LMH9235 [TI]

具有集成平衡-非平衡变压器的 3.3GHz 至 4.2GHz 单端至差分放大器;
LMH9235
型号: LMH9235
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成平衡-非平衡变压器的 3.3GHz 至 4.2GHz 单端至差分放大器

变压器 放大器
文件: 总22页 (文件大小:1913K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMH9235  
ZHCSLB8C MAY 2020 REVISED MAY 2021  
具有集成平衡-非平衡变压器LMH9235 3.3GHz 4.2GHz 单端至差分放大器  
1 特性  
3 说明  
• 单通道、单端输入至差分输出射频增益块放大器  
• 直接支3.3GHz 3.8GHz 频带或通过外部匹配  
组件支3.7GHz 4.2GHz 频带  
• 在整个频带内具17.5dB 的典型增益  
• 低3dB 噪声系数  
34.5dBm OIP3  
18dBm P1dB  
3.3V 单电源供电270mW 功耗  
• 工作温度高105°C TC  
LMH9235 器件是一款高性能、单通道、单端输入至差  
分输出接收射频增益块放大器支持 3.6GHz 中心频  
段。该器件非常适合支持下一代 5G AAS 或小型蜂窝  
应用的要求LNA 益不足以驱动模拟前端  
(AFE) 的满量程。该射频放大器可提供 17dB 的典型增  
并具有 34dBm 输出 IP3 的出色线性性能同时在  
整个 1dB 带宽内保持大约 3dB 的噪声系数。该器件在  
单端输入以及差分输出端内部匹配 50Ω 阻抗可轻松  
与射频采样或零中频模拟前(AFE) 相连。  
2 应用  
该器件使用 3.3V 电源供电有功功率约为  
270mW因此适用于高密度 5G 大规模 (MIMO) 应  
用。此外该器件采用节省空间的 2mm x 2mm12  
引脚 QFN 封装。该器件的额定工作温度高达 105°C,  
可提供稳健的系统设计。该器件具有符合 JEDEC 标准  
1.8V 断电引脚可为该器件快速断电和上电适用  
于时分双(TDD) 系统。  
• 适用于GSPS ADC 的差分驱动器  
• 单端到差分转换  
• 平衡-非平衡变压器替代产品  
• 射频增益块  
小型蜂窝m-MIMO 基站  
5G 有源天线系(AAS)  
无线蜂窝基站  
器件信息(1)  
• 低成本无线电设备  
封装尺寸标称值)  
器件型号  
LMH9235  
封装  
WQFN (12)  
2.00mm × 2.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
f = 3.3 GHz œ 3.8 GHz  
Analog Front-End  
LNA  
LMH9235  
ADC  
ROUT = 50 Ω  
RIN = 50 Ω  
LMH9235单端至差分放大器  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOS996  
 
 
 
 
LMH9235  
ZHCSLB8C MAY 2020 REVISED MAY 2021  
www.ti.com.cn  
Table of Contents  
8 Application and Implementation....................................9  
8.1 Application Information............................................... 9  
8.2 Typical Application.................................................... 10  
9 Power Supply Recommendations................................13  
10 Layout...........................................................................14  
10.1 Layout Guidelines................................................... 14  
10.2 Layout Example...................................................... 14  
11 Device and Documentation Support..........................15  
11.1 Documentation Support.......................................... 15  
11.2 接收文档更新通知................................................... 15  
11.3 支持资源..................................................................15  
11.4 Trademarks............................................................. 15  
11.5 Electrostatic Discharge Caution..............................15  
11.6 术语表..................................................................... 15  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................6  
7 Detailed Description........................................................8  
7.1 Overview.....................................................................8  
7.2 Functional Block Diagram...........................................9  
7.3 Feature Description.....................................................9  
7.4 Device Functional Modes............................................9  
Information.................................................................... 15  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (June 2020) to Revision C (May 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Changes from Revision A (May 2020) to Revision B (June 2020)  
Page  
• 在“特性”部分添加了具有外部匹配组件3.7GHz 4.2GHz ............................................................... 1  
Changed the POUT/TONE measurements of Figure 6, Figure 7 and Figure 8 From: 1-MHz tone spacing To:  
10-MHz tone spacing .........................................................................................................................................6  
Added Shifting the Operating Band section......................................................................................................12  
Added Design Requirements and Procedure section.......................................................................................12  
Changes from Revision * (May 2020) to Revision A (June 2020)  
Page  
• 将状态从产品预发更改为量产数................................................................................................................ 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMH9235  
 
