LMK04821NKDT [TI]

支持 JESD204B 的超低抖动合成器和抖动消除器 | NKD | 64 | -40 to 85;
LMK04821NKDT
型号: LMK04821NKDT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

支持 JESD204B 的超低抖动合成器和抖动消除器 | NKD | 64 | -40 to 85

时钟 外围集成电路 晶体
文件: 总128页 (文件大小:4539K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
LMK0482x Ultra Low-Noise JESD204B Compliant  
Clock Jitter Cleaner With Dual Loop PLLs  
1 Features  
2 Applications  
1
JEDEC JESD204B Support  
Ultra-Low RMS Jitter  
Wireless Infrastructure  
Data Converter Clocking  
Networking, SONET/SDH, DSLAM  
Medical / Video / Military / Aerospace  
Test and Measurement  
88 fs RMS Jitter (12 kHz to 20 MHz)  
91 fs RMS Jitter (100 Hz to 20 MHz)  
–162.5 dBc/Hz Noise Floor at 245.76 MHz  
Up to 14 Differential Device Clocks from PLL2  
3 Description  
The LMK0482x family is the industry's highest  
Up to 7 SYSREF Clocks  
Maximum Clock Output Frequency 3.1 GHz  
performance  
clock  
conditioner  
with  
JEDEC  
LVPECL, LVDS, HSDS, LCPECL  
Programmable Outputs from PLL2  
JESD204B support.  
The 14 clock outputs from PLL2 can be configured to  
drive seven JESD204B converters or other logic  
devices, using device and SYSREF clocks. SYSREF  
can be provided using both DC and AC coupling. Not  
limited to JESD204B applications, each of the 14  
outputs can be individually configured as high-  
performance outputs for traditional clocking systems.  
Up to 1 Buffered VCXO/Crystal Output from PLL1  
LVPECL, LVDS, 2xLVCMOS Programmable  
Dual Loop PLLatinum™ PLL Architecture  
PLL1  
Up to 3 Redundant Input Clocks  
Automatic and Manual Switch-Over Modes  
Hitless Switching and LOS  
The high performance, combined with features such  
as the ability to trade off between power or  
performance, dual VCOs, dynamic digital delay,  
holdover, and glitchless analog delay, make the  
LMK0482x family ideal for providing flexible high-  
performance clocking trees.  
Integrated Low-Noise Crystal Oscillator Circuit  
Holdover Mode When Input Clocks are Lost  
PLL2  
Normalized [1 Hz] PLL Noise Floor of  
–227 dBc/Hz  
Device Information(1)  
PART  
NUMBER  
VCO0  
FREQUENCY  
VCO1 FREQUENCY  
Phase Detector Rate up to 155 MHz  
OSCin Frequency-Doubler  
Two Integrated Low-Noise VCOs  
2920 to 3080 MHz  
LMK04821  
1930 to 2075 MHz  
VCO1 Div = ÷2 to ÷8  
(÷2 = 1460 to 1540 MHz)  
50% Duty Cycle Output Divides, 1 to 32  
(even and odd)  
LMK04826  
LMK04828  
1840 to 1970 MHz  
2370 to 2630 MHz  
2440 to 2505 MHz  
2920 to 3080 MHz  
Precision Digital Delay, Dynamically Adjustable  
25-ps Step Analog Delay  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
Multi-Mode: Dual PLL, Single PLL, and Clock  
Distribution  
Simplified Schematic  
Industrial Temperature Range: –40 to 85°C  
Supports 105°C PCB Temperature (Measured at  
Thermal Pad)  
3.15-V to 3.45-V Operation  
Package: 64-Pin QFN (9.0 mm × 9.0 mm × 0.8  
mm)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
 
 
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Table of Contents  
9.6 Register Maps ........................................................ 57  
9.7 Device Register Descriptions.................................. 61  
10 Applications and Implementation.................... 102  
10.1 Application Information........................................ 102  
10.2 Digital Lock Detect Frequency Accuracy ............ 102  
10.3 Driving CLKin and OSCin Inputs......................... 103  
10.4 Output Termination and Biasing ......................... 105  
10.5 Typical Applications ............................................ 107  
10.6 System Examples .............................................. 110  
10.7 Do's and Don'ts................................................... 113  
11 Power Supply Recommendations ................... 114  
11.1 Pin Connection Recommendations..................... 114  
1
2
3
4
5
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Comparison Table..................................... 7  
5.1 Device Configuration Information.............................. 7  
Pin Configuration and Functions......................... 8  
Specifications....................................................... 11  
7.1 Absolute Maximum Ratings .................................... 11  
7.2 ESD Ratings............................................................ 11  
7.3 Recommended Operating Conditions..................... 11  
7.4 Thermal Information................................................ 11  
7.5 Electrical Characteristics......................................... 12  
7.6 SPI Interface Timing ............................................... 25  
6
7
11.2 Current Consumption / Power Dissipation  
Calculations............................................................ 116  
12 Layout................................................................. 117  
12.1 Layout Guidelines ............................................... 117  
12.2 Layout Example .................................................. 118  
13 Device and Documentation Support ............... 119  
13.1 Device Support .................................................. 119  
13.2 Related Links ...................................................... 119  
13.3 Trademarks......................................................... 119  
13.4 Electrostatic Discharge Caution.......................... 119  
13.5 Glossary.............................................................. 119  
7.7 Typical Characteristics – Clock Output AC  
Characteristics ......................................................... 26  
8
9
Parameter Measurement Information ................ 28  
8.1 Charge Pump Current Specification Definitions...... 28  
8.2 Differential Voltage Measurement Terminology ..... 29  
Detailed Description ............................................ 30  
9.1 Overview ................................................................. 30  
9.2 Functional Block Diagram ....................................... 35  
9.3 Feature Description................................................. 39  
9.4 Device Functional Modes........................................ 50  
9.5 Programming........................................................... 56  
14 Mechanical, Packaging, and Orderable  
Information ......................................................... 119  
4 Revision History  
Changes from Revision AR (December 2015) to Revision AS  
Page  
Deleted references to "LMK0482xB" and replaced with device names ................................................................................. 1  
Updated Pin Configuration and Functions table with expanded descriptions ........................................................................ 8  
Changed mVpp to |mV| for 10-mA HSDS VOD in Electrical Characteristics......................................................................... 22  
Added requirements for OSCout LVPECL emitter resistors to Detailed Description ........................................................... 30  
Changed Overview to provide more detail. .......................................................................................................................... 30  
Changed Three PLL1 Redundant Reference Inputs to provide more detail. ....................................................................... 31  
Changed Frequency Holdover wording for added clarity. .................................................................................................... 31  
Moved VCO1 Divider (LMK04821 only) to within Internal VCOs. ........................................................................................ 31  
Changed all instances of '0-delay' to 'zero-delay' and added reference to Multi-Clock Synchronization app note. ............ 33  
Changed Figure 10 and Figure 11 to show OSCout_MUX, SYNC/SYSREF detail, and color............................................ 35  
Changed Figure 13 to show distribution path reclocking, other FB_MUX targets. .............................................................. 38  
Added SYSREF_DDLY_PD and DCLKoutX_DDLY_PD conditions for added power savings in SYNC/SYSREF.............. 39  
Added reference to Recommended Programming Sequence.............................................................................................. 40  
Changed _CNTH/_CNTL register values to 0, representing delay value of 16, in Table 3. ............................................... 43  
Added timing alignment figure, alignment equations to SYSREF to Device Clock Alignment ............................................ 45  
Added LOS register requirements to Input Clock Switching - Automatic Mode................................................................... 47  
Merged redundant paragraph into Digital Lock Detect. ....................................................................................................... 47  
Added note clarifying PLL1 phase detector frequency effect on PLL1_WND_SIZE in Digital Lock Detect......................... 47  
Added holdover entry conditions and clarifications in Holdover........................................................................................... 48  
Added Single-Loop Mode, Single-Loop Mode With External VCO, Distribution Mode to Device Functional Modes. ......... 50  
2
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
Revision History (continued)  
Added RESET Pin to Recommended Programming Sequence........................................................................................... 56  
Changed CLKoutX_Y_ODL, CLKoutX_Y_IDL, DCLKoutX_DIV descriptions to add more detail........................................ 63  
Changed DCLKoutX_ADLY description in DCLKoutX_ADLY, DCLKoutX_ADLY_MUX, DCLKout_MUX........................... 64  
Changed SDCLKoutY_ADLY description in SDCLKoutY_ADLY_EN, SDCLKoutY_ADLY. ................................................ 65  
Added OSCout LVPECL format instructions in VCO_MUX, OSCout_MUX, OSCout_FMT. ............................................... 68  
Changed SYSREF_CLR description in SYSREF_CLR, SYNC_1SHOT_EN, SYNC_POL, SYNC_EN,  
SYNC_PLL2_DLD, SYNC_PLL1_DLD, SYNC_MODE to add more detail.......................................................................... 74  
Added time alongside frequency for LOS_TIMEOUT in Table 45 ....................................................................................... 80  
Changed LOS_EN description to clarify requirements in Table 45...................................................................................... 80  
Changed Table 53, Table 55, Table 56 register text from "N counter" to "R divider" .......................................................... 84  
Changed Table 57 maximum field value to match register size........................................................................................... 85  
Changed Table 75 headers from Resistance to Capacitance. .......................................................................................... 96  
Changed Application Information to reference current TI tools.......................................................................................... 102  
Changed all images in Driving CLKin and OSCin Inputs to include OSCin. ..................................................................... 103  
Changed CLKinX_BUF_TYPE to CLKinX_TYPE in Driving CLKin and OSCin Pins With a Single-Ended Source. ......... 104  
Added Output Termination and Biasing section................................................................................................................. 105  
Changed Typical Applications to reference up-to-date tools.............................................................................................. 107  
Added System Examples .................................................................................................................................................. 110  
Added OSCout, LVDS/HSDS, and RESET pin recommendations to Do's and Don'ts...................................................... 113  
Added Pin Connection Recommendations ........................................................................................................................ 114  
Deleted empty column in Table 87 and redirected to TICS Pro current calculator............................................................ 116  
Changed tools listed in Device Support . ........................................................................................................................... 119  
Changes from Revision AQ (August 2014) to Revision AR  
Page  
Added Support for 105°C thermal pad temperature............................................................................................................... 1  
Changed from I/O to I for pin 6 in Pin Functions table. ......................................................................................................... 8  
Deleted programmable status pin in Description column for pin 6 in Pin Functions table..................................................... 8  
Changed from No connection to Do not connect for pins 7, 8, 9 in Pin Functions table. ..................................................... 9  
Changed to Reference Clock Input Port 1 for PLL 1 for Pins 34, 35 in Pin Functions. ........................................................ 9  
Added Reference Clock Input Port 2 for PLL1 for pins 40, 41 in Pin Functions. ................................................................ 10  
Added ESD Ratings.............................................................................................................................................................. 11  
Added PCB temperature in Recommended Operating Conditions. ..................................................................................... 11  
Added Digital Input Timing in Electrical Characteristics. ..................................................................................................... 24  
Changed Detailed block diagrams for LMK04821 and LMK04826/8. ................................................................................. 35  
Added 6 to DCLKout0 sequence and 7 to SDCLKout1 sequence in Figure 12................................................................... 37  
Added 6 to DCLKout0 sequence and 7 to SDCLKout1 sequence in Figure 13................................................................... 38  
Added For each SDCLKoutY being used in SYNC/SYSREF............................................................................................... 39  
Deleted "SDCLKoutY_PD as required per output. " in Table 1............................................................................................ 39  
Added footnote starting SDCLKoutY_PD = 0 as... in Table 1. ............................................................................................ 39  
Added SDCLKout1_PD = 0, SDCLKout3_PD = 0 in Setup of SYSREF Example............................................................... 40  
Changed DLD_HOLD_CNT to HOLDOVER_DLD_CNT in Holdover Mode - Automatic Exit of Holdover . ........................ 49  
Changed Recommended Programming Sequence. ............................................................................................................ 56  
Added 0x171/0x172 to Register Map. ................................................................................................................................. 60  
Added LMK04821 register setting. ....................................................................................................................................... 62  
Revised Register 0x143 table............................................................................................................................................... 74  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Added fixed register setting for 0x171.................................................................................................................................. 75  
Added fixed register setting for 0x172 ................................................................................................................................. 75  
Added LMK04821 register setting. ...................................................................................................................................... 98  
Added LMK04821 register setting. ...................................................................................................................................... 99  
Changed RB_PLL1_LD description. .................................................................................................................................... 99  
Changed RB_PLL2_LD description. .................................................................................................................................... 99  
Changes from Revision AP (June 2013) to Revision AQ  
Page  
Changed data sheet flow and layout to conform with new TI standards. Added, updated, or renamed the following  
sections: Device Information Table, Application and Implementation; Power Supply Recommendations; Layout;  
Device and Documentation Support; Mechanical, Packaging, and Ordering Information .................................................... 1  
Added values for LMK04821 under "Features" section. ........................................................................................................ 1  
Changed LMK04820 family to LMK0482x family. ................................................................................................................. 1  
Added values for LMK04821 in Device Configuration Information......................................................................................... 7  
Added holdover DAC to pin 36 description in Pin Functions. ............................................................................................... 9  
Changed Thermal Information header from LMK0482xB to LMK0482x. ............................................................................ 11  
Changed CLKinX_BUF_TYPE to CLKinX_TYPE in Electrical Characteristics. ................................................................... 12  
Added values for LMK04821 under Internal VCO Specifications in Electrical Characteristics. ........................................... 15  
