LMH6672 [TI]

双路、高输出电流、高速运算放大器;
LMH6672
型号: LMH6672
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双路、高输出电流、高速运算放大器

放大器 运算放大器
文件: 总33页 (文件大小:1398K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LMH6672  
SNOS957H APRIL 2001REVISED AUGUST 2014  
LMH6672 Dual, High Output Current, High Speed Op Amp  
1 Features  
2 Applications  
1
High Output Drive  
ADSL PCI Modem Cards  
xDSL External Modems  
Line Drivers  
19.2 VPP Differential Output Voltage,  
RL = 50  
9.6 VPP Single-ended Output Voltage,  
3 Description  
RL = 25 Ω  
The LMH6672 is a low cost, dual high speed op amp  
capable of driving signals to within 1 V of the power  
supply rails. It features the high output drive with low  
distortion required for the demanding application of a  
single supply xDSL line driver.  
High Output Current  
±200 mA @ VO = 9 VPP, VS = 12 V  
Low Distortion  
105 dB SFDR @ 100 kHz, VO = 8.4 VPP,  
RL = 25Ω  
When connected as a differential output driver, the  
LMH6672 can drive a 50-load to 16.8 VPP swing  
with only 98 dBc distortion, fully supporting the peak  
upstream power levels for upstream full-rate ADSL.  
The LMH6672 is fully specified for operation with 5-V  
and 12-V supplies. Ideal for PCI modem cards and  
xDSL modems.  
98 dB SFDR @ 1MHz, VO = 2 VPP  
RL = 100 Ω  
,
High Speed  
90 MHz 3 dB Bandwidth (G = 2)  
135 V/µs Slew Rate  
Low Noise  
Device Information(1)  
3.1 nV/Hz: Input Noise Voltage  
1.8 pA/Hz: Input Noise Current  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
LMH6672  
SOIC (8)  
4.89 mm × 3.90 mm  
Low Supply Current: 7.2mA/amp  
Single-supply Operation: 5 V to 12 V  
Stable for Gain of +2V/V or Higher  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
Available in 8-pin SOIC and SO PowerPAD (DDA)  
Typical Application  
+
+
1/2  
LMH6672  
-
-
R
12.5  
O
Rf1  
1:N  
R
= 100:  
L
.
A
V
V
IN  
V
OUT  
VIN (V  
)
PP  
Rg  
(1.2)  
Rf2  
Note: Supply and Bypassing not shown.  
R
O
12.5  
-
1/2  
LMH6672  
-
+
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
LMH6672  
SNOS957H APRIL 2001REVISED AUGUST 2014  
www.ti.com  
Table of Contents  
6.6 ±2.5V Electrical Characteristics ................................ 6  
6.7 Typical Performance Characteristics ........................ 7  
Detailed Description ............................................ 15  
7.1 Functional Block Diagram ....................................... 15  
Power Supply Recommendations...................... 16  
8.1 Thermal Management............................................. 16  
Device and Documentation Support.................. 18  
9.1 Trademarks............................................................. 18  
9.2 Electrostatic Discharge Caution.............................. 18  
9.3 Glossary.................................................................. 18  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 Handling Ratings....................................................... 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
7
8
9
10 Mechanical, Packaging, and Orderable  
Information ........................................................... 18  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision G (March 2013) to Revision H  
Page  
Changed data sheet flow and layout to conform with new TI standards. Added the following sections: Device  
Information Table, Application and Implementation; Device and Documentation Support; Mechanical, Packaging,  
and Ordering Information ....................................................................................................................................................... 1  
Added "Stable for Gain of +2V/V or Higher" in Features ....................................................................................................... 1  
Changed from "Junction Temperature Range" to "Operating Temperature Range" in Recommended Operating  
Conditions............................................................................................................................................................................... 4  
Deleted TJ = 25°C in Electrical Characteristics ...................................................................................................................... 5  
Deleted TJ = 25°C and "Slew Rate" in ±2.5V Electrical Characteristics................................................................................. 6  
Added condition "Av = + 2V/V" in Typical Performance Characteristics................................................................................ 7  
Added "Vs= +/-2.5V" and "Vs=+/-6V" as curve labels for Figure 36 .................................................................................... 11  
Changed curve label from 31 MHz to 13 MHz. Changed title from +5V to +5V/V in Figure 37........................................... 12  
Changed "10V" to + "10V/V" in caption title for Figure 38.................................................................................................... 12  
Added "Vs = 12V" to Figure 39 caption title ......................................................................................................................... 13  
Added "Vs = 5V" to Figure 40 caption title ........................................................................................................................... 13  
Changed from "40 = 346 mW" to "40 mW lower or 346 mW" in Thermal Management...................................................... 17  
Changed from 41 mW to 17 mW.......................................................................................................................................... 17  
Added "from ambient"........................................................................................................................................................... 17  
Changed sentence beginning with "Using the same PDRIVER as above..." ........................................................................... 17  
Added caution note............................................................................................................................................................... 17  
Changes from Revision F (March 2013) to Revision G  
Page  
Changed layout of National Data Sheet to TI format ........................................................................................................... 17  
2
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6672  
 