LMH9235  
ZHCSLB8C MAY 2020 REVISED MAY 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
NC  
12  
VDD  
11  
VSS 1  
INP 2  
10 VSS  
9 OUTP  
8 OUTM  
Thermal Pad  
3
VSS  
VSS 4  
7
VSS  
5
6
VSS  
PD  
5-1. RRL Package 12-Pin WQFN Top View  
5-1. Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
1
VSS  
INP  
Power  
Input  
Ground  
2
RF single-ended input into amplifier  
3
VSS  
VSS  
VSS  
PD  
Power  
Power  
Power  
Input  
Ground  
4
Ground  
5
Ground  
6
Power down connection. PD = 0 V = normal operation; PD = 1.8 V = power off mode.  
7
VSS  
OUTM  
OUTP  
VSS  
VDD  
NC  
Power  
Output  
Output  
Power  
Power  
Ground  
8
RF differential output negative  
RF differential output positive  
Ground  
9
10  
11  
Positive supply voltage (3.3 V)  
Do not connect this pin  
Connect the thermal pad to Ground  
12  
Thermal Pad  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMH9235  
 
LMH9235  
ZHCSLB8C MAY 2020 REVISED MAY 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
MAX  
3.6  
UNIT  
V
Supply voltage VDD  
RF Pins  
INP, OUTP, OUTM  
VDD  
V
Continuous  
wave (CW)  
input  
fIN = 3.55 GHz at INP  
25  
dBm  
Digital Input PIN PD  
VDD  
150  
150  
V
0.3  
65  
TJ  
Junction temperature  
Storage temperature  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, allpins(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specificationJESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.15  
40  
40  
NOM  
MAX  
3.45  
105  
UNIT  
V
VDD  
TC  
Supply voltage  
3.3  
Case (bottom) temperature  
Junction temperature  
°C  
TJ  
125  
°C  
6.4 Thermal Information  
LMH9235  
THERMAL METRIC(1)  
RRL PKG  
12-PIN WQFN  
74.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
72.4  
37.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.2  
ΨJT  
37.1  
ΨJB  
RθJC(bot)  
14.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMH9235  
 
 
 
 
 
 
 
 
 
LMH9235  
ZHCSLB8C MAY 2020 REVISED MAY 2021  
www.ti.com.cn  
6.5 Electrical Characteristics  
TA = 25°C, VDD = 3.3V, frequency = 3.55 GHz, single-ended input impedance (RIN) = 50 , differential output load (RLOAD) =  
50 unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RF PERFORMANCE - LMH9235  
FRF  
RF frequency range  
1-dB Bandwidth  
Gain  
3300  
3800  
MHz  
MHz  
dB  
BW1dB  
S21  
700  
17.5  
3
NF  
Noise Figure  
Output P1dB  
dB  
RS = 50 Ω  
OP1dB  
18  
dBm  
RLOAD = 50 differential  
fin = 3.55 GHz ± 5 MHz spacing, POUT  
TONE = 2 dBm  
/
OIP3  
Output IP3  
34.5  
dBm  
Differential output gain Imbalance  
Differential output phase Imbalance  
Input return loss (1)  
±0.5  
±3  
dB  
degree  
dB  
S11  
f = 3.3 - 3.8 GHz  
f = 3.3 - 3.8 GHz  
f = 3.3 - 3.8 GHz  
9  
10  
40  
30  
S22  
Output return loss (1)  
dB  
S12  
Reverse isolation  
dB  
CMRR  
Common Mode Rejection Ratio (2)  
dB  
Switching and Digital input characteristics  
tON  
tOFF  
VIH  
VIL  
Turn-ON time  
50% VPD to 90% RF  
50% VPD to 10% RF  
PD pin  
0.5  
0.2  
µs  
µs  
V
Turn-OFF time  
High-Level Input Voltage  
Low-Level Input Voltage  
1.4  
PD pin  
0.5  
V
DC current and Power Consumption  
IVDD_ON Supply Current - active  
VPD = 0 V  
80  
10  
mA  
mA  
mW  
IVDD_PD Supply Current - power down  
VPD = 1.8 V  
Pdis  
Power Dissipation - active  
270  
(1) Reference impedance: Input = 50 single-ended, Output = 50 differential  
(2) CMRR is calculated using (S21-S31)/(S21+S31) for Receive (1 is input port, 2 & 3 are differential output ports)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMH9235  
 
 
 
