimized through the use of a shunt capacitor.  
Figure 42. Non-Inverting Amplifier Configuration  
Figure 43. Inverting Amplifier Configuration  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LMH6654 LMH6655  
 
LMH6654, LMH6655  
SNOS956E JUNE 2001REVISED AUGUST 2014  
www.ti.com  
Typical Application (continued)  
7.2.2.3 Total Input Noise vs. Source Resistance  
The noise model for the non-inverting amplifier configuration showing all noise sources is described in Figure 44.  
In addition to the intrinsic input voltage noise (en) and current noise (in = in+ = in) sources, there also exits  
et = 4kTR  
thermal voltage noise  
associated with each of the external resistors. Equation 3 provides the general  
form for total equivalent input voltage noise density (eni). Equation 4 is a simplification of Equation 3 that  
assumes Rf || Rg = Rseq for bias current cancellation. Figure 45 illustrates the equivalent noise model using this  
assumption. The total equivalent output voltage noise (eno) is eni * AV.  
Figure 44. Non-Inverting Amplifier Noise Model  
eni  
=
en2 + (in+ · RSeq)2 + 4kTRSeq + (in- · (Rf || Rg))2 + 4kT(Rf || Rg)  
(3)  
Figure 45. Noise Model with Rf || Rg = Rseq  
en2 + 2 (in · RSeq)2 + 4kT (2RSeq  
eni =  
)
(4)  
If bias current cancellation is not a requirement, then Rf || Rg does not need to equal Rseq. In this case, according  
to Equation 3, Rf and Rg should be as low as possible in order to minimize noise. Results similar to Equation 3  
are obtained for the inverting configuration on if Rseq is replaced by Rb || Rg is replaced by Rg + Rs. With these  
substitutions, Equation 3 will yield an eni referred to the non-inverting input. Referring eni to the inverting input is  
easily accomplished by multiplying eni by the ratio of non-inverting to inverting gains.  
18  
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6654 LMH6655  
 
 
 
 
LMH6654, LMH6655  
www.ti.com  
SNOS956E JUNE 2001REVISED AUGUST 2014  
Typical Application (continued)  
7.2.2.3.1 Noise Figure  
Noise Figure (NF) is a measure of the noise degradation caused by an amplifier.  
2
e
S /N  
ni  
e 2  
i
i
= 10LOG  
NF = 10LOG  
S /N  
o
o
t
(5)  
The noise figure formula is shown in Equation 5. The addition of a terminating resistor RT, reduces the external  
thermal noise but increases the resulting NF.  
The NF is increased because the RT reduces the input signal amplitude thus reducing the input SNR.  
en2 + in2 (RSeq + (Rf || Rg))2 + 4KTRSeq + 4kt (Rf || Rg)  
4kTRSeq  
(6)  
The noise figure is related to the equivalent source resistance (Rseq) and the parallel combination of Rf and Rg.  
To minimize noise figure, the following steps are recommended:  
1. Minimize Rf||Rg  
2. Choose the Optimum Rs (ROPT  
ROPT is the point at which the NF curve reaches a minimum and is approximated by:  
OPT (en/in)  
)
R
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LMH6654 LMH6655  
 
