LMK04228NKDR [TI]

具有双环 PLL 的超低噪声时钟抖动消除器 | NKD | 64 | -40 to 85;
LMK04228NKDR
型号: LMK04228NKDR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有双环 PLL 的超低噪声时钟抖动消除器 | NKD | 64 | -40 to 85

时钟
文件: 总90页 (文件大小:2006K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
具有双环路 PLL LMK04228 超低噪声且符合 JESD204B 标准的时钟抖  
动清除器  
1 特性  
3 说明  
1
JEDEC JESD204B 支持  
超低 RMS 抖动  
LMK04228 器件是支持 JEDEC JESD204B 且在业界  
具有高性能的时钟调节器。  
156fs RMS 抖动(12kHz 20MHz)  
245fs RMS 抖动(100Hz 20MHz)  
245.76MHz 时具有 –162.5dBc/Hz 本底噪声  
PLL2 可以配置 14 个时钟输出以驱动 7 JESD204B  
转换器或其他逻辑器件(使用器件和 SYSREF 时  
钟)。SYSREF 可以通过直流和交流耦合提供。不只  
JESD204B 应用,14 个输出中的每一个输出都可以  
单独配置为用于传统时钟系统的高性能输出。  
PLL2 提供多达 14 个差动器件时钟  
多达 7 SYSREF 时钟  
最高时钟输出频率:1.25GHz  
PLL2 提供 LVPECLLVDS 可编程输出  
LMK04228 既具有出色的性能, 又具有 多种特性,如  
功率和性能均衡调节、双 VCO、保持模式和可根据输  
出调节的模拟和数字延迟,是提供灵活的高性能时钟树  
的理想器件。  
PLL1 提供缓冲的 VCXO 或晶体输出  
LVPECLLVDS2xLVCMOS 可编程输出  
双环路 PLLatinum™锁相环 (PLL) 架构  
器件信息(1)  
PLL1  
多达 3 个冗余输入时钟  
器件型号  
封装  
封装尺寸(标称值)  
LMK04228  
WQFN (64)  
9.00mm x 9.00mm  
自动和手动切换模式  
无中断切换和 LOS  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
集成低噪声晶体振荡器电路  
输入时钟丢失时采用保持模式  
频率输出  
PLL2  
器件型号  
VCO0 频率  
2370MHz 至  
2630MHz  
VCO1 频率  
标准 [1Hz] PLL 本底噪声为 -224dBc/Hz  
LMK04228  
2920MHz 3080MHz  
相位检测器频率高达 155MHz  
OSCin 倍频器  
简化原理图  
两个集成低噪声 VCO  
Multiple —clean“  
clocks at  
different  
VCXO  
Recovered  
—dirty“ clock or  
clean clock  
50% 占空比输出分配,1 32  
(偶数和奇数)  
frequencies  
CLKin0  
Backup  
Clock  
精密数字延迟  
CLKout10  
CLKout11  
FPGA  
Reference  
LMK04228  
CLKin1  
25ps 步长模拟延迟  
多模式:双 PLL 或单 PLL  
工业温度范围:–40°C 85°C  
3.15V 3.45V 工作电压  
封装:64 引脚 WQFN (9.0 × 9.0 × 0.8mm)  
CLKout6,  
CLKout7,  
CLKout8,  
CLKout9  
CLKout4,  
CLKout5  
DAC  
CLKout0,  
CLKout1,  
CLKout2,  
CLKout3  
ADC  
Serializer/  
Deserializer  
Copyright © 2017, Texas Instruments Incorporated  
2 应用  
无线基础设施  
数据转换器时钟  
网络、SONET/SDHDSLAM  
医疗/视频/军事/航天  
测试和测量  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNAS689  
 
 
 
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
目录  
9.3 Feature Description................................................. 23  
9.4 Programming........................................................... 32  
9.5 Register Maps ........................................................ 33  
10 Application and Implementation........................ 75  
10.1 Application Information.......................................... 75  
10.2 Typical Application ................................................ 78  
10.3 Do's and Don'ts..................................................... 79  
11 Power Supply Recommendations ..................... 80  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics........................................... 7  
7.6 SPI Interface Timing ............................................... 13  
7.7 Timing Diagram....................................................... 13  
Parameter Measurement Information ................ 15  
8.1 Charge Pump Current Specification Definitions...... 15  
8.2 Differential Voltage Measurement Terminology ..... 16  
Detailed Description ............................................ 17  
9.1 Overview ................................................................. 17  
9.2 Functional Block Diagrams ..................................... 20  
11.1 Current Consumption / Power Dissipation  
Calculations.............................................................. 80  
12 Layout................................................................... 81  
12.1 Layout Guidelines ................................................. 81  
12.2 Layout Example .................................................... 82  
13 器件和文档支持 ..................................................... 83  
13.1 器件支持................................................................ 83  
13.2 社区资源................................................................ 83  
13.3 ....................................................................... 83  
13.4 静电放电警告......................................................... 83  
13.5 Glossary................................................................ 83  
14 机械、封装和可订购信息....................................... 83  
8
9
4 修订历史记录  
Changes from Original (October 2017) to Revision A  
Page  
将数据表版本状态从产品定制更改为产品目........................................................................................................................ 1  
已删除 删除了有关分配模式的参考内容(不支持)................................................................................................................ 1  
已删除 删除了有关动态延迟的参考内容(不支持)................................................................................................................ 1  
Updated default output table note ........................................................................................................................................ 11  
Added missing cross reference to differential voltage definition .......................................................................................... 12  
Removed typical phase noise plots ..................................................................................................................................... 13  
Updated description for improved clarity .............................................................................................................................. 17  
Deleted reference to distribution mode (unsupported)......................................................................................................... 17  
Updated delay circuit descriptions for improved clarity ........................................................................................................ 18  
Deleted reference to dynamic delay (unsupported) ............................................................................................................. 19  
Deleted reference to dynamic delay, bypass mode in clock output block diagram (unsupported) ...................................... 21  
Deleted reference to distribution mode in SYNC/SYSREF clocking path diagram (unsupported) ...................................... 22  
Clarified digital lock detect for cases where phase detector frequency exceeds default PLL1_WND_SIZE ...................... 29  
Removed device functional modes section .......................................................................................................................... 32  
Clarified requirements for unused registers in recommended programming sequence....................................................... 32  
Added registers 0x171 and 0x172 to default register programming .................................................................................... 32  
Deleted redundant user-inaccessible registers in register map ........................................................................................... 33  
Changed address bits to clarify address position relative to data bits ................................................................................. 33  
Deleted references to dynamic delay in register map (unsupported)................................................................................... 33  
Corrected CLKinX_R register size in register map............................................................................................................... 35  
Corrected PLL1_N register size in register map .................................................................................................................. 35  
Deleted reference to DCLKoutX_MUX bypass mode (unsupported)................................................................................... 40  
Corrected delay value descriptions for SDCLKoutY_ADLY ................................................................................................. 41  
Deleted reference to dynamic delay (unsupported) ............................................................................................................. 42  
2
版权 © 2017–2019, Texas Instruments Incorporated  
 
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
修订历史记录 (接下页)  
Updated missing cross-reference......................................................................................................................................... 49  
Corrected CLKinX_R register length .................................................................................................................................... 59  
Corrected PLL1_N register length........................................................................................................................................ 60  
Corrected PLL2_R register length........................................................................................................................................ 64  
Split PLL2_FCAL_DIS and PLL2_N register tables into separate definitions...................................................................... 66  
Added register 0x171 and 0x172 to register descriptions .................................................................................................... 72  
Corrected RB_PLL1_LD and RB_PLL2_LD polarity ........................................................................................................... 73  
Added note clarifying PLL1_WND_SIZE and impact on holdover exit................................................................................. 75  
Changed references to deprecated software tools to point to TICS Pro.............................................................................. 78  
Removed application curves section.................................................................................................................................... 79  
Deleted unused column in typical current consumption table .............................................................................................. 80  
Fixed truncated layout example image ................................................................................................................................ 82  
已删除 删除了弃用软件工具的链接....................................................................................................................................... 83  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
5 Device Comparison Table  
Table 1. Device Configuration Information  
PLL2  
REF-  
OSCout (BUFFERED  
OSCin Clock) LVDS/  
LVPECL/ LVCMOS  
PROGRAMMABLE  
LVDS/LVPECL  
OUTPUTS  
ERENCE  
PART NUMBER  
VCO0 FREQUENCY  
VCO1 FREQUENCY  
(1)  
INPUTS(1)  
LMK04228  
Up to 3  
Up to 1  
14  
2370 to 2630 MHz  
2920 to 3080 MHz  
(1) OSCout may also be third clock input, CLKin2.  
6 Pin Configuration and Functions  
NKD Package  
64-Pin WQFN  
Top View  
Clock Group 0  
Clock Group 3  
Status_LD2  
Vcc10_PLL2  
CPout2  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DCLKout0  
DCLKout0*  
SDCLKout1  
SDCLKout1*  
RESET/GPO  
SYNC/SYSREF_REQ  
NC  
1
2
3
Vcc9_CP2  
OSCin*  
4
5
OSCin  
6
Vcc8_OSCin  
7
NC  
OSCout*/CLKin2*  
OSCout/CLKin2  
Vcc7_OSCout  
8
LLP-64  
Top down view  
NC  
9
Vcc1_VCO  
LDObyp1  
10  
11  
12  
13  
14  
15  
16  
CLKin0*  
LDObyp2  
CLKin0  
SDCLKout3  
SDCLKout3*  
DCLKout2  
DCLKout2*  
Vcc6_PLL1  
CLKin1*/Fin*/FBCLKin*  
DAP  
CLKin1/Fin/FBCLKin  
Vcc5_DIG  
Clock Group 2  
Clock Group 1  
Pin Functions(1)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
DCLKout0  
DCLKout0*  
SDCLKout1  
SDCLKout1*  
O
O
Programmable  
Programmable  
Device clock output 0.  
2
3
SYSREF / Device clock output 1  
4
(1) See Pin Connection Recommendations section for recommended connections.  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
Pin Functions(1) (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NO.  
5
NAME  
RESET/GPO  
I
CMOS  
CMOS  
Device reset input or GPO  
6
SYNC/SYSREF_REQ  
NC  
I
Synchronization input or SYSREF_REQ for requesting continuous SYSREF.  
Do not connect. These pins must be left floating.  
Power supply for VCO LDO.  
7, 8, 9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
Vcc1_VCO  
LDObyp1  
PWR  
ANLG  
ANLG  
LDO Bypass, bypassed to ground with 10-µF capacitor.  
LDO Bypass, bypassed to ground with a 0.1-µF capacitor.  
LDObyp2  
SDCLKout3  
SDCLKout3*  
DCLKout2  
DCLKout2*  
Vcc2_CG1  
CS*  
O
O
Programmable  
Programmable  
SYSREF / Device Clock output 3.  
Device clock output 2.  
I
PWR  
CMOS  
CMOS  
CMOS  
PWR  
Power supply for clock outputs 2 and 3.  
Chip Select  
SCK  
I
SPI Clock  
SDIO  
I/O  
SPI Data  
Vcc3_SYSREF  
SDCLKout5  
SDCKLout5*  
DCLKout4  
DCLKout4*  
Vcc4_CG2  
DCLKout6  
DCLKout6*  
SDCLKout7  
SDCLKout7*  
Status_LD1  
CPout1  
Power supply for SYSREF divider and SYNC.  
O
Programmable  
SYSREF / Device clock output 5.  
O
O
Programmable  
PWR  
Device clock output 4.  
Power supply for clock outputs 4, 5, 6 and 7.  
Device clock output 6.  
Programmable  
O
Programmable  
SYSREF / Device clock output 7.  
I/O  
O
Programmable  
ANLG  
Programmable status pin.  
Charge pump 1 output.  
Vcc5_DIG  
CLKin1  
PWR  
Power supply for the digital circuitry.  
I
ANLG  
PWR  
Reference Clock Input Port 1 for PLL1.  
CLKin1*  
Vcc6_PLL1  
CLKin0  
I
Power supply for PLL1, charge pump 1, holdover DAC  
Reference Clock Input Port 0 for PLL1.  
ANLG  
CLKin0*  
Vcc7_OSCout  
OSCout/CLKin2  
OSCout*/CLKin2*  
Vcc8_OSCin  
OSCin  
O
I
PWR  
Power supply for OSCout port.  
Buffered output of OSCin port.  
Reference Clock Input Port 2 for PLL1.  
Power supply for OSCin  
Programmable  
PWR  
ANLG  
Feedback to PLL1, Reference input to PLL2. AC-coupled.  
OSCin*  
Vcc9_CP2  
CPout2  
O
PWR  
ANLG  
Power supply for PLL2 Charge Pump.  
Charge pump 2 output.  
Vcc10_PLL2  
Status_LD2  
SDCLKout9  
SDCLKout9*  
DCLKout8  
DCLKout8*  
Vcc11_CG3  
DCLKout10  
DCLKout10*  
SDCLKout11  
SDCLKout11*  
CLKin_SEL0  
CLKin_SEL1  
SDCLKout13  
SDCLKout13*  
I/O  
PWR  
Power supply for PLL2.  
Programmable  
Programmable status pin.  
O
Programmable  
SYSREF / Device clock 9  
O
O
Programmable  
PWR  
Device clock output 8.  
Power supply for clock outputs 8, 9, 10, and 11.  
Device clock output 10.  
Programmable  
O
Programmable  
SYSREF / Device clock output 11.  
I/O  
I/O  
Programmable  
Programmable  
Programmable status pin.  
Programmable status pin.  
O
Programmable  
SYSREF / Device clock output 13.  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
Pin Functions(1) (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NO.  
62  
63  
64  
NAME  
DCLKout12  
DCLKout12*  
Vcc12_CG0  
DAP  
O
Programmable  
Device clock output 12.  
PWR  
GND  
Power supply for clock outputs 0, 1, 12, and 13.  
DIE ATTACH PAD, connect to GND.  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)(3)  
MIN  
–0.3  
–0.3  
MAX  
3.6  
UNIT  
V
(4)  
VCC  
VIN  
TL  
Supply voltage  
Input voltage  
(VCC + 0.3)  
+260  
V
Lead temperature (solder 4 seconds)  
Junction temperature  
°C  
°C  
TJ  
150  
Differential input current (CLKinX/X*,  
OSCin/OSCin*)  
IIN  
±5  
mA  
MSL  
Tstg  
Moisture sensitivity level  
Storage temperature  
3
–65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) This device is a high performance RF integrated circuit with an ESD rating up to 2-kV Human Body Model, up to 150-V Machine Model,  
and up to 250-V Charged Device Model and is ESD-sensitive. Handling and assembly of this device should only be done at ESD-free  
workstations.  
(3) Stresses in excess of the absolute maximum ratings can cause permanent or latent damage to the device. These are absolute stress  
ratings only. Functional operation of the device is only implied at these or any other conditions in excess of those given in the operation  
sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.  
(4) Never to exceed 3.6 V.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
V(ESD)  
Electrostatic discharge  
±250  
±150  
V
Machine model (MM)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±250 V may actually have higher performance.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
TYP  
MAX UNIT  
TJ  
Junction temperature  
Ambient temperature  
Supply voltage  
125  
85  
°C  
°C  
V
TA  
–40  
25  
VCC  
3.15  
3.3  
3.45  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
7.4 Thermal Information  
LMK04228  
THERMAL METRIC(1)  
NKD (WQFN)  
UNIT  
64 PINS  
24.3  
6.1  
RθJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
Junction-to-case (bottom) thermal resistance(7)  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
3.5  
ψJT  
0.1  
ψJB  
3.5  
RθJC(bot)  
0.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case(top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard  
test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(5) The junction-to-top characterization parameter, ΨJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, ΨJB estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining RθJA , using a procedure described in JESD51-2a (sections 6 and 7).  
(7) The junction-to-case(bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
7.5 Electrical Characteristics  
(3.15 V < VCC < 3.45 V, –40°C < TA < 85°C. Typical values at VCC = 3.3 V, TA = 25°C, at the Recommended Operating  
Conditions and are not assured.)  
PARAMETER  
CURRENT CONSUMPTION  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ICC_PD  
Power-down supply current  
Supply current(1)  
1
3
mA  
mA  
14 LVDS clocks enabled  
PLL1 and PLL2 locked.  
ICC_CLKS  
485  
CLKin0/0*, CLKin1/1*, AND CLKin2/2* INPUT CLOCK SPECIFICATIONS  
fCLKin  
Clock input frequency  
Clock input slew rate(2)  
0.001  
0.15  
400  
MHz  
V/ns  
|V|  
SLEWCLKin  
VIDCLKin  
20% to 80%  
AC-coupled  
0.5  
Clock input  
0.125  
1.55  
3.1  
differential input voltage(3)  
Figure 2  
VSSCLKin  
0.25  
Vpp  
AC-coupled to CLKinX;  
CLKinX* AC-coupled to Ground  
CLKinX_TYPE = 0 (Bipolar)  
0.25  
2.4  
2.4  
Clock input  
single-ended input voltage  
VCLKin  
Vpp  
AC-coupled to CLKinX;  
CLKinX* AC-coupled to Ground  
CLKinX_TYPE = 1 (MOS)  
0.35  
(1) See applications section Power Supply Recommendations for specific part configuration and how to calculate the ICC for a specific  
design.  
(2) To meet the jitter performance listed in the subsequent sections of this data sheet, the minimum recommended slew rate for all input  
clocks is 0.5 V/ns. This is especially true for single-ended clocks. Phase noise performance will begin to degrade as the clock input slew  
rate is reduced. However, the device will function at slew rates down to the minimum listed. When compared to single-ended clocks,  
differential clocks (LVDS, LVPECL) will be less susceptible to degradation in phase noise performance at lower slew rates due to their  
common-mode noise rejection. However, TI also recommends using the highest possible slew rate for differential clocks to achieve  
optimal phase noise performance at the device outputs.  
(3) See Differential Voltage Measurement Terminology for definition of VID and VOD voltages.  
Copyright © 2017–2019, Texas Instruments Incorporated  
7
 