LMH9235  
ZHCSLB8C MAY 2020 REVISED MAY 2021  
www.ti.com.cn  
6.6 Typical Characteristics  
20  
20  
18  
16  
14  
12  
18  
16  
14  
TA = -40 o  
C
TA = 25 o  
TA = 85 o  
C
C
VDD = 3.15V  
VDD = 3.3V  
VDD = 3.45V  
TA = 105 o  
C
12  
3200 3300 3400 3500 3600 3700 3800 3900 4000  
Frequency (MHz)  
3200 3300 3400 3500 3600 3700 3800 3900 4000  
Frequency (MHz)  
.
.
6-1. Gain vs Frequency and Temperature  
6-2. Gain vs Frequency and Supply Voltage  
0
TA = -40 o  
C
-2  
-6  
TA = 25 o  
TA = 85 o  
C
C
-2  
-4  
TA = 105 o  
C
-10  
-14  
-18  
-22  
-26  
-30  
-34  
-6  
-8  
-10  
-12  
-14  
TA = -40 o  
C
TA = 25 o  
TA = 85 o  
C
C
TA = 105 o  
C
3200 3300 3400 3500 3600 3700 3800 3900 4000  
Frequency (MHz)  
3200 3300 3400 3500 3600 3700 3800 3900 4000  
Frequency (MHz)  
.
.
6-4. Output Return Loss vs Frequency  
6-3. Input Return Loss vs Frequency  
0
40  
TA = -40 o  
C
TA = 25 o  
TA = 85 o  
C
C
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
38  
36  
34  
32  
30  
28  
26  
TA = 105 o  
C
TA = -40 o  
C
TA = 25 o  
TA = 85 o  
C
C
TA = 105 o  
C
3200 3300 3400 3500 3600 3700 3800 3900 4000  
Frequency (MHz)  
3200 3300 3400 3500 3600 3700 3800 3900 4000  
Frequency (MHz)  
.
POUT/TONE = 2 dBm, 10-MHz tone spacing  
6-5. Reverse Isolation vs Frequency  
6-6. Output IP3 vs Frequency and Temperature  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LMH9235  
 
 
LMH9235  
ZHCSLB8C MAY 2020 REVISED MAY 2021  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
40  
38  
36  
34  
32  
40  
38  
36  
34  
32  
30  
28  
26  
30  
TA = -40 o  
C
VDD = 3.15V  
VDD = 3.3V  
VDD = 3.45V  
TA = 25 o  
TA = 85 o  
C
C
28  
TA = 105 o  
C
26  
3200 3300 3400 3500 3600 3700 3800 3900 4000  
Frequency (MHz)  
0
2
4
6
8
10  
12  
Output Power / Tone (dBm)  
f = 3550 MHz, 10-MHz tone spacing  
6-8. Output IP3 vs Output Power per Tone  
POUT/TONE = 2 dBm, 10-MHz tone spacing  
6-7. Output IP3 vs Frequency and Supply Voltage  
40  
22  
38  
36  
34  
32  
20  
18  
16  
14  
12  
30  
TA = -40 o  
C
Tone Spacing = 1 MHz  
Tone Spacing = 10 MHz  
Tone Spacing = 100 MHz  
TA = 25 o  
TA = 85 o  
C
C
28  
TA = 105 o  
C
26  
3200 3300 3400 3500 3600 3700 3800 3900 4000  
Frequency (MHz)  
3200 3300 3400 3500 3600 3700 3800 3900 4000  
Frequency (MHz)  
POUT/TONE = 2 dBm  
.
6-9. Output IP3 vs Frequency and Tone Spacing  
6-10. Output P1dB vs Frequency and Temperature  
22  
6
TA = -40 o  
C
TA = 25 o  
TA = 85 o  
C
C
5
4
3
2
1
0
20  
18  
16  
TA = 105 o  
C
14  
VDD = 3.15V  
VDD = 3.3V  
VDD = 3.45V  
12  
3200 3300 3400 3500 3600 3700 3800 3900 4000  
Frequency (MHz)  
3200 3300 3400 3500 3600 3700 3800 3900 4000  
Frequency (MHz)  
.
ZSOURCE = 50 Ω  
6-11. Output P1dB vs Frequency and Supply Voltage  
6-12. Noise Figure vs Frequency and Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMH9235  
LMH9235  
ZHCSLB8C MAY 2020 REVISED MAY 2021  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
50  
2
1.5  
1
45  
40  
35  
30  
0.5  
0
-0.5  
-1  
TA = -40 o  
C
TA = -40 o  
C
TA = 25 o  
TA = 85 o  
C
C
TA = 25 o  
TA = 85 o  
C
C
25  
-1.5  
-2  
TA = 105 o  
C
TA = 105 o  
C
20  
3200 3300 3400 3500 3600 3700 3800 3900 4000  
Frequency (MHz)  
3200 3300 3400 3500 3600 3700 3800 3900 4000  
Frequency (MHz)  
.
.
6-13. CMRR vs Frequency  
6-14. Gain Imbalance vs Frequency and Temperature  
5
TA = -40 o  
C
TA = 25 o  
TA = 85 o  
C
C
4
3
TA = 105 o  
C
2
1
0
-1  
-2  
-3  
-4  
-5  
3200 3300 3400 3500 3600 3700 3800 3900 4000  
Frequency (MHz)  
.
6-15. Phase Imbalance vs Frequency and Temperature  
7 Detailed Description  
7.1 Overview  
The LMH9235 device is a single-ended input to differential output narrow-band RF amplifier that is used in  
receiver applications. The LMH9235 provides 17 dB fixed power gain with excellent linearity and noise  
performance across 1 dB bandwidth of the 3.55 GHz center frequency. The device is internally matched for 50 Ω  
impedance at both the single-ended input as well as the differential output, as shown in 8.  
The LMH9235 has on-chip active bias circuitry to maintain device performance over a wide temperature and  
supply voltage range. The included power down function allows the amplifier to shut down saving power when  
the amplifier is not needed. Fast shut down and start up enable the amplifier to be used in a host of TDD  
applications.  
Operating on a single 3.3 V supply and consuming 80 mA of typical supply current, the device is available in a  
2 mm x 2 mm 12-pin QFN package.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMH9235  
 
