LMK00804BQWRGTRQ1 [TI]

汽车类、1.5V 至 3.3V、1 至 4 高性能 LVCMOS 扇出缓冲器和电平转换器 | RGT | 16 | -40 to 125;
LMK00804BQWRGTRQ1
型号: LMK00804BQWRGTRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类、1.5V 至 3.3V、1 至 4 高性能 LVCMOS 扇出缓冲器和电平转换器 | RGT | 16 | -40 to 125

转换器 电平转换器
文件: 总29页 (文件大小:998K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMK00804B-Q1  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
LMK00804B-Q1 1.5V 3.3V1 路至 4 路高性能 LVCMOS 扇出缓冲器  
和电平转换器  
1 特性  
封装:16 引脚 VQFN  
1
下列性能符合 AEC-Q100 标准:  
器件温度等级 1–40°C +125°CTA  
2 应用  
高级驾驶辅助系统 (ADAS)  
支持 1.5V 3.3V 电平范围的四路  
LVCMOS/LVTTL 输出  
前向式远距离雷达  
中等/短距离雷达  
超短距离雷达  
附加抖动:在 40MHz 时为 0.1ps RMS(典型  
值)  
本底噪声:在 40MHz 时为 –168dBc/Hz(典型  
值)  
3 说明  
LMK00804B-Q1 是一款高性能时钟扇出缓冲器和电平  
转换器,通过可接受差动或单端输入的两个可选输入之  
一提供最多四种 LVCMOS/LVTTL 输出(3.3V、  
2.5V1.8V 1.5V 电平)。时钟使能输入在内部同  
步,以便在时钟使能端子被置为有效或无效时,消除输  
出上的欠幅脉冲或毛刺脉冲。禁用时钟后,输出将保持  
逻辑低电平状态。LMK00804B-Q1 也能在四个收发器  
之间分配低抖动时钟,并提高级联毫米波雷达系统中的  
总体目标检测率和分辨率。  
输出频率:350MHz(最大值)  
输出偏斜:35ps(最大值)  
器件间偏移:550ps(最大值)  
两个可选输入  
CLK_PCLK_N 组合可接受 LVPECL、  
LVDSHCSLSSTLLVHSTL 或  
LVCMOS/LVTTL  
LVCMOS_CLK 可接受 LVCMOS/LVTTL  
同步时钟使能端  
核心/输出电源:  
器件信息(1)  
3.3V/3.3V  
3.3V/2.5V  
3.3V/1.8V  
3.3V/1.5V  
器件型号  
封装  
VQFN (16)  
封装尺寸(标称值)  
LMK00804B-Q1  
3.00mm × 3.00mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNAS784  
 
 
 
 
 
 
 