LMH6672  
www.ti.com  
SNOS957H APRIL 2001REVISED AUGUST 2014  
5 Pin Configuration and Functions  
8-Pin  
SOIC (D) / SO PowerPAD (DDA)  
(Top View)  
1
+
8
V
OUT A  
A
-
+
2
3
4
7
6
5
OUT B  
-IN B  
-IN A  
+IN A  
B
+
-
-
+IN B  
V
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NUMBER  
NAME  
OUT A  
-IN A  
+IN A  
V-  
1
2
3
4
5
6
7
8
O
I
ChA Output  
ChA Inverting Input  
ChA Non-inverting Input  
Negative Supply  
I
I
+IN B  
-IN B  
OUT B  
V+  
I
ChB Non-inverting Input  
ChB Inverting Input  
ChB Output  
I
O
I
Positive Supply  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LMH6672  
LMH6672  
SNOS957H APRIL 2001REVISED AUGUST 2014  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
VIN Differential  
±1.2  
V
Output Short Circuit Duration  
Supply Voltage (V+ V)  
See(2)  
13.2  
V
V
V+ +0.8  
Voltage at Input/Output pins  
Junction Temperature  
V0.8  
+150(3)  
°C  
°C  
°C  
Soldering Information  
Infrared or Convection (20 sec)  
Wave Soldering (10 sec)  
235  
260  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Shorting the output to either supply or ground will exceed the absolute maximum TJ and can result in failure.  
(3) The maximum power dissipation is a function of TJ(MAX), RθJA and TA. The maximum allowable power dissipation at any ambient  
temperature is PD = (TJ(MAX) TA)/RθJA. All numbers apply for packages soldered directly onto a PC board.  
6.2 Handling Ratings  
MIN  
65  
2
MAX  
+150  
2000  
UNIT  
Tstg  
Storage temperature range  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(2)  
V(ESD)  
Electrostatic discharge(1)  
V
Machine Model (MM)l(3)  
200  
(1) Human body model, 1.5 kΩ in series with 100 pF. Machine model, 200 in series with 100 pF.  
(2) JEDEC document JEP155 states that 2000-V HBM allows safe manufacturing with a standard ESD control process.  
(3) JEDEC document JEP157 states that 200-V MM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
±6.5  
150  
UNIT  
V
Supply Voltage (V+ - V)  
±2.5  
Operating Temperature Range  
40  
°C  
6.4 Thermal Information  
SOIC  
Package D  
SO PowerPAD  
Package DDA  
THERMAL METRIC(1)  
UNIT  
8 PINS  
8 PINS  
RθJA  
Junction-to-ambient thermal resistance  
172  
58.6  
°C/W  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6672  
LMH6672  
www.ti.com  
SNOS957H APRIL 2001REVISED AUGUST 2014  
6.5 Electrical Characteristics  
Unless otherwise specified, all limits are ensured for G = +2, VS = ±2.5 to ±6V, RF = RIN = 470Ω, RL = 100Ω.  
PARAMETER  
DYNAMIC PERFORMANCE  
TEST CONDITIONS  
MIN(1)  
TYP(2)  
MAX(1)  
UNIT  
3dB Bandwidth  
0.1dB Bandwidth  
90  
12  
MHz  
MHz  
V/μs  
ns  
VS = ±6V  
Slew Rate  
VS = ±6V, 4V Step, 10-90%  
VS = 6V, 4V Step, 10-90%  
135  
23.5  
Rise and Fall Time  
DISTORTION and NOISE RESPONSE  
2nd Harmonic Distortion  
VO = 8.4 VPP, f = 100 kHz, RL = 25Ω  
VO = 8.4 VPP, f = 1 MHz, RL = 100Ω  
VO = 8.4 VPP, f = 100 kHz, RL = 25Ω  
VO = 8.4 VPP, f = 1 MHz, RL = 100Ω  
f = 100 kHz  
105  
90  
110  
87  
3.1  
dBc  
dBc  
3rd Harmonic Distortion  
dBc  
dBc  
Input Noise Voltage  
Input Noise Current  
nVHz  
pA/Hz  
f = 100 kHz  
1.8  
INPUT CHARACTERISTICS  
VOS  
Input Offset Voltage  
TJ = 40°C to 125°C  
5.5  
4  
0.1  
0.2  
8
5.5  
4
mV  
IB  
Input Bias Current  
TJ = 40°C to 125°C  
TJ = 40°C to 125°C  
VS = ±6V  
16  
2.1  
4.5  
µA  
µA  
IOS  
Input Offset Current  
2.1  
0
CMVR  
CMRR  
Common Voltage Range  
Common-Mode Rejection Ratio  
6.0 5.7 to 4.5  
V
VS = ±6V, TJ = 40°C to 125°C  
150  
7.5  
µV/V  
TRANSFER CHARACTERISTICS  
AVOL  
Voltage Gain  
RL = 1k, TJ = 40°C to 125°C  
RL = 25, TJ = 40°C to 125°C  