Added values for LMK04821 under Noise Floor in Electrical Characteristics...................................................................... 16  
Added values for LMK04821 under CLKout Closed Loop Phase Noise Specifications a Commercial Quality VCXO  
in Electrical Characteristics. ................................................................................................................................................. 17  
Added 245.76 MHz as frequency for LMK04826B phase noise data L(f)CLKout for VCO0. .................................................. 18  
Added 245.76 MHz as frequency for LMK04826B phase noise data L(f)CLKout for VCO1. .................................................. 18  
Added 245.76 MHz as frequency for LMK04828B phase noise data L(f)CLKout for VCO0. .................................................. 18  
Added 245.76 MHz as frequency for LMK04828B phase noise data L(f)CLKout for VCO1. .................................................. 18  
Added values for LMK04821 under CLKout Closed Loop Jitter Specifications a Commercial Quality VCXO. ................... 19  
Added SDCLKoutY_HS = 0 for tsJESD204B in Electrical Characteristics. ............................................................................... 21  
Added Propagation Delay from CLKin0 to SDCLKoutY in Electrical Characteristics........................................................... 21  
Added footnote that LMK04821 has no DCLKoutX or SDCLKoutY outputs on at power up, only OSCout. ...................... 21  
Changed VOH TEST CONDITIONS to = 3 or 4 and VOL TEST CONDITIONS to 3, 4, or 6 under DIGITAL OUTPUTS  
(CLKin_SELX, Status_LDX, and RESET/GPO) subheading in Electrical Characteristics................................................... 23  
Changed Digital Inputs (SCK, SDIO, CS*) IIH VIH = VCC min line from 5 µA to –5 µA........................................................ 24  
Added 4 wire mode read back has same timing as SDIO pin, R/W bit = 0 is for SPI write, R/W bit = 1 is for SPI  
read, W1 and W0 shall be written as 0. ............................................................................................................................... 25  
Added LMK04821 phase noise graphs under Clock Output AC Characteristics. ................................................................ 26  
Added link to AN-912 Application Report............................................................................................................................. 29  
Changed from Glitchless Half Shift to Glitchless Half Step.................................................................................................. 33  
Added LMK04821 detailed block diagram............................................................................................................................ 35  
Changed block from SDCLKoutY_POL to DCLKoutX_POL in Figure 12. ........................................................................... 37  
Added SYSREF_CLKin0_MUX block to Figure 13 image. .................................................................................................. 38  
Changed Figure 13 to show that FB_MUX SYSREF input comes from SYSREF Divider, not SYSREF_MUX.................. 38  
Changed term pulsor to pulser throughout........................................................................................................................... 39  
Changed DCLKout0_1_DIV to DCLKout0_DIV; DCLKout2_3_DIV to DCLKout2_DIV; DCLKout4_5_DIV to  
DCLKout4_DIV. .................................................................................................................................................................... 40  
Added DCLKout4_DIV = 20. ................................................................................................................................................ 40  
Added DCLKout0_DDLY_PD = 0, DCLKout2_DDLY_PD = 0, DCLKout4_DDLY_PD = 0.................................................. 40  
Changed text to read, Set device clock and SYSREF divider digital delays: DCLKout0_DDLY_CNTH,  
DCLKout0_DDLY_CNTL, DCLKout2_DDLY_CNTH, DCLKout2_DDLY_CNTL, DCLKout4_DDLY_CNTH,  
4
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
DCLKout4_DDLY_CNTL, SYSREF_DDLY. ........................................................................................................................ 40  
Added = 1 in SYSREF Request. ......................................................................................................................................... 41  
Changed step numbers in dynamic delay and references to steps to be correct, step 8 was duplicated. ......................... 44  
Added note LMK04821 includes VCO1 divider on VCO1 output......................................................................................... 50  
Added note LMK04821 includes VCO1 divider on VCO1 output......................................................................................... 51  
Added R/W bit = 0 is for SPI write. R/W bit = 1 is for SPI read. ......................................................................................... 56  
Added If using LMK04821, program register 0x174 in Recommended Programming Sequence. ..................................... 56  
Added SYSREF_CLKin0_MUX and VCO1_DIV to register map......................................................................................... 58  
Added CLKin_OVERRIDE bit to register map. .................................................................................................................... 59  
Changed from half shift to half step...................................................................................................................................... 64  
Changed definition of SDCLKoutY_DDLY value of 0 from Reserved to Bypass. ................................................................ 64  
Changed from Sets the polarity of SYSREF clocks to Sets the polarity of clock on SDCLKoutY when device clock  
output is selected with SDCLKoutY_MUX............................................................................................................................ 67  
Changed Sets the polarity of the device clocks to Sets the polarity of the device clocks from the DCLKoutX outputs. ..... 67  
Added LMK04821 DCLKoutX_FMT power on reset values as powerdown......................................................................... 67  
Changed from SYSREF to SYSREF Divider in Source column of Register 0x13F. ........................................................... 71  
Changed reserved to Off for CLKin1_OUT_MUX. .............................................................................................................. 76  
Changed reserved to Off for CLKin0_OUT_MUX. .............................................................................................................. 76  
Added CLKin_OVERRIDE bit............................................................................................................................................... 83  
Added LMK04821 register 0x174 for VCO1_DIV................................................................................................................. 98  
Deleted LMK04828 from Core line. ................................................................................................................................... 116  
Added VCO1 Icc including VCO1 Divider for LMK04821................................................................................................... 116  
Changed VCO1 Icc and power dissipated for LMK04828B/26B from 6 mA to 13.5 mA and 19.8 mW to 44.55 mW. ...... 116  
Changes from Revision AO (March 2013) to Revision AP  
Page  
Changed datasheet title from LMK04828 to LMK0482xB ...................................................................................................... 1  
Changed LMK04828 family to LMK04820 family. .................................................................................................................. 1  
Changed image from LMK04828B to LMK0482xB. ............................................................................................................... 1  
Added LMK04826 to Device Configuration Information table. ............................................................................................... 7  
Changed - increased LMK04828B VCO0 max frequency from 2600 MHz to 2630 MHz. ..................................................... 7  
Changed - expanded LMK04828B VCO1 frequency range from 2945 - 3005 MHz to 2920 MHz - 3080 MHz..................... 7  
Changed Thermal Information header from LMK04828B to LMK0482xB............................................................................ 11  
Added LMK04826 VCO Range Specification....................................................................................................................... 15  
Changed - increased LMK04828B VCO0 max frequency from 2600 MHz to 2630 MHz. ................................................... 15  
Changed - expanded LMK04828B VCO1 frequency range from 2945 - 3005 MHz to 2920 MHz - 3080 MHz................... 15  
Added LMK04826 KVCO specification. .................................................................................................................................. 15  
Added clarification of LMK04828 specification vs LMK04826 specification for KVCO........................................................... 15  
Added LMK04826 noise floor data. ...................................................................................................................................... 16  
Changed - clarified phase noise data section header. ......................................................................................................... 17  
Added LMK04826 phase noise data. ................................................................................................................................... 18  
Added LMK04826 jitter data................................................................................................................................................. 19  
Added LMK04826 fCLKout-startup spec. ..................................................................................................................................... 21  
Added clarification of LMK04828 specification vs. LMK04826 specification for fCLKout-startup. ................................................ 21  
Added LMK04826B Phase Noise Performance Graph for VCO0. ....................................................................................... 26  
Added LMK04826B Phase Noise Performance Graph for VCO1. ....................................................................................... 26  
Added Added PLL2 loop filter bandwidth and phase margin info to plot. ............................................................................ 27  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Changed LMK04828 to LMK0482xB in VCXO/Crystal Buffered Output. ............................................................................ 31  
Changed LMK04828 to LMK0482xB in Status Pins. ........................................................................................................... 33  
Changed image from LMK04828 to LMK0482xB................................................................................................................. 50  
Changed - corrected value of PLL2_P selection to be 0 to correspond with register programming definition. ................... 50  
Changed image from LMK04828 to LMK0482xB................................................................................................................. 51  
Changed image from LMK04828 to LMK0482xB................................................................................................................. 52  
Added LMK04826 register setting. ....................................................................................................................................... 62  
Added LMK04826 register setting. ....................................................................................................................................... 98  
Added LMK04826 register setting. ....................................................................................................................................... 99  
6
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
5 Device Comparison Table  
5.1 Device Configuration Information  
PLL2  
REF-  
OSCout (BUFFERED  
OSCin Clock) LVDS/  
LVPECL/ LVCMOS  
PROGRAMMABLE  
LVDS/LVPECL/HSDS  
OUTPUTS  
ERENCE  
PART NUMBER  
VCO0 FREQUENCY  
VCO1 FREQUENCY  
(1)  
INPUTS(1)  
VCO1_DIV = ÷2  
1460 to 1540 MHz  
VCO1_DIV = ÷3  
974 to 1026 MHz  
VCO1_DIV = ÷4  
730 to 770 MHz  
VCO1_DIV = ÷5  
584 to 616 MHz  
LMK04821  
Up to 3  
Up to 1  
14  
1930 to 2075 MHz  
VCO1_DIV = ÷6  
487 to 513 MHz  
VCO1_DIV = ÷7  
418 to 440 MHz  
VCO1_DIV = ÷8  
365 to 385 MHz  
LMK04826  
LMK04828  
Up to 3  
Up to 3  
Up to 1  
Up to 1  
14  
14  
1840 to 1970 MHz  
2370 to 2630 MHz  
2440 to 2505 MHz  
2920 to 3080 MHz  
(1) OSCout may also be third clock input, CLKin2.  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
6 Pin Configuration and Functions  
NKD Package  
64-Pin WQFN  
Top View  
Clock Group 0  
Clock Group 3  
Status_LD2  
Vcc10_PLL2  
CPout2  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DCLKout0  
DCLKout0*  
SDCLKout1  
SDCLKout1*  
RESET/GPO  
SYNC/SYSREF_REQ  
NC  
1
2
3
Vcc9_CP2  
OSCin*  
4
5
OSCin  
6
Vcc8_OSCin  
7
NC  
OSCout*/CLKin2*  
OSCout/CLKin2  
Vcc7_OSCout  
8
LLP-64  
Top down view  
NC  
9
Vcc1_VCO  
LDObyp1  
10  
11  
12  
13  
14  
15  
16  
CLKin0*  
LDObyp2  
CLKin0  
SDCLKout3  
SDCLKout3*  
DCLKout2  
DCLKout2*  
Vcc6_PLL1  
CLKin1*/Fin*/FBCLKin*  
DAP  
CLKin1/Fin/FBCLKin  
Vcc5_DIG  
Clock Group 2  
Clock Group 1  
Pin Functions  
PIN  
I/O(1)  
DESCRIPTION(2)  
NO.  
NAME  
1
DCLKout0  
DCLKout0*  
SDCLKout1  
Device clock output 0. Differential clock output. Part of clock group 0. To minimize noise, keep all outputs in the clock  
group at the same frequency, or at frequencies without spurious interference. If unused, set output format buffer to  
powerdown and leave pins floating.  
O
2
3
4
SYSREF / Device clock output 1. Differential clock output. Part of clock group 0. To minimize noise, keep all outputs in  
the clock group at the same frequency, or at frequencies without spurious interference. If unused, set output format  
buffer to powerdown and leave pins floating.  
O
SDCLKout1*  
RESET/GPO  
Device reset input or GPO. If used as a reset input, pin polarity and nominal 160-kΩ pull-up or pull-down are controlled  
by register settings. If used as an output, can be set to push-pull or open-drain.  
5
6
I/O  
I
Synchronization input.. Can be used to reset dividers, trigger the SYSREF pulser, or request continuous SYSREF from  
the SYSREF divider. Pin polarity is controlled by register settings. Nominal 160-kΩ pulldown.  
SYNC/SYSREF_REQ  
(1) The definitions below define the I/O type for each pin.  
(a) I = Input  
(b) O = Output  
(c) I/O = Input / Output (Configurable)  
(d) P = Power Supply  
(e) BP = Bypass (LDO output)  
(f) G = Ground  
(g) NC = No Connect  
(2) See Pin Connection Recommendations for recommended connections.  
8
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
Pin Functions (continued)  
PIN  
I/O(1)  
DESCRIPTION(2)  
NO.  
7,  
NAME  
-
-
-
NC  
NC  
NC  
8
Do not connect. These pins must be left floating.  
9
Power supply for VCO LDO. Decoupling capacitance requirements may change with system frequency. See Pin  
Connection Recommendations for recommendations.  
10  
Vcc1_VCO  
P
11  
12  
13,  
LDObyp1  
LDObyp2  
SDCLKout3  
BP  
BP  
LDO bypass. This pin must be bypassed to ground with 10-µF capacitor placed close to the pin.  
LDO bypass.This pin must be bypassed to ground with a 0.1-µF capacitor placed close to the pin.  
SYSREF / Device clock output 3. Differential clock output. Part of clock group 1. To minimize noise, keep all outputs in  
the clock group at the same frequency, or at frequencies without spurious interference. If unused, set output format  
buffer to powerdown and leave pins floating.  
O
14  
15  
16  
SDCLKout3*  
DCLKout2  
Device clock output 2. Differential clock output. Part of clock group 1. To minimize noise, keep all outputs in the clock  
group at the same frequency, or at frequencies without spurious interference. If unused, set output format buffer to  
powerdown and leave pins floating.  
O
P
DCLKout2*  
Power supply for clock outputs 2 and 3. Decoupling capacitance requirements may change with system frequency. See  
Pin Connection Recommendations for recommendations.  
17  
Vcc2_CG1  
18  
19  
CS*  
I
I
SPI Chip select. Active-low input. Must be pulled up externally or actively driven high when not in use.  
SCK  
SPI clock. Active-high input. Nominal 160-kΩ pulldown.  
SPI data. This pin can implement bidirectional I/O. As an output, this pin can be configured for open-drain or push-pull.  
Open-drain output requires external pull-up. Register settings can disable the output feature of this pin. Other GPIO pins  
can also be configured as SPI MISO (master-in slave-out) for traditional 4-wire SPI.  
20  
21  
SDIO  
I/O  
P
Power supply for SYSREF divider and SYNC. Decoupling capacitance requirements may change with system  
frequency. See Pin Connection Recommendations for recommendations.  
Vcc3_SYSREF  
22  
23  
24  
25  
SDCLKout5  
SDCLKout5*  
DCLKout4  
SYSREF / Device clock output 5. Differential clock output. Part of clock group 2. To minimize noise, keep all outputs in  
the clock group at the same frequency, or at frequencies without spurious interference. If unused, set output format  
buffer to powerdown and leave pins floating.  
O
Device clock output 4. Differential clock output. Part of clock group 2. To minimize noise, keep all outputs in the clock  
group at the same frequency, or at frequencies without spurious interference. If unused, set output format buffer to  
powerdown and leave pins floating.  
O
DCLKout4*  
Power supply for clock outputs 4, 5, 6, and 7. Decoupling capacitance requirements may change with system frequency.  
See Pin Connection Recommendations for recommendations.  