LMK00804B-Q1  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 11  
Applications and Implementation ...................... 12  
9.1 Application Information............................................ 12  
9.2 Typical Applications ................................................ 12  
9.3 Do's and Don'ts....................................................... 16  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Power Supply Characteristics ................................... 5  
6.6 LVCMOS / LVTTL DC Electrical Characteristics ...... 6  
6.7 Differential Input DC Electrical Characteristics ......... 6  
6.8 Switching Characteristics.......................................... 7  
6.9 Pin Characteristics .................................................... 7  
6.10 Typical Characteristics............................................ 8  
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 10  
8.1 Overview ................................................................. 10  
8.2 Functional Block Diagram ....................................... 10  
9
10 Power Supply Recommendations ..................... 18  
10.1 Power Supply Considerations............................... 18  
11 Layout................................................................... 18  
11.1 Layout Guidelines ................................................. 18  
11.2 Layout Example .................................................... 19  
12 器件和文档支持 ..................................................... 20  
12.1 文档支持................................................................ 20  
12.2 接收文档更新通知 ................................................. 20  
12.3 社区资源................................................................ 20  
12.4 ....................................................................... 20  
12.5 静电放电警告......................................................... 20  
12.6 Glossary................................................................ 20  
13 机械、封装和可订购信息....................................... 20  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (June 2019) to Revision B  
Page  
将器件间偏移最大值从 700ps 更改为 550ps .......................................................................................................................... 1  
将前置远距离雷达应用更改为前向式远距离雷达 .................................................................................................................... 1  
更改了简化原理图 图示........................................................................................................................................................... 1  
Changed pin 2 in the RGT package from: OE to: NC ........................................................................................................... 3  
Changed the pin descriptions................................................................................................................................................. 3  
Changed Changed CDM ESD ratings from: +/-250 V to: +/-750 V........................................................................................ 4  
Added the Typical Characteristics section back to the data sheet......................................................................................... 8  
Changed Differential Input Level timing diagram .................................................................................................................. 9  
Changed the Overview section ............................................................................................................................................ 10  
Changed Functional Block Diagram..................................................................................................................................... 10  
Added the Typical Connection Diagram............................................................................................................................... 12  
Changed the Power Considerations section to Power Dissipation Calculations.................................................................. 16  
Moved the Thermal Management section to Do's and Don'ts.............................................................................................. 16  
Changed the recommendations for unused output pins ..................................................................................................... 17  
Changed the Input Slew Rate Considerations section......................................................................................................... 17  
Added content to the Ground Planes section....................................................................................................................... 18  
Changed the Layout Example section.................................................................................................................................. 19  
Changes from Original (March 2019) to Revision A  
Page  
将数据表状态从预告信息更改为生产数据” ......................................................................................................................... 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
LMK00804B-Q1  
www.ti.com.cn  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
5 Pin Configuration and Functions  
RGT Package  
16-Pin VQFN  
Top View  
GND  
NC  
1
2
3
4
12  
11  
10  
9
Q2  
VDDO  
Q3  
Thermal  
Pad  
VDD  
CLK_EN  
GND  
Not to scale  
Pin Functions(1)  
PIN  
TYPE(2)  
DESCRIPTION  
NAME  
NO.  
Synchronous clock enable input. CLK_EN must be held low until a valid  
reference clock is provided. Typically connected to VDD with an external  
1-kΩ pullup. When unused, leave floating.  
CLK_EN  
4
I, PU  
0 = Outputs are forced to logic low state  
1 = Outputs are enabled with LVCMOS/LVTTL levels  
Inverting differential clock input with internal 51-kΩ (typ) pullup resistor to  
VDD and internal 51-kΩ (typ) pulldown resistor to GND. Typically  
connected to the inverting clock input. When unused, leave floating.  
Internally biased to VDD/2 when left floating.  
CLK_N  
6
5
7
I, PD, PU  
I, PD  
Noninverting differential clock input with internal 51-kΩ (typ) pulldown  
resistor to GND. Typically connected to the noninverting clock input. A  
single-ended clock input can also be connected to CLK_P. When unused,  
leave floating.  
CLK_P  
Clock select input. Typically connected to VDD with an external 1-kΩ  
pullup. When unused, leave floating.  
0 = Select LVCMOS_CLK (pin 8)  
CLK_SEL  
I, PU  
1 = Select CLK_P, CLK_N (pins 5, 6)  
GND  
1, 9, 13  
8
G
Power supply ground.  
Single-ended clock input with internal 51-kΩ (typ) pulldown resistor to  
GND. Typically connected to a single-ended clock input. When unused,  
leave floating. Accepts LVCMOS/LVTTL levels.  
LVCMOS_CLK  
I, PD  
NC  
NC  
Q0  
Q1  
Q2  
Q3  
2
No connect pin. Typically left floating. Do not connect to GND.  
16  
14  
12  
10  
Single-ended clock outputs with LVCMOS/LVTTL levels at 7-Ω output  
impedance. Typically connected to a receiver with a 43-Ω series  
termination. When unused, leave floating.  
O
(1) See Recommendations for Unused Input and Output Pins, if applicable.  
(2) G = Ground, I = Input, O = Output, P = Power, PU = 51-kΩ pullup, PD = 51-kΩ pulldown. NC = No connect  
Copyright © 2019, Texas Instruments Incorporated  
3
LMK00804B-Q1  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
Pin Functions(1) (continued)  
PIN  
TYPE(2)  
DESCRIPTION  
NAME  
NO.  
Power supply terminal. Typically connected to a 3.3-V supply. The VDD  
pin is typically connected GND with an external 0.1-uF capacitor.  
VDD  
3
P
Output supply terminals. Typically connected to a 3.3-V, 2.5-V, 1.8-V, or  
1.5-V supply. The VDDO pins are typically connected GND with external  
0.1-uF capacitors.  
VDDO  
11, 15  
P
6 Specifications  
6.1 Absolute Maximum Ratings(1)(2)  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
MAX  
3.6  
UNIT  
V
VDD  
Supply input voltage  
Supply output voltage  
VDDO  
3.6  
V
VDD  
+ 0.3  
Input voltage  
Input voltage  
CLK_EN, CLK_SEL, CLK_P, CLK_N, LVCMOS_CLK  
Q0, Q1, Q2, Q3  
–0.3  
–0.3  
V
V
VI  
VDDO  
+ 0.3  
TJ  
Junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C5  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
3.135  
3.135  
2.375  
1.71  
NOM  
3.3  
MAX  
3.465  
3.465  
2.625  
1.89  
UNIT  
VDD  
Supply input voltage  
Supply output voltage  
V
3.3  
2.5  
VDDO  
V
1.8  
1.425  
–40  
1.5  
1.575  
125  
TA  
Ambient temperature  
°C  
°C  
TJ  
Junction temperature  
–40  
135  
fOUT  
Maximum output frequency(1)  
350  
MHz  
(1) There is no minimum input / output frequency provided the input slew rate is sufficiently fast. Refer to Input Slew Rate Considerations.  
4
Copyright © 2019, Texas Instruments Incorporated  
 