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –40°C < TA < 85°C. Typical values at VCC = 3.3 V, TA = 25°C, at the Recommended Operating  
Conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Each pin AC-coupled, CLKin0/1/2  
CLKinX_TYPE = 0 (Bipolar)  
0
DC offset voltage between  
CLKinX/CLKinX* (CLKinX* –  
CLKinX)  
Each pin AC-coupled, CLKin0/1  
CLKinX_TYPE = 1 (MOS)  
55  
20  
VCLKinX-offset  
|
|mV|  
DC offset voltage between  
CLKin2/CLKin2* (CLKin2* –  
CLKin2)  
Each pin AC-coupled  
CLKinX_TYPE = 1 (MOS)  
VCLKin- VIH  
VCLKin- VIL  
High input voltage  
Low input voltage  
DC-coupled to CLKinX;  
CLKinX* AC-coupled to Ground  
CLKinX_TYPE = 1 (MOS)  
2
0
VCC  
0.4  
V
V
PLL1 SPECIFICATIONS  
fPD1  
PLL1 phase detector frequency  
40  
MHz  
µA  
VCPout1 = VCC/2, PLL1_CP_GAIN = 0  
VCPout1 = VCC/2, PLL1_CP_GAIN = 1  
VCPout1 = VCC/2, PLL1_CP_GAIN = 2  
50  
150  
250  
PLL1 charge  
ICPout1SOURCE  
pump source current(4)  
VCPout1 = VCC/2, PLL1_CP_GAIN = 14  
VCPout1 = VCC/2, PLL1_CP_GAIN = 15  
VCPout1=VCC/2, PLL1_CP_GAIN = 0  
VCPout1=VCC/2, PLL1_CP_GAIN = 1  
VCPout1=VCC/2, PLL1_CP_GAIN = 2  
1450  
1550  
–50  
–150  
–250  
PLL1 charge  
ICPout1SINK  
µA  
pump sink current(4)  
VCPout1=VCC/2, PLL1_CP_GAIN = 14  
VCPout1=VCC/2, PLL1_CP_GAIN = 15  
–1450  
–1550  
Charge pump  
sink / source mismatch  
ICPout1%MIS  
VCPout1 = VCC/2, T = 25 °C  
1%  
4%  
4%  
10%  
Magnitude of charge pump  
current variation vs. charge  
pump voltage  
0.5 V < VCPout1 < VCC – 0.5 V  
TA = 25°C  
ICPout1VTUNE  
Charge pump current vs.  
temperature variation  
ICPout1%TEMP  
ICPout1 TRI  
Charge pump TRI-STATE  
leakage current  
0.5 V < VCPout < VCC – 0.5 V  
5
nA  
PLL 1/f noise at 10-kHz offset.  
Normalized to 1-GHz output  
frequency  
PLL1_CP_GAIN = 350 µA  
PLL1_CP_GAIN = 1550 µA  
–117  
–118  
PN10kHz  
PN1Hz  
dBc/Hz  
PLL1_CP_GAIN = 350 µA  
PLL1_CP_GAIN = 1550 µA  
–221.5  
–223  
Normalized phase noise  
contribution  
dBc/Hz  
PLL2 REFERENCE INPUT (OSCin) SPECIFICATIONS  
fOSCin  
PLL2 reference input(5)  
500  
2.4  
MHz  
V/ns  
PLL2 reference clock minimum  
SLEWOSCin  
20% to 80%  
0.15  
0.2  
0.5  
(2)  
slew rate on OSCin  
Input voltage for OSCin or  
OSCin*  
AC-coupled; single-ended  
(Unused pin AC-coupled to GND)  
VOSCin  
Vpp  
VIDOSCin  
VSSOSCin  
0.2  
0.4  
1.55  
3.1  
|V|  
Differential voltage swing  
See Figure 2  
AC-coupled  
Vpp  
DC offset voltage between  
OSCin/OSCin* (OSCinX* -  
OSCinX)  
|VOSCin-offset  
|
Each pin AC-coupled  
20  
|mV|  
(4) This parameter is programmable  
(5) FOSCin maximum frequency assured by characterization. Production tested at 122.88 MHz.  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –40°C < TA < 85°C. Typical values at VCC = 3.3 V, TA = 25°C, at the Recommended Operating  
Conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
EN_PLL2_REF_2X = 1(7)  
OSCin duty cycle 40% to 60%  
MIN  
TYP  
MAX  
UNIT  
;
(6)  
fdoubler_max  
Doubler input frequency  
155  
MHz  
CRYSTAL OSCILLATOR MODE SPECIFICATIONS  
Fundamental mode crystal  
ESR = 200 Ω (10 to 30 MHz)  
ESR = 125 Ω (30 to 40 MHz)  
FXTAL  
CIN  
Crystal frequency range  
10  
40  
MHz  
pF  
Input capacitance of OSCin port –40°C to +85°C  
1
PLL2 PHASE DETECTOR AND CHARGE PUMP SPECIFICATIONS  
(6)  
fPD2  
Phase detector frequency  
155  
MHz  
µA  
VCPout2=VCC/2, PLL2_CP_GAIN = 0  
VCPout2=VCC/2, PLL2_CP_GAIN = 1  
VCPout2=VCC/2, PLL2_CP_GAIN = 2  
VCPout2=VCC/2, PLL2_CP_GAIN = 0  
VCPout2=VCC/2, PLL2_CP_GAIN = 1  
VCPout2=VCC/2, PLL2_CP_GAIN = 2  
100  
400  
PLL2 charge pump source  
ICPoutSOURCE  
(4)  
current  
1600  
–100  
–400  
–1600  
PLL2 charge pump sink current  
ICPoutSINK  
µA  
(4)  
Charge pump sink/source  
mismatch  
ICPout2%MIS  
VCPout2=VCC/2, TA = 25°C  
1%  
4%  
4%  
10%  
Magnitude of charge pump  
current vs. charge pump  
voltage variation  
0.5 V < VCPout2 < VCC – 0.5 V  
TA = 25°C  
ICPout2VTUNE  
Charge pump current vs.  
temperature variation  
ICPout2%TEMP  
ICPout2TRI  
Charge pump leakage  
0.5 V < VCPout2 < VCC – 0.5 V  
PLL2_CP_GAIN = 1600 µA  
10  
nA  
PLL 1/f noise at 10-kHz  
offset(8). Normalized to  
1-GHz output frequency  
PN10kHz  
PN1Hz  
–120  
dBc/Hz  
PLL2_CP_GAIN = 400 µA  
PLL2_CP_GAIN = 1600 µA  
–222.5  
–224  
Normalized phase noise  
contribution(9)  
dBc/Hz  
MHz  
INTERNAL VCO SPECIFICATIONS  
VCO0  
2370  
2920  
2630  
3080  
fVCO  
LMK04228 VCO tuning range  
VCO1  
LMK04228 VCO0 at 2370 MHz(10)  
LMK04228 VCO0 at 2630 MHz(10)  
LMK04228 VCO1 at 2920 MHz(10)  
LMK04228 VCO1 at 3080 MHz(10)  
17  
27  
17  
23  
LMK04228 fine tuning  
sensitivity  
KVCO  
MHz/V  
(6) Assured by characterization. ATE tested at 122.88 MHz.  
(7) The EN_PLL2_REF_2X bit enables/disables a frequency doubler mode for the PLL2 OSCin path.  
(8) A specification in modeling PLL in-band phase noise is the 1/f flicker noise, LPLL_flicker(f), which is dominant close to the carrier. Flicker  
noise has a 10 dB/decade slope. PN10kHz is normalized to a 10-kHz offset and a 1-GHz carrier frequency. PN10kHz = LPLL_flicker(10  
kHz) – 20log(Fout / 1 GHz), where LPLL_flicker(f) is the single-side band phase noise of only the flicker noise's contribution to total noise,  
L(f). To measure LPLL_flicker(f) it is important to be on the 10 dB/decade slope close to the carrier. A high compare frequency and a clean  
crystal are important to isolating this noise source from the total phase noise, L(f). LPLL_flicker(f) can be masked by the reference  
oscillator performance if a low power or noisy source is used. The total PLL in-band phase noise performance is the sum of LPLL_flicker(f)  
and LPLL_flat(f).  
(9) A specification modeling PLL in-band phase noise. The normalized phase noise contribution of the PLL, LPLL_flat(f), is defined as:  
PN1HZ=LPLL_flat(f) – 20log(N) – 10log(fPDX). LPLL_flat(f) is the single-side band phase noise measured at an offset frequency, f, in a 1-Hz  
bandwidth and fPDX is the phase detector frequency of the synthesizer. LPLL_flat(f) contributes to the total noise, L(f).  
(10) For frequencies in between, linearly interpolate to compute the typical Kvco  
Copyright © 2017–2019, Texas Instruments Incorporated  
9
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –40°C < TA < 85°C. Typical values at VCC = 3.3 V, TA = 25°C, at the Recommended Operating  
Conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
After programming for lock, no changes  
to output configuration are permitted to  
assure continuous lock  
Allowable temperature drift for  
continuous lock(11)  
|ΔTCL  
|
125  
°C  
NOISE FLOOR  
LVDS  
–156.3  
–161.6  
–162.5  
–155.7  
–160.3  
–161.1  
LMK04228, VCO0, noise floor  
20-MHz offset(12)  
L(f)CLKout  
245.76 MHz  
245.76 MHz  
LVPECL16 with 240 Ω  
LVPECL20 with 240 Ω  
LVDS  
dBc/Hz  
dBc/Hz  
LMK04228, VCO1, noise floor  
20-MHz offset(12)  
L(f)CLKout  
LVPECL16 with 240 Ω  
LVPECL20 with 240 Ω  
CLKout CLOSED-LOOP PHASE NOISE SPECIFICATIONS A COMMERCIAL QUALITY VCXO(13)  
Offset = 1 kHz  
–115.2  
–126.5  
–128.3  
–150.0  
–157.9  
–163.1  
–115.1  
–126.3  
–127.5  
–154.4  
–157.9  
–162.3  
Offset = 10 kHz  
LMK04228  
Offset = 100 kHz  
VCO0  
L(f)CLKout  
dBc/Hz  
dBc/Hz  
SSB phase noise(12)  
245.76 MHz  
Offset = 1 MHz  
LVDS  
Offset = 10  
MHz  
LVPECL20 with 240 Ω  
Offset = 1 kHz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
LMK04228  
VCO1  
L(f)CLKout  
SSB phase noise(12)  
245.76 MHz  
LVDS  
Offset = 10  
MHz  
LVPECL20 with 240 Ω  
CLKout CLOSED-LOOP JITTER SPECIFICATIONS A COMMERCIAL QUALITY VCXO(13)  
LVDS, BW = 100 Hz to 20 MHz  
256  
183  
LVDS, BW = 12 kHz to 20 MHz  
LMK04228, VCO0  
LVPECL20 /w 240 Ω,  
fCLKout = 245.76 MHz  
Integrated RMS jitter  
254  
176  
(12)  
BW = 100 Hz to 20 MHz  
LVPECL20 /w 240 Ω,  
BW = 12 kHz to 20 MHz  
JCLKout  
fs rms  
LVDS, BW = 100 Hz to 20 MHz  
246  
162  
LVDS, BW = 12 kHz to 20 MHz  
LMK04228, VCO1  
LVPECL16 with 240 Ω,  
fCLKout = 245.76 MHz  
Integrated RMS jitter  
245  
156  
(12)  
BW = 100 Hz to 20 MHz  
LVPECL20 with 240 Ω,  
BW = 12 kHz to 20 MHz  
(11) Maximum Allowable Temperature Drift for Continuous Lock is how far the temperature can drift in either direction from the value it was  
at the time that the 0x168 register was last programmed with PLL2_FCAL_DIS = 0, and still have the part stay in lock. The action of  
programming the 0x168 register, even to the same value, activates a frequency calibration routine. This implies the part will work over  
the entire frequency range, but if the temperature drifts more than the maximum allowable drift for continuous lock, then it will be  
necessary to reload the appropriate register to ensure it stays in lock. Regardless of what temperature the part was initially programmed  
at, the temperature can never drift outside the frequency range of –40°C to 85°C without violating specifications.  
(12) Data collected using MACOM H-183-4 balun. Loop filter is C1 = 82 pF, C2 = 2.2 nF, R2 = 1800 Ω, C3 = 10 pF, R3 = 200 Ω, C4 = 10 pF,  
R4 = 200 Ω, PLL1_CP = 650 µA, PLL2_CP = 1600 µA. VCO0 loop filter bandwidth = 176 kHz, phase margin = 67 degrees. VCO1 Loop  
filter loop bandwidth = 169 kHz, phase margin = 66 degrees. CLKoutX_Y_IDL = 1, CLKoutX_Y_ODL = 0.  
(13) VCXO used is a 30.72 MHz (TXC Bex05).  
10  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –40°C < TA < 85°C. Typical values at VCC = 3.3 V, TA = 25°C, at the Recommended Operating  
Conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DEFAULT POWER ON RESET CLOCK OUTPUT FREQUENCY  
Default output clock frequency  
at device power on  
fCLKout-startup  
LMK04228  
See(6)  
315  
MHz  
MHz  
(14)(15)  
fOSCout  
OSCout frequency  
500  
25  
CLOCK SKEW AND DELAY  
DCLKoutX to SDCLKoutY  
FCLK = 245.76 MHz, RL= 100 Ω  
AC-coupled(16)  
(17)  
Same pair, same format  
SDCLKoutY_MUX = 0 (device clock)  
Maximum DCLKoutX or  
SDCLKoutY  
to DCLKoutX or SDCLKoutY  
FCLK = 245.76 MHz, RL= 100 Ω  
AC-coupled  
|TSKEW  
|
|ps|  
(17)  
Any pair, same format  
50  
SDCLKoutY_MUX = 0 (device clock)  
SDCLKoutY_MUX = 1 (SYSREF)  
SYSREF_DIV = 30  
SYSREF to device clock setup SYSREF_DDLY = 8 (global)  
time base reference.  
See SYSREF to Device Clock  
SDCLKoutY_DDLY = 1 (2 cycles, local)  
DCLKoutX_MUX = 1 (Div+DCC+HS)  
tsJESD204B  
–80  
ps  
Alignment to adjust SYSREF to DCLKoutX_DIV = 30  
device clock setup time as  
required.  
DCLKoutX_DDLY_CNTH = 7  
DCLKoutX_DDLY_CNTL = 6  
DCLKoutX_HS = 0  
SDCLKoutY_HS = 0  
CLKin0_OUT_MUX = 0 (SYSREF Mux)  
SYSREF_CLKin0_MUX = 1 (CLKin0)  
SDCLKout1_PD = 0  
SDCLKout1_DDLY = 0 (Bypass)  
SDCLKout1_MUX = 1 (SR)  
EN_SYNC = 1  
tPDCLKin0_  
SDCLKout1  
Propagation delay from CLKin0  
to SDCLKout1  
0.65  
ns  
LVPECL16 with 240 Ω  
Maximum analog delay  
frequency  
fADLYmax  
DCLKoutX_MUX = 4  
1250  
MHz  
LVDS CLOCK OUTPUTS (DCLKoutX, SDCLKoutY, AND OSCout)  
VOD  
Differential output voltage  
395  
|mV|  
mV  
V
Change in magnitude of VOD for  
complementary output states  
ΔVOD  
VOS  
–60  
60  
1.375  
35  
T = 25°C, DC measurement  
AC-coupled to receiver input  
RL = 100-Ω differential termination  
Output offset voltage  
1.125  
1.25  
Change in VOS for  
complementary output states  
ΔVOS  
|mV|  
Output rise time  
Output fall time  
20% to 80%, RL = 100 Ω, 245.76 MHz  
80% to 20%, RL = 100 Ω  
TR / TF  
180  
ps  
ISA  
ISB  
Output short-circuit current -  
single-ended  
Single-ended output shorted to GND  
T = 25°C  
–24  
–12  
24  
12  
mA  
mA  
Output short-circuit current -  
differential  
ISAB  
Complementary outputs tied together  
LVPECL CLOCK OUTPUTS (DCLKoutX AND SDCLKoutY)  
20% to 80% output rise  
RL = 100 Ω, emitter resistors = 240 Ω to  
GND  
TR / TF  
150  
ps  
DCLKoutX_TYPE = 4 or 5  
(1600 or 2000 mVpp)  
80% to 20% output fall time  
1600-mVpp LVPECL CLOCK OUTPUTS (DCLKoutX AND SDCLKoutY)  
(14) OSCout will oscillate at start-up at the frequency of the VCXO attached to OSCin port.  
(15) Default outputs on DCLKout4, DCLKout6, DCLKout8, DCLKout10 and OSCout.  
(16) Equal loading and identical clock output configuration on each clock output is required for specification to be valid. Specification not valid  
for delay mode.  
(17) LVPECL uses 120-Ω emitter resistor, LVDS uses 560-Ω shunt.  
Copyright © 2017–2019, Texas Instruments Incorporated  
11  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –40°C < TA < 85°C. Typical values at VCC = 3.3 V, TA = 25°C, at the Recommended Operating  
Conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCC  
1.04  
VOH  
VOL  
VOD  
Output high voltage  
V
DC Measurement  
Termination = 50 Ω to  
VCC – 2 V  
VCC  
1.80  
Output low voltage  
V
Output voltage  
See Figure 3  
760  
|mV|  
2000-mVpp LVPECL CLOCK OUTPUTS (DCLKoutX AND SDCLKoutY)  
VCC  
1.09  
VOH  
VOL  
VOD  
Output high voltage  
Output low voltage  
V
V
DC Measurement  
Termination = 50 Ω to VCC – 2.3 V  
VCC  
2.05  
Output voltage  
See Figure 3  
960  
|mV|  
LVCMOS CLOCK OUTPUTS (OSCout)  
fCLKout  
VOH  
VOL  
IOH  
Maximum frequency(18)  
5-pF Load  
250  
MHz  
V
Output high voltage  
1-mA Load  
VCC – 0.1  
Output low voltage  
1-mA Load  
0.1  
V
Output high current (source)  
Output low current (sink)  
VCC = 3.3 V, VO = 1.65 V  
VCC = 3.3 V, VO = 1.65 V  
28  
28  
mA  
mA  
IOL  
VCC/2 to VCC/2,  
FCLK = 100 MHz, T = 25°C  
DUTYCLK  
Output duty cycle(19)  
50%  
TR  
TF  
Output rise time  
Output fall time  
20% to 80%, RL = 50 Ω, CL = 5 pF  
80% to 20%, RL = 50 Ω, CL = 5 pF  
400  
400  
ps  
ps  
DIGITAL OUTPUTS (CLKin_SELX, Status_LDX, AND RESET/GPO)  
IOH = –500 µA  
CLKin_SELX_TYPE = 3 or 4  
Status_LDX_TYPE = 3 or 4  
RESET_TYPE = 3 or 4  
VOH  
High-level output voltage  
Low-level output voltage  
VCC – 0.4  
V
V
IOL = 500 µA  
CLKin_SELX_TYPE = 3, 4, or 6  
Status_LDX_TYPE = 3, 4, or 6  
RESET_TYPE = 3, 4, or 6  
VOL  
0.4  
0.4  
DIGITAL OUTPUT (SDIO)  
IOH = –500 µA ; during SPI read.  
SDIO_RDBK_TYPE = 0  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
VCC – 0.4  
V
V
IOL = 500 µA ; during SPI read.  
SDIO_RDBK_TYPE = 0 or 1  
DIGITAL INPUTS (CLKinX_SEL, RESET/GPO, SYNC, SCK, SDIO, OR CS*)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.2  
–5  
VCC  
0.4  
V
V
DIGITAL INPUTS (CLKinX_SEL)  
CLKin_SELX_TYPE = 0,  
(high impedance)  
5
High-level input current  
VIH = VCC  
IIH  
µA  
µA  
CLKin_SELX_TYPE = 1 (pullup)  
CLKin_SELX_TYPE = 2 (pulldown)  
–5  
10  
5
80  
CLKin_SELX_TYPE = 0,  
(High Impedance)  
–5  
5
Low-level input current  
VIL = 0 V  
IIL  
CLKin_SELX_TYPE = 1 (pullup)  
CLKin_SELX_TYPE = 2 (pulldown)  
–40  
–5  
–5  
5
(18) Assured by characterization. ATE tested to 10 MHz.  
(19) Assumes OSCin has 50% input duty cycle.  
12  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –40°C < TA < 85°C. Typical values at VCC = 3.3 V, TA = 25°C, at the Recommended Operating  
Conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
µA  
DIGITAL INPUT (RESET/GPO)  
High-level input current  
VIH = VCC  
RESET_TYPE = 2  
(pulldown)  
IIH  
10  
80  
RESET_TYPE = 0 (high impedance)  
RESET_TYPE = 1 (pullup)  
RESET_TYPE = 2 (pulldown)  
–5  
–40  
–5  
5
-5  
5
Low-level input current  
VIL = 0 V  
IIL  
µA  
DIGITAL INPUTS (SYNC)  
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCC  
VIL = 0 V  
25  
5
µA  
–5  
DIGITAL INPUTS (SCK, SDIO, CS*)  
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCC  
VIL = 0  
–5  
–5  
5
5
µA  
µA  
DIGITAL INPUT TIMING  
tHIGH  
RESET pin held high for device reset  
25  
ns  
7.6 SPI Interface Timing  
TEST CONDITIONS  
MIN  
10  
TYP  
MAX  
UNIT  
ns  
tds  
Setup time for SDI edge to SCLK rising edge  
Hold time for SDI edge from SCLK rising edge  
See Figure 1  
See Figure 1  
See Figure 1  
See Figure 1  
See Figure 1  
See Figure 1  
tdH  
10  
50(1)  
ns  
tSCLK  
tHIGH  
tLOW  
tcs  
Period of SCLK  
ns  
High width of SCLK  
25  
ns  
Low width of SCLK  
25  
ns  
Setup time for CS* falling edge to SCLK rising edge  
10  
ns  
tcH  
Hold time for CS* rising edge from SCLK rising edge See Figure 1  
SCLK falling edge to valid read back data See Figure 1  
30  
ns  
tdv  
20  
ns  
(1) 20 MHz  
7.7 Timing Diagram  
Register programming information on the SDIO pin is clocked into a shift register on each rising edge of the SCK  
signal. On the rising edge of the CS* signal, the register is sent from the shift register to the register addressed.  
A slew rate of at least 30 V/µs is recommended for these signals. After programming is complete, the CS* signal  
should be returned to a high state. If the SCK or SDIO lines are toggled while the VCO is in lock, as is  
sometimes the case when these lines are shared with other parts. The phase noise may be degraded during this  
programming.  
Four-wire mode read back has same timing as SDIO pin.  
R/W bit = 0 is for SPI write. R/W bit = 1 is for SPI read.  
W1 and W0 will be written as 0.  
Copyright © 2017–2019, Texas Instruments Incorporated  
13  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
Timing Diagram (continued)  
SDIO  
(WRITE)  
A12 to A0,  
D7 to D2  
R/W  
W1  
W0  
D1  
D0  
tdS  
tdH  
SCLK  
tcH  
tcS  
tHIGH  
tLOW  
tSCLK  
SDIO  
(Read)  
D7 to  
D2  
D1  
D0  
Data valid only  
during read  
tdV  
CS*  
Figure 1. SPI Timing Diagram  
14  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
8 Parameter Measurement Information  
8.1 Charge Pump Current Specification Definitions  
I1 = Charge Pump Sink Current at VCPout = VCC ΔV  
I2 = Charge Pump Sink Current at VCPout = VCC/2  
I3 = Charge Pump Sink Current at VCPout = ΔV  
I4 = Charge Pump Source Current at VCPout = VCC ΔV  
I5 = Charge Pump Source Current at VCPout = VCC/2  
I6 = Charge Pump Source Current at VCPout = ΔV  
ΔV = Voltage offset from the positive and negative supply rails. Defined to be 0.5 V for this device.  
8.1.1 Charge Pump Output Current Magnitude Variation vs. Charge Pump Output Voltage  
8.1.2 Charge Pump Sink Current vs. Charge Pump Output Source Current Mismatch  
8.1.3 Charge Pump Output Current Magnitude Variation vs. Ambient Temperature  
Copyright © 2017–2019, Texas Instruments Incorporated  
15  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
8.2 Differential Voltage Measurement Terminology  
The differential voltage of a differential signal can be described by two different definitions causing confusion  
when reading data sheets or communicating with other engineers. This section will address the measurement  
and description of a differential signal so that the reader will be able to understand and distinguish between the  
two different definitions when used.  
The first definition used to describe a differential signal is the absolute value of the voltage potential between the  
inverting and noninverting signal. The symbol for this first measurement is typically VID or VOD depending on if an  
input or output voltage is being described.  
The second definition used to describe a differential signal is to measure the potential of the noninverting signal  
with respect to the inverting signal. The symbol for this second measurement is VSS and is a calculated  
parameter. Nowhere in the IC does this signal exist with respect to ground, it only exists in reference to its  
differential pair. VSS can be measured directly by oscilloscopes with floating references, otherwise this value can  
be calculated as twice the value of VOD as described in the first description.  
Figure 2 illustrates the two different definitions side-by-side for inputs and Figure 3 illustrates the two different  
definitions side-by-side for outputs. The VID and VOD definitions show VA and VB DC levels that the noninverting  
and inverting signals toggle between with respect to ground. VSS input and output definitions show that if the  
inverting signal is considered the voltage potential reference, the noninverting signal voltage potential is now  
increasing and decreasing above and below the noninverting reference. Thus the peak-to-peak voltage of the  
differential signal can be measured.  
VID and VOD are often defined as volts (V) and VSS is often defined as volts peak-to-peak (VPP).  
VID Definition  
VSS Definition for Input  
Non-Inverting Clock  
VA  
VB  
2·VID  
VID  
Inverting Clock  
VID = | VA - VB |  
VSS = 2·VID  
GND  
Figure 2. Two Different Definitions for  
Differential Input Signals  
VOD Definition  
VSS Definition for Output  
Non-Inverting Clock  
VA  
VB  
2·VOD  
VOD  
Inverting Clock  
VOD = | VA - VB |  
VSS = 2·VOD  
GND  
Figure 3. Two Different Definitions for  
Differential Output Signals  
Refer to application note AN-912 Common Data Transmission Parameters and their Definitions (SNLA036) for  
more information.  
16  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9 Detailed Description  
9.1 Overview  
The LMK04228 is a highly flexible dual-PLL jitter cleaner and integrated VCO clock generator, providing up to 15  
configurable outputs. The typical use case for LMK04228 is as a cascaded dual-loop jitter cleaner for JESD204B  
systems. However traditional (non-JESD204B) systems are possible with use of the large SYSREF divider to  
produce a low frequency. Device Clock outputs (DCLKoutX) provide configurable LVDS and LVPECL options,  
while the OSCout output may be used to provide a buffered copy of a VCXO/Crystal signal in LVDS, LVPECL, or  
LVCMOS formats.  
The LMK04228 may be configured for single-loop mode by powering down unused blocks in PLL1.  
9.1.1 Jitter Cleaning  
The dual-loop PLL architecture of the LMK04228 provides the lowest jitter performance over a wide range of  
output frequencies and phase noise integration bandwidths. The first stage PLL (PLL1) is driven by an external  
reference clock and uses an external VCXO or tunable crystal to provide a frequency-accurate, low phase noise  
reference clock for the second stage frequency multiplication PLL (PLL2).  
PLL1 typically uses a narrow loop bandwidth (typically between 10 Hz to 200 Hz) to retain the frequency  
accuracy of the reference clock input signal while at the same time suppressing the higher offset frequency  
phase noise that the reference clock may have accumulated along its path or from other circuits. This cleaned  
reference clock provides the reference input to PLL2.  
The low phase noise reference provided to PLL2 allows PLL2 to operate with a wide loop bandwidth (typically  
between 50 kHz to 200 kHz). The loop bandwidth for PLL2 is chosen to take advantage of the superior high  
offset frequency phase noise profile of the internal VCO and the good low offset frequency phase noise of the  
reference VCXO or tunable crystal.  
Ultra-low jitter is achieved by allowing the phase noise of the external VCXO or crystal to dominate the final  
output phase noise at low offset frequencies, and the phase noise of the internal VCO to dominate the final  
output phase noise at high offset frequencies. This results in best overall phase noise and jitter performance.  
9.1.2 JEDEC JESD204B Support  
The LMK04228 provides support for JEDEC JESD204B. The LMK04228 will clock up to 7 JESD204B targets  
using 7 device clocks (DCLKoutX) and 7 SYSREF clocks (SDCLKoutY). Each device clock is grouped with a  
SYSREF clock.  
It is also possible to reprogram SYSREF clocks to behave as extra device clocks for applications which have  
non-JESD204B clock requirements.  
9.1.3 Three PLL1 Redundant Reference Inputs (CLKin0/CLKin0*, CLKin1/CLKin1*, and CLKin2/CLKin2*)  
The LMK04228 has up to three reference clock inputs for PLL1 (CLKin0, CLKin1, and CLKin2). The active clock  
is chosen based on CLKin_SEL_MODE. Automatic or manual switching can occur between the inputs.  
CLKin0, CLKin1, and CLKin2 each have their own PLL1 R dividers.  
CLKin2 is shared for use as OSCout. To use as CLKin2, OSCout must be powered down. See VCO_MUX,  
OSCout_FMT for more details.  
Fast manual switching between reference clocks is possible with a external pins CLKin_SEL0 and CLKin_SEL1.  
9.1.4 VCXO- and Crystal-Buffered Output  
The LMK04228 provides OSCout, which by default is a buffered copy of the PLL1 feedback/PLL2 reference  
input. This reference input is typically a low noise VCXO or crystal. When using a VCXO, this output can be used  
to clock external devices such as microcontrollers, FPGAs, CPLDs, and so forth, before the LMK04228 is  
programmed.  
The OSCout buffer output type is programmable to LVDS, LVPECL, or LVCMOS.  
Once PLL1 lock is established, the buffered output of VCXO/crystal has a deterministic phase relationship with  
the CLKin input used as the PLL1 reference.  
Copyright © 2017–2019, Texas Instruments Incorporated  
17  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
Overview (continued)  
9.1.5 Frequency Holdover  
The LMK04228 supports holdover operation to keep the clock outputs on frequency with minimum drift when the  
reference is lost until a valid reference clock signal is re-established.  
9.1.6 PLL2 Integrated Loop Filter Poles  
The LMK04228 features programmable 3rd- and 4th-order loop filter poles for PLL2. These internal resistors and  
capacitor values may be selected from a fixed range of values to achieve either a 3rd- or 4th-order loop filter  
response. The integrated programmable resistors and capacitors complement larger external components  
mounted near the chip.  
These integrated components can be effectively disabled by programming the integrated resistors and capacitors  
to their minimum values.  
9.1.7 Internal VCOs  
The LMK04228 has two internal VCOs, selected by VCO_MUX. The output of the selected VCO is routed to the  
Clock Distribution Path. This same selection is also fed back to the PLL2 phase detector through a prescaler and  
N-divider.  
9.1.8 Clock Distribution  
The LMK04228 features a total of 14 PLL2 clock outputs driven from the internal VCO.  
All PLL2 clock outputs have programmable output types. They can be programmed to LVPECL or LVDS formats.  
The total number of clock outputs the LMK04228 is able to distribute, including OSCout, is up to 15 differential  
clocks.  
The following sections discuss specific features of the clock distribution channels that allow the user to control  
various aspects of the output clocks.  
9.1.8.1 Device Clock Divider  
Each device clock, DCLKoutX, has a single clock output divider. The divider supports a divide range of 1 to 32  
(even and odd) with 50% output duty cycle using duty cycle correction mode. The output of this divider may also  
be directed to SDCLKoutY, where Y = X + 1.  
9.1.8.2 SYSREF Clock Divider  
The SYSREF clocks, SDCLKoutY, all share a common divider. The divider supports a divide range of 8 to 8191  
(even and odd).  
9.1.8.3 Device Clock Delay  
The device clocks include both a analog and digital delay for phase adjustment of the clock outputs.  
The analog delay allows a nominal 25-ps step size and range from 0 to 575 ps of granular delay. Enabling the  
device clock analog delay adds a nominal 500-ps delay in addition to the programmed value.  
The digital delay allows an output to be delayed from 3.5 to 32 VCO cycles. The delay step can be as small as  
half the period of the clock distribution path. For example, 2-GHz VCO frequency results in 250-ps tuning steps.  
The digital delay value takes effect on the clock outputs after a SYNC event. Fixed digital delay allows all the  
outputs to have a known phase relationship upon a SYNC event and is typically performed at start-up.  
9.1.8.4 SYSREF Delay  
The global SYSREF divider includes a digital delay block which allows a global phase shift with respect to the  
other clocks.  
Each local SYSREF clock output includes both an analog and additional local digital delay for unique phase  
adjustment of each SYSREF clock.  
18  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
Overview (continued)  
The local analog delay allows for 150-ps steps, ranging from 600 ps to 2700 ps of granular delay. Enabling the  
analog delay path adds a nominal 700 ps of delay in addition to the programmed value, and the first delay value  
adds 600 ps.  
The local digital delay and SYSREF_HS bit allows the each individual SYSREF output to be delayed from 1.5 to  
11 VCO cycles. The delay step can be as small as half the period of the clock distribution path by using the  
DCLKoutX_HS bit. For example, 2-GHz VCO frequency results in 250-ps coarse tuning steps.  
9.1.8.5 Programmable Output Formats  
For increased flexibility LMK04228 device and SYSREF clock outputs, DCLKoutX and SDCLKoutY, can be  
programmed to an LVDS or LVPECL output type. The OSCout can be programmed to an LVDS, LVPECL, or  
LVCMOS output type.  
Any LVPECL output type can be programmed to 1600- or 2000-mVpp amplitude levels. The 2000-mVpp  
LVPECL output type is a Texas Instruments proprietary configuration that produces a 2000-mVpp differential  
swing for compatibility with many data converters and is also known as 2VPECL.  
9.1.8.6 Clock Output Synchronization  
Using the SYNC input causes all active clock outputs to share a rising edge as programmed by fixed digital  
delay.  
The SYNC event must occur for digital delay values to take effect.  
9.1.9 Status Pins  
The LMK04228 provides status pins which can be monitored for feedback or in some cases used for input  
depending upon device programming. For example:  
The CLKin_SEL0 pin may indicate the LOS (loss-of-signal) for CLKin0.  
The CLKin_SEL1 pin may be an input for selecting the active clock input.  
The Status_LD1 pin may indicate if the device is locked.  
The Status_LD2 pin may indicate if PLL2 is locked.  
The status pins can be programmed to a variety of other outputs including PLL divider outputs, combined PLL  
lock detect signals, PLL1 Vtune railing, readback, and other internal status signals. Refer to the Programming  
section of this data sheet for more information.  
Copyright © 2017–2019, Texas Instruments Incorporated  
19  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.2 Functional Block Diagrams  
Figure 4 illustrate the complete LMK04228 block diagram.  
CLKin0 R  
CLKin0*  
Status_LD1  
Status_LD2  
RESET/GPO  
SYNC  
Divider  
(1 to 1,023)  
CLKin0  
R Delay  
N Delay  
CLKin  
MUX  
Device  
Control  
Phase  
Detector  
PLL1  
CLKin_SEL0  
CLKin_SEL1  
CLKin1*  
CLKin1  
CLKin1 R  
Divider  
(1 to 1,023)  
N1 Divider  
(1 to 16,383)  
SCLK  
CLKin2 R  
Divider  
(1 to 1,023)  
Control  
Registers  
SPI  
SDIO  
CS*  
Holdover  
2X  
Partially  
Integrated  
Loop Filter  
2X  
Mux  
R2 Divider  
(1 to 31)  
Internal Dual  
Core VCO  
Phase  
Detector  
PLL2  
OSCout/  
CLKin2  
N2 Prescaler  
(2 to 8)  
N2 Divider  
(1 to 255)  
OSCout*/  
CLKin2*  
SPI  
Selectable  
Clock Distribution Path  
VCO  
MUX  
OSCin*  
OSCin  
Div (1-32)  
Dig. Delay  
Dig. Delay  
Dig. Delay  
Dig. Delay  
Dig. Delay  
DCLKout12*  
DCLKout12  
A. Delay  
A. Delay  
Divider  
(8 to 8191)  
System Reference  
Control  
SDCLKout13*  
SDCLKout13  
SYNC  
Dig. Delay  
Dig. Delay  
Dig. Delay  
Div (1-32)  
DCLKout0  
Div (1-32)  
DCLKout10*  
DCLKout10  
DCLKout0*  
A. Delay  
A. Delay  
A. Delay  
SDCLKout1  
SDCLKout1*  
SDCLKout11*  
SDCLKout11  
A. Delay  
Div (1-32)  
DCLKout2  
DCLKout2*  
Div (1-32)  
DCLKout8  
DCLKout8*  
A. Delay  
A. Delay  
A. Delay  
A. Delay  
A. Delay  
A. Delay  
A. Delay  
A. Delay  
SDCLKout3  
SDCLKout3*  
Dig. Delay  
Dig. Delay  
SDCLKout9  
SDCLKout9*  
Dig. Delay  
Dig. Delay  
Div (1-32)  
DCLKout4  
DCLKout4*  
Div (1-32)  
DCLKout6  
DCLKout6*  
SDCLKout5  
SDCLKout5*  
Dig. Delay  
SDCLKout7  
SDCLKout7*  
Dig. Delay  
Figure 4. Detailed LMK04228 Block Diagram  
20  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
Functional Block Diagrams (continued)  
DCLKoutX_DDLY_PD  
DCLKoutX_ADLY_PD  
DCLKout0, 2, 4, 6, 8, 10, 12  
VCO  
DDLY Divider  
(4 to 32) (1 to 32)  
HS/  
DCC  
DCLKoutX  
_MUX  
DCLKoutX_  
FMT  
DCLKoutX  
_ADLY  
_MUX  
Analog  
DLY  
CLKoutX_Y_ODL  
SYNC_  
1SHOT_EN  
CLKoutX_Y_IDL  
SYSREF_GBL_PD  
SDCLKoutY_DIS_MODE  
One  
Shot  
SDCLKoutY  
_POL  
SYNC_  
DISX  
SDCLKoutY_PD  
SDCLKoutY  
_MUX  
SDCLKoutY_  
FMT  
SDCLKoutY  
_ADLY_EN  
SYSREF/SYNC  
Digital  
DLY  
Half  
Step  
Analog  
DLY  
SDCLKout1, 3, 5, 7, 9, 11, 13  
CLKoutX_Y_PD  
Legend  
SYSREF/SYNC Clock  
SYSREF_CLR  
SPI Register  
VCO/Distribution Clock  
Copyright © 2017, Texas Instruments Incorporated  
Figure 5. Device and SYSREF Clock Output Block  
Copyright © 2017–2019, Texas Instruments Incorporated  
21  
 