26  
Vcc4_CG2  
27  
28  
29  
30  
DCLKout6  
Device clock output 6. Differential clock output. Part of clock group 2. To minimize noise, keep all outputs in the clock  
group at the same frequency, or at frequencies without spurious interference. If unused, set output format buffer to  
powerdown and leave pins floating.  
O
O
DCLKout6*  
SDCLKout7  
SDCLKout7*  
SYSREF / Device clock output 7. Differential clock output. Part of clock group 2. To minimize noise, keep all outputs in  
the clock group at the same frequency, or at frequencies without spurious interference. If unused, set output format  
buffer to powerdown and leave pins floating.  
Programmable status pin. By default, this pin is configured as an active-high output representing the state of PLL1 lock  
detect. Other status conditions and output polarity are register-selectable. This pin can be configured for open-drain or  
push-pull output.  
31  
Status_LD1  
I/O  
Charge pump 1 output. This pin is connected to the external loop filter components for PLL1, and to the VCXO control  
voltage pin.  
32  
33  
CPout1  
O
P
Power supply for digital circuitry, such as SPI bus and GPIO pins. Decoupling capacitance requirements may change  
with system frequency. See Pin Connection Recommendations for recommendations.  
Vcc5_DIG  
(Default) Reference clock input port 1 for PLL1. Can be configured for DC or AC coupling. Accepts single-ended or  
differential clocks. If unused in single-ended configuration, connect to GND with a 0.1-µF capacitor. Leave floating if  
both pins are unused. See Driving CLKin and OSCin Inputs for single-ended termination information.  
CLKin1  
I
I
Feedback input for external clock feedback input (zero–delay mode). Can be configured for DC or AC coupling. Accepts  
single-ended or differential clocks. If unused in single-ended configuration, connect to GND with a 0.1-µF capacitor.  
Leave floating if both pins are unused. See Driving CLKin and OSCin Inputs for single-ended termination information.  
FBCLKin  
34  
External VCO input (external VCO mode) or Clock Distribution input (distribution mode). Can be configured for DC or  
AC coupling. Accepts single-ended or differential clocks. If unused in single-ended configuration, connect to GND with a  
0.1-µF capacitor. Leave floating if both pins are unused. See Driving CLKin and OSCin Inputs for single-ended  
termination information.  
Fin  
I
(Default) Reference clock input port 1 for PLL1. Can be configured for DC or AC coupling. Accepts single-ended or  
differential clocks. If unused in single-ended configuration, connect to GND with a 0.1-µF capacitor. Leave floating if  
both pins are unused. See Driving CLKin and OSCin Inputs for single-ended termination information.  
CLKin1*  
I
I
Feedback input for external clock feedback input (zero-delay mode). Can be configured for DC or AC coupling. Accepts  
single-ended or differential clocks. If unused in single-ended configuration, connect to GND with a 0.1-µF capacitor.  
Leave floating if both pins are unused. See Driving CLKin and OSCin Inputs for single-ended termination information.  
FBCLKin*  
35  
External VCO input (external VCO mode) or Clock Distribution input (distribution mode). Can be configured for DC or  
AC coupling. Accepts single-ended or differential clocks. If unused in single-ended configuration, connect to GND with a  
0.1-µF capacitor. Leave floating if both pins are unused. See Driving CLKin and OSCin Inputs for single-ended  
termination information.  
Fin*  
I
P
I
Power supply for PLL1, charge pump 1, holdover DAC. Decoupling capacitance requirements may change with system  
frequency. See Pin Connection Recommendations for recommendations.  
36  
37  
Vcc6_PLL1  
CLKin0  
Reference clock input port 0 for PLL1. Can also be used as a synchronization input for SYNC/SYSREF. Can be  
configured for DC or AC coupling. Accepts single-ended or differential clocks. If unused in single-ended configuration,  
connect to GND with a 0.1-µF capacitor. Leave floating if both pins are unused. See Driving CLKin and OSCin Inputs for  
single-ended termination information.  
38  
CLKin0*  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Pin Functions (continued)  
PIN  
I/O(1)  
DESCRIPTION(2)  
NO.  
NAME  
Vcc7_OSCout  
Power supply for OSCout port and CLKin2. Decoupling capacitance requirements may change with system frequency.  
See Pin Connection Recommendations for recommendations.  
39  
P
(Default) Buffered output of OSCin port. Defaults to LVPECL. In LVPECL output format, this pin only supports 240-Ω  
emitter resistors. If unused, set output format buffer to powerdown and leave pins floating.  
OSCout  
Reference clock input port 2 for PLL1. Can be configured for DC or AC coupling. Accepts single-ended or differential  
clocks. If unused in single-ended configuration, connect to GND with a 0.1-µF capacitor. Leave floating if both pins are  
unused. See Driving CLKin and OSCin Inputs for single-ended termination information. Registers must be configured to  
set this pin as an input.  
40  
I/O  
I/O  
CLKin2  
(Default) Buffered output of OSCin port. Defaults to LVPECL. In LVPECL output format, this pin only supports 240-Ω  
emitter resistors. If unused, set output format buffer to powerdown and leave pins floating.  
OSCout*  
CLKin2*  
Vcc8_OSCin  
Reference clock input port 2 for PLL1. Can be configured for DC or AC coupling. Accepts single-ended or differential  
clocks. If unused in single-ended configuration, connect to GND with a 0.1-µF capacitor. Leave floating if both pins are  
unused. See Driving CLKin and OSCin Inputs for single-ended termination information. Registers must be configured to  
set this pin as an input.  
41  
42  
Power supply for OSCin. Decoupling capacitance requirements may change with system frequency. See Pin Connection  
Recommendations for recommendations.  
P
I
43  
44  
OSCin  
Feedback to PLL1, reference input to PLL2. Inputs to this pin should be AC-coupled. Accepts single-ended or differential  
clocks. If unused in single-ended configuration, connect to GND with a 0.1-µF capacitor. Leave floating if both pins are  
unused. See Driving CLKin and OSCin Inputs for single-ended termination information.  
OSCin*  
Power supply for PLL2 charge pump. Decoupling capacitance requirements may change with system frequency. See  
Pin Connection Recommendations for recommendations.  
45  
46  
47  
Vcc9_CP2  
CPout2  
P
O
P
Charge pump 2 output. This pin is connected to the external components of the PLL2 loop filter. If an external VCO is  
used, this pin is also connected to the external VCO control voltage pin. Do not route this pin near noisy signals.  
Power supply for PLL2. Decoupling capacitance requirements may change with system frequency. See Pin Connection  
Recommendations for recommendations.  
Vcc10_PLL2  
Programmable status pin. By default, this pin is configured as an active-high output representing the state of PLL2 lock  
detect. Other status conditions and output polarity are register-selectable. This pin can be configured for open-drain or  
push-pull output.  
48  
Status_LD2  
I/O  
O
49  
50  
51  
52  
SDCLKout9  
SDCLKout9*  
DCLKout8  
SYSREF / Device clock 9. Differential clock output. Part of clock group 3. To minimize noise, keep all outputs in the  
clock group at the same frequency, or at frequencies without spurious interference. If unused, set output format buffer to  
powerdown and leave pins floating.  
Device clock output 8. Differential clock output. Part of clock group 3. To minimize noise, keep all outputs in the clock  
group at the same frequency, or at frequencies without spurious interference. If unused, set output format buffer to  
powerdown and leave pins floating.  
O
P
DCLKout8*  
Power supply for clock outputs 8, 9, 10, and 11. Decoupling capacitance requirements may change with system  
frequency. See Pin Connection Recommendations for recommendations.  
53  
Vcc11_CG3  
54  
55  
56  
57  
DCLKout10  
Device clock output 10. Differential clock output. Part of clock group 3. To minimize noise, keep all outputs in the clock  
group at the same frequency, or at frequencies without spurious interference. If unused, set output format buffer to  
powerdown and leave pins floating.  
O
DCLKout10*  
SDCLKout11  
SDCLKout11*  
SYSREF / Device clock output 11. Differential clock output. Part of clock group 3. To minimize noise, keep all outputs in  
the clock group at the same frequency, or at frequencies without spurious interference. If unused, set output format  
buffer to powerdown and leave pins floating.  
O
Programmable status pin. By default this pin is programmed as an active-high input with nominal 160-kΩ pulldown that  
selects which CLKin is used as the reference to PLL1 in pin-select mode. If used as an input, pin polarity and nominal  
160-kΩ pull-up or pull-down are controlled by register settings. If used as an output, can be set to push-pull or open-  
drain.  
58  
59  
CLKin_SEL0  
CLKin_SEL1  
I/O  
Programmable status pin. By default this pin is programmed as an active-high input with nominal 160-kΩ pulldown that  
selects which CLKin is used as the reference to PLL1 in pin-select mode. If used as an input, pin polarity and nominal  
160-kΩ pull-up or pull-down are controlled by register settings. If used as an output, can be set to push-pull or open-  
drain.  
I/O  
60  
61  
62  
63  
SDCLKout13  
SDCLKout13*  
DCLKout12  
SYSREF / Device clock output 13. Differential clock output. Part of clock group 0. To minimize noise, keep all outputs in  
the clock group at the same frequency, or at frequencies without spurious interference. If unused, set output format  
buffer to powerdown and leave pins floating.  
O
O
Device clock output 12. Differential clock output. Part of clock group 0. To minimize noise, keep all outputs in the clock  
group at the same frequency, or at frequencies without spurious interference. If unused, set output format buffer to  
powerdown and leave pins floating.  
DCLKout12*  
Power supply for clock outputs 0, 1, 12, and 13. Decoupling capacitance requirements may change with system  
frequency. See Pin Connection Recommendations for recommendations.  
64  
-
Vcc12_CG0  
DAP  
P
Die attach pad. Connect directly to GND plane through multiple vias to minimize resistive and inductive effects and to  
achieve good thermal performance. All power supply pins are referred to the DAP ground.  
G
10  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
MAX  
UNIT  
(2)  
VCC  
VIN  
Supply voltage  
Input voltage  
–0.3  
3.6  
V
(VCC  
0.3)  
+
–0.3  
V
TL  
TJ  
Lead temperature (solder 4 seconds)  
Junction temperature  
260  
150  
°C  
°C  
Differential input current (CLKinX/X*,  
OSCin/OSCin*, FBCLKin/FBCLKin*, Fin/Fin*)  
IIN  
± 5  
mA  
MSL  
Tstg  
Moisture sensitivity level  
Storage temperature  
3
–65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Never to exceed 3.6 V.  
7.2 ESD Ratings  
VALUE  
±2000  
±150  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Machine Model (MM)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±250 V may actually have higher performance.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–40  
TYP  
25  
MAX UNIT  
TJ  
Junction temperature  
125  
85  
°C  
°C  
°C  
V
TA  
Ambient temperature  
TPCB  
VCC  
PCB temperature (measured at thermal pad)  
Supply voltage  
105  
3.45  
3.15  
3.3  
7.4 Thermal Information  
LMK0482x  
THERMAL METRIC(1)  
NKD (WQFN)  
64 PINS  
24.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
6.1  
3.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case(top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard  
test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Thermal Information (continued)  
LMK0482x  
NKD (WQFN)  
64 PINS  
0.1  
THERMAL METRIC(1)  
UNIT  
ψJT  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
Junction-to-case (bottom) thermal resistance(7)  
°C/W  
°C/W  
°C/W  
ψJB  
3.5  
RθJC(bot)  
0.7  
(5) The junction-to-top characterization parameter, ΨJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, ΨJB estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining RθJA , using a procedure described in JESD51-2a (sections 6 and 7).  
(7) The junction-to-case(bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
7.5 Electrical Characteristics  
(3.15 V < VCC < 3.45 V, –40 °C < TA < 85 °C and TPCB 105 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the  
Recommended Operating Conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CURRENT CONSUMPTION  
ICC_PD  
Power down supply current  
Supply current(1)  
1
3
mA  
mA  
14 HSDS 8-mA clocks enabled  
PLL1 and PLL2 locked.  
ICC_CLKS  
565  
665  
CLKin0/0*, CLKin1/1*, and CLKin2/2* INPUT CLOCK SPECIFICATIONS  
fCLKin  
Clock input frequency  
Clock input slew rate  
Clock input  
Differential input voltage  
Figure 8  
0.001  
0.15  
750  
MHz  
V/ns  
|V|  
(2)  
SLEWCLKin  
VIDCLKin  
20% to 80%  
AC coupled  
0.5  
0.125  
1.55  
3.1  
(3)  
VSSCLKin  
0.25  
Vpp  
AC coupled to CLKinX;  
CLKinX* AC coupled to ground  
CLKinX_TYPE = 0 (bipolar)  
0.25  
2.4  
2.4  
Vpp  
Clock input  
Single-ended input voltage  
VCLKin  
AC coupled to CLKinX;  
CLKinX* AC coupled to ground  
CLKinX_TYPE = 1 (MOS)  
0.35  
Vpp  
Each pin AC coupled, CLKin0/1/2  
CLKinX_TYPE = 0 (bipolar)  
0
55  
20  
|mV|  
|mV|  
|mV|  
DC offset voltage between  
CLKinX/CLKinX* (CLKinX* - CLKinX)  
Each pin AC coupled, CLKin0/1  
CLKinX_TYPE = 1 (MOS)  
|VCLKinX-offset  
|
DC offset voltage between  
CLKin2/CLKin2* (CLKin2* - CLKin2)  
Each pin AC coupled  
CLKinX_TYPE = 1 (MOS)  
VCLKin- VIH  
VCLKin- VIL  
High input voltage  
Low input voltage  
DC coupled to CLKinX;  
CLKinX* AC coupled to ground  
CLKinX_TYPE = 1 (MOS)  
2.0  
0.0  
VCC  
0.4  
V
V
FBCLKin/FBCLKin* and Fin/Fin* INPUT SPECIFICATIONS  
Clock input frequency for  
zero-delay with external feedback.  
AC coupled  
CLKinX_TYPE = 0 (bipolar)  
fFBCLKin  
fFin  
0.001  
0.001  
750  
MHz  
MHz  
(4)  
Clock input frequency for  
external VCO or distribution mode  
AC coupled  
CLKinX_TYPE = 0 (bipolar)  
3100  
(1) See the applications section of Power Supply Recommendations for Icc for specific part configuration and how to calculate Icc for a  
specific design.  