 
LMK00804B-Q1  
www.ti.com.cn  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
6.4 Thermal Information  
LMK00804B-Q1  
THERMAL METRIC(1)(2)  
RGT (VQFN)  
16 PINS  
48.0  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
58.6  
Junction-to-board thermal resistance  
22.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.1  
ψJB  
22.6  
RθJC(bot)  
6.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
(2) The package thermal impedance is calculated in accordance with JESD 51 and JEDEC2S2P (high-K board).  
6.5 Power Supply Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
Power supply current through VDD  
Power supply current through VDDO  
MIN  
TYP  
MAX  
21  
UNIT  
mA  
IDD  
IDDO  
5
mA  
Copyright © 2019, Texas Instruments Incorporated  
5
LMK00804B-Q1  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
6.6 LVCMOS / LVTTL DC Electrical Characteristics  
VDD = 3.3 V ± 5%, VDDO = 1.5 V ± 5%, 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = –40°C to 125°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
VDD  
UNIT  
CLK_EN,  
CLK_SEL  
+
2
V
0.3  
VIH  
VIL  
IIH  
Input high voltage  
VDD  
+
LVCMOS_CLK  
2
V
V
0.3  
CLK_EN,  
CLK_SEL  
–0.3  
–0.3  
0.8  
1.3  
15  
Input low voltage  
Input high current  
LVCMOS_CLK  
CLK_EN,  
CLK_SEL  
VIH = VDD  
µA  
µA  
VDD = 3.465 V,  
VIN = 3.465 V  
LVCMOS_CLK  
150  
CLK_EN,  
CLK_SEL  
VIL = GND  
–150  
–150  
IIL  
Input low current  
VDD = 3.465 V,  
VIN = 0 V  
LVCMOS_CLK  
VDDO = 3.3 V ± 5%  
VDDO = 2.5 V ± 5%  
VDDO = 1.8 V ± 5%  
VDDO = 1.5 V ± 5%  
VDDO = 3.3 V ± 5%  
VDDO = 2.5 V ± 5%  
VDDO = 1.8 V ± 5%  
VDDO = 1.5 V ± 5%  
2.64  
2
VOH  
Output high voltage(1)  
V
1.44  
1.2  
0.66  
0.5  
VOL  
Output low voltage(1)  
V
0.36  
0.3  
IOZL  
IOZH  
Output Hi-Z current low  
Output Hi-Z current high  
–5  
µA  
5
(1) Outputs terminated with 50 Ω to VDDO/2.  
6.7 Differential Input DC Electrical Characteristics  
VDD = 3.3 V ± 5%, VDDO = 1.5 V ± 5%, 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = –40°C to 125°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VID  
VIC  
Differential input voltage swing, (VIH – VIL)(1)  
0.15  
1.4  
V
VDD  
Input common-mode voltage(1)(2)  
Input high current(3)  
0.5  
V
0.85  
VDD = 3.465 V,  
VIN = 3.465 V  
IIH  
IIL  
CLK_N, CLK_P  
CLK_N, CLK_P  
150  
µA  
µA  
VDD = 3.465 V ,  
VIN = 0 V  
Input low current(3)  
–150  
(1) VIL should not be less than –0.3 V.  
(2) Input common-mode voltage is defined as VIH  
.
(3) For IIH and IIL measurements on CLK_Por CLK_N, one must comply with VID and VIC specifications by using the appropriate bias on  
CLK_N or CLK.  
6
Copyright © 2019, Texas Instruments Incorporated  
LMK00804B-Q1  
www.ti.com.cn  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
6.8 Switching Characteristics  
VDD = 3.3 V ± 5%, VDDO = 1.5 V ± 5%, 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = –40°C to 125°C  
PARAMETER  
TEST CONDITIONS  
LVCMOS_CLK(1)  
CLK_P/CLK_N(2)  
MIN  
TYP  
MAX  
UNIT  
Propagation delay,  
Low-to-high  
,
tPDLH  
–40°C to 125°C  
1
2.5  
ns  
tSK(O)  
tSK(PP)  
tR/tF  
Output skew(3)(4)  
Part-to-part skew(4)(5)  
Output rise/fall time  
Measured on rising edge  
20% to 80%, CL= 5 pF  
35  
550  
600  
ps  
ps  
ps  
100  
310  
115  
f = 40 MHz,  
Input slew rate = 1.25 V/ns,  
tJIT  
Additive jitter(6)  
200 fs RMS  
12-kHz to 20-MHz integration band  
10-kHz offset  
–151  
–160  
–162  
–162  
–162  
100-kHz offset  
1-MHz offset  
10-MHz offset  
20-MHz offset  
f = 40 MHz,  
Input slew rate = 1.25  
V/ns  
PNFLOOR  
Phase noise floor(7)  
dBc/Hz  
REF = CLK_P/CLK_N, 50% input duty cycle, f <  
166 MHz  
45%  
42%  
55%  
58%  
DO  
Output duty cycle  
REF = LVCMOS_CLK, 50% input duty cycle, f >  
166 MHz  
(1) Measured from the VDD/2 of the input to the VDDO/2 of the output.  
(2) Measured from the differential input crossing point to VDDO/2 of the output.  
(3) Defined as skew between outputs at the same supply voltage and with equal loading conditions. Measured at VDDO/2 of the output.  
(4) Parameter is defined in accordance with JEDEC Standard 65.  
(5) Calculation for part-to-part skew is the difference between the fastest and slowest tPD across multiple devices, various supply voltages,  
operating at the same frequency, same temperature, with equal load conditions, and using the same type of inputs on each device.  
(6) Buffer additive jitter: tJIT = SQRT(tJIT_SYS2 – tJIT_SOURCE2), where t JIT_SYS is the RMS jitter of the system output (source+buffer) and  
tJIT_SOURCE is the RMS jitter of the input source, and system output noise is not correlated to the input source noise. Additive jitter  
should be considered only when the input source noise floor is 3 dB or better than the buffer noise floor (PNFLOOR). This is usually the  
case for high-quality, ultra-low-noise oscillators. Refer to System-Level Phase Noise and Additive Jitter Measurement for input source  
and measurement details.  
(7) Buffer phase noise floor: PNFLOOR (dBc/Hz) = 10 × log10[10^(PNSYSTEM/10) – 10^(PNSOURCE/10)], where PNSYSTEM is the phase noise  
floor of the system output (source+buffer) and PNSOURCE is the phase noise floor of the input source. Buffer Phase Noise Floor should  
be considered only when the input source noise floor is 3 dB or better than the buffer noise floor (PNFLOOR). This is usually the case for  
high-quality, ultra-low-noise oscillators. Refer to System-Level Phase Noise and Additive Jitter Measurement for input source and  
measurement details.  
6.9 Pin Characteristics  
MIN  
TYP  
1
MAX  
UNIT  
pF  
CI  
Input capacitance  
RPU  
RPD  
CPD  
ROUT  
Input pullup resistance  
51  
51  
2
kΩ  
kΩ  
pF  
Input pulldown resistance  
Power dissipation capacitance (per output)  
Output impedance  
7
Ω
版权 © 2019, Texas Instruments Incorporated  
7
LMK00804B-Q1  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
6.10 Typical Characteristics  
ICCO vs. Temperature  
Propagation Delay vs. Temeprature  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
2.1  
2.05  
2
1.95  
1.9  
1.85  
1.8  
1.75  
1.7  
1.65  
VCCO = 3.3V  
VCCO = 3.3V  
VCCO = 2.5V  
VCCO = 1.8V  
VCCO = 1.5V  
VCCO = 2.5V  
VCCO = 1.8V  
VCCO = 1.5V  
1.6  
1.55  
0
-40  
-20  
0
20  
40  
Temperature (°C)  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
Temperature (°C)  
60  
80  
100  
120  
D001  
D002  
1. Propagation Delay vs. Temperature and Supply  
2. ICCO vs. Temperature and Supply Voltage  
Voltage  
ICC vs. Temperature  
Additive Jitter vs. Temperature  
18.6  
140  
130  
120  
110  
100  
90  
VCCO = 3.3V  
VCCO = 2.5V  
VCCO = 1.8V  
VCCO = 1.5V  
18.55  
18.5  
18.45  
18.4  
18.35  
18.3  
18.25  
18.2  
VCCO = 3.3V  
VCCO = 2.5V  
VCCO = 1.8V  
VCCO = 1.5V  
80  
18.15  
70  
-40  
-20  
0
20  
40  
Temperature (°C)  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
Temperature (°C)  
60  
80  
100  
120  
D003  
D004  
3. ICC vs. Temperature and Supply Voltage  
4. Additive Jitter vs. Temperature and Supply Voltage  
8
版权 © 2019, Texas Instruments Incorporated  
LMK00804B-Q1  
www.ti.com.cn  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
7 Parameter Measurement Information  
NOTE: VCM = VIC – VID/2 = (V IH + VIL)/2  
5. Differential Input Level  
space  
VOH  
VOUT  
VOL  
80%  
20%  
Q
tR  
tF  
6. Output Voltage, and Rise and Fall Times  
space  
LVCMOS  
Input  
LVCMOS_CLK  
CLK_N  
CLK_P  
Differential  
Input  
tPD  
LVCMOS  
Outputx  
Qx  
Qy  
tSK  
LVCMOS  
Outputy  
7. Output Skew and Propagation Delay  
版权 © 2019, Texas Instruments Incorporated  
9
LMK00804B-Q1  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LMK00804B-Q1 is a clock fan-out buffer with two selectable clock inputs and four LVCMOS outputs. The  
LVCMOS_CLK input accepts a single-ended clock input, and the CLK_P/CLK_N input accepts a differential or  
single-ended clock input. The LMK00804B-Q1 has a synchronous clock enable feature that allows the device to  
synchronously enable or disable the outputs using the CLK_EN pin.  
8.2 Functional Block Diagram  
10  
版权 © 2019, Texas Instruments Incorporated  
LMK00804B-Q1  
www.ti.com.cn  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
8.3 Feature Description  
8.3.1 Clock Enable Timing  
After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as shown in  
8.  
LVCMOS_CLK  
CLK_N  
CLK_P  
Disabled  
Enabled  
CLK_EN  
Qx  
8. Clock Enable Timing Diagram  
8.4 Device Functional Modes  
The device can provide fan-out and level translation from a differential or single-ended input to a  
LVCMOS/LVTTL output where the output VOH and VOL levels are applied to the VDDO pin and output load  
condition.  
版权 © 2019, Texas Instruments Incorporated  
11  
 