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
Functional Block Diagrams (continued)  
SPI Register: SYNC_EN  
Must be set to enable any  
SYNC/SYSREF functionality  
CLKin0  
_OUT  
_MUX  
CLKin0  
PLL1  
SYNC_PLL1_DLD  
PLL1_DLD  
SYNC_PLL2_DLD  
PLL2_DLD  
SYSREF_REQ_EN  
D
D
Dist. Path  
SYNC  
SYNC  
_MODE  
SYSREF  
_MUX  
SYNC  
_POL  
PULSER MODE  
Pulser  
SYSREF_PULSE_CNT  
VCO0  
VCO  
SYSREF_PLSR_PD  
SYSREF  
_CLKin0  
_MUX  
Dist. Path  
SYSREF SYSREF  
DDLY Divider  
_MUX  
VCO1  
SYNC/SYSREF  
SYSREF_PD  
SYSREF_DDLY_PD  
OSCout  
Buffer  
OSCin  
SYNC_  
DISSYSREF  
OSCout  
DCLKout0, 2, 4, 6, 8, 10, 12  
VCO Frequency  
SYSREF/SYNC  
DDLY  
3.5 to 32  
Divider  
1 to 32  
Analog  
DLY  
Output  
DCC  
Buffer  
SYNC_  
DISX  
Digital  
DLY  
Analog  
DLY  
Output  
Buffer  
Legend  
SYSREF_CLR  
SYSREF/SYNC Clock  
VCO/Distribution Clock  
SPI Register  
SDCLKout1, 3, 5, 7, 9, 11, 13  
Copyright © 2017, Texas Instruments Incorporated  
Figure 6. SYNC/SYSREF Clocking Paths  
22  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.3 Feature Description  
9.3.1 SYNC/SYSREF  
The SYNC and SYSREF signals share the same clocking path. To properly use SYNC and SYSREF for  
JESD204B, it is important to understand the SYNC/SYSREF system. Figure 5 illustrates the detailed diagram of  
a clock output block with SYNC circuitry included. Figure 6 illustrates the interconnects and highlights some  
important registers used in controlling the device for SYNC/SYSREF purposes.  
To reset or synchronize a divider, the following conditions must be met:  
1. SYNC_EN must be set. This ensures proper operation of the SYNC circuitry.  
2. SYSREF_MUX and SYNC_MODE must be set to a proper combination to provide a valid SYNC/SYSREF  
signal.  
If SYSREF block is being used, the SYSREF_PD bit must be clear.  
If the SYSREF Pulser is being used, the SYSREF_PLSR_PD bit must be clear.  
3. For each SDCLKoutY being used for SYSREF, respective SDCLKoutY_PD bits must be cleared.  
4. SYSREF_DDLY_PD and DCLKoutX_DDLY_PD bits must be clear to power up the digital delay circuitry  
during SYNC as use requires.  
5. The SYNC_DISX bit must be clear to allow SYNC/SYSREF signal to divider circuit. The SYSREF_MUX  
register selects the SYNC source which resets the SYSREF/CLKoutX dividers provided the corresponding  
SYNC_DISX bit is clear.  
6. Other bits which impact the operation of SYNC such as SYNC_1SHOT_EN may be set as desired.  
Table 2 illustrates the some possible combinations of SYSREF_MUX and SYNC_MODE.  
Table 2. Some Possible SYNC Configurations  
NAME  
SYNC_MODE  
SYSREF_MUX  
OTHER  
DESCRIPTION  
No SYNC will occur.  
SYNC Disabled  
0
0
CLKin0_OUT_MUX 0  
Basic SYNC functionality, SYNC pin polarity is  
selected by SYNC_POL.  
To achieve SYNC through SPI, toggle the  
SYNC_POL bit.  
Pin or SPI SYNC  
1
0
CLKin0_OUT_MUX 0  
Differential input  
SYNC  
0 or 1  
2
0 or 1  
2
CLKin0_OUT_MUX = 0  
Differential CLKin0 now operates as SYNC input.  
Produce SYSREF_PULSE_CNT programmed  
number of pulses on pin transition. SYNC_POL can  
be used to cause SYNC through SPI.  
JESD204B Pulser  
on pin transition.  
SYSREF_PULSE_CNT  
sets pulse count  
JESD204B Pulser  
on SPI  
programming.  
SYSREF_PULSE_CNT  
sets pulse count  
Programming SYSREF_PULSE_CNT register starts  
sending the number of pulses.  
3
1
2
1
SYSREF operational,  
SYSREF Divider as  
required for training frame for non-JESD converters such as LM97600.  
size.  
Allows precise SYNC for n-bit frame training patterns  
Re-clocked SYNC  
When SYNC pin is asserted, continuous SYSERF  
External SYSREF  
request  
SYSREF_REQ_EN = 1  
Pulser powered up  
pulses occur. Turning on and off of the pulses is  
synchronized to prevent runt pulses from occurring on  
SYSREF.  
0
2
3
SYSREF_PD = 0  
SYSREF_DDLY_PD = 0  
Continuous  
SYSREF  
X
Continuous SYSREF signal.  
SYSREF_PLSR_PD = 1  
(1)  
(1) SDCLKoutY_PD = 0 as required per SYSREF output. This applies to any SYNC or SYSREF output on SDCLKoutY when  
SDCLKoutY_MUX = 1 (SYSREF output)  
Copyright © 2017–2019, Texas Instruments Incorporated  
23  
 
 
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
Feature Description (continued)  
Table 2. Some Possible SYNC Configurations (continued)  
NAME  
SYNC_MODE  
SYSREF_MUX  
OTHER  
DESCRIPTION  
CLKin0_OUT_MUX = 0  
SDCLKoutY_DDLY = 0  
(Local sysref DDLY  
bypassed)  
SYSREF_DDLY_PD = 1  
SYSREF_PLSR_PD = 1  
SYSREF_PD = 1.  
Direct SYSREF  
distribution  
A direct fan-out of SYSREF with no reclocking to  
clock distribution path.  
0
0
9.3.2 JEDEC JESD204B  
9.3.2.1 How to Enable SYSREF  
Table 3 summarizes the bits needed to make SYSREF functionality operational.  
Table 3. SYSREF Bits  
REGIS  
TER  
FIELD  
VALUE  
DESCRIPTION  
Must be clear, power-up SYSREF circuitry.  
0x140  
SYSREF_PD  
0
0
1
SYSREF_DDLY_  
PD  
0x140  
0x143  
Must be clear to power-up digital delay circuitry during initial SYNC to ensure deterministic timing.  
Must be set, enable SYNC.  
SYNC_EN  
Do not hold local SYSREF DDLY block in reset except at start.  
Anytime SYSREF_PD = 1 because of user programming or device RESET, it is necessary to set  
SYSREF_CLR for 15 VCO clock cycles to clear the local SYSREF digital delay. Once cleared,  
SYSREF_CLR must be cleared to allow SYSREF to operate.  
0x143  
SYSREF_CLR  
1 0  
Enabling JESD204B operation involves synchronizing all the clock dividers with the SYSREF divider, then  
configuring the actual SYSREF functionality.  
9.3.2.1.1 Setup of SYSREF Example  
The following procedure is a programming example for a system which is to operate with a 3000-MHz VCO  
frequency. Use DCLKout0 and DCLKout2 to drive converters at 750 MHz. Use DCLKout4 to drive an FPGA at  
150 MHz. Synchronize the converters and FPGA using a two SYSREF pulses at 10 MHz.  
1. Program registers 0x000 to 0x1fff as desired. Key to prepare for SYSREF operations:  
a. Prepare for manual SYNC: SYNC_POL = 0, SYNC_MODE = 1, SYSREF_MUX = 0  
b. Setup output dividers as per example: DCLKout0_DIV and DCLKout2_DIV = 4 for frequency of 750 MHz.  
DCLKout4_DIV = 20 for frequency of 150 MHz.  
c. Setup output dividers as per example: SYSREF_DIV = 300 for 10 MHz SYSREF  
d. Setup SYSREF: SYSREF_PD  
=
0, SYSREF_DDLY_PD  
=
0, DCLKout0_DDLY_PD  
=
0,  
DCLKout2_DDLY_PD = 0, DCLKout4_DDLY_PD = 0, SYNC_EN = 1, SYSREF_PLSR_PD = 0,  
SYSREF_PULSE_CNT = 1 (2 pulses). SDCLKout1_PD = 0, SDCLKout3_PD = 0”  
e. Clear Local SYSREF DDLY: SYSREF_CLR = 1.  
2. Establish deterministic phase relationships between SYSREF and Device Clock for JESD204B:  
a. Set device clock and SYSREF divider digital delays: DCLKout0_DDLY_CNTH, DCLKout0_DDLY_CNTL,  
DCLKout2_DDLY_CNTH, DCLKout2_DDLY_CNTL, DCLKout4_DDLY_CNTH, DCLKout4_DDLY_CNTL,  
SYSREF_DDLY.  
b. Set device clock digital delay half steps: DCLKout0_HS, DCLKout2_HS, DCLKout4_HS.  
c. Set SYSREF clock digital delay as required to achieve known phase relationships: SDCLKout1_DDLY,  
SDCLKout3_DDLY, SDCLKout5_DDLY.  
d. To allow SYNC to effect dividers: SYNC_DIS0  
SYNC_DISSYSREF = 0  
= 0, SYNC_DIS2 = 0, SYNC_DIS4 = 0,  
e. Perform SYNC by toggling SYNC_POL = 1 then SYNC_POL = 0.  
24  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
3. Now that dividers are synchronized, disable SYNC from resetting these dividers. It is not desired for  
SYSREF to reset its own divider or the dividers of the output clocks.  
a. Prevent SYNC (SYSREF) from affecting dividers: SYNC_DIS0 = 1, SYNC_DIS2 = 1, SYNC_DIS4 = 1,  
SYNC_DISSYSREF = 1.  
4. Release reset of local SYSREF digital delay.  
a. SYSREF_CLR = 0. Note this bit needs to be set for only 15 VCO clocks after SYSREF_PD = 0.  
5. Set SYSREF operation.  
a. Allow pin SYNC event to start pulser: SYNC_MODE = 2.  
b. Select pulser as SYSREF signal: SYSREF_MUX = 2.  
6. Complete! Now asserting the SYNC pin, or toggling SYNC_POL will result in a series of 2 SYSREF pulses.  
9.3.2.1.2 SYSREF_CLR  
The local digital delay of the SDCLKout is implemented as a shift buffer. To ensure no unwanted pulses occur at  
this SYSREF output at start-up, when using SYSREF, requires clearing the buffers by setting SYSREF_CLR = 1  
for 15 VCO clock cycles. After a reset, this bit is set, so it must be cleared before SYSREF output is used.  
9.3.2.2 SYSREF Modes  
9.3.2.2.1 SYSREF Pulser  
This mode allows for the output of 1, 2, 4, or 8 SYSREF pulses for every SYNC pin event or SPI programming.  
This implements the gapped periodic functionality of the JEDEC JESD204B specification.  
When in SYSREF Pulser mode, programming the field SYSREF_PULSE_CNT in register 0x13E will result in the  
pulser sending the programmed number of pulses.  
9.3.2.2.2 Continuous SYSREF  
This mode allows for continuous output of the SYSREF clock.  
Continuous operation of SYSREF is not recommended due to crosstalk from the SYSREF clock to device clock.  
JESD204B is designed to operate with a single burst of pulses to initialize the system at start-up, after which it is  
theoretically not required to send another SYSREF because the system will continue to operate with  
deterministic phases.  
If continuous operation of SYSREF is required, consider using a SYSREF output from a non-adjacent output or  
SYSREF from the OSCout pin to minimize crosstalk.  
9.3.2.2.3 SYSREF Request  
This mode allows an external source to synchronously turn on or off a continuous stream of SYSREF pulses  
using the SYNC/SYSREF_REQ pin.  
Set up the mode by programming SYSREF_REQ_EN = 1 and SYSREF_MUX = 2 (Pulser). The pulser does not  
need to be powered for this mode of operation.  
When the SYSREF_REQ pin is asserted, the SYSREF_MUX will synchronously be set to continuous mode  
providing continuous pulses at the SYSREF frequency until the SYSREF_REQ pin is unasserted and the final  
SYSREF pulse will complete sending synchronously.  
Copyright © 2017–2019, Texas Instruments Incorporated  
25  
 