RL = 25, VS = ±6V  
1.0  
0.67  
4.5  
5
3.4  
V/mV  
V/mV  
VO  
Output Swing  
±4.8  
4.5  
4.4  
4.8  
4.7  
V
V
RL = 25, TJ = 40°C to 125°C,  
VS = ±6V  
4.4  
4.8  
4.7  
350  
±4.8  
±4.8  
±4.8  
525  
600  
VO  
Output Swing  
RL = 1k, VS = ±6V  
RL = 1k, TJ = 40°C to 125°C,  
VS = ±6V  
ISC  
Output Current(3)  
VO = 0, VS = ±6V  
mA  
mA  
VO = 0, VS = ±6V,  
TJ = 40°C to 125°C  
260  
POWER SUPPLY  
IS  
Supply Current/Amp  
VS = ±6V  
8
9
mA  
dB  
VS = ±6V, TJ = 40°C to 125°C  
7.2  
PSRR  
Power Supply Rejection Ratio  
VS = ±2.5V to ±6V,  
TJ = 40°C to 125°C  
72  
88.5  
(1) All limits are specified by testing, characterization or statistical analysis.  
(2) Typical values represent the most likely parametric norm.  
(3) Shorting the output to either supply or ground will exceed the absolute maximum TJ and can result in failure.  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LMH6672  
LMH6672  
SNOS957H APRIL 2001REVISED AUGUST 2014  
www.ti.com  
6.6 ±2.5V Electrical Characteristics  
Unless otherwise specified, all limits are ensured for G = +2, VS = ±2.5 to ±6V, RF = RIN = 470Ω, RL = 100Ω.  
PARAMETER  
DYNAMIC PERFORMANCE  
TEST CONDITIONS  
MIN(1)  
TYP(2)  
MAX(1)  
UNIT  
3 dB Bandwidth  
0.1 dB Bandwidth  
80  
12  
14  
MHz  
MHz  
ns  
Rise and Fall Time  
2V Step, 10-90%  
DISTORTION and NOISE RESPONSE  
2nd Harmonic Distortion  
VO = 2 VPP, f = 100 kHz, RL = 25Ω  
VO = 2 VPP, f = 1 MHz, RL = 100Ω  
VO = 2 VPP, f = 100 kHz, RL = 25Ω  
VO = 2 VPP, f = 1 MHz, RL = 100Ω  
96  
85  
98  
87  
dBc  
dBc  
dBc  
dBc  
3rd Harmonic Distortion  
INPUT CHARACTERISTICS  
VOS  
Input Offset Voltage  
TJ = 40°C to 125°C  
TJ = 40°C to 125°C  
TJ = 40°C to 125°C  
5.5  
4.0  
5.5  
4.0  
16  
mV  
0.02  
8.0  
IB  
Input Bias Current  
µA  
V
CMVR  
CMRR  
Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
2.5  
1.0  
150  
8
µV/V  
TRANSFER CHARACTERISTICS  
AVOL Voltage Gain  
RL = 25, TJ = 40°C to 125°C  
RL = 1k, TJ = 40°C to 125°C  
0.67  
1.0  
3
4
V/mV  
V
OUTPUT CHARACTERISTICS  
VO Output Voltage Swing  
RL = 25Ω  
1.20  
1.10  
1.30  
1.25  
1.45  
1.35  
1.60  
1.50  
RL = 25, TJ = 40°C to 125°C  
RL = 1k  
RL = 1k, TJ = 40°C to 125°C  
POWER SUPPLY  
IS Supply Current/Amp  
8.0  
9.0  
mA  
TJ = 40°C to 125°C  
6.7  
(1) All limits are specified by testing, characterization or statistical analysis.  
(2) Typical values represent the most likely parametric norm.  
6
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6672  
LMH6672  
www.ti.com  
SNOS957H APRIL 2001REVISED AUGUST 2014  
6.7 Typical Performance Characteristics  
Av = + 2V/V  
14  
1.2  
1.0  
0.8  
0.6  
0.4  
-40°C  
1k:  
12  
10  
85°C  
25°C  
25:  
8
6
4
2
0
0.2  
0
0
1
2
3
4
5
6
7
0
2
4
6
8
10  
12  
14  
±V  
SUPPLY  
(V)  
V
(V)  
S
Figure 2. Positive Output Swing into 1k  
Figure 1. Output Swing RL = 25, 1 k@ 40°C, 25°C, 85°C  
1.0  
-40°C  
0.9  
1.6  
1.4  
-40°C  
1.2  
0.8  
0.7  
0.6  
1.0  
85°C  
25°C  
85°C  
0.8  
0.5  
0.4  
0.3  
25°C  
0.6  
0.4  
0.2  
0
0.2  
0.1  
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
±V  
SUPPLY  
(V)  
±V  
SUPPLY  
(V)  
Figure 3. Negative Output Swing into 1 kΩ  
Figure 4. Positive Output Swing into 25Ω  
1.4  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
V
S
= ±6V  
1.2  
-40°C  
1.0  
25°C  
25°C  
0.8  
85°C  
85°C  
0.6  
0.4  
0.2  
0
-40°C  
0
1
2
3
4
5
6
7
0
50  
100  
150  
(mA)  
200  
250  
±V  
SUPPLY  
(V)  
I
LOAD  
Figure 5. Negative Output Swing into 25Ω  
Figure 6. +VOUT vs. ILOAD  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LMH6672  
LMH6672  