 
LMH9235  
ZHCSLB8C MAY 2020 REVISED MAY 2021  
www.ti.com.cn  
7.2 Functional Block Diagram  
AVDD = +3.3V  
Active Bias and  
Power Down (PD)  
Temperature  
Compensation  
Balanced RF OUTP (0)  
Single-Ended RF Input (INP)  
Balanced RF OUTM (180)  
ZIN = 50-Ω match  
AVSS (GND)  
ZOUT(DIFF) = 50-Ω match  
7-1. Functional Block Diagram  
7.3 Feature Description  
The LMH9235 device is single-ended to differential RF amplifier for narrow band active balun implementation.  
The device integrates the functionality of a single-ended RF amplifier and passive balun in traditional receive  
applications achieving small form factor with comparable linearity and noise performance, as shown in 7-2.  
The active balun implementation coupled with higher operating temperature of 105°C allows for more robust  
receiver system implementation compared to passive balun that is prone to reliability failures at high  
temperatures. The high temperature operation is achieved by the on-chip active bias circuitry which maintains  
device performance over a wide temperature and supply voltage range.  
LMH9235  
INP  
OUTP  
OUTM  
GND  
7-2. Single-Ended Input to Differential Output, Active Balun Implementation  
7.4 Device Functional Modes  
The LMH9235 features a PD pin which should be connected to GND for normal operation. To power down the  
device, connect the PD pin to a logic high voltage of 1.8 V.  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The LMH9235 device is a single-ended, 50 Ω input to differential 50 Ω output RF gain block amplifier, used in  
the receive path of a 3.55 GHz center frequency, 5G, TDD m-MIMO or small cell base station. The device  
replaces the traditional single-ended RF amplifier and passive balun offering a smaller footprint solution to the  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMH9235  
 
 
 
 
 
 
 
LMH9235  
ZHCSLB8C MAY 2020 REVISED MAY 2021  
www.ti.com.cn  
customer. TI recommends following good RF layout and grounding techniques to maximize the device  
performance.  
8.2 Typical Application  
8.2.1 Matching to a 100 ΩAFE  
A typical application of the LMH9235 device driving an AFE is shown in 8-1.  
f = 3.3 œ 3.8 GHz  
f
ZOUT = 50 (diff)  
ZLOAD  
Analog Front-End  
C4  
C5  
C2  
C1  
L1  
L2  
LNA  
ADC  
LMH9235  
C3  
ZLOAD  
ZIN = 50 Ω  
Output Matching  
Network  
8-1. LMH9235 in Receive Chain Driving an Analog Front-End  
8.2.1.1 Design Requirements  
ZLOAD represents the impedance of the AFE. With a matching network comprising of L1, L2, C2, and C3 as  
shown, the LMH9235 is matched to the impedance of AFE. The capacitors C1, C4, and C5 are for dc-blocking  
purpose.  
8.2.1.2 Detailed Design Procedure  
The table shows the matching network components for 50 Ω (differential) and 100 Ω (differential) AFE  
impedances.  
8-1. Matching Network Component Values  
Component  
C1  
Value for ZLOA D = 50 Ω(differential)  
Value for ZLOAD = 100 Ω(differential)  
22 pF  
22 pF  
1.5 pF  
OPEN  
4.3 nH  
22 pF  
C2, C3  
L1  
SHORT  
OPEN  
OPEN  
22 pF  
L2  
C4, C5  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMH9235  
 