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.3.3 Digital Delay  
Digital (coarse) delay allows a group of outputs to be delayed by 4 to 32 VCO cycles. The delay step can be as  
small as half the period of the VCO cycle by using the DCLKoutX_HS bit. It is fixed digital delay.  
The regular clock divider is substituted with an alternative divide value. The substitute divide value consists of  
two values, DCLKoutX_DDLY_CNTH and DCLKoutX_DDLY_CNTL. The minimum _CNTH/_CNTL value is 2 and  
the maximum _CNTH/_CNTL value is 16. This will result in a minimum alternative divide value of 4 and a  
maximum of 32.  
9.3.3.1 Fixed Digital Delay  
Fixed digital delay value takes effect on the clock outputs after a SYNC event. As such, the outputs will be LOW  
for a while during the SYNC event.  
9.3.3.1.1 Fixed Digital Delay Example  
Assuming the device already has the following initial configurations, and the application should delay DCLKout2  
by one VCO cycle compared to DCLKout0.  
VCO frequency = 2949.12 MHz  
DCLKout0 = 368.64 MHz (DCLKout0_DIV = 8)  
DCLKout2 = 368.64 MHz (DCLKout2_DIV = 8)  
The following steps should be followed  
1. Set DCLKout0_DDLY_CNTH = 4 and DCLKout2_DDLY_CNTH = 4. First part of delay for each clock.  
2. Set DCLKout0_DDLY_CNTL = 4 and DCLKout2_DDLY_CNTL = 5. Second part of delay for each clock.  
3. Set DCLKout2_DDLY_PD = 0 and DCLKout2_DDLY_PD = 0. Power up the digital delay circuit.  
4. Set SYNC_DIS0 = 0 and SYNC_DIS2 = 0. Allow the output to be synchronized.  
5. Perform SYNC by asserting, then unasserting SYNC. Either by using SYNC_POL bit or the SYNC pin.  
6. Power down DCLKout2_DDLY_PD = 0 and/or DCLKout2_DDLY_PD = 1 to save power now that the SYNC  
is complete.  
7. Set SYNC_DIS0 = 1 and SYNC_DIS2 = 1 to prevent the output from being synchronized; this step is very  
important for steady-state operation when using JESD204B.  
No CLKout during SYNC  
DCLKout0  
368.64 MHz  
DCLKout2  
368.64 MHz  
SYNC event  
1 VCO cycle delay  
Figure 7. Fixed Digital Delay Example  
Table 4 shows the recommended DCLKoutX_DDLY_CNTH and DCLKoutX_DDLY_CNTL alternate divide setting  
for delay by one VCO cycle. The clock will output high during the DCLKoutX_DDLY_CNTH time to permit a  
continuous output clock. The clock output will be low during the DCLKoutX_DDLY_CNTL time.  
26  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
Table 4. Recommended DCLKoutX_DDLY_CNTH/_CNTL Values for Delay by One VCO Cycle  
CLOCK DIVIDER  
_CNTH  
_CNTL  
CLOCK DIVIDER  
_CNTH  
9
_CNTL  
9
2
3
2
3
2
3
3
4
4
5
5
6
6
7
7
8
8
3
4
3
3
4
4
5
5
6
6
7
7
8
8
9
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
9
10  
4
10  
10  
5
10  
11  
6
11  
11  
7
11  
12  
8
12  
12  
9
12  
13  
10  
11  
12  
13  
14  
15  
16  
13  
13  
13  
14  
14  
14  
14  
15  
15  
15  
15  
16(1)  
16(1)  
16(1)  
(1) To achieve _CNTH/_CNTL value of 16, 0 must be programmed into the _CNTH/_CNTL field.  
9.3.4 SYSREF to Device Clock Alignment  
To ensure proper JESD204B operation, the timing relationship between the SYSREF and the Device clock must  
be adjusted for optimum setup and hold time. The tsJESD204B defines the time between SYSREF and Device  
Clock for a specific condition of SYSREF divider and Device Clock digital delay. From this point, the  
SYSREF_DDLY. SDCLKoutY_DDLY, DCLKoutX_DDLY_CNTH, DCLKoutDDLY_CNTL, and DCLKoutX_MUX,  
SDCKLoutX_ADLY, and so forth, can be adjusted to provide the required setup and hold time between SYSREF  
and Device Clock.  
It is possible to digitally adjust the SYSREF up to 20 VCO cycles before the SYSREF. So for example with a  
2949.12-MHz VCO frequency, tsJESD204B + 20 × (1/VCO Frequency) = –80 ps + 20 × (1/2949.12 MHz) = 6.7 ns.  
9.3.5 Input Clock Switching  
Manual, pin select, and automatic are three different kinds clock input switching modes can be set with the  
CLKin_SEL_MODE register.  
The following subsections have information about how the active input clock is selected and what causes a  
switching event in the various clock input selection modes.  
9.3.5.1 Input Clock Switching - Manual Mode  
When CLKin_SEL_MODE is 0, 1, or 2 then CLKin0, CLKin1, or CLKin2, respectively, is always selected as the  
active input clock. Manual mode will also override the EN_CLKinX bits such that the CLKinX buffer will operate  
even if CLKinX is disabled with EN_CLKinX = 0.  
If holdover is entered in this mode, then the device will relock to the selected CLKin upon holdover exit.  
9.3.5.2 Input Clock Switching - Pin Select Mode  
When CLKin_SEL_MODE is 3, the pins CLKin_SEL0 and CLKin_SEL1 select which clock input is active.  
9.3.5.2.1 Configuring Pin Select Mode  
The CLKin_SEL0_TYPE must be programmed to an input value for the CLKin_SEL0 pin to function as an input  
for pin select mode.  
The CLKin_SEL1_TYPE must be programmed to an input value for the CLKin_SEL1 pin to function as an input  
for pin select mode.  
If the CLKin_SELX_TYPE is set as output, the pin input value is considered Low.  
Copyright © 2017–2019, Texas Instruments Incorporated  
27  
 
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
The polarity of CLKin_SEL0 and CLKin_SEL1 input pins can be inverted with the CLKin_SEL_INV bit.  
Table 5 defines which input clock is active depending on CLKin_SEL0 and CLKin_SEL1 state.  
Table 5. Active Clock Input - Pin Select Mode, CLKin_SEL_INV = 0  
PIN CLKin_SEL1  
PIN CLKin_SEL0  
ACTIVE CLOCK  
CLKin0  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
CLKin1  
CLKin2  
Holdover  
The pin select mode will override the EN_CLKinX bits such that the CLKinX buffer will operate even if CLKinX is  
disabled with EN_CLKinX = 0. To switch as fast as possible, keep the clock input buffers enabled (EN_CLKinX =  
1) that could be switched to.  
9.3.5.3 Input Clock Switching - Automatic Mode  
When CLKin_SEL_MODE is 4, the active clock is selected in round-robin order of enabled clock inputs starting  
upon an input clock switch event. The switching order of the clocks is CLKin0 CLKin1 CLKin2 CLKin0,  
and so forth.  
For a clock input to be eligible to be switched through, it must be enabled using EN_CLKinX.  
9.3.5.3.1 Starting Active Clock  
Upon programming this mode, the currently active clock remains active if PLL1 lock detect is high. To ensure a  
particular clock input is the active clock when starting this mode, program CLKin_SEL_MODE to the manual  
mode which selects the desired clock input (CLKin0, 1, or 2). Wait for PLL1 to lock PLL1_DLD = 1, then select  
this mode with CLKin_SEL_MODE = 4.  
28  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.3.6 Digital Lock Detect  
Both PLL1 and PLL2 support digital lock detect. Digital lock detect compares the phase between the reference  
path (R) and the feedback path (N) of the PLL. When the time error (and therefore the phase error) between the  
two signals is less than a window size (ε) specified by PLL1_WND_SIZE and PLL2_WND_SIZE, a lock detect  
count increments. When the lock detect count reaches a user specified value, PLL1_DLD_CNT or  
PLL2_DLD_CNT, lock detect is asserted true. Once digital lock detect is true, a single phase comparison outside  
the specified window will cause digital lock detect to be asserted false. This is illustrated in Figure 8.  
NO  
NO  
PLLX  
Lock Detected = False  
Lock Count = 0  
YES  
YES  
Increment  
PLLX Lock Count  
PLLX  
Lock Detected = True  
PLLX Lock Count =  
PLLX_DLD_CNT  
START  
Phase Error < g  
Phase Error < g  
YES  
NO  
Figure 8. Digital Lock Detect Flowchart  
This incremental lock detect count feature functions as a digital filter to ensure that lock detect isn't asserted for  
only a brief time when the phases of R and N are within the specified tolerance for only a brief time during initial  
phase lock.  
See Digital Lock Detect Frequency Accuracy for more detailed information on programming the registers to  
achieve a specified frequency accuracy in ppm with lock detect.  
The digital lock detect signal can be monitored on the Status_LD1 or Status_LD2 pin. The pin may be  
programmed to output the status of lock detect for PLL1, PLL2, or both PLL1 and PLL2.  
NOTE  
In cases where the period of the phase detector frequency approaches the value of the  
default PLL1_WND_SIZE increment (40 ns), the lock detect circuit will not function with  
the default value of PLL1_WND_SIZE. For phase detector frequencies at or above 25  
MHz, TI recommends setting PLL1_WND_SIZE to 0x02 (19 ns) or a smaller value.  
9.3.6.1 Calculating Digital Lock Detect Frequency Accuracy  
See Digital Lock Detect Frequency Accuracy for more detailed information on programming the registers to  
achieve a specified frequency accuracy in ppm with lock detect.  
The digital lock detect feature can also be used with holdover to automatically exit holdover mode. See Exiting  
Holdover for more information.  
9.3.7 Holdover  
Holdover mode causes PLL2 to stay locked on frequency with minimal frequency drift when an input clock  
reference to PLL1 becomes invalid. While in holdover mode, the PLL1 charge pump is TRI-STATED and a fixed  
tuning voltage is set on CPout1 to operate PLL1 in open-loop.  
9.3.7.1 Enable Holdover  
Program HOLDOVER_EN = 1 to enable holdover mode.  
Holdover mode can be configured to set the CPout1 voltage upon holdover entry to a fixed user defined voltage  
or a tracked voltage.  
9.3.7.1.1 Fixed (Manual) CPout1 Holdover Mode  
By programming MAN_DAC_EN = 1, then the MAN_DAC value will be set on the CPout1 pin during holdover.  
The user can optionally enable CPout1 voltage tracking (TRACK_EN = 1), read back the tracked DAC value,  
then reprogram MAN_DAC value to a user desired value based on information from previous DAC read backs.  
This allows the most user control over the holdover CPout1 voltage, but also requires more user intervention.  
Copyright © 2017–2019, Texas Instruments Incorporated  
29  
 
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.3.7.1.2 Tracked CPout1 Holdover Mode  
By programming MAN_DAC_EN = 0 and TRACK_EN = 1, the tracked voltage of CPout1 will be set on the  
CPout1 pin during holdover. When the DAC has acquired the current CPout1 voltage, the DAC_Locked signal is  
set which may be observed on Status_LD1 or Status_LD2 pins by programming PLL1_LD_MUX or  
PLL2_LD_MUX respectively.  
Updates to the DAC value for the Tracked CPout1 sub-mode occurs at the rate of the PLL1 phase detector  
frequency divided by (DAC_CLK_MULT × DAC_CLK_CNTR).  
The DAC update rate should be programmed for 100 kHz to ensure DAC holdover accuracy.  
The ability to program slow DAC update rates, for example one DAC update per 4.08 seconds when using 1024-  
kHz PLL1 phase detector frequency with DAC_CLK_MULT = 16,384 and DAC_CLK_CNTR = 255, allows the  
device to look-back and set CPout1 at the previous good CPout1 tuning voltage values before the event which  
caused holdover to occur.  
The current voltage of DAC value can be read back using RB_DAC_VALUE, see RB_DAC_VALUE.  
9.3.7.2 During Holdover  
PLL1 is run in open-loop mode.  
PLL1 charge pump is set to TRI-STATE.  
PLL1 DLD will be unasserted.  
The HOLDOVER status is asserted  
During holdover If PLL2 was locked prior to entry of holdover mode, PLL2 DLD will continue to be asserted.  
CPout1 voltage will be set to:  
a voltage set in the MAN_DAC register (MAN_DAC_EN = 1).  
a voltage determined to be the last valid CPout1 voltage (MAN_DAC_EN = 0).  
PLL1 will attempt to lock with the active clock input.  
The HOLDOVER status signal can be monitored on the Status_LD1 or Status_LD2 pin by programming the  
PLL1_DLD_MUX or PLL2_DLD_MUX register to Holdover Status.  
9.3.7.3 Exiting Holdover  
Holdover mode can be exited in one of two ways.  
Manually by programming the device from the host.  
Automatically by a clock operating within a specified ppm of the current PLL1 frequency on the active clock  
input.  
9.3.7.4 Holdover Frequency Accuracy and DAC Performance  
When in holdover mode, PLL1 will run in open-loop and the DAC will set the CPout1 voltage. If Fixed CPout1  
mode is used, then the output of the DAC will be a voltage dependant upon the MAN_DAC register. If Tracked  
CPout1 mode is used, then the output of the DAC will be the voltage at the CPout1 pin before holdover mode  
was entered. When using Tracked mode and MAN_DAC_EN = 1, during holdover the DAC value is loaded with  
the programmed value in MAN_DAC, not the tracked value.  
When in Tracked CPout1 mode, the DAC has a worst-case tracking error of ±2 LSBs once PLL1 tuning voltage  
is acquired. The step size is approximately 3.2 mV, therefore the VCXO frequency error during holdover mode  
caused by the DAC tracking accuracy is ±6.4 mV × Kv, where Kv is the tuning sensitivity of the VCXO in use.  
Therefore, the accuracy of the system when in holdover mode in ppm is:  
6.4 mV × Kv × 1e6  
Holdover accuracy (ppm) =  
VCXO Frequency  
(1)  
Example: consider a system with a 19.2-MHz clock input, a 153.6-MHz VCXO with a Kv of 17 kHz/V. The  
accuracy of the system in holdover in ppm is:  
±0.71 ppm = ±6.4 mV × 17 kHz/V × 1e6 / 153.6 MHz  
(2)  
Take this frequency error into account when determining the allowable frequency error window to cause holdover  
mode to exit.  
30  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.3.7.5 Holdover Mode - Automatic Exit of Holdover  
The LMK048xx device can be programmed to automatically exit holdover mode when the accuracy of the  
frequency on the active clock input achieves a specified accuracy. The programmable variables include  
PLL1_WND_SIZE and DLD_HOLD_CNT.  
See Digital Lock Detect Frequency Accuracy to calculate the register values to cause holdover to automatically  
exit upon reference signal recovery to within a user specified ppm error of the holdover frequency.  
It is possible for the time to exit holdover to vary because the condition for automatic holdover exit is for the  
reference and feedback signals to have a time and phase error less than a programmable value. Because it is  
possible for two clock signals to be very close in frequency but not close in phase, it may take a long time for the  
phases of the clocks to align themselves within the allowable time and phase error before holdover exits.  
Copyright © 2017–2019, Texas Instruments Incorporated  
31  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.4 Programming  
LMK04228 devices are programmed using 24-bit registers. Each register consists of a 1-bit command field  
(R/W), a 2-bit multi-byte field (W1, W0), a 13-bit address field (A12 to A0) and a 8-bit data field (D7 to D0). The  
contents of each register is clocked in MSB first (R/W), and the LSB (D0) last. During programming, the CS*  
signal is held low. The serial data is clocked in on the rising edge of the SCK signal. After the LSB is clocked in,  
the CS* signal goes high to latch the contents into the shift register. It is recommended to program registers in  
numeric order -- for example, 0x000 to 0x1FFF -- to achieve proper device operation. Each register consists of  
one or more fields which control the device functionality. See electrical characteristics and Figure 1 for timing  
details.  
R/W bit = 0 is for SPI write. R/W bit = 1 is for SPI read.  
W1 and W0 shall be written as 0.  
9.4.1 Recommended Programming Sequence  
Registers are programmed in numeric order with 0x000 being the first and 0x1FFF being the last register  
programmed. TI recommends the following programming sequence:  
1. Program register 0x000 with RESET = 1.  
2. Program registers in ascending order from 0x000 to 0x165. Unused or unchanged registers can be skipped,  
and will remain at default POR values.  
3. Program register 0x171 to 0xAA and 0x172 to 0x02.  
4. Program registers 0x17C and 0x17D.  
5. Program registers 0x166 to 0x1FFF.  
Program register 0x17C (OPT_REG_1) and 0x17D (OPT_REG_2) before programming PLL2 in registers: 0x166,  
0x167, and 0x168 to optimize VCO1 phase noise performance over temperature.  
9.4.1.1 SPI LOCK  
When writing to SPI_LOCK, registers 0x1FFD, 0x1FFE, and 0x1FFF should all always be written sequentially.  
9.4.1.2 SYSREF_CLR  
When using SYSREF output, SYSREF local digital delay block should be cleared using SYSREF_CLR bit. See  
SYSREF_CLR for more information.  
32  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.5 Register Maps  
9.5.1 Register Map for Device Programming  
Table 6 provides the register map for device programming. Any register can be read from the same data address  
it is written to.  
Table 6. LMK04228 Register Map  
ADDRESS  
[20:8]  
DATA  
7
6
5
4
3
2
1
0
SPI_3WIRE  
_DIS  
0x000  
0x002  
RESET  
0
0
0
0
0
0
POWER  
DOWN  
0
0
0
0
0
0
0
0x003  
0x004  
0x005  
0x006  
0x00C  
0x00D  
ID_DEVICE_TYPE  
ID_PROD[15:8]  
ID_PROD[7:0]  
ID_MASKREV  
ID_VNDR[15:8]  
ID_VNDR[7:0]  
CLKout0_1  
_ODL  
CLKout0_1  
_IDL  
0x100  
0x101  
0x103  
0
DCLKout0_DIV  
DCLKout0_DDLY_CNTH  
DCLKout0_ADLY  
SDCLKout1  
DCLKout0_DDLY_CNTL  
DCLKout0_  
DCLKout0_MUX  
ADLY_MUX  
SDCLKout1_DDLY  
SDCLKout1_ADLY  
SDCLKout1_DIS_MODE  
CLKout0_FMT  
DCLKout0  
_HS  
SDCLKout1  
_HS  
0x104  
0x105  
0x106  
0x107  
0
0
_MUX  
SDCLKout1_  
ADLY_EN  
0
0
CLKout0_1  
_PD  
SDCLKout1  
_PD  
DCLKout0  
_ DDLY_PD  
DCLKout0  
_ADLY _PD  
1
1
SDCLKout1  
_POL  
DCLKout0  
_POL  
CLKout1_FMT  
CLKout2_3  
_ODL  
CLKout2_3  
_IDL  
0x108  
0x109  
0x10B  
0
DCLKout2_DIV  
DCLKout2_DDLY_CNTH  
DCLKout2_ADLY  
SDCLKout3  
DCLKout2_DDLY_CNTL  
DCLKout2_  
DCLKout2_MUX  
ADLY_MUX  
SDCLKout3_DDLY  
SDCLKout3_ADLY  
SDCLKout3_DIS_MODE  
CLKout2_FMT  
DCLKout2  
_HS  
SDCLKout3  
_HS  
0x10C  
0x10D  
0x10E  
0x10F  
0
0
_MUX  
SDCLKout3  
_ ADLY_EN  
0
0
DCLKout2  
_ DDLY_PD  
DCLKout2  
_ADLY _PD  
CLKout2_3  
_PD  
SDCLKout3  
_PD  
1
1
SDCLKout3  
_POL  
DCLKout2  
_POL  
CLKout3_FMT  
CLKout4_5  
_ODL  
CLKout4_5  
_IDL  
0x110  
0x111  
0x113  
0
DCLKout4_DIV  
DCLKout4_DDLY_CNTH  
DCLKout4_ADLY  
SDCLKout5  
DCLKout4_DDLY_CNTL  
DCLKout4_  
DCLKout4_MUX  
ADLY_MUX  
SDCLKout5_DDLY  
SDCLKout5_ADLY  
SDCLKout5_DIS_MODE  
CLKout4_FMT  
DCLKout4  
_HS  
SDCLKout5  
_HS  
0x114  
0x115  
0x116  
0x117  
0x118  
0
0
_MUX  
SDCLKout5  
_ ADLY_EN  
0
0
DCLKout4  
_ DDLY_PD  
DCLKout4  
_ADLY _PD  
CLKout4_5  
_PD  
SDCLKout5  
_PD  
1
1
SDCLKout5  
_POL  
DCLKout4  
_POL  
CLKout5_FMT  
CLKout6_7  
_ODL  
CLKout6_7  
_IDL  
0
DCLKout6_DIV  
Copyright © 2017–2019, Texas Instruments Incorporated  
33  
 