SNOS957H APRIL 2001REVISED AUGUST 2014  
www.ti.com  
Typical Performance Characteristics (continued)  
Av = + 2V/V  
5.5  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
V
S
= ±2.5V  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
V
= ±6V  
S
85°C  
85°C  
25°C  
50  
25°C  
-40°C  
100  
-40°C  
0
150  
200  
250  
0
50  
100  
150  
200  
250  
I
(mA)  
I
(mA)  
LOAD  
LOAD  
Figure 7. VOUT vs. ILOAD  
Figure 8. +VOUT vs. ILOAD  
16  
14  
12  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
85°C  
V
S
= ±2.5V  
25°C  
-40°C  
85°C  
10  
8
6
25°C  
4
-40°C  
2
0
0
2
4
6
8
10 12 14 16  
0
50  
100  
150  
200  
250  
SUPPLY VOLTAGE (V)  
I
(mA)  
LOAD  
Figure 10. Supply Current vs. Supply Voltage  
Figure 9. VOUT vs. ILOAD  
700  
600  
500  
400  
300  
200  
700  
-40°C  
-40°C  
600  
500  
25°C  
85°C  
25°C  
85°C  
400  
300  
200  
3
4
5
6
7
8
9
10 11 12 13  
3
4
5
6
7
8
9
10 11 12 13  
V
S
(V)  
V (V)  
S
Figure 11. Sourcing Current vs. Supply Voltage  
Figure 12. Sinking Current vs. Supply Voltage  
8
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6672  
LMH6672  
www.ti.com  
SNOS957H APRIL 2001REVISED AUGUST 2014  
Typical Performance Characteristics (continued)  
Av = + 2V/V  
1
3
2
1
0.5  
-40°C  
25°C  
25°C  
-40°C  
0
0
-1  
-2  
-3  
85°C  
-0.5  
-1  
85°C  
3
5
6
7
8
9
10 11 12 13 14 15  
4
-0.5  
1
2.5  
4
5.5  
7
8.5 10 11.5 13  
V
(V)  
S
V
CM  
(V)  
Figure 13. VOS vs. VS  
Figure 14. VOS vs. VCM, VS = 12V  
10  
8
3
85°C  
25°C  
2
1
-40°C  
25°  
-40°C  
85°C  
6
4
2
0
-1  
-2  
-3  
0
-0.5  
0
0.5  
1
1.5  
2
2.5  
(V)  
3
3.5  
4
4.5  
5
2
4
6
8
10  
12  
14  
V
SUPPLY VOLTAGE (V)  
CM  
Figure 16. Bias Current vs. VSUPPLY  
Figure 15. VOS vs. VCM, VS = 5V  
0.1  
0.08  
0.06  
3
T
= -40°C to 85°C  
J
2
1
-40°C  
25°C  
0
-1  
85°C  
0.04  
0.02  
-2  
-3  
R
= 1k:  
L
2
4
6
8
10  
(V)  
12  
14  
-2.5 -2 -1.5 -1 -0.5  
0
0.5  
(V)  
1
1.5 2 2.5  
V
V
SUPPLY  
OUT  
Figure 17. Offset Current vs. VSUPPLY  
Figure 18. VOUT vs. VIN  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LMH6672  
LMH6672  
SNOS957H APRIL 2001REVISED AUGUST 2014  
www.ti.com  
Typical Performance Characteristics (continued)  
Av = + 2V/V  
3
-45  
-55  
-65  
-75  
-85  
V
= ±6V  
S
f = 1 MHz  
2
V
= 2 V  
OUT  
PP  
1
-40°C  
25°C  
0
2ND  
-1  
85°C  
-95  
-105  
-115  
-2  
-3  
R
= 25:  
L
3RD  
0
100  
200  
300  
400  
500  
-2.5 -2 -1.5 -1 -0.5  
0
0.5  
(V)  
1
1.5  
2
2.5  
LOAD RESISTANCE  
V
OUT  
Figure 20. Harmonic Distortion vs. Load  
Figure 19. VOUT vs. VIN  
-45  
-55  
-65  
-75  
-85  
-45  
V
= ±2.5V  
S
V
f
= ±6V  
= 1 MHz  
S
f = 1 MHz  
-55  
-65  
-75  
-85  
V
= 2 V  
OUT  
PP  
3RD  
3RD  
-95  
-105  
-115  
-95  
-105  
-115  
2ND  
2ND  
0
100  
200  
300  
400  
500  
0
1
2
3
4
5
6
7
8
9
10 11  
LOAD RESISTANCE  
OUTPUT VOLTAGE PEAK TO PEAK  
Figure 21. Harmonic Distortion vs. Load  
Figure 22. Harmonic Distortion vs. Output Voltage  
-35  
-45  
V
= ±2.5V  
S
V
= ±6V  
S
f = 1 MHz  
-45 f = 1 MHz  
-55  
-65  
R
= 25:  
L
-55  
-65  
-75  
-75  
-85  
-95  
2ND  
2ND  
-85  
-95  
3RD  
-105  
-115  
3RD  
-105  
0
1
2
3
4
5
6
7
8
9
10 11  
0.0  
0.5  
1.0  
2.0  
2.5  
3.0  
1.5  
OUTPUT VOLTAGE PEAK TO PEAK  
OUTPUT VOLTAGE PEAK TO PEAK  
Figure 24. Harmonic Distortion vs. Output Voltage  
Figure 23. Harmonic Distortion vs. Output Voltage  
10  
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6672  
LMH6672  
www.ti.com  
SNOS957H APRIL 2001REVISED AUGUST 2014  
Typical Performance Characteristics (continued)  
Av = + 2V/V  
-45  
-55  
-65  
V
= ±2.5V  
S
V
= ±6V  
S
f = 1 MHz  
-55  
-65  
f = 100 kHz  
R
= 25:  