(2) To meet the jitter performance listed in the subsequent sections of this data sheet, the minimum recommended slew rate for all input  
clocks is 0.5 V/ns. This is especially true for single-ended clocks. Phase-noise performance begins to degrade as the clock input slew  
rate is reduced. However, the device will function at slew rates down to the minimum listed. When compared to single-ended clocks,  
differential clocks (LVDS, LVPECL) are less susceptible to degradation in phase-noise performance at lower slew rates, due to their  
common-mode noise rejection. However, TI also recommends using the highest possible slew rate for differential clocks to achieve  
optimal phase-noise performance at the device outputs.  
(3) See Differential Voltage Measurement Terminology for definition of VID and VOD voltages.  
(4) Assured by characterization. ATE tested at 2949.12 MHz.  
12  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –40 °C < TA < 85 °C and TPCB 105 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the  
Recommended Operating Conditions and are not assured.)  
PARAMETER  
Single ended  
Clock input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
AC coupled  
CLKinX_TYPE = 0 (bipolar)  
VFBCLKin/Fin  
0.25  
2.0  
Vpp  
AC coupled; 20% to 80%;  
(CLKinX_TYPE = 0)  
(2)  
SLEWFBCLKin/Fin Slew rate on CLKin  
0.15  
0.5  
V/ns  
PLL1 SPECIFICATIONS  
fPD1  
PLL1 phase detector frequency  
40  
MHz  
µA  
VCPout1 = VCC/2, PLL1_CP_GAIN = 0  
VCPout1 = VCC/2, PLL1_CP_GAIN = 1  
VCPout1 = VCC/2, PLL1_CP_GAIN = 2  
50  
150  
250  
PLL1 charge  
ICPout1SOURCE  
(5)  
Pump source current  
VCPout1 = VCC/2, PLL1_CP_GAIN = 14  
VCPout1 = VCC/2, PLL1_CP_GAIN = 15  
VCPout1=VCC/2, PLL1_CP_GAIN = 0  
VCPout1=VCC/2, PLL1_CP_GAIN = 1  
VCPout1=VCC/2, PLL1_CP_GAIN = 2  
1450  
1550  
–50  
–150  
–250  
PLL1 charge  
Pump sink current  
ICPout1SINK  
µA  
(5)  
VCPout1=VCC/2, PLL1_CP_GAIN = 14  
VCPout1=VCC/2, PLL1_CP_GAIN = 15  
–1450  
–1550  
Charge pump  
Sink / source mismatch  
ICPout1%MIS  
ICPout1VTUNE  
ICPout1%TEMP  
ICPout1 TRI  
VCPout1 = VCC/2, T = 25 °C  
1%  
4%  
4%  
10%  
Magnitude of charge pump current  
variation vs. charge pump voltage  
0.5 V < VCPout1 < VCC - 0.5 V  
TA = 25 °C  
Charge pump current vs. temperature  
variation  
Charge pump TRI-STATE leakage  
current  
0.5 V < VCPout < VCC - 0.5 V  
5
nA  
PLL 1/f noise at 10-kHz offset.  
Normalized to 1-GHz output  
frequency  
PLL1_CP_GAIN = 350 µA  
PLL1_CP_GAIN = 1550 µA  
–117  
–118  
PN10kHz  
PN1Hz  
dBc/Hz  
PLL1_CP_GAIN = 350 µA  
PLL1_CP_GAIN = 1550 µA  
–221.5  
–223  
Normalized phase noise contribution  
dBc/Hz  
PLL2 REFERENCE INPUT (OSCin) SPECIFICATIONS  
(6)  
fOSCin  
PLL2 reference input  
500  
2.4  
MHz  
V/ns  
PLL2 reference clock minimum slew  
SLEWOSCin  
20% to 80%  
0.15  
0.2  
0.5  
20  
(2)  
rate on OSCin  
AC coupled; single-ended  
(unused pin AC coupled to GND)  
VOSCin  
Input voltage for OSCin or OSCin*  
Vpp  
VIDOSCin  
VSSOSCin  
0.2  
0.4  
1.55  
3.1  
|V|  
Differential voltage swing  
Figure 8  
AC coupled  
Vpp  
DC offset voltage between  
OSCin/OSCin* (OSCinX* - OSCinX)  
|VOSCin-offset  
|
Each pin AC coupled  
|mV|  
MHz  
EN_PLL2_REF_2X = 1(8)  
OSCin duty cycle 40% to 60%  
;
(7)  
fdoubler_max  
Doubler input frequency  
155  
(5) This parameter is programmable.  
(6) FOSCin maximum frequency assured by characterization. Production tested at 122.88 MHz.  
(7) Assured by characterization. ATE tested at 122.88 MHz.  
(8) The EN_PLL2_REF_2X bit enables or disables a frequency doubler mode for the PLL2 OSCin path.  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –40 °C < TA < 85 °C and TPCB 105 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the  
Recommended Operating Conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CRYSTAL OSCILLATOR MODE SPECIFICATIONS  
Fundamental mode crystal  
ESR = 200 Ω (10 to 30 MHz)  
ESR = 125 Ω (30 to 40 MHz)  
FXTAL  
Crystal frequency range  
10  
40  
MHz  
pF  
CIN  
Input capacitance of OSCin port  
–40 to 85 °C  
1
PLL2 PHASE DETECTOR and CHARGE PUMP SPECIFICATIONS  
(7)  
fPD2  
Phase detector frequency  
155  
MHz  
µA  
VCPout2=VCC/2, PLL2_CP_GAIN = 0  
VCPout2=VCC/2, PLL2_CP_GAIN = 1  
VCPout2=VCC/2, PLL2_CP_GAIN = 2  
VCPout2=VCC/2, PLL2_CP_GAIN = 3  
VCPout2=VCC/2, PLL2_CP_GAIN = 0  
VCPout2=VCC/2, PLL2_CP_GAIN = 1  
VCPout2=VCC/2, PLL2_CP_GAIN = 2  
VCPout2=VCC/2, PLL2_CP_GAIN = 3  
VCPout2=VCC/2, TA = 25 °C  
100  
400  
(5)  
ICPoutSOURCE  
PLL2 charge pump source current  
1600  
3200  
–100  
–400  
–1600  
–3200  
1%  
(5)  
ICPoutSINK  
PLL2 charge pump sink current  
µA  
ICPout2%MIS  
ICPout2VTUNE  
Charge pump sink/source mismatch  
10%  
10  
Magnitude of charge pump current vs. 0.5 V < VCPout2 < VCC - 0.5 V  
charge pump voltage variation  
4%  
4%  
TA = 25 °C  
Charge pump current vs. temperature  
variation  
ICPout2%TEMP  
ICPout2TRI  
Charge pump leakage  
0.5 V < VCPout2 < VCC - 0.5 V  
PLL2_CP_GAIN = 400 µA  
nA  
(9)  
PLL 1/f noise at 10-kHz offset  
Normalized to  
.
–118  
–121  
PN10kHz  
PN1Hz  
dBc/Hz  
PLL2_CP_GAIN = 3200 µA  
1-GHz output frequency  
PLL2_CP_GAIN = 400 µA  
PLL2_CP_GAIN = 3200 µA  
–222.5  
–227  
Normalized phase noise contribution  
dBc/Hz  
(10)  
(9) A specification in modeling PLL in-band phase noise is the 1/f flicker noise, LPLL_flicker(f), which is dominant close to the carrier. Flicker  
noise has a 10-dB/decade slope. PN10kHz is normalized to a 10-kHz offset and a 1-GHz carrier frequency. PN10kHz = LPLL_flicker(10  
kHz) - 20log(Fout / 1 GHz), where LPLL_flicker(f) is the single side band phase noise of only the flicker noise's contribution to total noise,  
L(f). To measure LPLL_flicker(f), it is important to be on the 10-dB/decade slope close to the carrier. A high compare frequency and a  
clean crystal are important to isolating this noise source from the total phase noise, L(f). LPLL_flicker(f) can be masked by the reference  
oscillator performance if a low power or noisy source is used. The total PLL in-band phase noise performance is the sum of LPLL_flicker(f)  
and LPLL_flat(f).  
(10) A specification modeling PLL in-band phase noise. The normalized phase noise contribution of the PLL, LPLL_flat(f), is defined as:  
PN1HZ=LPLL_flat(f) - 20log(N) - 10log(fPDX). LPLL_flat(f) is the single side band phase noise measured at an offset frequency, f, in a 1-Hz  
bandwidth and fPDX is the phase-detector frequency of the synthesizer. LPLL_flat(f) contributes to the total noise, L(f).  
14  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –40 °C < TA < 85 °C and TPCB 105 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the  
Recommended Operating Conditions and are not assured.)  
PARAMETER  
INTERNAL VCO SPECIFICATIONS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VCO0  
VCO1(11)  
VCO0  
VCO1  
VCO0  
VCO1  
1930  
2920  
1840  
2440  
2370  
2920  
2075  
MHz  
3080  
LMK04821 VCO tuning range  
LMK04826 VCO tuning range  
LMK04828 VCO tuning range  
LMK04821 fine tuning sensitivity  
LMK04826 fine tuning sensitivity  
1970  
MHz  
2505  
fVCO  
2630  
MHz  
3080  
LMK04821 VCO0  
12 to 20  
15 to 24  
11 to 19  
8 to 11  
MHz/V  
MHz/V  
MHz/V  
LMK04821 VCO1  
LMK04826 VCO0  
KVCO  
LMK04826 VCO1  
LMK04828 VCO0 at 2457.6 MHz  
LMK04828 VCO1 at 2949.12 MHz  
17 to 27  
17 to 23  
LMK04828 fine tuning sensitivity  
Allowable temperature drift for  
After programming for lock, no changes  
to output configuration are permitted to  
assure continuous lock  
|ΔTCL  
|
continuous lock  
125  
°C  
(12)  
(11) The VCO1 divider, VCO1_DIV in register 0x174, can be programmed to ÷2 to ÷8 resulting in a lower effective VCO frequency range, as  
shown in Device Configuration Information.  
(12) Maximum allowable temperature drift for continuous lock is how far the temperature can drift in either direction from the value it was at  
the time that the 0x168 register was last programmed with PLL2_FCAL_DIS = 0, and still have the part stay in lock. The action of  
programming the 0x168 register, even to the same value, activates a frequency calibration routine. This implies the part will work over  
the entire frequency range, but if the temperature drifts more than the maximum allowable drift for continuous lock, then it is necessary  
to reload the appropriate register to ensure it stays in lock. Regardless of what temperature the part was initially programmed at, the  
temperature can never drift outside the frequency range of –40 °C to 85 °C without violating specifications.  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –40 °C < TA < 85 °C and TPCB 105 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the  
Recommended Operating Conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
NOISE FLOOR  
LVDS  
–158.2  
–160  
HSDS 6 mA  
HSDS 8 mA  
HSDS 10 mA  
–161  
–161.4  
LMK04821, VCO0, noise floor  
20-MHz offset(13)  
L(f)CLKout  
245.76 MHz  
dBc/Hz  
LVPECL16 with 240  
Ω
–161.6  
–162  
LVPECL20 with 240  
Ω
LVPECL  
161.7  
–157.1  
–158.3  
–159  
LVDS  
HSDS 6 mA  
HSDS 8 mA  
HSDS 10 mA  
–159.2  
LMK04821, VCO1, noise floor  
20-MHz offset(13)  
L(f)CLKout  
L(f)CLKout  
L(f)CLKout  
245.76 MHz  
245.76 MHz  
245.76 MHz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
LVPECL16 with 240  
Ω
–158.8  
–158.9  
LVPECL20 with 240  
Ω
LVPECL  
–158.8  
–158.1  
–159.7  
–160.8  
–161.3  
LVDS  
HSDS 6 mA  
HSDS 8 mA  
HSDS 10 mA  
LMK04826, VCO0, noise floor  
(14)  
LVPECL16 with 240  
Ω
20-MHz offset  
–161.8  
–162.0  
LVPECL20 with 240  
Ω
LCPECL  
–161.7  
–157.5  
–158.9  
–159.8  
–160.3  
LVDS  
HSDS 6 mA  
HSDS 8 mA  
HSDS 10 mA  
LMK04826, VCO1, noise floor  
(14)  
LVPECL16 with 240  
Ω
20-MHz offset  
–160.8  
LVPECL20 with 240  
Ω
–160.7  
–160.7  
LCPECL  
(13) Data collected using a Prodyn BIB-100G balun. Loop filter is C1 = 47 pF, C2 = 3.9 nF, R2 = 620 Ω, C3 = 10 pF, R3 = 200 Ω, C4 = 10  
pF, R4 = 200 Ω, PLL1_CP = 450 µA, PLL2_CP = 3.2 mA.. VCO0 PLL2 loop filter bandwidth = 288 kHz, phase margin = 72 degrees.  
VCO1 Loop filter loop bandwidth = 221 kHz, phase margin = 70 degrees. CLKoutX_Y_IDL = 1, CLKoutX_Y_ODL = 0.  
(14) Data collected using a Prodyn BIB-100G balun. Loop filter for PLL2 is C1 = 47 pF, C2 = 3.9 nF, R2 = 620 Ω, C3 = 10 pF, R3 = 200 Ω,  
C4 = 10 pF, R4 = 200 Ω, PLL1_CP = 450 µA, PLL2_CP = 3.2 mA.. VCO0 loop filter bandwidth = 303 kHz, phase margin = 73 degrees.  
VCO1 Loop filter loop bandwidth = 151 kHz, phase margin = 64 degrees. CLKoutX_Y_IDL = 1, CLKoutX_Y_ODL = 0.  