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 6. LMK04228 Register Map (continued)  
ADDRESS  
[20:8]  
DATA  
7
6
5
4
3
2
1
0
0x119  
DCLKout6_DDLY_CNTH  
DCLKout6_ADLY  
SDCLKout7  
DCLKout6_DDLY_CNTL  
DCLKout6_  
0x11B  
0x11C  
0x11D  
0x11E  
0x11F  
DCLKout6_MUX  
ADLY_MUX  
SDCLKout7_DDLY  
SDCLKout7_ADLY  
SDCLKout7_DIS_MODE  
CLKout6_FMT  
DCLKout6  
_HS  
SDCLKout7  
_HS  
0
0
_MUX  
SDCLKout7  
_ ADLY_EN  
0
0
DCLKout6  
_ DDLY_PD  
DCLKout6  
_ADLY _PD  
CLKout6_7  
_PD  
SDCLKout7  
_PD  
1
1
SDCLKout7  
_POL  
CLKout7  
_FMT  
DCLKout6  
_POL  
CLKout8_9  
_ODL  
CLKout8_9  
_IDL  
0x120  
0x121  
0x123  
0
DCLKout8_DIV  
DCLKout8_DDLY_CNTH  
DCLKout8_ADLY  
SDCLKout9  
DCLKout8_DDLY_CNTL  
DCLKout8  
DCLKout8_MUX  
_ ADLY_MUX  
SDCLKout9_DDLY  
SDCLKout9_ADLY  
SDCLKout9_DIS_MODE  
CLKout8_FMT  
DCLKout8  
_HS  
SDCLKout9  
_HS  
0x124  
0x125  
0x126  
0x127  
0
0
_MUX  
SDCLKout9  
_ ADLY_EN  
0
0
DCLKout8  
_ DDLY_PD  
DCLKout8  
_ADLY _PD  
CLKout8_9  
_PD  
SDCLKout9  
_PD  
1
1
SDCLKout9  
_POL  
DCLKout8  
_POL  
CLKout9_FMT  
CLKout10  
_11 _ODL  
CLKout10  
_11_IDL  
0x128  
0x129  
0x12B  
0
DCLKout10_DIV  
DCLKout10_DDLY_CNTH  
DCLKout10_ADLY  
SDCLKout11  
DCLKout10_DDLY_CNTL  
DCLKout10  
DCLKout10_MUX  
_ ADLY_MUX  
SDCLKout11_DDLY  
SDCLKout11_ADLY  
SDCLKout11_DIS_MODE  
CLKout10_FMT  
DCLKout10  
_HS  
SDCLKout11  
_HS  
0x12C  
0x12D  
0x12E  
0x12F  
0
0
_MUX  
SDCKLout11  
_ ADLY_EN  
0
0
DCLKout10  
_ DDLY_PD  
DCLKout10  
_ ADLY_PD  
CLKout10  
_11_PD  
SDCLKout11  
_PD  
1
1
SDCLKout11  
_POL  
DCLKout10  
_POL  
CLKout11_FMT  
CLKout12  
_13 _ODL  
CLKout12  
_13_IDL  
0x130  
0x131  
0x133  
0
DCLKout12_DIV  
DCLKout12_DDLY_CNTH  
DCLKout12_ADLY  
SDCLKout13  
DCLKout12_DDLY_CNTL  
DCLKout12_  
DCLKout12_MUX  
ADLY_MUX  
SDCLKout13_DDLY  
SDCLKout13_ADLY  
SDCLKout13_DIS_MODE  
CLKout12_FMT  
DCLKout12  
_HS  
SDCLKout13  
_HS  
0x134  
0x135  
0x136  
0
0
_MUX  
SDCLKout13  
_ ADLY_EN  
0
0
DCLKout12  
_ DDLY_PD  
DCLKout12  
_ ADLY_PD  
CLKout12  
_13_PD  
SDCLKout13  
_PD  
1
1
SDCLKout13  
_POL  
DCLKout12  
_POL  
0x137  
0x138  
0x139  
CLKout13_FMT  
0
0
0
VCO_MUX  
0
0
OSCout_FMT  
SYSREF_  
0
0
0
0
0
SYSREF_MUX  
CLKin0_MUX  
0x13A  
0x13B  
0x13C  
0x13D  
SYSREF_DIV[12:8]  
SYSREF_DIV[7:0]  
0
0
0
SYSREF_DDLY[12:8]  
SYSREF_DDLY[7:0]  
34  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
Register Maps (continued)  
Table 6. LMK04228 Register Map (continued)  
ADDRESS  
DATA  
[20:8]  
7
6
5
4
3
2
1
0
0x13E  
0
0
0
0
0
0
SYSREF_PULSE_CNT  
SYSREF_GBL  
_PD  
SYSREF  
_DDLY_PD  
SYSREF  
_PLSR_PD  
0x140  
0x143  
0x144  
PLL1_PD  
VCO_LDO_PD  
VCO_PD  
SYNC_POL  
SYNC_DIS10  
OSCin_PD  
SYNC_EN  
SYNC_DIS8  
SYSREF_PD  
SYSREF_DDLY SYNC_1SHOT  
SYNC_PLL2  
_DLD  
SYNC_PLL1  
_DLD  
SYNC_MODE  
_CLR  
_EN  
SYNC  
_DISSYSREF  
SYNC_DIS12  
SYNC_DIS6  
SYNC_DIS4  
SYNC_DIS2  
SYNC_DIS0  
0x145  
0x146  
0
0
1
1
1
1
1
1
1
0
CLKin2_EN  
CLKin1_EN  
CLKin0_EN  
CLKin2_TYPE  
CLKin1_TYPE  
CLKin0_TYPE  
CLKin_SEL  
_POL  
0x147  
0x148  
0x149  
0x14A  
0x14B  
CLKin_SEL_MODE  
CLKin1_OUT_MUX  
CLKin0_OUT_MUX  
0
0
0
0
CLKin_SEL0_MUX  
CLKin_SEL1_MUX  
RESET_MUX  
CLKin_SEL0_TYPE  
CLKin_SEL1_TYPE  
RESET_TYPE  
SDIO_RDBK  
_TYPE  
0
HOLDOVER  
_ FORCE  
MAN_DAC  
_EN  
LOS_TIMEOUT  
LOS_EN  
TRACK_EN  
MAN_DAC[9:8]  
0x14C  
0x14D  
0x14E  
0x14F  
MAN_DAC[7:0]  
0
0
DAC_TRIP_LOW  
DAC_TRIP_HIGH  
DAC_CLK_MULT  
DAC_CLK_CNTR  
HOLDOVER  
_HITLESS  
_SWITCH  
CLKin  
_OVERRIDE  
HOLDOVER  
_ PLL1_DET  
HOLDOVER  
_LOS _DET  
HOLDOVER  
_VTUNE_DET  
HOLDOVER  
_EN  
0x150  
0
0
0
0x151  
0x152  
0x153  
0x154  
0x155  
0x156  
0x157  
0x158  
0x159  
0x15A  
0
0
0
0
0
HOLDOVER_DLD_CNT[13:8]  
HOLDOVER_DLD_CNT[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CLKin0_R[9:8]  
CLKin0_R[7:0]  
CLKin1_R[7:0]  
CLKin2_R[7:0]  
PLL1_N[7:0]  
CLKin1_R[9:8]  
CLKin2_R[9:8]  
PLL1_N[11:8]  
PLL1  
_CP_TRI  
PLL1  
_CP_POL  
0x15B  
PLL1_WND_SIZE  
PLL1_CP_GAIN  
0x15C  
0x15D  
0x15F  
0x161  
0
0
0
0
PLL1_DLD_CNT[13:8]  
PLL1_DLD_CNT[7:0]  
PLL1_LD_MUX  
0
PLL1_LD_TYPE  
0
PLL2_R[4:0]  
PLL2  
_XTAL_EN  
PLL2  
_REF_2X_EN  
0x162  
PLL2_P  
OSCin_FREQ  
PLL2_FCAL  
_DIS  
0x166  
0x168  
0x169  
0
0
0
0
0
0
PLL2_N[7:0]  
PLL2_CP_GAIN  
PLL2  
_CP_POL  
PLL  
2_CP_TRI  
0
0
PLL2_WND_SIZE  
1
SYSREF_REQ_  
EN  
0x16A  
PLL2_DLD_CNT[15:8]  
0x16B  
0x16C  
0x16D  
0x16E  
PLL2_DLD_CNT[7:0]  
PLL2_LF_R4  
0
0
PLL2_LF_R3  
PLL2_LF_C4  
PLL2_LD_MUX  
PLL2_LF_C3  
PLL2_LD_TYPE  
Copyright © 2017–2019, Texas Instruments Incorporated  
35  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
Register Maps (continued)  
Table 6. LMK04228 Register Map (continued)  
ADDRESS  
[20:8]  
DATA  
7
1
0
0
6
5
4
0
0
0
3
1
0
0
2
0
0
0
1
1
1
0
0
0
0
0
0x171  
0
1
0
0x172  
0
0x173  
PLL2_PRE_PD  
PLL2_PD  
0x17C  
0x17D  
OPT_REG_1  
OPT_REG_2  
RB_PLL1_  
LD_LOST  
CLR_PLL1_  
LD_LOST  
0x182  
0x183  
0
0
0
0
0
0
0
0
0
0
RB_PLL1_LD  
RB_PLL2_LD  
RB_PLL2_  
LD_LOST  
CLR_PLL2_  
LD_LOST  
RB_CLKin2_  
SEL  
RB_CLKin1_  
SEL  
RB_CLKin0_  
SEL  
RB_CLKin1_  
LOS  
RB_CLKin0_  
LOS  
0x184  
0x185  
0x188  
RB_DAC_VALUE[9:8]  
X
RB_DAC_VALUE[7:0]  
RB_  
HOLDOVER  
0
0
0
X
X
X
X
0x1FFD  
0x1FFE  
0x1FFF  
SPI_LOCK[23:16]  
SPI_LOCK[15:8]  
SPI_LOCK[7:0]  
36  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.5.2 Device Register Descriptions  
The following section details the fields of each register, the poweron-reset (POR) defaults, and specific  
descriptions of each bit.  
In some cases similar fields are located in multiple registers. In this case specific outputs may be designated as  
X or Y. In these cases the X will represent even numbers from 0 to 12 and the Y will represent odd numbers  
from 1 to 13. In the case where X and Y are both used in a bit name, then Y = X + 1.  
9.5.2.1 System Functions  
9.5.2.1.1 RESET, SPI_3WIRE_DIS  
This register contains the RESET function.  
Table 7. Register 0x000  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
0: Normal Operation  
1: Reset (automatically cleared)  
7
RESET  
NA  
0
0
6:5  
Reserved  
Disable 3 wire SPI mode. 4 Wire SPI mode is enabled by selecting SPI Read back in one  
of the output MUX settings. For example CLKin0_SEL_MUX.  
0: 3 Wire Mode enabled  
4
SPI_3WIRE_DIS  
NA  
0
1: 3 Wire Mode disabled  
3:0  
NA  
Reserved  
9.5.2.1.2 POWERDOWN  
This register contains the POWERDOWN function.  
Table 8. Register 0x002  
POR  
DEFAULT  
BIT  
7:1  
0
NAME  
NA  
DESCRIPTION  
0
Reserved  
0: Normal Operation  
1: Powerdown  
POWERDOWN  
0
9.5.2.1.3 ID_DEVICE_TYPE  
This register contains the product device type. This is read only register.  
Table 9. Register 0x003  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:0  
ID_DEVICE_TYPE  
6
PLL product device type.  
Copyright © 2017–2019, Texas Instruments Incorporated  
37  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.5.2.1.4 ID_PROD[15:8], ID_PROD  
These registers contain the product identifier. This is read only register.  
Table 10. ID_PROD Register Configuration, ID_PROD[15:0]  
MSB  
LSB  
0x004[7:0]  
0x005[7:0]  
Table 11. Registers 0x004, 0x005  
POR  
BIT REGISTERS  
FIELD NAME  
DESCRIPTION  
DEFAULT  
208  
91  
7:0  
7:0  
0x004  
0x005  
ID_PROD[15:8]  
ID_PROD  
MSB of the product identifier.  
LSB of the product identifier.  
9.5.2.1.5 ID_MASKREV  
This register contains the IC version identifier. This is read only register.  
Table 12. Register 0x006  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:0  
ID_MASKREV  
32  
IC version identifier for LMK04228  
9.5.2.1.6 ID_VNDR[15:8], ID_VNDR  
These registers contain the vendor identifier. This is read only register.  
Table 13. ID_VNDR Register Configuration, ID_VNDR[15:0]  
MSB  
LSB  
0x00C[7:0]  
0x00D[7:0]  
Table 14. Registers 0x00C, 0x00D  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:0  
7:0  
0x00C  
0x00D  
ID_VNDR[15:8]  
ID_VNDR  
81  
MSB of the vendor identifier.  
LSB of the vendor identifier.  
4
38  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.5.2.2 (0x100 - 0x138) Device Clock and SYSREF Clock Output Controls  
9.5.2.2.1 CLKoutX_Y_ODL, CLKoutX_Y_IDL, DCLKoutX_DIV  
These registers control the input and output drive level as well as the device clock out divider values.  
Table 15. Registers 0x100, 0x108, 0x110, 0x118, 0x120, 0x128, and 0x130  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7
6
5
NA  
0
0
0
Reserved  
CLKoutX_Y_ODL  
CLKoutX_Y_IDL  
Output drive level.  
Input drive level.  
DCLKoutX_DIV sets the divide value for the clock output, the divide may be even or odd.  
Both even or odd divides output a 50% duty cycle clock if duty cycle correction (DCC) is  
selected.  
Divider is unused if DCLKoutX_MUX = 2 (bypass), equivalent divide of 1.  
X = 0 2  
X = 2 4  
X = 4 8  
X = 6 8  
X = 8 8  
X = 10 8  
X = 12 2  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Divider Value  
32  
4:0  
DCLKoutX_DIV  
(1)  
1
2
...  
30 (0x1E)  
31 (0x1F)  
30  
31  
(1) Not valid if DCLKoutX_MUX = 0, Divider only. Not valid if DCLKoutX_MUX = 3 (Analog Delay + Divider) and DCLKoutX_ADLY_MUX =  
0 (without duty cycle correction/halfstep).  
9.5.2.2.2 DCLKoutX_DDLY_CNTH, DCLKoutX_DDLY_CNTL  
This register controls the digital delay high and low count values for the device clock outputs.  
Table 16. Registers 0x101, 0x109, 0x111, 0x119, 0x121, 0x129, 0x131  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Number of clock cycles the output will be high when digital delay is engaged.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Delay Values  
16  
DCLKoutX  
_DDLY_CNTH  
7:4  
5
Reserved  
2
...  
15 (0x0F)  
15  
Number of clock cycles the output will be low when digital delay is engaged.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Delay Values  
16  
DCLKoutX  
_DDLY_CNTL  
3:0  
5
Reserved  
2
...  
15 (0x0F)  
15  
Copyright © 2017–2019, Texas Instruments Incorporated  
39  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.5.2.2.3 DCLKoutX_ADLY, DCLKoutX_ADLY_MUX, DCLKout_MUX  
These registers control the analog delay properties for the device clocks.  
Table 17. Registers 0x103, 0x10B, 0x113, 0x11B, 0x123, 0x12B, 0x133  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Device clock analog delay value. Setting this value results in a 500 ps timing delay in  
additional to the delay of each 25 ps step. Effective range is 500 ps to 1075 ps.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Delay Value  
0 ps  
7:3  
DCLKoutX_ALDY  
0
25 ps  
50 ps  
...  
23 (0x17)  
575 ps  
This register selects the input to the analog delay for the device clock. Used when  
DCLKoutX_MUX = 3.  
0: Divided without duty cycle correction or half step.  
DCLKoutX_ADLY  
_MUX  
2
0
0
(1)  
1: Divided with duty cycle correction and half step.  
This selects the input to the device clock buffer.  
Field Value  
Mux Output  
(1)  
0 (0x0)  
Divider only  
1:0  
DCLKoutX_MUX  
Divider with Duty Cycle Correction  
and Half Step  
1 (0x1)  
2 (0x2)  
3 (0x3)  
Reserved  
Analog Delay + Divider  
(1) DCLKoutX_DIV = 1 is not valid.  
9.5.2.2.4 DCLKoutX_HS, SDCLKoutY_MUX, SDCLKoutY_DDLY, SDCLKoutY_HS  
These registers set the half step for the device clock, the SYSREF output MUX, the SYSREF clock digital delay,  
and half step.  
Table 18. Registers 0x104, 0x10C, 0x114, 0x11C, 0x124, 0x12C, 0x134  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7
NA  
0
Reserved  
Sets the device clock half step value. Half step must be zero (0) for a divide of 1.  
6
5
DCLKoutX_HS  
0
0
0: 0 cycles  
1: -0.5 cycles  
Sets the input the the SDCLKoutY outputs.  
0: Device clock output  
SDCLKoutY_MUX  
1: SYSREF output  
Sets the number of VCO cycles to delay the SDCLKout by.  
Field Value  
0 (0x00)  
Delay Cycles  
Bypass  
1 (0x01)  
2
4:1  
SDCLKoutY_DDLY  
SDCLKoutY_HS  
0
0
2 (0x02)  
3
...  
...  
10 (0x0A)  
11  
11 to 15 (0x0B to 0x0F)  
Reserved  
Sets the SYSREF clock half step value.  
0: 0 cycles  
0
1: -0.5 cycles  
40  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.5.2.2.5 SDCLKoutY_ADLY_EN, SDCLKoutY_ADLY  
These registers set the analog delay parameters for the SYSREF outputs.  
Table 19. Registers 0x105, 0x10D, 0x115, 0x11D, 0x125, 0x12D, 0x135  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:5  
NA  
0
0
Reserved  
Enables analog delay for the SYSREF output.  
0: Disabled  
1: Enabled  
SDCLKoutY  
_ADLY_EN  
4
Sets the analog delay value for the SYSREF output. Selecting analog delay adds an  
additional 700 ps in propagation delay. Effective range is 700 ps to 2950 ps.  
Field Value  
0 (0x0)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
...  
Delay Value  
0 ps  
600 ps  
SDCLKoutY  
_ADLY  
3:0  
0
750 ps (+150 ps from 0x1)  
900 ps (+150 ps from 0x2)  
...  
14 (0xE)  
15 (0xF)  
2550 ps (+150 ps from 0xD)  
2700 ps (+150 ps from 0xE)  
Copyright © 2017–2019, Texas Instruments Incorporated  
41  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.5.2.2.6 DCLKoutX_DDLY_PD, DCLKout_ADLY_PD, DCLKoutX_Y_PD, SDCLKoutY_DIS_MODE, SDCLKoutY_PD  
This register controls the power down functions for the digital delay, analog delay, outputs, and SYSREF disable  
modes.  
Table 20. Registers 0x106, 0x10E, 0x116, 0x11E, 0x126, 0x12E, 0x136  
BIT  
7
NAME  
POR DEFAULT  
DESCRIPTION  
Powerdown the device clock digital delay circuitry.  
DCLKoutX  
_DDLY_PD  
0
3
1
0: Enabled  
1: Powerdown  
6:5  
4
NA  
These bits should always be programmed to 1 (Bit 6 = 1, Bit 5 = 1).  
Powerdown the device clock analog delay feature.  
DCLKoutX  
_ADLY_PD  
0: Enabled  
1: Powerdown  
X_Y = 0_1 1  
X_Y = 2_3 1  
X_Y = 4_5 0  
X_Y = 6_7 0  
X_Y = 8_9 0  
X_Y = 10_11 0  
X_Y = 12_13 1  
Powerdown the clock group defined by X and Y.  
0: Enabled  
1: Powerdown  
3
CLKoutX_Y_PD  
Configures the output state of the SYSREF  
Field Value  
0 (0x00)  
Disable Mode  
Active in normal operation  
1 (0x01)  
If SYSREF_GBL_PD = 1, the output is a  
logic low, otherwise it is active.  
SDCLKoutY  
_DIS_MODE  
2:1  
0
2 (0x02)  
3 (0x03)  
If SYSREF_GBL_PD = 1, the output is a  
nominal Vcm voltage(1), otherwise it is  
active.  
Output is a nominal Vcm voltage(1)  
0
SDCLKoutY_PD  
1
Powerdown SDCLKoutY and set to the state defined by SDCLKoutY_DIS_MODE  
(1) If LVPECL mode is used with emitter resistors to ground, the output Vcm will be ~0 V, each pin will be ~0 V.  
42  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.5.2.2.7 SDCLKoutY_POL, SDCLKoutY_FMT, DCLKoutX_POL, DCLKoutX_FMT  
These registers configure the output polarity, and format.  
Table 21. Registers 0x107, 0x10F, 0x117, 0x11F, 0x127, 0x12F, 0x137  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Sets the polarity of clock on SDCLKoutY when device clock output is selected with  
SDCLKoutY_MUX.  
0: Normal  
7
SDCLKoutY_POL  
0
1: Inverted  
Sets the output format of the SYSREF clocks  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Output Format  
Powerdown  
LVDS  
Reserved  
6:4  
SDCLKoutY_FMT  
DCLKoutX_POL  
DCLKoutX_FMT  
0
Reserved  
Reserved  
LVPECL 1600 mV  
LVPECL 2000 mV  
Reserved  
Sets the polarity of the device clocks from the DCLKoutX outputs  
3
0
0: Normal  
1: Inverted  
Sets the output format of the device clocks.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Output Format  
Powerdown  
LVDS  
LMK04228:  
X = 0 0  
X = 2 0  
X = 4 1  
X = 6 1  
X = 8 1  
X = 10 1  
X = 12 0  
Reserved  
2:0  
Reserved  
Reserved  
LVPECL 1600 mV  
LVPECL 2000 mV  
Reserved  
Copyright © 2017–2019, Texas Instruments Incorporated  
43  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.5.2.3 SYSREF, SYNC, and Device Config  
9.5.2.3.1 VCO_MUX, OSCout_FMT  
This register selects the clock distribution source, and OSCout parameters.  
Table 22. Register 0x138  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7
NA  
0
Reserved  
Selects clock distribution path source from VCO0, VCO1  
Field Value  
0 (0x00)  
VCO Selected  
VCO 0  
6:5  
4
VCO_MUX  
NA  
0
0
1 (0x01)  
VCO 1  
2 (0x02)  
Reserved  
Reserved  
3 (0x03)  
Reserved  
Selects the output format of OSCout. When powered down, these pins may be used as  
CLKin2.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
OSCout Format  
Powerdown (CLKin2)  
LVDS  
Reserved  
Reserved  
LVPECL 1600 mVpp  
LVPECL 2000 mVpp  
LVCMOS (Norm / Inv)  
LVCMOS (Inv / Norm)  
LVCMOS (Norm / Norm)  
LVCMOS (Inv / Inv)  
LVCMOS (Off / Norm)  
LVCMOS (Off / Inv)  
LVCMOS (Norm / Off)  
LVCMOS (Inv / Off)  
LVCMOS (Off / Off)  
3:0  
OSCout_FMT  
4
44  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.5.2.3.2 SYSREF_CLKin0_MUX, SYSREF_MUX  
This register sets the source for the SYSREF outputs. Refer to Figure 6 and SYNC/SYSREF.  
Table 23. Register 0x139  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:3  
NA  
0
Reserved  
Selects the SYSREF output from SYSREF_MUX or CLKin0 direct  
Field Value  
SYSREF Source  
SYSREF_  
CLKin0_MUX  
2
0
0
0
SYSREF Mux  
1
Selects the SYSREF source.  
Field Value  
CLKin0 Direct (from CLKin0_OUT_MUX)  
SYSREF Source  
Normal SYNC  
0 (0x00)  
1:0  
SYSREF_MUX  
1 (0x01)  
Re-clocked  
2 (0x02)  
SYSREF Pulser  
SYSREF Continuous  
3 (0x03)  
Copyright © 2017–2019, Texas Instruments Incorporated  
45  
 