LMK00804B-Q1  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
9 Applications and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LMK00804B-Q1 enables the distribution of up to four LVCMOS copies of a low-noise source designed for  
general-purpose and high-performance applications. For best jitter performance, TI recommends to use the  
appropriate matching networks for the clock driver and receiver format, as detailed in the Typical Applications  
section. Practice good high-speed layout design outlined in the High-speed Layout Guidelines application report  
(SCAA082).  
The LMK00804B-Q1 is designed to drive 50-Ω controlled-impedance traces. TI recommends to design these  
clock traces as 50-Ω, single-ended controlled impedance traces. Use a series 43-Ω resistor at the clock outputs  
Q[3:0] to match the driver impedance and series resistance to the trace impedance.  
9.2 Typical Applications  
Refer to the following sections for output clock and input clock interface circuits.  
43O  
VDDO [11]  
VDDO [15]  
[16] Q0  
[14] Q1  
[12] Q2  
[10] Q3  
10µF  
10µF  
1µF  
1µF  
0.1µF  
0.1µF  
43O  
43O  
43O  
LVCMOS  
Clock Outputs  
VDD [3]  
10µF  
1µF  
0.1µF  
CLK_P [5]  
Differential  
Clock Input  
100O  
CLK_N [6]  
Single-Ended  
Clock Input  
LVCMOS_CLK [8]  
[1] GND  
[9] GND  
NC [2]  
CLK_EN [4]  
CLK_SEL [7]  
[13] GND  
[17] GND  
9. Typical Connection Diagram  
12  
版权 © 2019, Texas Instruments Incorporated  
 