LMH6654, LMH6655  
SNOS956E JUNE 2001REVISED AUGUST 2014  
www.ti.com  
8 Power Supply Recommendations  
8.1 Power Dissipation  
The package power dissipation should be taken into account when operating at high ambient temperature and/or  
high power dissipative conditions. In determining maximum operable temperature of the device, make sure the  
total power dissipation of the device is considered; this power dissipated in the device with a load connected to  
the output as well as the nominal dissipation of the op amp.  
9 Layout  
9.1 Layout Guidelines  
With all high frequency devices, board layouts with stray capacitance have a strong influence on the AC  
performance. The LMH6654/LMH6655 are not exception and the inverting input and output pins are particularly  
sensitive to the coupling of parasitic capacitance to AC ground. Parasitic capacitances on the inverting input and  
output nodes to ground could cause frequency response peaking and possible circuit oscillation. Therefore, the  
power supply, ground traces and ground plan should be placed away from the inverting input and output pins.  
Also, it is very important to keep the parasitic capacitance across the feedback to an absolute minimum.  
The PCB should have a ground plane covering all unused portion of the component side of the board to provide  
a low impedance path. All trace lengths should be minimized to reduce series inductance.  
Supply bypassing is required for the amplifiers performance. The bypass capacitors provide a low impedance  
return current path at the supply pins. They also provide high frequency filtering on the power supply traces. It is  
recommended that a ceramic decoupling capacitor 0.1 µF chip should be placed with one end connected to the  
ground plane and the other side as close as possible to the power pins. An additional 10 µF tantalum electrolytic  
capacitor should be connected in parallel, to supply current for fast large signal changes at the output.  
+
V
10 µF  
+
0.1 µF  
0.1 µF  
+
10 µF  
-
V
Figure 46. Supply Bypass Capacitors  
9.1.1 Evaluation Boards  
TI provides the following evaluation boards as a guide for high frequency layout and as an aid in device testing  
and characterization.  
DEVICE  
PACKAGE  
5-Pin SOT-23  
8-Pin SOIC  
EVALULATION BOARD PN  
LMH730216  
LMH6654MF  
LMH6654MA  
LMH6655MA  
LMH6655MM  
LMH730227  
8-Pin SOIC  
LMH730036  
8-Pin VSSOP (DGK)  
LMH730123  
20  
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6654 LMH6655  
LMH6654, LMH6655  
www.ti.com  
SNOS956E JUNE 2001REVISED AUGUST 2014  
Components Needed to Evaluate the LMH6654 on the LMH730227 Evaluation Board:  
Rf, Rg use the datasheet to select values.  
RIN, ROUT typically 50 (Refer to the Basic Operation section of the evaluation board datasheet for details)  
Rf is an optional resistor for inverting again configurations (select Rf to yield desired input impedance = Rg||Rf)  
C1, C2 use 0.1 µF ceramic capacitors  
C3, C4 use 10 µF tantalum capacitors  
Components not used:  
1. C5, C6, C7, C8  
2. R1 thru R8  
The evaluation boards are designed to accommodate dual supplies. The board can be modified to provide single  
operation. For best performance;  
1) Do not connect the unused supply.  
2) Ground the unused supply pin.  
10 Device and Documentation Support  
10.1 Documentation Support  
10.1.1 Related Documentation  
10.1.1.1 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
LMH6654  
LMH6655  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
10.2 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
10.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LMH6654 LMH6655  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH6654MA/NOPB  
LMH6654MAX/NOPB  
LMH6654MF  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
5
95  
RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
LMH66  
54MA  
ACTIVE  
NRND  
2500 RoHS & Green  
SN  
LMH66  
54MA  
SOT-23  
DBV  
1000  
Non-RoHS  
& Green  
Call TI  
A66A  
LMH6654MF/NOPB  
LMH6654MFX/NOPB  
LMH6655MA  
ACTIVE  
ACTIVE  
NRND  
SOT-23  
SOT-23  
SOIC  
DBV  
DBV  
D
5
5
8
1000 RoHS & Green  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-235C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
A66A  
A66A  
3000 RoHS & Green  
95  
95  
Non-RoHS  
& Green  
Call TI  
LMH66  
55MA  
LMH6655MA/NOPB  
LMH6655MAX/NOPB  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
RoHS & Green  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
LMH66  
55MA  
2500 RoHS & Green  
LMH66  
55MA  
LMH6655MM/NOPB  
LMH6655MMX/NOPB  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
1000 RoHS & Green  
3500 RoHS & Green  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
A67A  
A67A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Dec-2021  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMH6654MAX/NOPB  
LMH6654MF  
SOIC  
SOT-23  
SOT-23  
SOT-23  
SOIC  
D
8
5
5
5
8
8
8
2500  
1000  
1000  
3000  
2500  
1000  
3500  
330.0  
178.0  
178.0  
178.0  
330.0  
178.0  
330.0  
12.4  
8.4  
6.5  
3.2  
3.2  
3.2  
6.5  
5.3  
5.3  
5.4  
3.2  
3.2  
3.2  
5.4  
3.4  
3.4  
2.0  
1.4  
1.4  
1.4  
2.0  
1.4  
1.4  
8.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
12.0  
8.0  
Q1  
Q3  
Q3  
Q3  
Q1  
Q1  
Q1  
DBV  
DBV  
DBV  
D
LMH6654MF/NOPB  
LMH6654MFX/NOPB  
LMH6655MAX/NOPB  
LMH6655MM/NOPB  
LMH6655MMX/NOPB  
8.4  
8.0  
8.4  
8.0  
12.4  
12.4  
12.4  
12.0  
12.0  
12.0  
VSSOP  
VSSOP  
DGK  
DGK  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMH6654MAX/NOPB  
LMH6654MF  
SOIC  
SOT-23  
SOT-23  
SOT-23  
SOIC  
D
8
5
5
5
8
8
8
2500  
1000  
1000  
3000  
2500  
1000  
3500  
367.0  
208.0  
208.0  
208.0  
367.0  
208.0  
367.0  
367.0  
191.0  
191.0  
191.0  
367.0  
191.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
DBV  
DBV  
DBV  
D
LMH6654MF/NOPB  
LMH6654MFX/NOPB  
LMH6655MAX/NOPB  
LMH6655MM/NOPB  
LMH6655MMX/NOPB  
VSSOP  
VSSOP  
DGK  
DGK  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LMH6654MA/NOPB  
LMH6655MA  
D
D
D
D
SOIC  
SOIC  
SOIC  
SOIC  
8
8
8
8
95  
95  
95  
95  
495  
495  
495  
495  
8
8
8
8
4064  
4064  
4064  
4064  
3.05  
3.05  
3.05  
3.05  
LMH6655MA  
LMH6655MA/NOPB  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

LMH6655MDC

IC,OP-AMP,DUAL,BIPOLAR,DIE
TI

LMH6655MM

Single/Dual Low Power, 250 MHz, Low Noise Amplifiers
NSC

LMH6655MM/NOPB

双通道、低功耗、250MHz、低噪声放大器 | DGK | 8 | -40 to 85
TI

LMH6655MMX

Single/Dual Low Power, 250 MHz, Low Noise Amplifiers
NSC

LMH6655MMX/NOPB

IC DUAL OP-AMP, 3000 uV OFFSET-MAX, 260 MHz BAND WIDTH, PDSO8, MSOP-8, Operational Amplifier
NSC

LMH6655MMX/NOPB

双通道、低功耗、250MHz、低噪声放大器 | DGK | 8 | -40 to 85
TI

LMH6655MWC

IC,OP-AMP,DUAL,BIPOLAR,WAFER
TI

LMH6657

270MHz Single Supply, Single & Dual Amplifiers
NSC

LMH6657

LMH6657/LMH6658 270MHz Single Supply, Single & Dual Amplifiers
TI

LMH6657MF

LMH6657/LMH6658 270MHz Single Supply, Single & Dual Amplifiers
TI

LMH6657MF/NOPB

270MHz 单电源、单路和双路运算放大器 | DBV | 5 | -40 to 85
TI

LMH6657MF/NOPB

IC 1 CHANNEL, VIDEO AMPLIFIER, PDSO5, SOT-23, 5 PIN, Audio/Video Amplifier
NSC