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.5.2.3.3 SYSREF_DIV[12:8], SYSREF_DIV[7:0]  
These registers set the value of the SYSREF output divider.  
Table 24. SYSREF_DIV Register Configuration, SYSREF_DIV[12:0]  
MSB  
LSB  
0x13A[4:0]  
0x13B[7:0]  
Table 25. Registers 0x13A, 0x13B  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:5  
0x13A  
NA  
0
Reserved  
Divide value for the SYSREF outputs.  
Field Value  
0x00 to 0x07  
8 (0x08)  
Divide Value  
4:0  
0x13A  
SYSREF_DIV[12:8]  
SYSREF_DIV[7:0]  
12  
0
Reserved  
8
9
9 (0x09)  
...  
...  
7:0  
0x13B  
8190 (0x1FFE)  
8191 (0X1FFF)  
8190  
8191  
9.5.2.3.4 SYSREF_DDLY[12:8], SYSREF_DDLY[7:0]  
These registers set the delay of the SYSREF digital delay value.  
Table 26. SYSREF Digital Delay Register Configuration, SYSREF_DDLY[12:0]  
MSB  
LSB  
0x13C[4:0]  
0x13D[7:0]  
Table 27. Registers 0x13C, 0x13D  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:5  
0x13C  
NA  
0
0
Reserved  
Sets the value of the SYSREF digital delay.  
Field Value  
0x00 to 0x07  
8 (0x08)  
Delay Value  
4:0  
0x13C  
SYSREF_DDLY[12:8]  
SYSREF_DDLY[7:0]  
Reserved  
8
9
9 (0x09)  
...  
...  
7:0  
0x13D  
8
8190 (0x1FFE)  
8191 (0X1FFF)  
8190  
8191  
46  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.5.2.3.5 SYSREF_PULSE_CNT  
This register sets the number of SYSREF pulses if SYSREF is not in continuous mode. See  
SYSREF_CLKin0_MUX, SYSREF_MUX for further description of SYSREF's outputs.  
Programming the register causes the specified number of pulses to be output if "SYSREF Pulses" is selected by  
SYSREF_MUX and SYSREF functionality is powered up.  
Table 28. Register 0x13E  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:2  
NA  
0
Reserved  
Sets the number of SYSREF pulses generated when not in continuous mode.  
See SYSREF_CLKin0_MUX, SYSREF_MUX for more information on SYSREF modes.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Number of Pulses  
1 pulse  
1:0  
SYSREF_PULSE_CNT  
3
2 pulses  
4 pulses  
8 pulses  
Copyright © 2017–2019, Texas Instruments Incorporated  
47  
 
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.5.2.3.6 PLL1_PD, VCO_LDO_PD, VCO_PD, OSCin_PD, SYSREF_GBL_PD, SYSREF_PD, SYSREF_DDLY_PD,  
SYSREF_PLSR_PD  
This register contains powerdown controls for OSCin and SYSREF functions.  
Table 29. Register 0x140  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Powerdown PLL1  
0: Normal operation  
1: Powerdown  
7
PLL1_PD  
0
Powerdown VCO_LDO  
0: Normal operation  
1: Powerdown  
6
5
4
VCO_LDO_PD  
VCO_PD  
0
0
0
Powerdown VCO  
0: Normal operation  
1: Powerdown  
Powerdown the OSCin port.  
0: Normal operation  
1: Powerdown  
OSCin_PD  
Powerdown individual SYSREF outputs depending on the setting of  
SDCLKoutY_DIS_MODE for each SYSREF output. SYSREF_GBL_PD allows many  
SYSREF outputs to be controlled through a single bit.  
0: Normal operation  
3
2
SYSREF_GBL_PD  
SYSREF_PD  
0
1
1: Activate Powerdown Mode  
Powerdown the SYSREF circuitry and divider. If powered down, SYSREF output mode  
cannot be used. SYNC cannot be provided either.  
0: SYSREF can be used as programmed by individual SYSREF output registers.  
1: Powerdown  
Powerdown the SYSREF digital delay circuitry.  
0: Normal operation, SYSREF digital delay may be used. Must be powered up during  
SYNC for deterministic phase relationship with other clocks.  
1: Powerdown  
1
0
SYSREF_DDLY_PD  
SYSREF_PLSR_PD  
1
1
Powerdown the SYSREF pulse generator.  
0: Normal operation  
1: Powerdown  
48  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.5.2.3.7 SYSREF_CLR, SYNC_1SHOT_EN, SYNC_POL, SYNC_EN, SYNC_PLL2_DLD, SYNC_PLL1_DLD,  
SYNC_MODE  
This register sets general SYNC parameters such as polarization, and mode. Refer to Figure 6 for block diagram.  
Refer to Table 2 for using SYNC_MODE for specific SYNC use cases.  
Table 30. Register 0x143  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Except during SYSREF Setup Procedure (see SYNC/SYSREF), this bit should always be  
programmed to 0. While this bit is set, extra current is used. Refer to Table 82.  
7
SYSREF_CLR  
1
SYNC one shot enables edge sensitive SYNC.  
0: SYNC is level sensitive and outputs will be held in SYNC as long as SYNC is asserted.  
1: SYNC is edge sensitive, outputs will be SYNCed on rising edge of SYNC. This results in  
the clock being held in SYNC for a minimum amount of time.  
6
SYNC_1SHOT_EN  
0
Sets the polarity of the SYNC pin.  
0: Normal  
1: Inverted  
5
4
SYNC_POL  
SYNC_EN  
0
1
Enables the SYNC functionality.  
0: Disabled  
1: Enabled  
0: Off  
3
2
SYNC_PLL2_DLD  
SYNC_PLL1_DLD  
0
0
1: Assert SYNC until PLL2 DLD = 1  
0: Off  
1: Assert SYNC until PLL1 DLD = 1  
Sets the method of generating a SYNC event.  
Field Value  
SYNC Generation  
Prevent SYNC Pin, SYNC_PLL1_DLD flag, or SYNC_PLL2_DLD  
flag from generating a SYNC event.  
0 (0x00)  
SYNC event generated from SYNC pin or if enabled the  
SYNC_PLL1_DLD flag or SYNC_PLL2_DLD flag.  
1 (0x01)  
2 (0x02)  
1:0  
SYNC_MODE  
1
For use with pulser - SYNC/SYSREF pulses are generated by  
pulser block via SYNC Pin or if enabled SYNC_PLL1_DLD flag  
or SYNC_PLL2_DLD flag.  
For use with pulser - SYNC/SYSREF pulses are generated by  
pulser block when programming register 0x13E  
(SYSREF_PULSE_CNT) is written to (see  
SYSREF_PULSE_CNT).  
3 (0x03)  
Copyright © 2017–2019, Texas Instruments Incorporated  
49  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.5.2.3.8 SYNC_DISSYSREF, SYNC_DISX  
SYNC_DISX will prevent a clock output from being synchronized or interrupted by a SYNC event or when  
outputting SYSREF.  
Table 31. Register 0x144  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Prevent the SYSREF clocks from becoming synchronized during a SYNC event. If  
SYNC_DISSYSREF is enabled it will continue to operate normally during a SYNC event.  
7
SYNC_DISSYSREF  
0
6
5
4
3
2
1
0
SYNC_DIS12  
SYNC_DIS10  
SYNC_DIS8  
SYNC_DIS6  
SYNC_DIS4  
SYNC_DIS2  
SYNC_DIS0  
0
0
0
0
0
0
0
Prevent the device clock output from becoming synchronized during a SYNC event or  
SYSREF clock. If SYNC_DIS bit for a particular output is enabled then it will continue to  
operate normally during a SYNC event or SYSREF clock.  
9.5.2.3.9 Fixed Register  
Always program this register to value 127.  
Table 32. Register 0x145  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:0  
Fixed Register  
0
Always program to 127  
9.5.2.4 (0x146 - 0x149) CLKin Control  
9.5.2.4.1 CLKin2_EN, CLKin1_EN, CLKin0_EN, CLKin2_TYPE, CLKin1_TYPE, CLKin0_TYPE  
This register has CLKin enable and type controls.  
Table 33. Register 0x146  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:6  
NA  
0
Reserved  
Enable CLKin2 to be used during auto-switching of CLKin_SEL_MODE.  
0: Not enabled for auto mode  
1: Enabled for auto mode  
5
4
3
CLKin2_EN  
CLKin1_EN  
CLKin0_EN  
0
1
1
Enable CLKin1 to be used during auto-switching of CLKin_SEL_MODE.  
0: Not enabled for auto mode  
1: Enabled for auto mode  
Enable CLKin0 to be used during auto-switching of CLKin_SEL_MODE.  
0: Not enabled for auto mode  
1: Enabled for auto mode  
2
1
CLKin2_TYPE  
CLKin1_TYPE  
0
0
There are two buffer types for CLKin0, 1, and 2: bipolar and CMOS.  
Bipolar is recommended for differential inputs like LVDS or LVPECL.  
CMOS is recommended for DC coupled single ended inputs.  
When using bipolar, CLKinX and CLKinX* must be AC coupled.  
When using CMOS, CLKinX and CLKinX* may be AC or DC coupled  
if the input signal is differential. If the input signal is single-ended the  
used input may be either AC or DC coupled and the unused input  
must AC grounded.  
0: Bipolar  
1: MOS  
0
CLKin0_TYPE  
0
50  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.5.2.4.2 CLKin_SEL_POL, CLKin_SEL_MODE, CLKin1_OUT_MUX, CLKin0_OUT_MUX  
Table 34. Register 0x147  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Inverts the CLKin polarity for use in pin select mode.  
7
CLKin_SEL_POL  
0
0: Active High  
1: Active Low  
Sets the mode used in determining the reference for PLL1.  
Field Value  
CLKin Mode  
CLKin0 Manual  
CLKin1 Manual  
CLKin2 Manual  
Pin Select Mode  
Auto Mode  
0 (0x00)  
1 (0x01)  
2 (0x02)  
6:4  
CLKin_SEL_MODE  
3
3 (0x03)  
4 (0x04)  
5 (0x05)  
Reserved  
6 (0x06)  
Reserved  
7 (0x07)  
Reserved  
Selects where the output of the CLKin1 buffer is directed.  
Field Value  
CLKin1 Destination  
Reserved  
Reserved  
PLL1  
0 (0x00)  
3:2  
1:0  
CLKin1_OUT_MUX  
CLKin0_OUT_MUX  
2
2
1 (0x01)  
2 (0x02)  
3 (0x03)  
Off  
Selects where the output of the CLKin0 buffer is directed.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
CLKin0 Destination  
SYSREF Mux  
Reserved  
PLL1  
Off  
Copyright © 2017–2019, Texas Instruments Incorporated  
51  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.5.2.4.3 CLKin_SEL0_MUX, CLKin_SEL0_TYPE  
This register has CLKin_SEL0 controls.  
Table 35. Register 0x148  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:6  
NA  
0
Reserved  
This set the output value of the CLKin_SEL0 pin. This register only applies if  
CLKin_SEL0_TYPE is set to an output mode  
Field Value  
Output Format  
Logic Low  
0 (0x00)  
1 (0x01)  
CLKin0 LOS  
CLKin0 Selected  
DAC Locked  
DAC Low  
2 (0x02)  
5:3  
CLKin_SEL0_MUX  
0
3 (0x03)  
4 (0x04)  
5 (0x05)  
DAC High  
6 (0x06)  
SPI Readback  
Reserved  
7 (0x07)  
This sets the IO type of the CLKin_SEL0 pin.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Configuration  
Function  
Input  
Input mode, see Input  
Clock Switching - Pin  
Select Mode for  
Input /w pull-up resistor  
Input /w pull-down resistor  
Output (push-pull)  
2:0  
CLKin_SEL0_TYPE  
2
description of input mode.  
Output modes; the  
CLKin_SEL0_MUX  
register for description of  
outputs.  
Output inverted (push-pull)  
Reserved  
Output (open drain)  
52  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.5.2.4.4 SDIO_RDBK_TYPE, CLKin_SEL1_MUX, CLKin_SEL1_TYPE  
This register has CLKin_SEL1 controls and register readback SDIO pin type.  
Table 36. Register 0x149  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7
NA  
0
Reserved  
Sets the SDIO pin to open drain when during SPI readback in 3 wire mode.  
6
SDIO_RDBK_TYPE  
1
0: Output, push-pull  
1: Output, open drain.  
This set the output value of the CLKin_SEL1 pin. This register only applies if  
CLKin_SEL1_TYPE is set to an output mode.  
Field Value  
Output Format  
Logic Low  
0 (0x00)  
1 (0x01)  
CLKin1 LOS  
CLKin1 Selected  
DAC Locked  
DAC Low  
2 (0x02)  
5:3  
CLKin_SEL1_MUX  
0
3 (0x03)  
4 (0x04)  
5 (0x05)  
DAC High  
6 (0x06)  
SPI Readback  
Reserved  
7 (0x07)  
This sets the IO type of the CLKin_SEL1 pin.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Configuration  
Input  
Function  
Input mode, see Input Clock  
Switching - Pin Select Mode for  
description of input mode.  
Input /w pull-up resistor  
Input /w pull-down resistor  
Output (push-pull)  
Output inverted (push-pull)  
Reserved  
2:0  
CLKin_SEL1_TYPE  
2
Output modes; see the  
CLKin_SEL1_MUX register for  
description of outputs.  
Output (open drain)  
Copyright © 2017–2019, Texas Instruments Incorporated  
53  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.5.2.5 RESET_MUX, RESET_TYPE  
This register contains control of the RESET pin.  
Table 37. Register 0x14A  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:6  
NA  
0
Reserved  
This sets the output value of the RESET pin. This register only applies if RESET_TYPE is set to an  
output mode.  
Field Value  
Output Format  
Logic Low  
0 (0x00)  
1 (0x01)  
Reserved  
5:3  
RESET_MUX  
0
2 (0x02)  
CLKin2 Selected  
DAC Locked  
DAC Low  
3 (0x03)  
4 (0x04)  
5 (0x05)  
DAC High  
6 (0x06)  
This sets the IO type of the RESET pin.  
Field Value  
SPI Readback  
Configuration  
Function  
0 (0x00)  
Input  
Reset Mode  
Reset pin high = Reset  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Input /w pull-up resistor  
Input /w pull-down resistor  
Output (push-pull)  
2:0 RESET_TYPE  
2
Output modes; see the  
RESET_MUX register for  
description of outputs.  
Output inverted (push-pull)  
Reserved  
Output (open drain)  
54  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.5.2.6 (0x14B - 0x152) Holdover  
9.5.2.6.1 LOS_TIMEOUT, LOS_EN, TRACK_EN, HOLDOVER_FORCE, MAN_DAC_EN, MAN_DAC[9:8]  
This register contains the holdover functions.  
Table 38. Register 0x14B  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
This controls the amount of time in which no activity on a CLKin forces a clock switch  
event.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Timeout  
370 kHz  
2.1 MHz  
8.8 MHz  
22 MHz  
7:6  
LOS_TIMEOUT  
0
Enables the LOS (Loss-of-Signal) timeout control. Valid for MOS clock inputs.  
5
4
LOS_EN  
0
1
0: Disabled  
1: Enabled  
Enable the DAC to track the PLL1 tuning voltage, optionally for use in holdover mode. After  
device reset, tracking starts at DAC code = 512.  
Tracking can be used to monitor PLL1 voltage in any mode.  
0: Disabled  
TRACK_EN  
1: Enabled, will only track when PLL1 is locked.  
This bit forces holdover mode. When holdover mode is forced, if MAN_DAC_EN = 1, then  
the DAC will set the programmed MAN_DAC value. Otherwise the tracked DAC value will  
set the DAC voltage.  
0: Disabled  
HOLDOVER  
_FORCE  
3
0
1: Enabled.  
This bit enables the manual DAC mode.  
2
MAN_DAC_EN  
MAN_DAC[9:8]  
1
2
0: Automatic  
1: Manual  
1:0  
See MAN_DAC[9:8], MAN_DAC[7:0] for more information on the MAN_DAC settings.  
Copyright © 2017–2019, Texas Instruments Incorporated  
55  
 