16  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –40 °C < TA < 85 °C and TPCB 105 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the  
Recommended Operating Conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
NOISE FLOOR (continued)  
LVDS  
–156.3  
–158.4  
–159.3  
–158.9  
HSDS 6 mA  
HSDS 8 mA  
HSDS 10 mA  
LMK04828, VCO0, noise floor  
20-MHz offset  
L(f)CLKout  
245.76 MHz  
dBc/Hz  
(15)  
LVPECL16 with 240  
Ω
–161.6  
–162.5  
LVPECL20 with 240  
Ω
LCPECL  
–162.1  
–155.7  
–157.5  
–158.1  
–157.7  
LVDS  
HSDS 6 mA  
HSDS 8 mA  
HSDS 10 mA  
LMK04828, VCO1, noise floor  
20-MHz offset  
L(f)CLKout  
245.76 MHz  
dBc/Hz  
(15)  
LVPECL16 with 240  
Ω
–160.3  
LVPECL20 with 240  
Ω
–161.1  
–160.8  
LCPECL  
CLKout CLOSED LOOP PHASE NOISE SPECIFICATIONS a COMMERCIAL QUALITY VCXO(16)  
Offset = 1 kHz  
Offset = 10 kHz  
–126.9  
–133.5  
–135.4  
–149.8  
–158.1  
–161.1  
Offset = 100 kHz  
LMK04821  
VCO0  
SSB phase noise  
245.76 MHz  
Offset = 1 MHz  
L(f)CLKout  
dBc/Hz  
(13)  
LVDS  
HSDS 8 mA  
Offset = 10 MHz  
LVPECL16 with 240  
Ω
–161.7  
Offset = 1 kHz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
–126.8  
–133.4  
–135.4  
–151.8  
–157.2  
–159.1  
LMK04821  
VCO1  
SSB phase noise  
245.76 MHz  
L(f)CLKout  
dBc/Hz  
(13)  
LVDS  
HSDS 8 mA  
Offset = 10 MHz  
LVPECL16 with 240  
Ω
–158.9  
(15) Data collected using ADT2-1T+ balun. Loop filter is C1 = 47 pF, C2 = 3.9 nF, R2 = 620 Ω, C3 = 10 pF, R3 = 200 Ω, C4 = 10 pF, R4 =  
200 Ω, PLL1_CP = 450 µA, PLL2_CP = 3.2 mA.. VCO0 loop filter bandwidth = 344 kHz, phase margin = 73 degrees. VCO1 Loop filter  
loop bandwidth = 233 kHz, phase margin = 70 degrees. CLKoutX_Y_IDL = 1, CLKoutX_Y_ODL = 0.  
(16) VCXO used is a 122.88-MHz Crystek CVHD-950-122.880.  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –40 °C < TA < 85 °C and TPCB 105 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the  
Recommended Operating Conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CLKout CLOSED LOOP PHASE NOISE SPECIFICATIONS a COMMERCIAL QUALITY VCXO (continued)  
Offset = 10 kHz  
Offset = 100 kHz  
LVDS  
–134.8  
–135.4  
–148.2  
LMK04826  
VCO0  
SSB phase noise  
245.76 MHz  
HSDS 8 mA  
LVPECL16 with 240  
Ω
Offset = 1 MHz  
–148.6  
L(f)CLKout  
dBc/Hz  
(14)  
LVDS  
–157.8  
–160.4  
HSDS 8 mA  
Offset = 10 MHz  
LVPECL16 with 240  
Ω
–161.5  
Offset = 10 kHz  
Offset = 100 kHz  
–134.3  
–133.7  
–152.5  
LVDS  
LMK04826  
VCO1  
SSB phase noise  
245.76 MHz  
HSDS 8 mA  
LVPECL16 with 240  
Ω
Offset = 1 MHz  
Offset = 10 MHz  
–153.6  
L(f)CLKout  
dBc/Hz  
(14)  
LVDS  
–157.3  
–159.6  
HSDS 8 mA  
LVPECL16 with 240  
Ω
–160.5  
Offset = 1 kHz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
–124.3  
–134.7  
–136.5  
–148.4  
–156.4  
–159.1  
LMK04828  
VCO0  
SSB phase noise  
245.76 MHz  
L(f)CLKout  
dBc/Hz  
(15)  
LVDS  
HSDS 8 mA  
Offset = 10 MHz  
LVPECL16 with 240  
Ω
–160.8  
Offset = 1 kHz  
Offset = 10 kHz  
Offset = 100 kHz  
Offset = 1 MHz  
–124.2  
–134.4  
–135.2  
–151.5  
–159.9  
–155.8  
LMK04828  
VCO1  
SSB phase noise  
245.76 MHz  
L(f)CLKout  
dBc/Hz  
(15)  
LVDS  
HSDS 8 mA  
Offset = 10 MHz  
LVPECL16 with 240  
Ω
–158.1  
18  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –40 °C < TA < 85 °C and TPCB 105 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the  
Recommended Operating Conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CLKout CLOSED LOOP JITTER SPECIFICATIONS a COMMERCIAL QUALITY VCXO(16)  
LVDS, BW = 12 kHz to 20 MHz  
99  
94  
HSDS 8 mA, BW = 12 kHz to 20 MHz  
LVPECL16 with 240 Ω,  
BW = 12 kHz to 20 MHz  
LMK04821, VCO0  
fCLKout = 245.76-MHz  
integrated RMS jitter  
96  
94  
93  
fs rms  
(13)  
LVPECL20 with 240 Ω,  
BW = 12 kHz to 20 MHz  
LCPECL with 240 Ω,  
BW = 12 kHz to 20 MHz  
JCLKout  
LVDS, BW = 12 kHz to 20 MHz  
96  
90  
HSDS 8 mA, BW = 12 kHz to 20 MHz  
LVPECL16 with 240 Ω,  
BW = 12 kHz to 20 MHz  
LMK04821, VCO1  
fCLKout = 245.76-MHz  
integrated RMS jitter  
92  
91  
91  
fs rms  
(13)  
LVPECL20 with 240 Ω,  
BW = 12 kHz to 20 MHz  
LCPECL with 240 Ω,  
BW = 12 kHz to 20 MHz  
CLKout CLOSED LOOP JITTER SPECIFICATIONS a COMMERCIAL QUALITY VCXO (continued)(16)  
LVDS, BW = 100 Hz to 20 MHz  
106  
104  
99  
LVDS, BW = 12 kHz to 20 MHz  
HSDS 8 mA, BW = 100 Hz to 20 MHz  
HSDS 8 mA, BW = 12 kHz to 20 MHz  
97  
LVPECL16 /w 240 Ω,  
BW = 100 Hz to 20 MHz  
LMK04826, VCO0  
fCLKout = 245.76-MHz  
integrated RMS jitter  
99  
96  
fs rms  
(14)  
LVPECL16 /w 240 Ω,  
BW = 12 kHz to 20 MHz  
LCPECL /w 240 Ω,  
BW = 100 Hz to 20 MHz  
100  
97  
LCPECL /w 240 Ω,  
BW = 12 kHz to 20 MHz  
JCLKout  
LVDS, BW = 100 Hz to 20 MHz  
LVDS, BW = 12 kHz to 20 MHz  
99  
97  
92  
90  
HSDS 8 mA, BW = 100 Hz to 20 MHz  
HSDS 8 mA, BW = 12 kHz to 20 MHz  
LVPECL16 /w 240 Ω,  
BW = 100 Hz to 20 MHz  
LMK04826, VCO1  
fCLKout = 245.76-MHz  
integrated RMS jitter  
91  
89  
92  
89  
fs rms  
(14)  
LVPECL20 /w 240 Ω,  
BW = 12 kHz to 20 MHz  
LCPECL /w 240 Ω,  
BW = 100 Hz to 20 MHz  
LCPECL /w 240 Ω,  
BW = 12 kHz to 20 MHz  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –40 °C < TA < 85 °C and TPCB 105 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the  
Recommended Operating Conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CLKout CLOSED LOOP JITTER SPECIFICATIONS a COMMERCIAL QUALITY VCXO (continued)(16)  
LVDS, BW = 100 Hz to 20 MHz  
112  
109  
102  
99  
LVDS, BW = 12 kHz to 20 MHz  
HSDS 8 mA, BW = 100 Hz to 20 MHz  
HSDS 8 mA, BW = 12 kHz to 20 MHz  
LVPECL16 /w 240 Ω,  
BW = 100 Hz to 20 MHz  
LMK04828, VCO0  
fCLKout = 245.76-MHz  
integrated RMS jitter  
98  
95  
96  
93  
fs rms  
(15)  
LVPECL20 /w 240 Ω,  
BW = 12 kHz to 20 MHz  
LCPECL /w 240 Ω,  
BW = 100 Hz to 20 MHz  
LCPECL /w 240 Ω,  
BW = 12 kHz to 20 MHz  
JCLKout  
LVDS, BW = 100 Hz to 20 MHz  
LVDS, BW = 12 kHz to 20 MHz  
108  
105  
98  
HSDS 8 mA, BW = 100 Hz to 20 MHz  
HSDS 8 mA, BW = 12 kHz to 20 MHz  
94  
LVPECL16 /w 240 Ω,  
BW = 100 Hz to 20 MHz  
LMK04828, VCO1  
fCLKout = 245.76-MHz  
integrated RMS jitter  
93  
90  
91  
88  
fs rms  
(15)  
LVPECL20 /w 240 Ω,  
BW = 12 kHz to 20 MHz  
LCPECL /w 240 Ω,  
BW = 100 Hz to 20 MHz  
LCPECL /w 240 Ω,  
BW = 12 kHz to 20 MHz  
20  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –40 °C < TA < 85 °C and TPCB 105 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the  
Recommended Operating Conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
DEFAULT POWER on RESET CLOCK OUTPUT FREQUENCY  
LMK04826  
235  
315  
Default output clock frequency at  
device power on  
fCLKout-startup  
fOSCout  
MHz  
(17)(18)  
LMK04828  
(7)  
OSCout frequency  
500  
25  
MHz  
|ps|  
CLOCK SKEW and DELAY  
DCLKoutX to SDCLKoutY  
(20)  
Same pair, same format  
SDCLKoutY_MUX = 0 (device clock)  
FCLK = 245.76 MHz, RL= 100 Ω  
(19)  
AC coupled  
|TSKEW  
|
Maximum DCLKoutX or SDCLKoutY  
to DCLKoutX or SDCLKoutY  
FCLK = 245.76 MHz, RL= 100 Ω  
AC coupled  
(20)  
Any pair, same format  
SDCLKoutY_MUX = 0 (device clock)  
50  
SDCLKoutY_MUX = 1 (SYSREF)  
SYSREF_DIV = 30  
SYSREF_DDLY = 8 (global)  
SDCLKoutY_DDLY = 1 (2 cycles, local)  
DCLKoutX_MUX = 1 (Div+DCC+HS)  
DCLKoutX_DIV = 30  
DCLKoutX_DDLY_CNTH = 7  
DCLKoutX_DDLY_CNTL = 6  
DCLKoutX_HS = 0  
SYSREF to device clock setup time  
base reference.  
See SYSREF to Device Clock  
Alignment to adjust SYSREF to  
device clock setup time as required.  
tsJESD204B  
–80  
ps  
SDCLKoutY_HS = 0  
CLKin0_OUT_MUX = 0 (SYSREF mux)  
SYSREF_CLKin0_MUX = 1 (CLKin0)  
SDCLKout1_PD = 0  
SDCLKout1_DDLY = 0 (bypass)  
SDCLKout1_MUX = 1 (SR)  
EN_SYNC = 1  
tPDCLKin0_  
SDCLKout1  
Propagation delay from CLKin0 to  
SDCLKout1  
0.65  
ns  
LVPECL16 /w 240 Ω  
fADLYmax  
Maximum analog delay frequency  
DCLKoutX_MUX = 4  
1536  
395  
MHz  
LVDS CLOCK OUTPUTS (DCLKoutX, SDCLKoutY, and OSCout)  
VOD  
Differential output voltage  
|mV|  
mV  
V
Change in magnitude of VOD for  
complementary output states  
ΔVOD  
VOS  
–60  
60  
1.375  
35  
T = 25 °C, DC measurement  
AC coupled to receiver input  
RL = 100-Ω differential termination  
Output offset voltage  
1.125  
1.25  
180  
Change in VOS for complementary  
output states  
ΔVOS  
|mV|  
Output rise time  
Output fall time  
20% to 80%, RL = 100 Ω, 245.76 MHz  
80% to 20%, RL = 100 Ω  
TR / TF  
ps  
ISA  
ISB  
Output short circuit current - single  
ended  
Single-ended output shorted to GND  
T = 25 °C  
–24  
–12  
24  
12  
mA  
mA  
Output short circuit current -  
differential  
ISAB  
Complimentary outputs tied together  
(17) OSCout oscillates at start-up at the frequency of the VCXO attached to the OSCin port.  
(18) LMK04821 has no DCLKoutX or SDCLKoutY outputs which oscillate at power on. Only OSCout oscillates at power on.  
(19) Equal loading and identical clock output configuration on each clock output is required for specification to be valid. Specification not valid  
for delay mode.  
(20) LVPECL uses a 120-Ω emitter resistor, LVDS and HSDS uses a 560-Ω shunt.  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –40 °C < TA < 85 °C and TPCB 105 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the  
Recommended Operating Conditions and are not assured.)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
6-mA HSDS CLOCK OUTPUTS (DCLKoutX and SDCLKoutY)  
VCC  
1.05  
-
VOH  
T = 25 °C, DC measurement  
Termination = 50 Ω to  
VCC - 1.42 V  
VCC  
1.64  
-
VOL  
VOD  
ΔVOD  
Differential output voltage  
590  
|mV|  
Change in VOD for complementary  
output states  
–80  
80 mVpp  
8-mA HSDS CLOCK OUTPUTS (DCLKoutX and SDCLKoutY)  
Output rise time  
Output fall time  
245.76 MHz, 20% to 80%, RL = 100 Ω  
TR / T F  
VOH  
170  
ps  
245.76 MHz, 80% to 20%, RL = 100 Ω  
VCC  
-
1.26  
T = 25 °C, DC measurement  
Termination = 50 Ω to  
VCC - 1.64 V  
VCC  
–2.06  
VOL  
VOD  
ΔVOD  
Differential output voltage  
800  
|mV|  
Change in VOD for complementary  
output states  
–115  
115 mVpp  
10-mA HSDS CLOCK OUTPUTS (DCLKoutX and SDCLKoutY)  
VCC  
0.99  
-
VOH  
T = 25 °C, DC measurement  
Termination = 50 Ω to  
VCC - 1.43 V  
VCC  
1.97  
-
VOL  
VOD  
ΔVOD  
980  
|mv|  
Change in VOD for complementary  
output states  
–115  
115 mVpp  
LVPECL CLOCK OUTPUTS (DCLKoutX and SDCLKoutY)  
20% to 80% output rise  
RL = 100 Ω, emitter resistors = 240 Ω to  
GND  
TR / TF  
150  
ps  
DCLKoutX_TYPE = 4 or 5  
(1600 or 2000 mVpp)  
80% to 20% output fall time  
1600-mVpp LVPECL CLOCK OUTPUTS (DCLKoutX and SDCLKoutY)  
VCC  
1.04  
-
VOH  
VOL  
VOD  
Output high voltage  
Output low voltage  
V
V
DC measurement  
Termination = 50 Ω to  
VCC - 2.0 V  
VCC  
1.80  
-
Output voltage  
Figure 9  
760  
|mV|  
2000-mVpp LVPECL CLOCK OUTPUTS (DCLKoutX and SDCLKoutY)  
VCC  
1.09  
-
VOH  
VOL  
VOD  
Output high voltage  
Output low voltage  
V
V
DC measurement  
Termination = 50 Ω to VCC - 2.3 V  
VCC  
2.05  
-
Output voltage  
Figure 9  
960  
|mV|  
LCPECL CLOCK OUTPUTS (DCLKoutX and SDCLKoutY)  
VOH  
VOL  
Output high voltage  
Output low voltage  
1.57  
0.62  
V
V
DC measurement  
Termination = 50 Ω to 0.5 V  
Output voltage  
Figure 9  
VOD  
950  
|mV|  
22  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –40 °C < TA < 85 °C and TPCB 105 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the  
Recommended Operating Conditions and are not assured.)  