L
-75  
-85  
-75  
-85  
-95  
2ND  
-95  
2ND  
-105  
3RD  
-115  
-125  
-105  
-115  
3RD  
7
0.0  
0.5  
1.0  
2.0  
2.5  
3.0  
1.5  
0
1
2
3
4
5
6
8
9 10 11  
OUTPUT VOLTAGE PEAK TO PEAK  
OUTPUT VOLTAGE PEAK TO PEAK  
Figure 25. Harmonic Distortion vs. Output Voltage  
Figure 26. Harmonic Distortion vs. Output Voltage  
-35  
-20  
V
= ±6V  
S
V
V
= ±6V  
S
-30  
-40  
f = 100 kHz  
-45  
-55  
= 2 V  
PP  
OUT  
R
= 25:  
L
-50  
-65  
-60  
-75  
-70  
2ND  
-85  
-80  
-95  
-90  
2ND  
3RD  
-105  
-100  
-110  
-120  
-115  
-125  
3RD  
0
1
2
3
4
5
6
7
8
9
10 11  
0.1  
1
10  
100  
FREQUENCY (MHz)  
OUTPUT VOLTAGE PEAK TO PEAK  
Figure 28. Harmonic Distortion vs. Frequency  
Figure 27. Harmonic Distortion vs. Output Voltage  
-20  
-20  
V
V
= ±2.5V  
S
V
= ±6V  
S
-30  
-40  
-30  
-40  
= 2 V  
PP  
OUT  
R
= 25:  
L
V
= 2 V  
PP  
OUT  
-50  
-50  
-60  
-60  
3RD  
-70  
-70  
2ND  
-80  
-80  
-90  
-90  
2ND  
-100  
-110  
-120  
-100  
-110  
-120  
3RD  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 29. Harmonic Distortion vs. Frequency  
Figure 30. Harmonic Distortion vs. Frequency  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LMH6672  
LMH6672  
SNOS957H APRIL 2001REVISED AUGUST 2014  
www.ti.com  
Typical Performance Characteristics (continued)  
Av = + 2V/V  
-20  
V
= ±2.5V  
S
-30  
-40  
R
= 25:  
L
V
= 2 V  
PP  
OUT  
-50  
2ND  
-60  
0
-70  
-80  
-90  
-100  
-110  
-120  
3RD  
20 ns/DIV  
0.1  
1
10  
100  
FREQUENCY (MHz)  
Figure 32. Pulse Response, VS= ±6V  
Figure 31. Harmonic Distortion vs. Frequency  
0
0
20 ns/DIV  
20 ns/DIV  
Figure 33. Pulse Response, VS= ±2.5V, ±6V  
Figure 34. Pulse Response, AVCL = 1, VS= ±6V  
7
6.8  
6.7  
6.6  
6.5  
6.4  
Vs = 6 V  
6
5
Vs = 2.5 V  
Vs = -6 V  
4
3
0
2
6.3  
6.2  
1
0
6.1  
6
0.1 dB/div  
-1  
-2  
-3  
5.9  
5.8  
20 ns/DIV  
0.1  
1
10  
100  
FREQUENCY (MHz)  
Figure 35. Pulse Response, AVCL = 1, VS= ±2.5V, ±6V  
Figure 36. Frequency Response  
12  
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6672  
LMH6672  
www.ti.com  
SNOS957H APRIL 2001REVISED AUGUST 2014  
Typical Performance Characteristics (continued)  
Av = + 2V/V  
26  
23  
20  
17  
14  
11  
8
13 MHz  
12V  
5
2
-1  
5V  
-4  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 37. Frequency Response, AVCL = +5V/V  
Figure 38. Frequency Response, AVCL = +10V/V  
120  
100  
120  
100  
80  
80  
60  
40  
60  
40  
20  
0
20  
0
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 39. CMRR vs. Frequency, Vs = 12V  
Figure 40. CMRR vs. Frequency, Vs = 5V  
100  
90  
100  
90  
80  
80  
70  
60  
50  
40  
30  
70  
60  
50  
40  
30  
20  
10  
0
20  
10  
0
10M  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 41. PSRR+ vs. Frequency, VS = 5V and 12V  
Figure 42. PSRRvs. Frequency VS = 5V and 12V  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LMH6672  
LMH6672  
SNOS957H APRIL 2001REVISED AUGUST 2014  
www.ti.com  
Typical Performance Characteristics (continued)  
Av = + 2V/V  
100  
100  
10  
10  
e
n
i
n
1
1
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 43. en & in vs. Frequency, VS = 5V and 12V  
14  
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6672  
LMH6672  
www.ti.com  
SNOS957H APRIL 2001REVISED AUGUST 2014  
7 Detailed Description  
7.1 Functional Block Diagram  
+
+
1/2  
LMH6672  
-
-
R
12.5  
O
Rf1  
1:N  
R
= 100:  
L
.
A
V
V
IN  
V
OUT  
VIN (V  
)
PP  
Rg  
(1.2)  
Rf2  
Note: Supply and Bypassing not shown.  
R
O
12.5  
-
1/2  
LMH6672  
-
+
Figure 44. LMH6672 Block Diagram  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LMH6672  
 