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.5.2.6.2 MAN_DAC[9:8], MAN_DAC[7:0]  
These registers set the value of the DAC in holdover mode when used manually.  
Table 39. MAN_DAC Register Configuration, MAN_DAC[9:0]  
MSB  
LSB  
0x14B[1:0]  
0x14C[7:0]  
Table 40. Registers 0x14B, 0x14C  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
See LOS_TIMEOUT, LOS_EN, TRACK_EN, HOLDOVER_FORCE,  
MAN_DAC_EN, MAN_DAC[9:8] for information on these bits.  
7:2  
0x14B  
Sets the value of the manual DAC when in manual DAC mode.  
Field Value  
0 (0x00)  
DAC Value  
1:0  
0x14B  
MAN_DAC[9:8]  
MAN_DAC[7:0]  
2
0
0
1
1 (0x01)  
2 (0x02)  
2
...  
...  
7:0  
0x14C  
1022 (0x3FE)  
1023 (0x3FF)  
1022  
1023  
9.5.2.6.3 DAC_TRIP_LOW  
This register contains the high value at which holdover mode is entered.  
Table 41. Register 0x14D  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:6  
NA  
0
Reserved  
Voltage from GND at which holdover is entered if HOLDOVER_VTUNE_DET is enabled.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
DAC Trip Value  
1 x Vcc / 64  
2 x Vcc / 64  
3 x Vcc / 64  
4 x Vcc / 64  
...  
5:0  
DAC_TRIP_LOW  
0
61 (0x17)  
62 (0x18)  
63 (0x19)  
62 x Vcc / 64  
63 x Vcc / 64  
64 x Vcc / 64  
56  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.5.2.6.4 DAC_CLK_MULT, DAC_TRIP_HIGH  
This register contains the multiplier for the DAC clock counter and the low value at which holdover mode is  
entered.  
Table 42. Register 0x14E  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
This is the multiplier for the DAC_CLK_CNTR which sets the rate at which the DAC value is  
tracked.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
DAC Multiplier Value  
4
7:6  
DAC_CLK_MULT  
0
64  
1024  
16384  
Voltage from Vcc at which holdover is entered if HOLDOVER_VTUNE_DET is enabled.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
DAC Trip Value  
1 x Vcc / 64  
2 x Vcc / 64  
3 x Vcc / 64  
4 x Vcc / 64  
...  
5:0  
DAC_TRIP_HIGH  
0
61 (0x17)  
62 (0x18)  
63 (0x19)  
62 x Vcc / 64  
63 x Vcc / 64  
64 x Vcc / 64  
9.5.2.6.5 DAC_CLK_CNTR  
This register contains the value of the DAC when in tracked mode.  
Table 43. Register 0x14F  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
This with DAC_CLK_MULT set the rate at which the DAC is updated. The update rate is =  
DAC_CLK_MULT * DAC_CLK_CNTR / PLL1 PDF  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
DAC Value  
0
1
2
7:0  
DAC_CLK_CNTR  
127  
3
...  
253 (0xFD)  
254 (0xFE)  
255 (0xFF)  
253  
254  
255  
Copyright © 2017–2019, Texas Instruments Incorporated  
57  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.5.2.6.6 CLKin_OVERRIDE, HOLDOVER_PLL1_DET, HOLDOVER_LOS_DET, HOLDOVER_VTUNE_DET,  
HOLDOVER_HITLESS_SWITCH, HOLDOVER_EN  
This register has controls for enabling clock in switch events.  
Table 44. Register 0x150  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7
NA  
0
Reserved  
When CLKin_SEL_MODE = 0/1/2 to select a manual clock input, CLKin_OVERRIDE = 1  
will force that clock input. Used with clock distribution mode for best performance.  
0: Normal, no override.  
CLKin  
_OVERRIDE  
6
0
1: Force select of only CLKin0/1/2 as specified by CLKin_SEL_MODE in manual mode.  
5
4
NA  
0
0
Reserved  
This enables the HOLDOVER when PLL1 lock detect signal transitions from high to low.  
0: PLL1 DLD does not cause a clock switch event  
1: PLL1 DLD causes a clock switch event  
HOLDOVER  
_PLL1_DET  
This enables HOLDOVER when PLL1 LOS signal is detected.  
0: Disabled  
1: Enabled  
HOLDOVER  
_LOS_DET  
3
2
0
0
Enables the DAC Vtune rail detections. When the DAC achieves a specified Vtune, if this  
bit is enabled, the current clock input is considered invalid and an input clock switch event  
is generated.  
0: Disabled  
1: Enabled  
HOLDOVER  
_VTUNE_DET  
HOLDOVER  
_HITLESS  
_SWITCH  
Determines whether a clock switch event will enter holdover use hitless switching.  
0: Hard Switch  
1: Hitless switching (has an undefined switch time)  
1
0
1
1
Sets whether holdover mode is active or not.  
0: Disabled  
1: Enabled  
HOLDOVER_EN  
9.5.2.6.7 HOLDOVER_DLD_CNT[13:8], HOLDOVER_DLD_CNT[7:0]  
Table 45. HOLDOVER_DLD_CNT Register Configuration, HOLDOVER_DLD_CNT[13:0]  
MSB  
LSB  
0x151[5:0]  
0x152[7:0]  
This register has the number of valid clocks of PLL1 PDF before holdover is exited.  
Table 46. Registers 0x151 and 0x152  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:6  
0x151  
NA  
0
Reserved  
The number of valid clocks of PLL1 PDF before holdover mode is exited.  
Field Value  
0 (0x00)  
Count Value  
HOLDOVER  
_DLD_CNT[13:8]  
5:0  
0x151  
2
0
0
1
1 (0x01)  
2 (0x02)  
2
...  
...  
HOLDOVER  
_DLD_CNT[7:0]  
7:0  
0x152  
16382 (0x3FFE)  
16383 (0x3FFF)  
16382  
16383  
58  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.5.2.7 (0x153 - 0x15F) PLL1 Configuration  
9.5.2.7.1 CLKin0_R[9:8], CLKin0_R[7:0]  
Table 47. CLKin0_R Register Configuration, CLKin0_R[9:0]  
MSB  
LSB  
0x153[1:0]  
0x154[7:0]  
These registers contain the value of the CLKin0 divider.  
Table 48. Registers 0x153, 0x154  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:2  
0x153  
NA  
0
0
Reserved  
The value of PLL1 N counter when CLKin0 is selected.  
Field Value  
0 (0x00)  
Divide Value  
1:0  
0x153  
CLKin0_R[9:8]  
CLKin0_R[7:0]  
Reserved  
1 (0x01)  
1
2
2 (0x02)  
...  
...  
7:0  
0x154  
120  
1022 (0x3FE)  
1023 (0x3FF)  
1022  
1023  
9.5.2.7.2 CLKin1_R[9:8], CLKin1_R[7:0]  
Table 49. CLKin1_R Register Configuration, CLKin1_R[9:0]  
MSB  
LSB  
0x155[1:0]  
0x156[7:0]  
These registers contain the value of the CLKin1 R divider.  
Table 50. Registers 0x155 and 0x156  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:2  
0x155  
NA  
0
0
Reserved  
The value of PLL1 N counter when CLKin1 is selected.  
Field Value  
0 (0x00)  
Divide Value  
1:0  
0x155  
CLKin1_R[9:8]  
CLKin1_R[7:0]  
Reserved  
1 (0x01)  
1
2
2 (0x02)  
...  
...  
7:0  
0x156  
150  
1022 (0x3FE)  
1023 (0x3FF)  
1022  
1023  
Copyright © 2017–2019, Texas Instruments Incorporated  
59  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.5.2.7.3 CLKin2_R[9:8], CLKin2_R[7:0]  
Table 51. CLKin2_R Register Configuration, CLKin2_R[9:0]  
MSB  
LSB  
0x157[1:0]  
0x158[7:0]  
Table 52. Registers 0x157 and 0x158  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:2  
0x157  
NA  
0
Reserved  
The value of PLL1 N counter when CLKin2 is selected.  
Field Value  
0 (0x00)  
Divide Value  
1:0  
0x157  
CLKin2_R[9:8]  
CLKin2_R[7:0]  
0
Reserved  
1 (0x01)  
1
2
2 (0x02)  
...  
...  
7:0  
0x158  
150  
1022 (0x3FE)  
1023 (0x3FF)  
1022  
1023  
9.5.2.7.4 PLL1_N  
Table 53. PLL1_N Register Configuration, PLL1_N[13:0]  
MSB  
0x159[5:0]  
LSB  
0x15A[7:0]  
These registers contain the N divider value for PLL1.  
Table 54. Registers 0x159 and 0x15A  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:4  
3:0  
0x159  
0x159  
NA  
0
0
Reserved  
The value of PLL1 N counter.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Divide Value  
PLL1_N[11:8]  
PLL1_N[7:0]  
Not Valid  
1
2
7:0  
0x15A  
120  
...  
4,095 (0xFFF)  
4,095  
60  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.5.2.7.5 PLL1_WND_SIZE, PLL1_CP_TRI, PLL1_CP_POL, PLL1_CP_GAIN  
This register controls the PLL1 phase detector.  
Table 55. Register 0x15B  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
PLL1_WND_SIZE sets the window size used for digital lock detect for PLL1. If the phase  
error between the reference and feedback of PLL1 is less than specified time, then the  
PLL1 lock counter increments.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Definition  
4 ns  
7:6  
PLL1_WND_SIZE  
3
9 ns  
19 ns  
43 ns  
This bit allows for the PLL1 charge pump output pin, CPout1, to be placed into TRI-STATE.  
0: PLL1 CPout1 is active  
1: PLL1 CPout1 is at TRI-STATE  
5
4
PLL1_CP_TRI  
PLL1_CP_POL  
0
1
PLL1_CP_POL sets the charge pump polarity for PLL1. Many VCXOs use positive slope.  
A positive slope VCXO increases output frequency with increasing voltage. A negative  
slope VCXO decreases output frequency with increasing voltage.  
0: Negative Slope VCO/VCXO  
1: Positive Slope VCO/VCXO  
This bit programs the PLL1 charge pump output current level.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
...  
Gain  
50 µA  
150 µA  
250 µA  
350 µA  
450 µA  
...  
3:0  
PLL1_CP_GAIN  
4
14 (0x0E)  
15 (0x0F)  
1450 µA  
1550 µA  
Copyright © 2017–2019, Texas Instruments Incorporated  
61  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.5.2.7.6 PLL1_DLD_CNT[13:8], PLL1_DLD_CNT[7:0]  
Table 56. PLL1_DLD_CNT Register Configuration, PLL1_DLD_CNT[13:0]  
MSB  
LSB  
0x15C[5:0]  
0x15D[7:0]  
This register contains the value of the PLL1 DLD counter.  
Table 57. Registers 0x15C and 0x15D  
BIT REGISTERS  
NAME  
POR DEFAULT  
DESCRIPTION  
7:6  
0x15C  
NA  
0
Reserved  
The reference and feedback of PLL1 must be within the window of phase  
error as specified by PLL1_WND_SIZE for this many phase detector  
cycles before PLL1 digital lock detect is asserted.  
PLL1_DLD  
_CNT[13:8]  
5:0  
0x15C  
32  
Field Value  
0 (0x00)  
Delay Value  
Reserved  
1 (0x01)  
1
2 (0x02)  
2
3
3 (0x03)  
PLL1_DLD  
_CNT[7:0]  
7:0  
0x15D  
0
...  
...  
16,382 (0x3FFE)  
16,383 (0x3FFF)  
16,382  
16,383  
62  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.5.2.7.7 PLL1_LD_MUX, PLL1_LD_TYPE  
This register configures the PLL1 LD pin.  
Table 58. Register 0x15F  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
This sets the output value of the Status_LD1 pin.  
Field Value  
0 (0x00)  
MUX Value  
Logic Low  
PLL1 DLD  
PLL2 DLD  
PLL1 & PLL2 DLD  
Holdover Status  
DAC Locked  
Reserved  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
SPI Readback  
DAC Rail  
7:3  
PLL1_LD_MUX  
1
8 (0x08)  
9 (0x09)  
DAC Low  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
16 (0x10)  
DAC High  
PLL1_N  
PLL1_N/2  
PLL2_N  
PLL2_N/2  
PLL1_R  
PLL1_R/2  
17 (0x11)  
PLL2_R(1)  
PLL2_R/2(1)  
18 (0x12)  
Sets the IO type of the Status_LD1 pin.  
Field Value  
0 (0x00)  
TYPE  
Reserved  
1 (0x01)  
Reserved  
2:0  
PLL1_LD_TYPE  
6
2 (0x02)  
Reserved  
3 (0x03)  
Output (push-pull)  
Output inverted (push-pull)  
Reserved  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Output (open drain)  
(1) Only valid when PLL2_LD_MUX is not set to 2 (PLL2_DLD) or 3 (PLL1 & PLL2 DLD).  
Copyright © 2017–2019, Texas Instruments Incorporated  
63  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.5.2.8 (0x160 - 0x16E) PLL2 Configuration  
9.5.2.8.1 PLL2_R[4:0]  
This register contains the value of the PLL2 R divider.  
Table 59. Register 0x161  
BIT REGISTERS  
NAME  
POR DEFAULT  
DESCRIPTION  
7:5  
4:0  
0x161  
0x161  
NA  
0
Reserved  
Valid values for the PLL2 R divider.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
Divide Value  
Not Valid  
1
2
PLL2_R[4:0]  
2
3
...  
30  
31  
30 (0x1E)  
31 (0x1F)  
64  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.5.2.8.2 PLL2_P, OSCin_FREQ, PLL2_XTAL_EN, PLL2_REF_2X_EN  
This register sets other PLL2 functions.  
Table 60. Register 0x162  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
The PLL2 N Prescaler divides the output of the VCO as selected by Mode_MUX1 and is  
connected to the PLL2 N divider.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Value  
8
2
2
3
4
5
6
7
7:5  
PLL2_P  
2
The frequency of the PLL2 reference input to the PLL2 Phase Detector (OSCin/OSCin*  
port) must be programmed in order to support proper operation of the frequency calibration  
routine which locks the internal VCO to the target frequency.  
Field Value  
0 (0x00)  
OSCin Frequency  
0 to 63 MHz  
4:2  
OSCin_FREQ  
7
1 (0x01)  
>63 MHz to 127 MHz  
>127 MHz to 255 MHz  
Reserved  
2 (0x02)  
3 (0x03)  
4 (0x04)  
>255 MHz to 500 MHz  
Reserved  
5 (0x05) to 7(0x07)  
If an external crystal is being used to implement a discrete VCXO, the internal feedback  
amplifier must be enabled with this bit in order to complete the oscillator circuit.  
0: Oscillator Amplifier Disabled  
1
0
PLL2_XTAL_EN  
0
1
1: Oscillator Amplifier Enabled  
Enabling the PLL2 reference frequency doubler allows for higher phase detector  
frequencies on PLL2 than would normally be allowed with the given VCXO or Crystal  
frequency.  
PLL2_REF_2X_EN  
Higher phase detector frequencies reduces the PLL N values which makes the design of  
wider loop bandwidth filters possible.  
0: Doubler Disabled  
1: Doubler Enabled  
Copyright © 2017–2019, Texas Instruments Incorporated  
65  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.5.2.8.3 PLL2_FCAL_DIS  
This register disables frequency calibration.  
Table 61. Register 0x166  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:3  
NA  
0
Reserved  
This disables the PLL2 frequency calibration on programming register 0x168.  
0: Frequency calibration enabled  
1: Frequency calibration disabled  
2
PLL2_FCAL_DIS  
NA  
0
0
1:0  
Reserved  
9.5.2.8.4 PLL2_N  
This register sets the PLL2 N divider value. Programming register 0x168 starts a VCO calibration routine if  
PLL2_FCAL_DIS = 0.  
Table 62. Register 0x168  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Divide Value  
Not Valid  
1
2
7:0  
PLL2_N[7:0]  
12  
...  
255 (0xFF)  
255  
9.5.2.8.5 PLL2_WND_SIZE, PLL2_CP_GAIN, PLL2_CP_POL, PLL2_CP_TRI  
This register controls the PLL2 phase detector.  
Table 63. Register 0x169  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7
NA  
0
Reserved  
PLL2_WND_SIZE sets the window size used for digital lock detect for PLL2. If the phase  
error between the reference and feedback of PLL2 is less than specified time, then the  
PLL2 lock counter increments. This value must be programmed to 2 (3.7 ns).  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Definition  
Reserved  
Reserved  
3.7 ns  
6:5  
PLL2_WND_SIZE  
2
Reserved  
This bit programs the PLL2 charge pump output current level. The table below also  
illustrates the impact of the PLL2 TRISTATE bit in conjunction with PLL2_CP_GAIN.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Definition  
100 µA  
4:3  
PLL2_CP_GAIN  
3
400 µA  
1600 µA  
Reserved  
66  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
Table 63. Register 0x169 (continued)  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
PLL2_CP_POL sets the charge pump polarity for PLL2. The internal VCO requires the  
negative charge pump polarity to be selected. Many VCOs use positive slope.  
A positive slope VCO increases output frequency with increasing voltage. A negative slope  
VCO decreases output frequency with increasing voltage.  
2
PLL2_CP_POL  
0
Field Value  
Description  
0
1
Negative Slope VCO/VCXO  
Positive Slope VCO/VCXO  
PLL2_CP_TRI TRI-STATEs the output of the PLL2 charge pump.  
1
0
PLL2_CP_TRI  
Fixed Value  
0
1
0: Disabled  
1: TRI-STATE  
When programming register 0x169, this field must be set to 1.  
Copyright © 2017–2019, Texas Instruments Incorporated  
67  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.5.2.8.6 SYSREF_REQ_EN, PLL2_DLD_CNT  
Table 64. PLL2_DLD_CNT Register Configuration, PLL2_DLD_CNT[15:0]  
MSB  
LSB  
0x16A[5:0]  
0x16B[7:0]  
This register has the value of the PLL2 DLD counter.  
Table 65. Registers 0x16A and 0x16B  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7
6
0x16A  
0x16A  
NA  
0
Reserved  
Enables the SYNC/SYSREF_REQ pin to force the SYSREF_MUX = 3 for  
continuous pulses. When using this feature enable pulser and set  
SYSREF_MUX = 2 (Pulser).  
SYSREF_REQ_EN  
0
The reference and feedback of PLL2 must be within the window of phase error  
as specified by PLL2_WND_SIZE for PLL2_DLD_CNT cycles before PLL2 digital  
lock detect is asserted.  
PLL2_DLD  
_CNT[13:8]  
5:0  
7:0  
0x16A  
0x16B  
32  
Field Value  
0 (0x00)  
Divide Value  
Not Valid  
1 (0x01)  
1
2 (0x02)  
2
3
3 (0x03)  
PLL2_DLD_CNT  
0
...  
...  
16,382 (0x3FFE)  
16,383 (0x3FFF)  
16,382  
16,383  
68  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.5.2.8.7 PLL2_LF_R4, PLL2_LF_R3  
This register controls the integrated loop filter resistors.  
Table 66. Register 0x16C  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:6  
NA  
0
Reserved  
Internal loop filter components are available for PLL2, enabling either 3rd or 4th order loop  
filters without requiring external components.  
Internal loop filter resistor R4 can be set according to the following table.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Resistance  
200 Ω  
1 kΩ  
5:3  
PLL2_LF_R4  
0
2 kΩ  
4 kΩ  
16 kΩ  
Reserved  
Reserved  
Reserved  
Internal loop filter components are available for PLL2, enabling either 3rd or 4th order loop  
filters without requiring external components.  
Internal loop filter resistor R3 can be set according to the following table.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Resistance  
200 Ω  
1 kΩ  
2:0  
PLL2_LF_R3  
0
2 kΩ  
4 kΩ  
16 kΩ  
Reserved  
Reserved  
Reserved  
Copyright © 2017–2019, Texas Instruments Incorporated  
69  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.5.2.8.8 PLL2_LF_C4, PLL2_LF_C3  
This register controls the integrated loop filter capacitors.  
Table 67. Register 0x16D  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Internal loop filter components are available for PLL2, enabling either 3rd or 4th order loop  
filters without requiring external components.  
Internal loop filter capacitor C4 can be set according to the following table.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
Capacitance  
10 pF  
15 pF  
29 pF  
34 pF  
47 pF  
52 pF  
7:4  
PLL2_LF_C4  
0
66 pF  
71 pF  
103 pF  
108 pF  
122 pF  
126 pF  
141 pF  
146 pF  
Reserved  
Reserved  
Internal loop filter components are available for PLL2, enabling either 3rd or 4th order loop  
filters without requiring external components.  
Internal loop filter capacitor C3 can be set according to the following table.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
Capacitance  
10 pF  
11 pF  
15 pF  
16 pF  
19 pF  
20 pF  
3:0  
PLL2_LF_C3  
0
24 pF  
25 pF  
29 pF  
30 pF  
33 pF  
34 pF  
38 pF  
39 pF  
Reserved  
Reserved  
70  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.5.2.8.9 PLL2_LD_MUX, PLL2_LD_TYPE  
This register sets the output value of the Status_LD2 pin.  
Table 68. Register 0x16E  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
This sets the output value of the Status_LD2 pin.  
Field Value  
0 (0x00)  
MUX Value  
Logic Low  
PLL1 DLD  
PLL2 DLD  
PLL1 & PLL2 DLD  
Holdover Status  
DAC Locked  
Reserved  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
SPI Readback  
DAC Rail  
7:3  
PLL2_LD_MUX  
2
8 (0x08)  
9 (0x09)  
DAC Low  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
16 (0x10)  
DAC High  
PLL1_N  
PLL1_N/2  
PLL2_N  
PLL2_N/2  
PLL1_R  
PLL1_R/2  
17 (0x11)  
PLL2_R(1)  
PLL2_R/2(1)  
18 (0x12)  
Sets the IO type of the Status_LD2 pin.  
Field Value  
0 (0x00)  
TYPE  
Reserved  
1 (0x01)  
Reserved  
2:0  
PLL2_LD_TYPE  
6
2 (0x02)  
Reserved  
3 (0x03)  
Output (push-pull)  
Output inverted (push-pull)  
Reserved  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Output (open drain)  
(1) Only valid when PLL1_LD_MUX is not set to 2 (PLL2_DLD) or 3 (PLL1 & PLL2 DLD).  
Copyright © 2017–2019, Texas Instruments Incorporated  
71  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.5.2.9 (0x16F - 0x1FFF) Misc Registers  
9.5.2.9.1 Fixed Register  
Always program this register to 0xAA.  
Table 69. Register 0x171  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Always program to 170 (0xAA)  
7:0  
Fixed Register  
10 (0x0A)  
9.5.2.9.2 Fixed Register  
Always program this register to 0x02.  
Table 70. Register 0x172  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:0  
Fixed Register  
0
Always program to 2 (0x02)  
9.5.2.9.3 PLL2_PRE_PD, PLL2_PD  
Table 71. Register 0x173  
BIT  
NAME  
DESCRIPTION  
7
N/A  
Reserved  
Powerdown PLL2 prescaler  
0: Normal Operation  
1: Powerdown  
6
PLL2_PRE_PD  
Powerdown PLL2  
0: Normal Operation  
1: Powerdown  
5
PLL2_PD  
N/A  
4:0  
Reserved  
9.5.2.9.4 OPT_REG_1  
This register must be written with the following value depending on which LMK04228 is used to optimize VCO1  
phase noise performance over temperature. This register must be written before writing register 0x168 when  
using VCO1.  
Table 72. Register 0x17C  
BIT  
NAME  
DESCRIPTION  
7:0  
OPT_REG_1  
21: LMK04228  
9.5.2.9.5 OPT_REG_2  
This register must be written with the following value depending on which LMK04228 is used to optimize VCO1  
phase noise performance over temperature. This register must be written before writing register 0x168 when  
using VCO1.  
Table 73. Register 0x17D  
BIT  
NAME  
DESCRIPTION  
7:0  
OPT_REG_2  
51: LMK04228  
72  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
9.5.2.9.6 RB_PLL1_LD_LOST, RB_PLL1_LD, CLR_PLL1_LD_LOST  
Table 74. Register 0x182  
BIT  
7:3  
2
NAME  
N/A  
DESCRIPTION  
Reserved  
RB_PLL1_LD_LOST  
This is set when PLL1 DLD edge falls. Does not set if cleared while PLL1 DLD is low.  
Read back 0: PLL1 DLD is low.  
Read back 1: PLL1 DLD is high.  
1
RB_PLL1_LD  
To reset RB_PLL1_LD_LOST, write CLR_PLL1_LD_LOST with 1 and then 0.  
0: RB_PLL1_LD_LOST will be set on next falling PLL1 DLD edge.  
1: RB_PLL1_LD_LOST is held clear (0). User must clear this bit to allow RB_PLL1_LD_LOST to  
become set again.  
0
CLR_PLL1_LD_LOST  
9.5.2.9.7 RB_PLL2_LD_LOST, RB_PLL2_LD, CLR_PLL2_LD_LOST  
Table 75. Register 0x0x183  
BIT  
7:3  
2
NAME  
N/A  
DESCRIPTION  
Reserved  
RB_PLL2_LD_LOST  
This is set when PLL2 DLD edge falls. Does not set if cleared while PLL2 DLD is low.  
Read back 0: PLL2 DLD is low.  
Read back 1: PLL2 DLD is high.  
1
RB_PLL2_LD  
To reset RB_PLL2_LD_LOST, write CLR_PLL2_LD_LOST with 1 and then 0.  
0: RB_PLL2_LD_LOST will be set on next falling PLL2 DLD edge.  
1: RB_PLL2_LD_LOST is held clear (0). User must clear this bit to allow RB_PLL2_LD_LOST to  
become set again.  
0
CLR_PLL2_LD_LOST  
9.5.2.9.8 RB_DAC_VALUE(MSB), RB_CLKinX_SEL, RB_CLKinX_LOS  
This register provides read back access to CLKinX selection indicator and CLKinX LOS indicator. The 2 MSBs  
are shared with the RB_DAC_VALUE. See RB_DAC_VALUE section.  
Table 76. Register 0x184  
BIT  
NAME  
DESCRIPTION  
7:6  
RB_DAC_VALUE[9:8] See RB_DAC_VALUE section.  
Read back 0: CLKin2 is not selected for input to PLL1.  
Read back 1: CLKin2 is selected for input to PLL1.  
5
4
RB_CLKin2_SEL  
RB_CLKin1_SEL  
Read back 0: CLKin1 is not selected for input to PLL1.  
Read back 1: CLKin1 is selected for input to PLL1.  
Read back 0: CLKin0 is not selected for input to PLL1.  
Read back 1: CLKin0 is selected for input to PLL1.  
3
2
1
RB_CLKin0_SEL  
N/A  
Read back 1: CLKin1 LOS is active.  
Read back 0: CLKin1 LOS is not active.  
RB_CLKin1_LOS  
Read back 1: CLKin0 LOS is active.  
Read back 0: CLKin0 LOS is not active.  
0
RB_CLKin0_LOS  
Copyright © 2017–2019, Texas Instruments Incorporated  
73  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
9.5.2.9.9 RB_DAC_VALUE  
Contains the value of the DAC for user readback.  
Table 77. RB_DAC_VALUE Register Configuration, RB_DAC_VALUE[7:0]  
Field Name  
MSB  
LSB  
RB_DAC_VALUE  
0x184 [7:6]  
0x185 [7:0]  
Table 78. Registers 0x184 and 0x185  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
RB_DAC_  
VALUE[9:8]  
DAC value is 512 on power on reset, if PLL1 locks upon power-up the DAC  
value will change.  
7:6  
7:0  
0x184  
0x185  
2
RB_DAC_  
VALUE[7:0]  
0
9.5.2.9.10 RB_HOLDOVER  
Table 79. Register 0x188  
BIT  
NAME  
DESCRIPTION  
7:5  
N/A  
Reserved  
Read back 0: Not in HOLDOVER.  
Read back 1: In HOLDOVER.  
4
RB_HOLDOVER  
N/A  
3:0  
Reserved  
9.5.2.9.11 SPI_LOCK  
Prevents SPI registers from being written to, except for 0x1FFD, 0x1FFE, 0x1FFF. These registers must be  
written to sequentially and in order: 0x1FFD, 0x1FFE, 0x1FFF.  
These registers cannot be read back.  
Table 80. SPI_LOCK Register Configuration, SPI_LOCK[7:0]  
MSB  
LSB  
0x1FFD [7:0]  
0x1FFE [7:0]  
0x1FFF [7:0]  
Table 81. Registers 0x1FFD, 0x1FFE, and 0x1FFF  
POR  
BIT REGISTERS  
NAME  
DESCRIPTION  
DEFAULT  
0: Registers unlocked.  
1 to 255: Registers locked  
7:0  
7:0  
0x1FFD  
0x1FFE  
SPI_LOCK[23:16]  
SPI_LOCK[15:8]  
0
0
0: Registers unlocked.  
1 to 255: Registers locked  
0 to 82: Registers locked  
83: Registers unlocked  
84 to 256: Registers locked  
7:0  
0x1FFF  
SPI_LOCK[7:0]  
83  
74  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
To assist customers in frequency planning and design of loop filters, Texas Instrument's provides the Clock  
Design Tool (www.ti.com/tool/clockdesigntool) and Clock Architect (www.ti.com/clockarchitect).  
10.1.1 Digital Lock Detect Frequency Accuracy  
The digital lock detect circuit is used to determine PLL1 locked, PLL2 locked, and holdover exit events. A window  
size and lock count register are programmed to set a ppm frequency accuracy of reference to feedback signals  
of the PLL for each event to occur. When a PLL digital lock event occurs, the corresponding PLL digital lock  
detect is asserted true. When the holdover exit event occurs, the device will exit holdover mode.  
EVENT  
PLL  
PLL1  
PLL2  
PLL1  
WINDOW SIZE  
PLL1_WND_SIZE  
PLL2_WND_SIZE  
PLL1_WND_SIZE  
LOCK COUNT  
PLL1_DLD_CNT  
PLL1 Locked  
PLL2 Locked  
Holdover Exit  
PLL2_DLD_CNT  
HOLDOVER_DLD_CNT  
For a digital lock detect event to occur there must be a lock count number of phase detector cycles of PLLX  
during which the time/phase error of the PLLX_R reference and PLLX_N feedback signal edges are within the  
user programmable window size. Because there must be at least lock count phase detector events before a lock  
event occurs, a minimum digital lock event time can be calculated as lock count / fPDX where X = 1 for PLL1 or 2  
for PLL2.  
By using Equation 3, values for a lock count and window size can be chosen to set the frequency accuracy  
required by the system in ppm before the digital lock detect event occurs:  
1e6 × PLLX_WND_SIZE × fPDX  
ppm =  
PLLX_DLD_CNT  
(3)  
The effect of the lock count value is that it shortens the effective lock window size by dividing the window size by  
lock count.  
If at any time the PLLX_R reference and PLLX_N feedback signals are outside the time window set by window  
size, then the lock count value is reset to 0.  
NOTE  
In cases where the period of the phase detector frequency approaches the value of the  
default PLL1_WND_SIZE increment (40 ns), the lock detect circuit will not function with  
the default value of PLL1_WND_SIZE. For phase detector frequencies at or above 25  
MHz, TI recommends setting PLL1_WND_SIZE to 0x02 (19 ns) or a smaller value.  
10.1.1.1 Minimum Lock Time Calculation Example  
To calculate the minimum PLL2 digital lock time given a PLL2 phase detector frequency of 40 MHz and  
PLL2_DLD_CNT = 10,000. Then the minimum lock time of PLL2 will be 10,000 / 40 MHz = 250 µs.  
Copyright © 2017–2019, Texas Instruments Incorporated  
75  
 