PARAMETER  
LVCMOS CLOCK OUTPUTS (OSCout)  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Maximum frequency  
fCLKout  
VOH  
5-pF load  
250  
MHz  
V
(21)  
VCC  
-
Output high voltage  
1-mA load  
1-mA load  
0.1  
VOL  
IOH  
IOL  
Output low voltage  
0.1  
V
Output high current (source)  
Output low current (sink)  
VCC = 3.3 V, VO = 1.65 V  
VCC = 3.3 V, VO = 1.65 V  
28  
28  
mA  
mA  
VCC/2 to VCC/2,  
FCLK = 100 MHz, T = 25 °C  
DUTYCLK  
Output duty cycle(22)  
50%  
TR  
TF  
Output rise time  
Output fall time  
20% to 80%, RL = 50 Ω, CL = 5 pF  
80% to 20%, RL = 50 Ω, CL = 5 pF  
400  
400  
ps  
ps  
DIGITAL OUTPUTS (CLKin_SELX, Status_LDX, and RESET/GPO)  
IOH = –500 µA  
CLKin_SELX_TYPE = 3 or 4  
Status_LDX_TYPE = 3 or 4  
RESET_TYPE = 3 or 4  
VCC  
0.4  
-
VOH  
High-level output voltage  
Low-level output voltage  
V
V
IOL = 500 µA  
CLKin_SELX_TYPE = 3, 4, or 6  
Status_LDX_TYPE = 3, 4, or 6  
RESET_TYPE = 3, 4, or 6  
VOL  
0.4  
0.4  
DIGITAL OUTPUT (SDIO)  
IOH = –500 µA ; During SPI read.  
SDIO_RDBK_TYPE = 0  
VCC  
0.4  
-
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
V
V
IOL = 500 µA ; During SPI read.  
SDIO_RDBK_TYPE = 0 or 1  
DIGITAL INPUTS (CLKinX_SEL, RESET/GPO, SYNC, SCK, SDIO, or CS*)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
1.2  
–5  
VCC  
0.4  
V
V
DIGITAL INPUTS (CLKinX_SEL)  
CLKin_SELX_TYPE = 0,  
(high impedance)  
5
High-level input current  
VIH = VCC  
IIH  
µA  
µA  
CLKin_SELX_TYPE = 1 (pull-up)  
CLKin_SELX_TYPE = 2 (pull-down)  
–5  
10  
5
80  
CLKin_SELX_TYPE = 0,  
(high impedance)  
–5  
5
Low-level input current  
VIL = 0 V  
IIL  
CLKin_SELX_TYPE = 1 (pull-up)  
CLKin_SELX_TYPE = 2 (pull-down)  
–40  
–5  
–5  
5
DIGITAL INPUT (RESET/GPO)  
High-level input current  
RESET_TYPE = 2  
(pull-down)  
IIH  
10  
80  
µA  
µA  
VIH = VCC  
RESET_TYPE = 0 (high impedance)  
RESET_TYPE = 1 (pull-up)  
–5  
–40  
–5  
5
–5  
5
Low-level input current  
VIL = 0 V  
IIL  
RESET_TYPE = 2 (pull-down)  
DIGITAL INPUTS (SYNC)  
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCC  
VIL = 0 V  
25  
5
µA  
–5  
DIGITAL INPUTS (SCK, SDIO, CS*)  
(21) Assured by characterization. ATE tested to 10 MHz.  
(22) Assumes OSCin has 50% input duty cycle.  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Electrical Characteristics (continued)  
(3.15 V < VCC < 3.45 V, –40 °C < TA < 85 °C and TPCB 105 °C. Typical values at VCC = 3.3 V, TA = 25 °C, at the  
Recommended Operating Conditions and are not assured.)  
PARAMETER  
High-level input current  
Low-level input current  
TEST CONDITIONS  
MIN  
–5  
TYP  
MAX UNIT  
IIH  
IIL  
VIH = VCC  
VIL = 0  
5
5
µA  
µA  
–5  
DIGITAL INPUT TIMING  
tHIGH  
RESET pin held high for device reset  
25  
ns  
24  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
7.6 SPI Interface Timing  
TEST CONDITIONS  
See Figure 1  
MIN  
10  
TYP  
MAX  
UNIT  
ns  
tds  
Setup time for SDI edge to SCLK rising edge  
tdH  
Hold time for SDI edge from SCLK rising edge  
Period of SCLK  
See Figure 1  
See Figure 1  
See Figure 1  
See Figure 1  
See Figure 1  
10  
50(1)  
ns  
tSCLK  
tHIGH  
tLOW  
tcs  
ns  
High width of SCLK  
25  
ns  
Low width of SCLK  
25  
ns  
Setup time for CS* falling edge to SCLK rising edge  
10  
ns  
tcH  
Hold time for CS* rising edge from SCLK rising edge See Figure 1  
SCLK falling edge to valid read back data See Figure 1  
30  
ns  
tdv  
20  
ns  
(1) 20 MHz  
Register programming information on the SDIO pin is clocked into a shift register on each rising edge of the SCK  
signal. On the rising edge of the CS* signal, the register is sent from the shift register to the register addressed.  
A slew rate of at least 30 V/µs is recommended for these signals. After programming is complete, the CS* signal  
should be returned to a high state. If the SCK or SDIO lines are toggled while the VCO is in lock, as is  
sometimes the case when these lines are shared with other parts, the phase noise may be degraded during this  
programming.  
4-wire mode read back has same timing as the SDIO pin.  
R/W bit = 0 is for SPI write. R/W bit = 1 is for SPI read.  
W1 and W0 are written as 0.  
SDIO  
(WRITE)  
A12 to A0,  
D7 to D2  
R/W  
W1  
W0  
D1  
D0  
tdS  
tdH  
SCLK  
tcH  
tcS  
tHIGH  
tLOW  
tSCLK  
SDIO  
(Read)  
D7 to  
D2  
D1  
D0  
Data valid only  
during read  
tdV  
CS*  
Figure 1. SPI Timing Diagram  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
7.7 Typical Characteristics – Clock Output AC Characteristics  
These plots show performance at frequencies beyond the point at which the part is ensured to operate, to give an idea of the  
capabilities of the part. They do not imply any sort of ensured specification.  
For Figure 2 through Figure 7, CLKout2_3_IDL=1; CLKout2_3_ODL=0; LVPECL20 with 240-Ω emitter resistors; DCLKout2  
Frequency = 245.76 MHz; DCLKout2_MUX = 0 (Divider). For Figure 2 through Figure 5, Balun Prodyn BIB-100G. For  
Figure 6 and Figure 7, Balun ADT2-1T+.  
VCO_MUX = 0 (VCO0)  
VCO0 = 1966.08 MHz  
DCLKout2_DIV = 8  
PLL2 Loop Filter Bandwidth = 288 kHz  
PLL2 Phase Margin = 72°  
VCO_MUX = 1 (VCO1)  
VCO = 2949.12 MHz  
DCLKout2_DIV = 6  
VCO1_DIV = 0 (÷2)  
PLL2 Loop Filter Bandwidth = 221 kHz  
PLL2 Phase Margin = 70°  
Figure 2. LMK04821 DCLKout2 Phase Noise  
Figure 3. LMK04821 DCLKout2 Phase Noise  
VCO_MUX = 0 (VCO0)  
PLL2 Loop Filter Bandwidth = 303 kHz  
PLL2 Phase Margin = 73°  
VCO_MUX = 1 (VCO1)  
PLL2 Loop Filter Bandwidth = 151 kHz  
PLL2 Phase Margin = 64°  
VCO0 = 1966.08 MHz  
DCLKout2_DIV = 8  
VCO = 2457.6 MHz  
DCLKout2_DIV = 10  
Figure 4. LMK04826 DCLKout2 Phase Noise  
Figure 5. LMK04826 DCLKout2 Phase Noise  
26  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
 
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
Typical Characteristics – Clock Output AC Characteristics (continued)  
These plots show performance at frequencies beyond the point at which the part is ensured to operate, to give an idea of the  
capabilities of the part. They do not imply any sort of ensured specification.  
For Figure 2 through Figure 7, CLKout2_3_IDL=1; CLKout2_3_ODL=0; LVPECL20 with 240-Ω emitter resistors; DCLKout2  
Frequency = 245.76 MHz; DCLKout2_MUX = 0 (Divider). For Figure 2 through Figure 5, Balun Prodyn BIB-100G. For  
Figure 6 and Figure 7, Balun ADT2-1T+.  
VCO_MUX = 0 (VCO0)  
VCO0 = 2457.6 MHz  
DCLKout2_DIV = 10  
PLL2 Loop Filter Bandwidth = 344 kHz  
PLL2 Phase Margin = 73°  
VCO_MUX = 1 (VCO1)  
VCO = 2949.12 MHz  
DCLKout2_DIV = 12  
PLL2 Loop Filter Bandwidth = 233 kHz  
PLL2 Phase Margin = 70°  
Figure 6. LMK04828 DCLKout2 Phase Noise  
Figure 7. LMK04828 DCLKout2 Phase Noise  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
8 Parameter Measurement Information  
8.1 Charge Pump Current Specification Definitions  
I1 = Charge Pump Sink Current at VCPout = VCC - ΔV  
I2 = Charge Pump Sink Current at VCPout = VCC/2  
I3 = Charge Pump Sink Current at VCPout = ΔV  
I4 = Charge Pump Source Current at VCPout = VCC - ΔV  
I5 = Charge Pump Source Current at VCPout = VCC/2  
I6 = Charge Pump Source Current at VCPout = ΔV  
ΔV = Voltage offset from the positive and negative supply rails. Defined to be 0.5 V for this device.  
8.1.1 Charge Pump Output Current Magnitude Variation Vs. Charge Pump Output Voltage  
8.1.2 Charge Pump Sink Current Vs. Charge Pump Output Source Current Mismatch  
8.1.3 Charge Pump Output Current Magnitude Variation Vs. Ambient Temperature  
28  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
8.2 Differential Voltage Measurement Terminology  
The differential voltage of a differential signal can be described by two different definitions, which can cause  
confusion when reading data sheets or communicating with other engineers. This section addresses the  
measurement and description of a differential signal, so that the reader can understand and distinguish between  
the two different definitions.  
The first definition used to describe a differential signal is the absolute value of the voltage potential between the  
inverting and non-inverting signal. The symbol for this first measurement is typically VID or VOD, depending on if  
an input or output voltage is being described.  
The second definition used to describe a differential signal is to measure the potential of the non-inverting signal  
with respect to the inverting signal. The symbol for this second measurement is VSS, and is a calculated  
parameter. This signal does not exist in the IC with respect to ground; it only exists in reference to its differential  
pair. VSS can be measured directly by oscilloscopes with floating references; otherwise this value can be  
calculated as twice the value of VOD, as described in the first description.  
Figure 8 illustrates the two different definitions side-by-side for inputs, and Figure 9 illustrates the two different  
definitions side-by-side for outputs. The VID and VOD definitions show VA and VB DC levels that the non-inverting  
and inverting signals toggle between with respect to ground. VSS input and output definitions show that if the  
inverting signal is considered the voltage potential reference, the non-inverting signal voltage potential is now  
increasing and decreasing above and below the non-inverting reference. Thus, the peak-to-peak voltage of the  
differential signal can be measured.  
VID and VOD are often defined as volts (V) and VSS is often defined as volts peak-to-peak (VPP).  
V
ID  
Definition  
V
Definition for Input  
SS  
Non-Inverting Clock  
V
V
A
B
2·V  
V
ID  
ID  
Inverting Clock  
= | V - V  
V
|
B
V
SS  
= 2·V  
ID  
ID  
A
GND  
Figure 8. Two Different Definitions for  
Differential Input Signals  
V
Definition  
V
Definition for Output  
SS  
OD  
Non-Inverting Clock  
V
V
A
B
2·V  
OD  
V
OD  
Inverting Clock  
= | V - V  
V
|
B
V
SS  
= 2·V  
OD  
OD  
A
GND  
Figure 9. Two Different Definitions for  
Differential Output Signals  
Refer to application note AN-912 Common Data Transmission Parameters and their Definitions (SNLA036) for  
more information.  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9 Detailed Description  
9.1 Overview  
The LMK0482x family are multi-purpose, jitter cleaning dual-PLL circuits, with user-programmable settings to  
support a flexible set of configurations for many different application requirements. PLL1 is optimized for use with  
an external VCXO as the PLL oscillator, while PLL2 includes a dual-range integrated VCO and distributes the  
VCO output to 7 integrated 10-bit channel dividers and a 13-bit SYSREF divider, yielding a total of 14 differential  
clock outputs at up to 8 different frequencies.  
The primary use case is as a dual-loop jitter cleaner (dual-loop mode), when using a reference clock with good  
frequency accuracy but poor phase noise to generate ultra-low jitter output clocks. Dual-loop mode also helps to  
maintain a high phase detector frequency and loop bandwidth in the clock generation PLL when the greatest  
common divisor of the reference clock frequency and the output clock frequencies is small, avoiding a low phase  
detector frequency that would elevate output clock phase noise.  