LMK00804B-Q1  
www.ti.com.cn  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
Typical Applications (接下页)  
9.2.1 Output Clock Interface Circuit  
VDDO  
RS= 43Ω  
LVCMOS  
Input  
Zo = 50Ω  
LMK00804  
Parasitic Input Capacitance  
10. LVCMOS Output Configuration  
9.2.1.1 Design Requirements  
For high-performance devices, limitations of the equipment can affect phase-noise measurements. The noise  
floor of the equipment is often higher than the noise floor of the device. The real noise floor of the device is  
probably lower. It is important to understand that system-level phase noise measured at the DUT output is  
influenced by the input source and the measurement equipment.  
For 11 and system-level phase noise plots, a Rohde & Schwarz SMA100A low-noise signal generator was  
cascaded with an Agilent 70429A K95 single-ended-to-differential converter block with ultra-low phase noise and  
fast-edge slew rate (>3 V/ns) to provide a low-noise clock input source to the LMK00804B-Q1. An Agilent E5052  
source signal analyzer with an ultra-low measurement noise floor was used to measure the phase noise of the  
input source (SMA100A + 70429A K95) and system output (input source + LMK00804B-Q1). The light blue trace  
shows the input source phase noise, and the dark blue trace in 11 shows the system output phase noise.  
版权 © 2019, Texas Instruments Incorporated  
13  
LMK00804B-Q1  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
Typical Applications (接下页)  
9.2.1.2 Detailed Design Procedure  
Use 公式 1 to calculate the additive phase noise or noise floor of the buffer (PNFLOOR):  
PNFLOOR (dBc/Hz) = 10 × log10[10^(PNSYSTEM/10) – 10^(PNSOURCE/10)]  
where  
PNSYSTEM is the phase noise of the system output (source+buffer)  
PNSOURCE is the phase noise of the input source  
(1)  
(2)  
Use 公式 2 to calculate the additive jitter of the buffer (tJIT):  
2
tJIT = SQRT(tJIT_SYS2 – tJIT_SOURCE  
)
where:  
tJIT_SYS is the RMS jitter of the system output (source+buffer), integrated from 10 kHz to 20 MHz  
tJIT_SOURCE is the RMS jitter of the input source, integrated from 10 kHz to 20 MHz  
9.2.1.3 Application Curve  
9.2.1.3.1 System-Level Phase Noise and Additive Jitter Measurement  
11. 40-MHz Input Phase Noise (181 fs rms, Light Blue),  
and Output Phase Noise (196 fs rms, Dark Blue),  
Additive Jitter = 77 fs rms  
14  
版权 © 2019, Texas Instruments Incorporated  
 