 
LMH9235  
ZHCSLB8C MAY 2020 REVISED MAY 2021  
www.ti.com.cn  
8.2.1.3 Application Curves  
The graphs given below show the gain, input return loss and output return loss of the design with different AFE  
terminations.  
20  
18  
16  
14  
12  
0
-2  
50-W without matching components  
100-W with matching components  
-4  
-6  
-8  
-10  
-12  
-14  
50-W without matching components  
100-W with matching components  
3200 3300 3400 3500 3600 3700 3800 3900 4000  
Frequency (MHz)  
3200 3300 3400 3500 3600 3700 3800 3900 4000  
Frequency (MHz)  
8-2. Gain vs Frequency for Different  
8-3. Input Return Loss vs Frequency for  
Terminations  
Different Terminations  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
50-W without matching components  
100-W with matching components  
-45  
-50  
3200 3300 3400 3500 3600 3700 3800 3900 4000  
Frequency (MHz)  
8-4. Output Return Loss vs Frequency for Different Terminations  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMH9235  
LMH9235  
ZHCSLB8C MAY 2020 REVISED MAY 2021  
www.ti.com.cn  
8.2.2 Shifting the Operating Band  
It is possible to tune the frequency band of operation of this chip by a simple external network at the input as  
shown in 8-1. In this example, with the help of 2 components at the input, the frequency band is shifted to 3.7  
- 4.2 GHz.  
f = 3.7 œ 4.2 GHz  
f
Network to shift the  
operating band  
ZOUT = 50 (diff)  
Analog Front-End  
C4  
C0  
LNA  
ADC  
LMH9235  
L0  
C5  
ZIN = 50 Ω  
8-5. Shifting the Operating Band  
8.2.2.1 Design Requirements and Procedure  
The components C0 and L0 are meant to shift the operating band from 3.3 - 3.8 GHz to 3.7 - 4.2 GHz. The  
capacitors C4, and C5 are for dc-blocking purpose. The values of these components are given in the table  
below.  
8-2. Matching Network Component Values  
Component  
Value  
C0  
L0  
2 pF  
2 nH  
C4  
LC5  
22 pF  
22 pF  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LMH9235  
 
 
LMH9235  
ZHCSLB8C MAY 2020 REVISED MAY 2021  
www.ti.com.cn  
8.2.2.2 Application Curves  
The graphs given below show the gain, input and output return loss and OIP3 of the design shown in 8-1.  
20  
18  
16  
14  
12  
10  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
TA = -40 o  
C
TA = -40 o  
C
TA = 25 o  
C
TA = 25 o  
C
TA = 105 o  
C
TA = 105 o  
C
3700  
3800  
3900 4000  
Frequency (MHz)  
4100  
4200  
3700  
3800  
3900 4000  
Frequency (MHz)  
4100  
4200  
8-6. Gain vs Frequency  
8-7. Input Return Loss vs Frequency  
0
-5  
40  
TA = -40 o  
TA = 25 o  
TA = 105 o  
C
C
C
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
-10  
-15  
-20  
-25  
-30  
TA = -40 o  
C
TA = 25 o  
C
TA = 105 o  
C
3700  
3800  
3900 4000  
Frequency (MHz)  
4100  
4200  
3700  
3800  
3900 4000  
Frequency (MHz)  
4100  
4200  
8-8. Output Return Loss vs Frequency  
8-9. Output IP3 vs Frequency and Temperature  
9 Power Supply Recommendations  
The LMH9235 device operates on a common nominal 3.3-V supply voltage. It is recommended to isolate the  
supply voltage through decoupling capacitors placed close to the device. Select capacitors with self-resonant  
frequency above the application frequency. When multiple capacitors are used in parallel to create a broadband  
decoupling network, place the capacitor with the higher self-resonant frequency closer to the device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMH9235  
 