Both PLLs can optionally be disabled. By disabling PLL1, the LMK0482x can be used as a standard single-PLL  
clock generator with integrated VCO (single-loop mode). By disabling both PLLs, the LMK0482x can act as a  
distribution buffer/divider, directly connecting an input reference to the clock dividers and the SYSREF divider.  
The clock output dividers can also be bypassed or set to divide of 1 for distribution only mode.  
In a typical dual-loop configuration, the external VCXO is connected to the PLL1 N-divider, and the integrated  
VCO is connected to the N-divider directly. However, by routing the divided clock or SYSREF output of PLL2 to  
the N-divider of PLL1, PLL2, or both PLLs in a family of configurations called zero-delay mode, the LMK0482x  
can establish a deterministic phase relationship between reference input phase and clock output phase. Using  
zero-delay mode, multiple LMK0482x can be cascaded to fan out exponentially more outputs, while maintaining  
predictable input-to-output phase throughout the whole chain of devices. Zero-delay mode is supported in  
singleloop and dual-loop mode, with two dual-loop configurations: nested dual-loop (feedback connected to PLL1  
Ndivider) and cascaded dual-loop (feedback connected to PLL2 N-divider).  
The LMK0482x may be used in JESD204B sytems by providing a device clock and SYSREF to up to 7 devices.  
However, alternate (non-JESD204B) systems are also possible by programming pairs of outputs to share the  
clock divider. Any mix of JESD204B and alternate systems can be supported.  
9.1.1 Jitter Cleaning  
The dual-loop PLL architecture of the LMK0482x family provides the lowest jitter performance over a wide range  
of output frequencies and phase-noise integration bandwidths. The first-stage PLL (PLL1) is driven by an  
external reference clock, and uses an external VCXO or tunable crystal to provide a frequency accurate, low  
phase-noise reference clock for the second-stage frequency multiplication PLL (PLL2).  
PLL1 typically uses a narrow-loop bandwidth (10 Hz to 200 Hz) to retain the frequency accuracy of the reference  
clock input signal, while at the same time suppressing the higher offset frequency phase noise that the reference  
clock may have accumulated along its path or from other circuits. This “cleaned” reference clock provides the  
reference input to PLL2.  
The low phase-noise reference provided to PLL2 allows PLL2 to operate with a wide-loop bandwidth (typically 50  
kHz to 200 kHz). The loop bandwidth for PLL2 is chosen to take advantage of the superior high-offset frequency  
phase-noise profile of the internal VCO, and the good low-offset frequency phase noise of the reference VCXO  
or tunable crystal.  
Ultra low jitter is achieved by allowing the external VCXO or crystal phase noise to dominate the final output  
phase noise at low-offset frequencies, and the internal VCO phase noise to dominate the final output phase  
noise at high-offset frequencies. This results in best overall phase noise and jitter performance.  
9.1.2 JEDEC JESD204B Support  
The LMK0482x family provides support for JEDEC JESD204B. The LMK0482x clocks up to 7 JESD204B targets  
using 7 device clocks (DCLKoutX) and 7 SYSREF clocks (SDCLKoutY). Each device clock is grouped with a  
SYSREF clock.  
The user can reprogram SYSREF clocks to behave as extra device clocks for applications which have non-  
JESD204B clock requirements.  
30  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
Overview (continued)  
9.1.3 Three PLL1 Redundant Reference Inputs  
The LMK0482x family has up to three reference clock inputs for PLL1. They are CLKin0, CLKin1, and CLKin2.  
The active clock is chosen based on CLKin_SEL_MODE. Automatic or manual switching can occur between the  
inputs.  
CLKin0, CLKin1, and CLKin2 each have their own PLL1 R dividers. CLKin0, CLKin1, and CLKin2 each support  
differential or single-ended inputs, and support DC coupling or AC coupling. See Driving CLKin and OSCin  
Inputs.  
CLKin1 is shared for use as an external zero-delay feedback (FBCLKin), or for use with an external VCO (Fin).  
CLKin2 is shared for use as OSCout. To use CLKin2 as an input, OSCout must be powered down. See  
VCO_MUX, OSCout_MUX, OSCout_FMT.  
Fast manual switching between reference clocks is possible with a external pins CLKin_SEL0 and CLKin_SEL1.  
For clock distribution mode, a reference signal is applied to the Fin pins for clock distribution. CLKin0 can also be  
used to distribute a SYSREF signal through the device. In this use case, CLKin0 may be re-clocked by Fin, or  
can be routed directly to the SYSREF outputs.  
9.1.4 VCXO/Crystal Buffered Output  
CLKin2 may instead be configured as OSCout, which by default is a buffered copy of the PLL1 feedback/PLL2  
reference input (OSCin). This reference input is typically a low-noise VCXO or crystal. When using a VCXO, this  
output can be used to clock external devices such as microcontrollers, FPGAs, and CPLDs, before the  
LMK0482x is programmed.  
The OSCout buffer output type is programmable to LVDS, LVPECL, or LVCMOS. OSCout LVPECL mode only  
supports 240-Ω emitter resistors.  
The VCXO/crystal buffered output can be synchronized to the VCO clock distribution outputs by using cascaded  
zero-delay mode. The buffered output of VCXO/crystal has a deterministic phase relationship with CLKin.  
9.1.5 Frequency Holdover  
When the reference inputs to PLL1 are lost, the LMK0482x family can enter holdover mode until a valid  
reference clock signal is re-established. Holdover mode forces a constant DC voltage output to the control pin of  
the PLL1 VCXO, ensuring minimal frequency drift while the reference inputs are absent.  
9.1.6 PLL2 Integrated Loop Filter Poles  
The LMK0482x family features programmable 3rd- and 4th-order loop filter poles for PLL2. These internal  
resistors and capacitor values may be selected from a fixed range of values to achieve either a 3rd- or 4th-order  
loop filter response. The integrated programmable resistors and capacitors compliment external components  
mounted near the chip.  
These integrated components can be effectively disabled by programming the integrated resistors and capacitors  
to their minimum values.  
9.1.7 Internal VCOs  
The LMK0482x family has two internal VCOs, selected by VCO_MUX. The output of the selected VCO is routed  
to the clock distribution path. This same selection is also fed back to the PLL2 phase detector through a  
prescaler and N-divider.  
9.1.7.1 VCO1 Divider (LMK04821 only)  
The LMK04821 includes a VCO divider on the output of VCO1. The VCO1 divider can be programmed from 2 to  
8.  
When using a VCO1 frequency of 2949.12 MHz and a divide of 8, frequencies as low as 11.52 MHz can be  
achieved. Using the VCO1_DIV limits the maximum output frequency from any output to the VCO1 frequency,  
divided by VCO1_DIV value.  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Overview (continued)  
When using VCO1, the output frequency from the VCO1_DIV defines the digital delay resolution.  
The VCO1_DIV divider also impacts the total N divide value for PLL2 when VCO1 is selected; this should be  
accounted for when selecting PLL2_N and PLL2_P value.  
9.1.8 External VCO Mode  
The Fin/Fin* input allows an external VCO to be used with PLL2 of the LMK0482x family.  
Using an external VCO prevents the use of CLKin1 for other purposes.  
9.1.9 Clock Distribution  
The LMK0482x family features a total of 14 PLL2 clock outputs, driven from the internal or external VCO.  
All PLL2 clock outputs have programmable output types. They can be programmed to LVPECL, LVDS, or HSDS,  
or LCPECL.  
If OSCout is included in the total number of clock outputs the LMK0482x family is able to distribute, then up to 15  
differential clocks. OSCout may be a buffered version of OSCin, DCLKout6, DCLKout8, or SYSREF. Its output  
format is programmable to LVDS, LVPECL, or LVCMOS. OSCout LVPECL mode only supports 240-Ω emitter  
resistors.  
The following sections discuss specific features of the clock distribution channels that allow the user to control  
various aspects of the output clocks.  
9.1.9.1 Device Clock Divider  
Each device clock, DCLKoutX, has a single clock output divider. The divider supports a divide range of 1 to 32  
(even and odd) with 50% output duty cycle, using duty cycle correction mode. The output of this divider may also  
be directed to SDCLKoutY, where Y = X + 1.  
9.1.9.2 SYSREF Clock Divider  
The SYSREF clocks, SDCLKoutY, all share a common divider. The divider supports a divide range of 8 to 8191  
(even and odd).  
9.1.9.3 Device Clock Delay  
The device clocks include both a analog and digital delay for phase adjustment of the clock outputs.  
The analog delay allows a nominal 25-ps step size, and range from 0 to 575 ps of total delay. Enabling the  
analog delay adds a nominal 500 ps of delay, in addition to the programmed value.  
The digital delay allows a group of outputs to be delayed from 4 to 32 VCO cycles. The delay step can be as  
small as half the period of the clock distribution path. For example, a 2-GHz VCO frequency results in 250 ps  
coarse tuning steps. The coarse (digital) delay value takes effect on the clock outputs after a SYNC event.  
There are two ways to use the digital delay.  
1. Fixed digital delay – Allows all the outputs to have a known phase relationship upon a SYNC event. Typically  
performed at startup.  
2. Dynamic digital delay – Allows the phase relationships of the clocks to change while the clocks continue to  
operate.  
9.1.9.4 SYSREF Delay  
The global SYSREF divider includes a digital delay block, which allows a global phase shift with respect to the  
other clocks.  
Each local SYSREF clock output includes both an analog and additional local digital delay, for unique phase  
adjustment of each SYSREF clock.  
The local analog delay allows for 150-ps steps.  
32  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
Overview (continued)  
The local digital delay and SYSREF_HS bit allows the each individual SYSREF output to be delayed from, 1.5 to  
11 VCO cycles. The delay step can be as small as half the period of the clock distribution path, by using the  
DCLKoutX_HS bit. For example, a 2-GHz VCO frequency results in 250 ps coarse tuning steps.  
9.1.9.5 Glitchless Half Step and Glitchless Analog Delay  
The device clocks include a feature to ensure glitchless operation of the half step and analog delay operations,  
when enabled.  
9.1.9.6 Programmable Output Formats  
For increased flexibility all LMK0482x family device and SYSREF clock outputs, DCLKoutX and SDCLKoutY, can  
be programmed to an LVDS, HSDS, LVPECL, or LCPECL output type. The OSCout can be programmed to an  
LVDS, LVPECL, or LVCMOS output type. OSCout LVPECL mode only supports 240-Ω emitter resistors.  
Any LVPECL output type can be programmed to 1600- or 2000-mVpp amplitude levels. The 2000-mVpp  
LVPECL output type is a Texas Instruments proprietary configuration that produces a 2000-mVpp differential  
swing for compatibility with many data converters, and is known as 2VPECL.  
LCPECL allows for DC coupling SYSREF to low-voltage converters.  
9.1.9.7 Clock Output Synchronization  
Using the SYNC input causes all active clock outputs to share a rising edge, as programmed by fixed digital  
delay.  
The SYNC event must occur for digital delay values to take effect.  
9.1.10 Zero-Delay  
The LMK0482x family supports two types of zero-delay.  
1. Cascaded zero-delay  
2. Nested zero-delay  
Cascaded zero-delay mode establishes a fixed deterministic phase relationship of the phase of the PLL2 input  
clock (OSCin) to the phase of a clock selected by the feedback mux. The zero-delay feedback may performed  
with an internal feedback from CLKout6, CLKout8, SYSREF, or with an external feedback loop into the FBCLKin  
port as selected by the FB_MUX. Because OSCin has a fixed deterministic phase relationship to the feedback  
clock, OSCout will also have a fixed deterministic phase relationship to the feedback clock. In this mode, the  
PLL1 input clock (CLKinX) also has a fixed deterministic phase relationship to PLL2 input clock (OSCin); this  
results in a fixed deterministic phase relationship between all clocks from CLKinX to the clock outputs.  
Nested zero-delay mode establishes a fixed deterministic phase relationship of the phase of the PLL1 input clock  
(CLKinX) to the phase of a clock selected by the feedback mux. The zero-delay feedback may performed with an  
internal feedback from CLKout6, CLKout8, SYSREF, or with an external feedback loop into the FBCLKin port as  
selected by the FB_MUX.  
Without using zero-delay mode, there are numerous possible fixed phase relationships from clock input to clock  
output, depending on the clock output divide value. Careful selection of the zero-delay feedback value can  
reduce the number of fixed phase relationships from clock input to clock output, potentially to as few as one. As  
a result, zero-delay simplifies input-to-output phase guarantees, especially across multiple devices. For more  
information, see the application note Multi-Clock Synchronization.  
Using an external zero-delay feedback prevents the use of CLKin1 for other purposes.  
9.1.11 Status Pins  
The LMK0482x provides status pins, which can be monitored for feedback, or in some cases used for input  
depending upon device programming. For example:  
The CLKin_SEL0 pin may be configured as an output, indicating the LOS (loss-of-signal) for CLKin0.  
The CLKin_SEL1 pin may be configured as an input, for selecting the active clock input.  
The Status_LD1 pin may indicate if the device is locked (PLL1 and PLL2 locked).  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Overview (continued)  
The Status_LD2 pin may indicate if PLL2 is locked.  
The status pins can be programmed to a variety of other outputs, including PLL divider outputs, combined PLL  
lock detect signals, PLL1 Vtune railing, SPI readback, and so forth. Refer to the programming section of this data  
sheet for more information.  
34  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.2 Functional Block Diagram  
Figure 10 and Figure 11 illustrate the complete LMK0482x family block diagram.  