LMH6672  
SNOS957H APRIL 2001REVISED AUGUST 2014  
www.ti.com  
8 Power Supply Recommendations  
8.1 Thermal Management  
The LMH6672 is a high-speed, high power, dual operational amplifier with a very high slew rate and very low  
distortion. For ease of use, it uses conventional voltage feedback. These characteristics make the LMH6672  
ideal for applications where driving low impedances of 25 to 100 such as xDSL and active filters.  
A class AB output stage allows the LMH6672 to deliver high currents to low impedance loads with low distortion  
while consuming low quiescent supply current. For most op-amps, class AB topology means that internal power  
dissipation is rarely an issue, even with the trend to smaller surface mount packages. However, the LMH6672  
has been designed for applications where high levels of power dissipation may be encountered.  
Several factors contribute to power dissipation and consequently higher junction temperatures. These factors  
need to be well understood if the LMH6672 is to perform to specifications in all applications. This section will  
examine the typical application shown in Figure 44 as an example. Because both amplifiers are in a single  
package, the calculations are for the total power dissipated by both amplifiers.  
There are two separate contributors to the internal power dissipation:  
1. The product of the supply voltage and the quiescent current when no signal is being delivered to the external  
load.  
2. The additional power dissipated while delivering power to the external load.  
The first of these components appears easy to calculate simply by inspecting the data sheet. The typical  
quiescent supply current for this part is 7.2 mA per amplifier. Therefore, with a ±6 volt supply, the total power  
dissipation is:  
PD = VS × 2 × lQ = 12 × (14.4×10-3) = 173 mW  
where  
(VS = VCC + VEE  
)
(1)  
With a thermal resistance of 172°C/W for the SOIC package, this level of internal power dissipation will result in a  
junction temperature (TJ) of 30°C above ambient.  
Using the worst-case maximum supply current of 18 mA and an ambient of 85°C, a similar calculation results in a  
power dissipation of 216 mW, or a TJ of 122°C.  
This is approaching the maximum allowed TJ of 150°C before a signal is applied. Fortunately, in normal  
operation, this term is reduced, for reasons that will soon be explained.  
The second contributor to high TJ is the power dissipated internally when power is delivered to the external load.  
This cause of temperature rise is more difficult to calculate, even when the actual operating conditions are  
known.  
To maintain low distortion, in a Class AB output stage, an idle current, IQ, is maintained through the output  
transistors when there is little or no output signal. In the LMH6672, about 4.8 mA of the total quiescent supply  
current of 14.4 mA flows through the output stages.  
Under normal large signal conditions, as the output voltage swings positive, one transistor of the output pair will  
conduct the load current, while the other transistor shuts off, and dissipates no power. During the negative signal  
swing this situation is reversed, with the lower transistor sinking the load current while the upper transistor is cut  
off. The current in each transistor will approximate a half wave rectified version of the total load current.  
Because the output stage idle current is now routed into the load, 4.8 mA can be subtracted from the quiescent  
supply current when calculating the quiescent power when the output is driving a load.  
16  
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6672  
LMH6672  
www.ti.com  
SNOS957H APRIL 2001REVISED AUGUST 2014  
Thermal Management (continued)  
The power dissipation caused by driving a load in a DSL application, using a 1:2 turns ratio transformer driving  
20 mW into the subscriber line and 20 mW into the back termination resistors, can be calculated as follows:  
PDRIVER = PTOT – (PTERM + PLINE  
)
Where  
PDRIVER is the LMH6672 power dissipation  
PTOT is the total power drawn from the power supply  
PTERM is the power dissipated in the back termination resistors  
PLINE is the power sent into the subscriber line  
At full specified power, PTERM = PLINE = 20 mW, PTOT = VS × IS  
(2)  
In this application, VS = 12V.  
IS = IQ + AVG |IOUT  
|
(3)  
(4)  
(5)  
IQ = the LMH6672 quiescent current minus the output stage idle current.  
IQ = 14.4 – 4.8 = 9.6 mA  
(40 mW/50:)  
Average (AVG) |IOUT| for a full-rate ADSL CPE application, using a 1:2 turns ratio transformer, is  
mA RMS.  
= 28.28  
2/S x I  
RMS  
For a Gaussian signal, which the DMT ADSL signal approximates, AVG |IOUT| =  
PTOT = (22.6 mA + 9.6 mA) × 12V = 386 mW and PDRIVER is 40 mW lower or 346 mW.  
= 22.6 mA. Therefore,  
In the SOIC package, with a θJA of 172°C/W, this causes a temperature rise of 60°C. With an ambient  
temperature at the maximum recommended 85°C, the TJ is at 145°C, which is below the specified 150°C  
maximum.  
Even if it is assumed that the absolute maximum IS over temperature of 18 mA, when the IQ is scaled up  
proportionally to 7 mA, the PDRIVER only goes up by 17 mW causing a 62°C rise from ambient to 147°C.  
Although very few CPE applications will ever operate in an environment as hot as 85°C, if a lower TJ is desired  