 
LMK00804B-Q1  
www.ti.com.cn  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
Typical Applications (接下页)  
9.2.2 Input Detail  
LMK00804  
LVCMOS_CLK  
51k  
51k  
CLK_P  
VDD  
51k  
CLK_N  
51k  
12. Clock Input Components  
9.2.3 Input Clock Interface Circuits  
3.3V  
3.3 V  
LMK00804B  
R
s
LVMOS  
_CLK  
Z
= 50Ω  
Z
o
o
Clock generator:  
+ R = 50Ω  
Z
o
s
13. LVCMOS_CLK Input Configuration  
3.3V  
3.3V  
3.3V  
3.3V  
LMK00804B  
R = 100Ω  
R = 1kΩ  
R
s
CLK_P  
DUT  
CLK_N  
Z
= 50Ω  
Z
o
o
R = 100Ω  
R = 1kΩ  
C = 0.1µF  
Clock generator:  
+ R = 50Ω  
Z
o
s
(1) The Thevenin/split termination values (R = 100 Ω) at the CLK_P input may be adjusted to provide a small differential  
offset voltage (50 mV, for example) between the CLK_P and CLK_N inputs to prevent input chatter if the LVCMOS  
driver in a tri-state condition. For example, the engineer can use 105 Ω 1% to the 3.3-V rail and 97.6 Ω 1% to GND to  
receive a –60-mV offset voltage (VCLK_N – VCLK_P) . Ensure a logic low state if the LVCMOS driver enters a tri-state  
condition.  
14. Single-Ended/LVCMOS Input DC Configuration  
版权 © 2019, Texas Instruments Incorporated  
15  
 
 
LMK00804B-Q1  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
9.3 Do's and Don'ts  
9.3.1 Power Dissipation Calculations  
The following power considerations refer to the device-consumed power consumption only. The device power  
consumption is the sum of static and dynamic power. The dynamic power usage consists of two components:  
Power used by the device as it switches states  
Power required to charge any output load  
The output load can be capacitive-only or capacitive and resistive. Use 公式 3 through 公式 5 to calculate the  
power consumption of the device:  
PDev = Pstat + Pdyn + PCload  
(3)  
(4)  
Pstat = (IDD × VDD) + (IDDO × VDDO  
)
Pdyn + PCload = (IDDO,dyn + IDDO,Cload) × VDDO  
where:  
IDDO,dyn = CPD × VDDO × f × n [mA]  
IDDO,Cload = Cload × VDDO × f × n [mA]  
(5)  
Example for power consumption of the LMK00804B-Q1: 4 outputs are switching, f = 100 MHz,  
VDD = VDDO = 3.465 V and assuming Cload = 5 pF per output:  
PDev = 90 mW + 34 mW = 124 mW  
(6)  
(7)  
Pstat = (21 mA × 3.465 V) + (5 mA × 3.465 V) = 90 mW  
Pdyn + PCload = (2.8 mA + 6.9 mA) × 3.465 V = 34 mW  
IDD,dyn = 2 pF × 3.465 V × 100 MHz × 4 = 2.8 mA  
IDD,Cload = 5 pF × 3.465 V × 100 MHz × 4 = 6.9 mA  
(8)  
(9)  
(10)  
For dimensioning the power supply, consider the total power consumption. The total  
power consumption is the sum of device power consumption and the power consumption  
of the load.  
9.3.2 Thermal Management  
For reliability and performance reasons, limit the die temperature to a maximum of 125°C. That is, as an  
estimate, TA (ambient temperature) plus device power consumption times RθJA should not exceed 125°C.  
Assuming the conditions in the Power Dissipation Calculations section and operating at an ambient temperature  
of 70°C with all outputs loaded, 公式 11 shows the estimate of the LMK00804B-Q1 junction temperature:  
TJ = TA + PTotal × RθJA = 70°C + (124 mW × 48°C/W) = 70°C + 6.0°C = 76.0°C  
(11)  
Here are some recommendations to improve heat flow away from the die:  
Use multi-layer boards  
Specify a higher copper thickness for the board  
Increase the number of vias from the top level ground plane under and around the device to internal layers  
and to the bottom layer with as much copper area flow on each level as possible  
Apply air flow  
Leave unused outputs floating  
16  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
 