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
10.1.2 Driving CLKin AND OSCin Inputs  
10.1.2.1 Driving CLKin PINS With a Differential Source  
Both CLKin ports can be driven by differential signals. TI recommends setting the input mode to bipolar  
(CLKinX_BUF_TYPE = 0) when using differential reference clocks. The LMK04228 internally biases the input  
pins so the differential interface should be AC coupled. The recommended circuits for driving the CLKin pins with  
either LVDS or LVPECL are shown in Figure 9 and Figure 10.  
CLKinX  
0.1 mF  
100-W Trace  
(Differential)  
LMK048XX  
Input  
LVDS  
0.1 mF  
CLKinX*  
Copyright © 2017, Texas Instruments Incorporated  
Figure 9. CLKinX/X* Termination for an LVDS Reference Clock Source  
CLKinX  
0.1 mF  
0.1 mF  
0.1 mF  
0.1 mF  
100-W Trace  
(Differential)  
LVPECL  
Ref Clk  
LMK048XX  
Input  
CLKinX*  
Copyright © 2017, Texas Instruments Incorporated  
Figure 10. CLKinX/X* Termination for an LVPECL Reference Clock Source  
Finally, a reference clock source that produces a differential sine wave output can drive the CLKin pins using the  
following circuit. Note: the signal level must conform to the requirements for the CLKin pins listed in Electrical  
Characteristics.  
CLKinX  
0.1 mF  
0.1 mF  
100-W Trace  
(Differential)  
LMK048XX  
Input  
Differential  
Sinewave  
Clock Source  
CLKinX*  
Copyright © 2017, Texas Instruments Incorporated  
Figure 11. CLKinX/X* Termination for a Differential Sinewave Reference Clock Source  
76  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
10.1.2.2 Driving CLKin Pins With a Single-Ended Source  
The CLKin pins of the LMK04228 can be driven using a single-ended reference clock source, for example, either  
a sine wave source or an LVCMOS/LVTTL source. Either AC coupling or DC coupling may be used. In the case  
of the sine wave source that is expecting a 50-Ω load, TI recommends that AC coupling be used as shown in the  
circuit below with a 50-Ω termination.  
NOTE  
The signal level must conform to the requirements for the CLKin pins listed in Electrical  
Characteristics. CLKinX_BUF_TYPE is recommended to be set to bipolar mode  
(CLKinX_BUF_TYPE = 0).  
0.1 mF  
50-W Trace  
CLKinX  
50 W  
LMK048XX  
Clock Source  
CLKinX*  
0.1 mF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 12. CLKinX/X* Single-Ended Termination  
If the CLKin pins are being driven with a single-ended LVCMOS/LVTTL source, either DC coupling or AC  
coupling may be used. If DC coupling is used, the CLKinX_BUF_TYPE should be set to MOS buffer mode  
(CLKinX_BUF_TYPE = 1) and the voltage swing of the source must meet the specifications for DC-coupled,  
MOS-mode clock inputs given in Electrical Characteristics. If AC coupling is used, the CLKinX_BUF_TYPE  
should be set to the bipolar buffer mode (CLKinX_BUF_TYPE = 0). The voltage swing at the input pins must  
meet the specifications for AC-coupled, bipolar mode clock inputs given in Electrical Characteristics. In this case,  
some attenuation of the clock input level may be required. A simple resistive divider circuit before the AC-  
coupling capacitor is sufficient.  
Figure 13. DC-Coupled LVCMOS/LVTTL Reference Clock  
Copyright © 2017–2019, Texas Instruments Incorporated  
77  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
10.2 Typical Application  
This design example highlights using the available tools to design loop filters and create programming map for  
LMK04228.  
Multiple —clean“  
clocks at  
different  
frequencies  
VCXO  
Recovered  
—dirty“ clock or  
clean clock  
CLKin0  
Backup  
Reference  
CLKin1  
CLKout10  
CLKout11  
FPGA  
LMK04228  
Clock  
CLKout6,  
CLKout7,  
CLKout8,  
CLKout9  
CLKout4,  
CLKout5  
DAC  
CLKout0,  
CLKout1,  
CLKout2,  
CLKout3  
ADC  
Serializer/  
Deserializer  
Copyright © 2017, Texas Instruments Incorporated  
Figure 14. Typical Application  
10.2.1 Design Requirements  
Clocks outputs:  
1× 245.76-MHz clock for JESD204B ADC, LVPECL.  
This clock requires the best performance in this example.  
2× 983.04-MHz clock for JESD204B DAC, LVPECL.  
1× 122.88-MHz clock for JESD204B FPGA block, LVDS  
3× 10.24-MHz SYSREF for ADC (LVPECL), DAC (LVPECL), FPGA (LVDS).  
2× 122.88-MHz clock for FPGA, LVDS  
For best performance, the highest possible phase detector frequency is used at PLL2. As such, a 122.88-MHz  
VCXO is used.  
10.2.2 Detailed Design Procedure  
10.2.2.1 Device Programming  
TICS Pro register programming tool exposes the registers for the LMK04228 (and many other TI products) using  
block diagrams to demonstrate the purpose and location of register settings. By connecting a USB2ANY  
programmer to the SPI inputs of the device, TICS Pro can update register configurations in real time for rapidly  
validating desired configurations.  
Frequency planning for assignment of outputs:  
To minimize crosstalk perform frequency planning / CLKout assignments to keep common frequencies on  
outputs close together.  
It is best to place common device clock output frequencies on outputs sharing the same VCC group, for  
example, these outputs share Vcc4_CG2. Refer to Pin Configuration and Functions to see the VCC groupings  
the clock outputs.  
In this example, the 245.76-MHz ADC output needs the best performance. DCLKout2 on the LMK04228 provides  
the best noise floor / performance. The 245.76 MHz will be placed on DCLKout2 with 10.24-MHz SYSREF on  
SDCLKout3.  
For best performance the input and output drive level bits may be set. Best noise floor performance is  
achieved with DCLKout2_IDL = 1 and DCLKout2_ODL = 1.  
In this example, the 983.04-MHz DAC output is placed on DCLKout4 and DCLKout6 with 10.24-MHz SYSREF  
on paired SDCLKout5 and SDCLKout7 outputs.  
78  
Copyright © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
Typical Application (continued)  
These outputs share Vcc4_CG2.  
In this example, the 122.88-MHz FPGA JESD204B output is placed on DCLKout10 with 10.24-MHz SYSREF on  
paired SDCLKout11 output.  
Additionally, the 122.88-MHz FPGA non-JESD204B outputs are placed on DCLKout8 and SDCLKout9.  
When frequency planning, consider PLL2 as a clock output at the phase detector frequency. As such, these  
122.88-MHz outputs have been placed on the outputs close to the PLL2 and Charge Pump power supplies.  
Once the device programming is completed as desired in TICS Pro, the register settings can be exported for use  
with other programming controllers.  
10.3 Do's and Don'ts  
10.3.1 Pin Connection Recommendations  
VCC Pins and Decoupling: all VCC pins must always be connected, including for unused clock output groups.  
Unused Clock Outputs: leave unused clock outputs floating and powered down. Use the appropriate  
registers to power down unused clock outputs.  
Unused Clock Inputs: unused clock inputs can be left floating.  
Copyright © 2017–2019, Texas Instruments Incorporated  
79  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
11 Power Supply Recommendations  
11.1 Current Consumption / Power Dissipation Calculations  
From Table 82 the current consumption can be calculated for any configuration. Data below is typical and not  
assured.  
Table 82. Typical Current Consumption for Selected Functional Blocks  
(TA = 25°C, VCC = 3.3 V)  
POWER  
TYPICAL ICC  
(mA)  
DISSIPATED  
IN DEVICE  
(mW)  
BLOCK  
TEST CONDITION  
CORE and FUNCTIONAL BLOCKS  
Core  
Dual-loop, internal VCO0  
PLL1 and PLL2 locked  
131.5  
13.5  
3
433.95  
44.55  
9.9  
VCO  
VCO1 is selected  
Doubler is enabled  
LMK04228  
OSCin Doubler  
CLKin  
EN_PLL2_REF_2X = 1  
Any one of the CLKinX is enabled  
4.9  
16.17  
4.29  
Holdover is enabled  
Hitless switch is enabled  
Track mode  
HOLDOVER_EN = 1  
1.3  
HOLDOVER_HITLESS_SWI  
TCH = 1  
Holdover  
0.9  
2.97  
TRACK_EN = 1  
2.5  
7.6  
27.2  
4.1  
3
8.25  
25.08  
89.76  
13.53  
9.9  
SYNC_EN = 1  
Required for SYNC and SYSREF functionality  
Enabled  
SYSREF_PD = 0  
Pulser is enabled  
SYSREF pulses mode  
SYSREF continuous mode  
SYSREF_PLSR_PD = 0  
SYSREF_MUX = 2  
SYSREF_MUX = 3  
SYSREF  
3
9.9  
CLOCK GROUP  
Enabled  
IDL  
Any one of the CLKoutX_Y_PD = 0  
Any one of the CLKoutX_Y_IDL = 1  
Andy one of the CLKoutX_Y_ODL = 1  
20.1  
2.2  
66.33  
7.26  
ODL  
3.2  
10.56  
44.88  
58.41  
44.88  
Divider only  
DCLKoutX_MUX = 0  
13.6  
17.7  
13.6  
Clock Divider  
Divider + DCC + HS  
Analog Delay + Divider  
DCLKoutX_MUX = 1  
DCLKoutX_MUX = 3  
CLOCK OUTPUT BUFFERS  
LVDS  
100-Ω differential termination  
6
19.8  
OSCout BUFFERS  
LVDS  
100-Ω differential termination  
LVCMOS pair  
18.5  
42.6  
27  
61.05  
140.58  
89.1  
150 MHz  
150 MHz  
LVCMOS  
LVCMOS single  
80  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
12 Layout  
12.1 Layout Guidelines  
12.1.1 Thermal Management  
Power consumption of the LMK04228 of devices can be high enough to require attention to thermal  
management. For reliability and performance reasons the die temperature should be limited to a maximum of  
125°C. That is, as an estimate, TA (ambient temperature) plus device power consumption times RθJA should not  
exceed 125°C.  
The package of the device has an exposed pad that provides the primary heat removal path as well as excellent  
electrical grounding to a printed-circuit board. To maximize the removal of heat from the package, a thermal land  
pattern including multiple vias to a ground plane must be incorporated on the PCB within the footprint of the  
package. The exposed pad must be soldered down to ensure adequate heat conduction out of the package.  
7.2 mm  
0.2 mm  
1.46 mm  
1.15 mm  
Figure 15. Recommended Land and Via Pattern  
Copyright © 2017–2019, Texas Instruments Incorporated  
81  
LMK04228  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
www.ti.com.cn  
12.2 Layout Example  
Figure 16. LMK04228 Layout Example  
82  
版权 © 2017–2019, Texas Instruments Incorporated  
LMK04228  
www.ti.com.cn  
ZHCSK16A OCTOBER 2017REVISED JULY 2019  
13 器件和文档支持  
13.1 器件支持  
13.1.1 TICS Pro  
免费 EVM 编程软件。还可用于生成寄存器映射,以便为特定的 应用进行编程。  
要下载 TICS Pro,请转到 www.ti.com.cn/tool/cn/ticspro-sw。  
13.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.3 商标  
PLLatinum, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2019, Texas Instruments Incorporated  
83  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMK04228NKDR  
LMK04228NKDT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
NKD  
NKD  
64  
64  
2000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
K04228NKD  
K04228NKD  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
NKD 64  
9 x 9, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4229637/A  
www.ti.com  
PACKAGE OUTLINE  
NKD0064A  
WQFN - 0.8 mm max height  
S
C
A
L
E
1
.
6
0
0
WQFN  
9.1  
8.9  
A
B
PIN 1 INDEX AREA  
0.5  
0.3  
9.1  
8.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
0.8 MAX  
C
SEATING PLANE  
(0.1)  
TYP  
7.2 0.1  
SEE TERMINAL  
DETAIL  
17  
32  
60X 0.5  
33  
16  
4X  
7.5  
1
48  
0.3  
64X  
PIN 1 ID  
64  
49  
0.2  
(OPTIONAL)  
0.1  
C A  
C
B
0.5  
0.3  
64X  
0.05  
4214996/A 08/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NKD0064A  
WQFN - 0.8 mm max height  
WQFN  
(
7.2)  
SYMM  
64X (0.6)  
64X (0.25)  
SEE DETAILS  
49  
64  
1
48  
60X (0.5)  
SYMM  
(8.8)  
(1.36)  
TYP  
8X (1.31)  
33  
(
0.2) VIA  
TYP  
16  
17  
32  
(1.36) TYP  
8X (1.31)  
(8.8)  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214996/A 08/2013  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NKD0064A  
WQFN - 0.8 mm max height  
WQFN  
SYMM  
(1.36) TYP  
49  
64X (0.6)  
64X (0.25)  
64  
1
48  
(1.36)  
TYP  
60X (0.5)  
SYMM  
(8.8)  
METAL  
TYP  
16  
33  
17  
32  
25X (1.16)  
(8.8)  
SOLDERPASTE EXAMPLE  
BASED ON 0.125mm THICK STENCIL  
EXPOSED PAD  
65% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
4214996/A 08/2013  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LMK04228NKDT

具有双环 PLL 的超低噪声时钟抖动消除器 | NKD | 64 | -40 to 85
TI

LMK042B7101C

Notice for TAIYO YUDEN products Please read this notice before using the TAIYO YUDEN products.
TAIYO YUDEN

LMK042B7101C-W

Please read this notice before using the TAIYO YUDEN products
TAIYO YUDEN

LMK042B7101KC-W

High Value Multilayer Ceramic Capacitors (High dielectric type)
TAIYO YUDEN

LMK042B7101MC-W

High Value Multilayer Ceramic Capacitors (High dielectric type)
TAIYO YUDEN

LMK042B7102C

Notice for TAIYO YUDEN products Please read this notice before using the TAIYO YUDEN products.
TAIYO YUDEN

LMK042B7102C-W

Please read this notice before using the TAIYO YUDEN products
TAIYO YUDEN

LMK042B7102KC-W

High Value Multilayer Ceramic Capacitors (High dielectric type)
TAIYO YUDEN

LMK042B7102MC-W

High Value Multilayer Ceramic Capacitors (High dielectric type)
TAIYO YUDEN

LMK042B7151C

Notice for TAIYO YUDEN products Please read this notice before using the TAIYO YUDEN products.
TAIYO YUDEN

LMK042B7151C-W

Please read this notice before using the TAIYO YUDEN products
TAIYO YUDEN

LMK042B7151KC-W

High Value Multilayer Ceramic Capacitors (High dielectric type)
TAIYO YUDEN