or the LMH6672 is to be used in an application where the power dissipation is higher, the SO PowerPAD (DDA)  
package provides a much lower RθJA of only 58.6° C/W. Using the same PDRIVER as above, we find that the  
temperature rise is only about 21°C, resulting in TJ of 106°C with 85°C ambient.  
NOTE  
Since the exposed PAD (or DAP) of the SO PowerPAD (DDA) package is internally  
floating, the footprint for DAP could be connected to ground plane in PCB for better heat  
dissipation.  
Copyright © 2001–2014, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LMH6672  
LMH6672  
SNOS957H APRIL 2001REVISED AUGUST 2014  
www.ti.com  
9 Device and Documentation Support  
9.1 Trademarks  
All trademarks are the property of their respective owners.  
9.2 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
9.3 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
18  
Submit Documentation Feedback  
Copyright © 2001–2014, Texas Instruments Incorporated  
Product Folder Links: LMH6672  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Jan-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH6672MA/NOPB  
LMH6672MAX/NOPB  
LMH6672MR/NOPB  
LMH6672MRX/NOPB  
ACTIVE  
SOIC  
SOIC  
D
8
8
8
8
95  
RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
LMH66  
72MA  
ACTIVE  
D
2500 RoHS & Green  
95 RoHS & Green  
2500 RoHS & Green  
SN  
SN  
SN  
LMH66  
72MA  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
DDA  
DDA  
LMH66  
72MR  
LMH66  
72MR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Jan-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMH6672MAX/NOPB  
LMH6672MRX/NOPB  
SOIC  
D
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
6.5  
6.5  
5.4  
5.4  
2.0  
2.0  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
SO  
DDA  
PowerPAD  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMH6672MAX/NOPB  
LMH6672MRX/NOPB  
SOIC  
D
8
8
2500  
2500  
367.0  
356.0  
367.0  
356.0  
35.0  
35.0  
SO PowerPAD  
DDA  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LMH6672MA/NOPB  
LMH6672MR/NOPB  
D
SOIC  
8
8
95  
95  
495  
495  
8
8
4064  
4064  
3.05  
3.05  
DDA  
HSOIC  
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DDA0008A  
PowerPADTM SOIC - 1.7 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.2  
5.8  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
6X 1.27  
8
1
2X  
5.0  
4.8  
3.81  
NOTE 3  
4
5
0.51  
8X  
0.31  
4.0  
3.8  
1.7 MAX  
B
0.25  
C A B  
NOTE 4  
0.25  
0.10  
TYP  
SEE DETAIL A  
5
4
EXPOSED  
THERMAL PAD  
0.25  
2.34  
2.24  
GAGE PLANE  
0.15  
0.00  
0 - 8  
1.27  
0.40  
1
8
DETAIL A  
TYPICAL  
2.34  
2.24  
4218825/A 05/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MS-012.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDA0008A  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
(2.95)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(2.34)  
SOLDER MASK  
OPENING  
SEE DETAILS  
8X (1.55)  
1
8
8X (0.6)  
(2.34)  
SOLDER MASK  
SYMM  
(1.3)  
TYP  
OPENING  
(4.9)  
NOTE 9  
6X (1.27)  
5
4
(R0.05) TYP  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.4)  
(
0.2) TYP  
VIA  
(1.3) TYP  
LAND PATTERN EXAMPLE  
SCALE:10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218825/A 05/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDA0008A  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
(2.34)  
BASED ON  
0.125 THICK  
STENCIL  
(R0.05) TYP  
8X (1.55)  
1
8
8X (0.6)  
(2.34)  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
6X (1.27)  
5
4
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.4)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.62 X 2.62  
2.34 X 2.34 (SHOWN)  
2.14 X 2.14  
0.125  
0.150  
0.175  
1.98 X 1.98  
4218825/A 05/2016  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DDA0008D  
PowerPADTM SOIC - 1.7 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.2  
5.8  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
6X 1.27  
8
1
2X  
5.0  
4.8  
3.81  
NOTE 3  
4
5
0.51  
8X  
0.31  
4.0  
3.8  
1.7 MAX  
B
0.1  
C A  
B
NOTE 4  
0.25  
0.10  
TYP  
SEE DETAIL A  
5
4
EXPOSED  
THERMAL PAD  
0.25  
2.287  
1.673  
GAGE PLANE  
0.15  
0.00  
0 - 8  
1.27  
0.40  
1
8
DETAIL A  
TYPICAL  
2.287  
1.673  
4218820/A 12/2022  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MS-012, variation BA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDA0008D  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
(2.95)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(2.287)  
SOLDER MASK  
OPENING  
SEE DETAILS  
8X (1.55)  
1
8
8X (0.6)  
(4.9)  
NOTE 9  
SYMM  
(2.287)  
(1.3)  
SOLDER MASK  
TYP  
OPENING  
6X (1.27)  
5
4
(
0.2) TYP  
VIA  
SYMM  
(5.4)  
(R0.05) TYP  
METAL COVERED  
BY SOLDER MASK  
(1.3) TYP  
LAND PATTERN EXAMPLE  
SCALE:10X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4218820/A 12/2022  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDA0008D  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
(2.287)  
BASED ON  
0.125 THICK  
STENCIL  
8X (1.55)  
(R0.05) TYP  
1
8
8X (0.6)  
(2.287)  
BASED ON  
0.127 THICK  
STENCIL  
SYMM  
6X (1.27)  
5
4
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
SYMM  
(5.4)  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.557 X 2.557  
2.287 X 2.287 (SHOWN)  
2.088 X 2.088  
0.125  
0.150  
0.175  
1.933 X 1.933  
4218820/A 12/2022  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