LMK00804B-Q1  
www.ti.com.cn  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
Do's and Don'ts (接下页)  
9.3.3 Recommendations for Unused Input and Output Pins  
CLK_SEL and CLK_EN: CLK_EN must be held low until a valid reference clock is provided before the  
engineer can use the pin to enable the outputs. These inputs both have an internal pullup (PU) according to  
1. 1 shows the default floating state of these inputs:  
1. Input Floating Default States  
INPUT  
CLK_SEL  
CLK_EN  
FLOATING STATE SELECTION  
CLK_P/CLK_N selected  
Synchronous outputs enable  
CLK_P/CLK_N Inputs: See 12 for the internal connections. When using a single-ended input, take note of  
the internal pullup and pulldown to make sure the unused input is properly biased. To interface a single-  
ended input to the CLK_P/CLK_N input, the configuration shown in 14 is recommended.  
LVCMOS_CLK Input: See 12 for the internal connection. The internal pulldown (PD) resistor ensures a  
low state when this input is left floating.  
Outputs: Any unused output may be left floating.  
9.3.4 Input Slew Rate Considerations  
LMK00804B-Q1 employs high-speed and low-latency circuit topology to allow ultra-low additive jitter/phase noise  
and high-frequency operation. To take advantage of these benefits in the system application, it is optimal for the  
input signal to have a high slew rate of 3 V/ns or greater. Driving the input with a slower slew rate can degrade  
the additive jitter and noise floor performance. For this reason, a differential signal input is recommended over a  
single-ended signal, because a differential signal typically provides a higher slew rate and common-mode-  
rejection.  
版权 © 2019, Texas Instruments Incorporated  
17  
 
LMK00804B-Q1  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 Power Supply Considerations  
While there is no strict power supply sequencing requirement, it is generally best practice to sequence the supply  
input voltage (VDD) before the supply output voltage (VDDO).  
10.1.1 Power-Supply Filtering  
High-performance clock buffers are sensitive to noise on the power supply, which can dramatically increase the  
additive jitter of the buffer. Thus, it is essential to reduce noise from the system power supply, especially when  
jitter or phase noise is critical to applications.  
The use of bypass capacitors eliminates the low-frequency noise from power supply, because they can provide a  
very low-impedance path for high-frequency noise and guard the power-supply system against induced  
fluctuations. The bypass capacitors also provide instantaneous current surges as required by the device, and  
should have low ESR. To use the bypass capacitors properly, place them close to the power supply terminals  
and lay out traces with short loops to minimize inductance. TI recommends that the engineer add as many high-  
frequency (for example, 0.1-µF) bypass capacitors as there are supply terminals in the package. TI recommends  
that the engineer insert a ferrite bead between the board power supply and the chip power supply to isolate the  
high-frequency switching noises generated by the clock driver. This would prevent leakage into the board supply.  
It is important to choose an appropriate ferrite bead with low DC resistance, because the bead must provide  
adequate isolation between the board supply and the chip supply. It is also important to maintain a voltage at the  
supply terminals that is greater than the minimum voltage required for proper operation.  
15. Power-Supply Decoupling  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Ground Planes  
Solid ground planes are recommended because these planes provide a low-impedance return paths between the  
device and bypass capacitors, along with the clock source and destination devices.  
LMK00804B-Q1 has a die attach pad (DAP) for enhanced thermal and electrical performance. Use five VIAs to  
connect the DAP to a solid GND plane. Full-through VIAs are preferred.  
Avoid return paths of other system circuitry (for example, high-speed/digital logic, switching power supplies, and  
so forth) from passing through the local ground of the device to minimize noise coupling. Remember that noise  
coupling can lead to added jitter and spurious noise.  
11.1.2 Power Supply Pins  
Follow the power supply schematic and layout example described in Power-Supply Filtering.  
18  
版权 © 2019, Texas Instruments Incorporated  
 