LMH9235  
ZHCSLB8C MAY 2020 REVISED MAY 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
When designing with an RF amplifier operating in the frequency range 3.3 GHz to 3.8 GHz with relatively high  
gain, certain board layout precautions must be taken to ensure stability and optimum performance. TI  
recommends that the LMH9235 board be multi-layered to improve thermal performance, grounding, and power-  
supply decoupling. 10-1 shows a good layout example. In this figure, only the top signal layer is shown.  
Excellent electrical connection from the thermal pad to the board ground is essential. Use the recommended  
footprint, solder the pad to the board, and do not include a solder mask under the pad.  
Connect the pad ground to the device terminal ground on the top board layer.  
Ensure that ground planes on the top and any internal layers are well stitched with vias.  
Design the input and output RF traces for appropriate impedance. TI recommends grounded coplanar  
waveguide (GCPW) type transmission lines for the RF traces. Use a PCB trace width calculator tool to design  
the transmission lines.  
Avoid routing clocks and digital control lines near RF signal lines.  
Do not route RF or DC signal lines over noisy power planes.  
Place supply decoupling caps close to the device.  
The differential output traces must be symmetrical in order to achieve the best differential balance and  
linearity performance.  
See the LMH9235 Evaluation Module user's guide for more details on board layout and design.  
10.2 Layout Example  
Supply bypass  
caps close to the  
device  
Device  
Matched differential  
output lines  
Stitched  
vias  
10-1. Layout Showing Matched Differential Traces and Supply Decoupling  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMH9235  
 
 
 
 
LMH9235  
ZHCSLB8C MAY 2020 REVISED MAY 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, LMH9235RRLEVM EU Declaration of Conformity (DoC).  
Texas Instruments, LMH9235 Evaluation Module User's Guide.  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMH9235  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Aug-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMH9235IRRLR  
ACTIVE  
WQFN  
RRL  
12  
3000 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
-40 to 105  
35BO  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMH9235IRRLR  
WQFN  
RRL  
12  
3000  
180.0  
8.4  
2.2  
2.2  
1.2  
4.0  
8.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WQFN RRL 12  
SPQ  
Length (mm) Width (mm) Height (mm)  
213.0 191.0 35.0  
LMH9235IRRLR  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RRL0012A  
WQFN - 0.8 mm max height  
S
C
A
L
E
5
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 0.5  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
(0.3) TYP  
7
5
6
4
2X 1.5  
SYMM  
13  
0.8 0.1  
8X 0.5  
10  
1
0.3  
0.2  
12X  
12  
11  
PIN 1 ID  
0.1  
C A B  
0.35  
0.25  
12X  
0.05  
4224942/A 04/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RRL0012A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
0.8)  
SYMM  
12  
SEE SOLDER MASK  
DETAIL  
12X (0.5)  
11  
10  
12X (0.25)  
1
SYMM  
(1.9)  
13  
8X (0.5)  
(R0.05) TYP  
4
7
(
0.2) TYP  
VIA  
6
5
(1.9)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224942/A 04/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RRL0012A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
0.76)  
11  
12X (0.5)  
12  
12X (0.25)  
10  
1
SYMM  
(1.9)  
13  
8X (0.5)  
4
7
(R0.05) TYP  
5
6
SYMM  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 13  
90% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4224942/A 04/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LMH9235IRRLR

具有集成平衡-非平衡变压器的 3.3GHz 至 4.2GHz 单端至差分放大器 | RRL | 12 | -40 to 105
TI

LMI201210A-2R2M

Moiding power lnducto rs
LEIDITECH

LMI201608A-1R0M

Moiding power lnducto rs
LEIDITECH

LMI201608A-1R5M

Moiding power lnducto rs
LEIDITECH

LMI201608A-R47M

Moiding power lnducto rs
LEIDITECH

LMI201610A-1R0M

Moiding power lnducto rs
LEIDITECH

LMI201610A-1R5M

Moiding power lnducto rs
LEIDITECH

LMI201610A-2R2M

Moiding power lnducto rs
LEIDITECH

LMI201610A-R24M

Moiding power lnducto rs
LEIDITECH

LMI201610A-R47M

Moiding power lnducto rs
LEIDITECH

LMI201610A-R68M

Moiding power lnducto rs
LEIDITECH

LMI252010A-1R0M

Moiding power lnducto rs
LEIDITECH