LMH6672LD

Dual, High Output Current, High Speed Op Amp
NSC

LMH6672LDX

Dual, High Output Current, High Speed Op Amp
NSC

LMH6672LDX/NOPB

IC,OP-AMP,DUAL,BIPOLAR,LLCC,8PIN,PLASTIC
NSC

LMH6672MA

Dual, High Output Current, High Speed Op Amp
NSC

LMH6672MA/NOPB

双路、高输出电流、高速运算放大器 | D | 8 | -40 to 150
TI

LMH6672MAX

Dual, High Output Current, High Speed Op Amp
NSC

LMH6672MAX/NOPB

双路、高输出电流、高速运算放大器 | D | 8 | -40 to 150
TI

LMH6672MR

Dual, High Output Current, High Speed Op Amp
NSC

LMH6672MR/NOPB

IC DUAL OP-AMP, 4000 uV OFFSET-MAX, PDSO8, PLASTIC, SOP-8, Operational Amplifier
NSC

LMH6672MR/NOPB

双路、高输出电流、高速运算放大器 | DDA | 8 | -40 to 150
TI

LMH6672MRX

Dual, High Output Current, High Speed Op Amp
NSC

LMH6672MRX/NOPB

双路、高输出电流、高速运算放大器 | DDA | 8 | -40 to 150
TI