LMK00804B-Q1  
www.ti.com.cn  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
Layout Guidelines (接下页)  
11.1.3 Differential Input Termination  
Place input termination or biasing resistors as close to the CLK_P/CLK_N pins as possible.  
Avoid or minimize vias in the 50-Ω input traces to minimize impedance discontinuities. Intra-pair skew should  
also be minimized on the differential input traces.  
If not used, CLK_P/CLK_N inputs may be left as no connect.  
11.1.4 LVCMOS Input Termination  
Input termination is not necessary when the LVCMOS_CLK input is driven from a LVCMOS driver that is  
series-terminated to match the characteristic impedance of the trace. Otherwise, place the input termination  
resistor as close to the LVCMOS_CLK input as possible.  
Avoid or minimize vias in the 50-Ω input trace to minimize impedance discontinuities.  
If not used, LVCMOS_CLK input may be left as no connect.  
11.1.5 Output Termination  
Place 43-Ω series termination resistors close to the Qx outputs at the launch of the 50-Ω traces.  
Avoid or minimize vias in the 50-Ω input traces to minimize impedance discontinuities.  
If not used, any Qx output should be left as no connect.  
11.2 Layout Example  
16 shows the recommended PCB design for good electrical and thermal performance. To maximize the heat  
dissipation from the package, a thermal landing pattern including multiple vias to a ground plane must be  
incorporated into the PCB within the footprint of the package. The thermal pad must be soldered down to ensure  
adequate heat conduction to of the package. Refer to the Example Board Layout in the Package Option  
Addendum.  
16. General PCB Ground Layout for Thermal Reliability  
版权 © 2019, Texas Instruments Incorporated  
19  
 
LMK00804B-Q1  
ZHCSJG9B MARCH 2019REVISED AUGUST 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
《高速布局指南》 (SCAA082)  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMK00804BQWRGTRQ1  
LMK00804BQWRGTTQ1  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
804BQ  
804BQ  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMK00804BQWRGTRQ1 VQFN  
LMK00804BQWRGTTQ1 VQFN  
RGT  
RGT  
16  
16  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMK00804BQWRGTRQ1  
LMK00804BQWRGTTQ1  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RGT0016J  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.05)  
A
-
A
4
0
SECTION A-A  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.66 0.1  
(0.2) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
A
A
17  
1.5  
1
12  
0.3  
16X  
0.2  
13  
16  
0.1  
C A B  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.05  
0.5  
0.3  
16X  
4224573/B 11/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGT0016J  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.66)  
SYMM  
13  
16  
16X (0.6)  
12  
1
16X (0.25)  
SYMM  
17  
(2.8)  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
(0.58) TYP  
8
(R0.05)  
ALL PAD CORNERS  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224573/B 11/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGT0016J  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.25)  
17  
SYMM  
(2.8)  
METAL  
ALL AROUND  
12X (0.5)  
9
4
5
8
(R0.05) TYP  
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
THERMAL PAD 17:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4224573/B 11/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LMK00804BQWRGTTQ1

汽车类、1.5V 至 3.3V、1 至 4 高性能 LVCMOS 扇出缓冲器和电平转换器 | RGT | 16 | -40 to 125
TI

LMK01000

1.6 GHz High Performance Clock Buffer, Divider, and Distributor
NSC

LMK01000

具有 3 个 LVDS 和 5 个 LVPECL 输出的 1.6GHz 高性能时钟缓冲器、分频器和分配器
TI

LMK01000ISQ

1.6 GHz High Performance Clock Buffer, Divider, and Distributor
NSC

LMK01000ISQ/NOPB

具有 3 个 LVDS 和 5 个 LVPECL 输出的 1.6GHz 高性能时钟缓冲器、分频器和分配器 | RHS | 48 | -40 to 85
TI

LMK01000ISQE/NOPB

具有 3 个 LVDS 和 5 个 LVPECL 输出的 1.6GHz 高性能时钟缓冲器、分频器和分配器 | RHS | 48 | -40 to 85
TI

LMK01000ISQX

1.6 GHz High Performance Clock Buffer, Divider, and Distributor
NSC

LMK01000ISQX/NOPB

具有 3 个 LVDS 和 5 个 LVPECL 输出的 1.6GHz 高性能时钟缓冲器、分频器和分配器 | RHS | 48 | -40 to 85
TI

LMK01010

1.6 GHz High Performance Clock Buffer, Divider, and Distributor
NSC

LMK01010

具有 8 个 LVDS 输出的 1.6GHz 高性能时钟缓冲器、分频器和分配器
TI

LMK01010ISQ

1.6 GHz High Performance Clock Buffer, Divider, and Distributor
NSC

LMK01010ISQ/NOPB

IC 01010 SERIES, LOW SKEW CLOCK DRIVER, 8 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), QCC48, 7 X 7 MM, 0.80 MM HEIGHT, LLP-48, Clock Driver
NSC