Figure 10. Detailed LMK04821 Block Diagram  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Functional Block Diagram (continued)  
Figure 11. Detailed LMK04826 and LMK04828 Block Diagram  
36  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
Functional Block Diagram (continued)  
CLKoutX_Y_PD  
DCLKout6/8 to FB_MUX  
DCLKoutX_ADLY_PD  
DCLKoutX_ADLYg_PD  
DCLKoutX_DDLY_PD  
DCLKoutX_HSg_PD  
DCLKout0, 2, 4, 6, 8, 10, 12  
VCO  
DDLY Divider  
(4 to 32) (1 to 32)  
HS/  
DCC  
DCLKoutX  
_MUX  
DCLKoutX_  
FMT  
DCLKoutX  
_ADLY  
_MUX  
Analog  
DLY  
DDDLYdX_EN  
CLKoutX_Y_ODL  
SYNC_  
1SHOT_EN  
CLKoutX_Y_IDL  
SYSREF_GBL_PD  
SDCLKoutY_DIS_MODE  
One  
Shot  
SDCLKoutY  
_POL  
SYNC_  
DISX  
SDCLKoutY_PD  
SDCLKoutY  
_MUX  
SDCLKoutY_  
FMT  
SDCLKoutY  
_ADLY_EN  
SYSREF/SYNC  
Digital  
DLY  
Half  
Step  
Analog  
DLY  
SDCLKout1, 3, 5, 7, 9, 11, 13  
Legend  
SYSREF/SYNC Clock  
SYSREF_CLR  
SPI Register  
VCO/Distribution Clock  
Figure 12. Device and SYSREF Clock Output Block  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Functional Block Diagram (continued)  
Figure 13. SYNC/SYSREF Clocking Paths  
38  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.3 Feature Description  
9.3.1 SYNC/SYSREF  
To properly use SYNC or SYSREF for JESD204B, it is important to understand the SYNC/SYSREF system. The  
SYNC and SYSREF signals share the same clocking path, with SYNC_DISX bits used to enable the path from  
SYSREF/SYNC to each divider reset port. Figure 12 illustrates the detailed diagram of a clock output block with  
SYNC circuitry included.Figure 13 illustrates the interconnects and highlights some important registers used in  
controlling the device for SYNC/SYSREF purposes.  
To reset or synchronize a divider, the following conditions must be met:  
1. SYNC_EN must be set. This ensures proper operation of the SYNC circuitry.  
2. SYSREF_MUX and SYNC_MODE must be set to a proper combination to provide a valid SYNC/SYSREF  
signal.  
If SYSREF block is being used, the SYSREF_PD bit must be clear.  
If the SYSREF Pulser is being used, the SYSREF_PLSR_PD bit must be clear.  
For each SDCLKoutY being used for SYSREF, respective SDCLKoutY_PD bits must be cleared.  
3. SYSREF_DDLY_PD and DCLKoutX_DDLY_PD bits must be clear to power up the digital delay circuitry  
during SYNC. After the SYNC event, these bits may be set to reduce power consumption.  
4. The SYNC_DISX bit must be clear to allow the SYNC/SYSREF signal to reset the divider circuit. The  
SYSREF_MUX register selects the SYNC source.  
5. Other bits which impact the operation of SYNC, such as SYNC_1SHOT_EN, may be set as desired.  
Table 1 illustrates the some possible combinations of SYSREF_MUX and SYNC_MODE.  
Table 1. Some Possible SYNC Configurations  
NAME  
SYNC_MODE  
SYSREF_MUX  
OTHER  
DESCRIPTION  
SYNC disabled  
0
0
CLKin0_OUT_MUX 0  
No SYNC occurs.  
Basic SYNC functionality, SYNC pin polarity is  
selected by SYNC_POL.  
To achieve SYNC through SPI, toggle the  
SYNC_POL bit.  
Pin or SPI SYNC  
1
0
CLKin0_OUT_MUX 0  
Differential input  
SYNC  
0 or 1  
2
0 or 1  
2
CLKin0_OUT_MUX = 0  
Differential CLKin0 now operates as SYNC input.  
Produce SYSREF_PULSE_CNT programmed  
number of pulses on pin transition. SYNC_POL can  
be used to cause SYNC through SPI.  
JESD204B pulser  
on pin transition.  
SYSREF_PULSE_CNT  
sets pulse count  
JESD204B pulser  
on SPI  
programming.  
SYSREF_PULSE_CNT  
sets pulse count  
Programming the SYSREF_PULSE_CNT register  
starts sending the number of pulses.  
3
1
2
1
SYSREF operational,  
SYSREF divider as  
required for training frame for non-JESD converters such as LM97600.  
size.  
Allows precise SYNC for n-bit frame training patterns  
Re-clocked SYNC  
When the SYNC pin is asserted, continuous SYSERF  
External SYSREF  
request  
SYSREF_REQ_EN = 1  
Pulser powered up  
pulses occur. Turning on and off of the pulses is  
synchronized, to prevent runt pulses from occurring  
on SYSREF.  
0
2
3
SYSREF_PD = 0  
SYSREF_DDLY_PD = 0  
Continuous SYSREF signal. Useful for validating  
phase alignment of SYSREF clocks, but not  
recommended for use in low-noise applications due to  
crosstalk spurs.  
Continuous  
SYSREF  
X
SYSREF_PLSR_PD = 1  
(1)  
(1) SDCLKoutY_PD = 0 as required per SYSREF output. This applies to any SYNC or SYSREF output on SDCLKoutY when  
SDCLKoutY_MUX = 1 (SYSREF output)  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Feature Description (continued)  
Table 1. Some Possible SYNC Configurations (continued)  
NAME  
SYNC_MODE  
SYSREF_MUX  
OTHER  
DESCRIPTION  
CLKin0_OUT_MUX = 0  
SDCLKoutY_DDLY = 0  
(Local sysref DDLY  
bypassed)  
SYSREF_DDLY_PD = 1  
SYSREF_PLSR_PD = 1  
SYSREF_PD = 1.  
Direct SYSREF  
distribution  
A direct fan-out of SYSREF with no re-clocking to  
clock distribution path.  
0
0
9.3.2 JEDEC JESD204B  
9.3.2.1 How To Enable SYSREF  
Table 2 summarizes the bits needed to make SYSREF functionality operational.  
Table 2. SYSREF Bits  
REGIS  
TER  
FIELD  
VALUE  
DESCRIPTION  
Must be clear to power-up SYSREF circuitry.  
0x140  
SYSREF_PD  
0
0
1
SYSREF_DDLY_  
PD  
0x140  
0x143  
Must be clear to power-up digital delay circuitry during initial SYNC, to ensure deterministic timing.  
Must be set to enable SYNC.  
SYNC_EN  
Do not hold local SYSREF_DDLY block in reset except at start.  
Anytime SYSREF_PD = 1 because of user programming or device RESET, it is necessary to set  
SYSREF_CLR for 15 clock distribution path cycles to clear the local SYSREF digital delay. After  
clearing local delays, SYSREF_CLR must be cleared to allow SYSREF to operate.  
0x143  
SYSREF_CLR  
1 0  
Enabling JESD204B operation involves synchronizing all the clock dividers with the SYSREF divider, then  
configuring the actual SYSREF functionality.  
9.3.2.1.1 Setup of SYSREF Example  
The following procedure is a programming example for a system operating with a 3000-MHz VCO frequency.  
Use DCLKout0 and DCLKout2 to drive converters at 1500 MHz. Use DCLKout4 to drive an FPGA at 150 MHz.  
Synchronize the converters and FPGA using two SYSREF pulses at 10 MHz.  
1. Program registers 0x000 to 0x1fff as desired. Key to prepare for SYSREF operations (see Recommended  
Programming Sequence):  
a. Prepare for manual SYNC: SYNC_POL = 0, SYNC_MODE = 1, SYSREF_MUX = 0  
b. Setup output dividers as per example: DCLKout0_DIV and DCLKout2_DIV = 2 for frequency of 1500  
MHz. DCLKout4_DIV = 20 for frequency of 150 MHz.  
c. Setup output dividers as per example: SYSREF_DIV = 300 for 10 MHz SYSREF  
d. Setup SYSREF: SYSREF_PD  
=
0, SYSREF_DDLY_PD  
=
0, DCLKout0_DDLY_PD  
=
0,  
DCLKout2_DDLY_PD = 0, DCLKout4_DDLY_PD = 0, SYNC_EN = 1, SYSREF_PLSR_PD = 0,  
SYSREF_PULSE_CNT = 1 (2 pulses). SDCLKout1_PD = 0, SDCLKout3_PD = 0  
e. Clear Local SYSREF DDLY: SYSREF_CLR = 1.  
2. Establish deterministic phase relationships between SYSREF and the device clock for JESD204B:  
a. Set device clock and SYSREF divider digital delays: DCLKout0_DDLY_CNTH, DCLKout0_DDLY_CNTL,  
DCLKout2_DDLY_CNTH, DCLKout2_DDLY_CNTL, DCLKout4_DDLY_CNTH, DCLKout4_DDLY_CNTL,  
SYSREF_DDLY.  
b. Set device clock digital delay half steps: DCLKout0_HS, DCLKout2_HS, DCLKout4_HS.  
c. Set SYSREF clock digital delay as required to achieve known phase relationships: SDCLKout1_DDLY,  
SDCLKout3_DDLY, SDCLKout5_DDLY.  
d. To allow SYNC to effect dividers: SYNC_DIS0  
SYNC_DISSYSREF = 0  
= 0, SYNC_DIS2 = 0, SYNC_DIS4 = 0,  
40  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
e. Perform SYNC by toggling SYNC_POL = 1, then SYNC_POL = 0.  
3. When the dividers are synchronized, disable SYNC from resetting these dividers. It is not desired for  
SYSREF to reset it's own divider or the dividers of the output clocks.  
a. Prevent SYSREF from affecting dividers: SYNC_DIS0 = 1, SYNC_DIS2 = 1, SYNC_DIS4 = 1,  
SYNC_DISSYSREF = 1.  
4. Release reset of local SYSREF digital delay.  
a. SYSREF_CLR = 0. Note this bit needs to be set for only 15 clock distribution path cycles after  
SYSREF_PD = 0.  
5. Set SYSREF operation.  
a. Allow pin SYNC event to start pulser: SYNC_MODE = 2.  
b. Select pulser as SYSREF signal: SYSREF_MUX = 2.  
6. After the procedure is complete, asserting the SYNC pin or toggling SYNC_POL results in a series of 2  
SYSREF pulses.  
9.3.2.1.2 SYSREF_CLR  
The local digital delay of the SDCLKout is implemented as a shift buffer. To ensure no unwanted pulses occur at  
this SYSREF output at startup when using SYSREF, clear the buffers by setting SYSREF_CLR = 1 for 15 VCO  
clock cycles. This bit is set after a reset; thus, it must be cleared before the SYSREF output is used.  
9.3.2.2 SYSREF Modes  
9.3.2.2.1 SYSREF Pulser  
This mode allows for the output of 1, 2, 4, or 8 SYSREF pulses for every SYNC pin event or SPI programming.  
This implements the gapped periodic functionality of the JEDEC JESD204B specification.  
When in SYSREF pulser mode, programming the field SYSREF_PULSE_CNT in register 0x13E results in the  
pulser sending the programmed number of pulses.  
9.3.2.2.2 Continuous SYSREF  
This mode allows for continuous output of the SYSREF clock.  
Continuous operation of SYSREF is not recommended, due to crosstalk from the SYSREF clock to device clock.  
JESD204B is designed to operate with a single burst of pulses to initialize the system at startup, after which it is  
theoretically not required to send another SYSREF, because the system continues to operate with deterministic  
phases.  
If continuous operation of SYSREF is required, consider using a SYSREF output from a non-adjacent output or  
SYSREF from the OSCout pin, to minimize crosstalk.  
9.3.2.2.3 SYSREF Request  
This mode allows an external source to synchronously turn on or off a continuous stream of SYSREF pulses,  
using the SYNC/SYSREF_REQ pin.  
Set up the mode by programming SYSREF_REQ_EN = 1 and SYSREF_MUX = 2 (Pulser). The pulser does not  
need to be powered for this mode of operation.  
When the SYSREF_REQ pin is asserted, the SYSREF_MUX is synchronously set to continuous mode, providing  
continuous pulses at the SYSREF frequency, until the SYSREF_REQ pin is unasserted and the final SYSREF  
pulse completes sending synchronously.  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.3.3 Digital Delay  
Digital (coarse) delay allows a group of outputs to be delayed by 4 to 32 VCO cycles. The delay step can be as  
small as half the period of the VCO cycle, by using the DCLKoutX_HS bit. There are two ways to use the digital  
delay:  
1. Fixed digital delay  
2. Dynamic digital delay  
In both delay modes, the regular clock divider is substituted with an alternative divide value. The substitute divide  
value consists of two values, DCLKoutX_DDLY_CNTH and DCLKoutX_DDLY_CNTL. The minimum  
_CNTH/_CNTL value is 2 and the maximum _CNTH/_CNTL value is 16. This results in a minimum alternative  
divide value of 4 and a maximum of 32.  
9.3.3.1 Fixed Digital Delay  
Fixed digital delay value takes effect on the clock outputs after a SYNC event. As such, the outputs are LOW for  
a while during the SYNC event. Applications that cannot accept clock interruption when adjusting digital delay  
should use dynamic digital delay.  
9.3.3.1.1 Fixed Digital Delay Example  
Assuming the device already has the following initial configurations, and the application should delay DCLKout2  
by one VCO cycle compared to DCLKout0:  
VCO frequency = 2949.12 MHz  
DCLKout0 = 368.64 MHz (DCLKout0_DIV = 8)  
DCLKout2 = 368.64 MHz (DCLKout2_DIV = 8)  
These steps should be followed:  
1. Set DCLKout0_DDLY_CNTH = 4 and DCLKout2_DDLY_CNTH = 4. First part of delay for each clock.  
2. Set DCLKout0_DDLY_CNTL = 4 and DCLKout2_DDLY_CNTL = 5. Second part of delay for each clock.  
3. Set DCLKout0_DDLY_PD = 0 and DCLKout2_DDLY_PD = 0. Power up the digital delay circuit.  
4. Set SYNC_DIS0 = 0 and SYNC_DIS2 = 0. Allow the output to be synchronized.  
5. Perform SYNC by asserting, then deasserting SYNC. Either by using SYNC_POL bit or the SYNC pin.  
6. When the SYNC is complete, power down DCLKout0_DDLY_PD = 1 and/or DCLKout2_DDLY_PD = 1 to  
save power.  
7. Set SYNC_DIS0 = 1 and SYNC_DIS2 = 1, to prevent the outputs from being synchronized by other  
SYNC/SYSREF events.  
No CLKout during SYNC  
DCLKout0  
368.64 MHz  
DCLKout2  
368.64 MHz  
SYNC event  
1 VCO cycle delay  
Figure 14. Fixed Digital Delay Example  
42  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.3.3.2 Dynamic Digital Delay  
Dynamic digital delay allows the phase of clocks to be changed with respect to each other, with little impact to  
the clock signal. This is accomplished by substituting the regular clock divider with an alternate divide value for  
one cycle. This substitution occurs  
a number of times equal to the value programmed into the  
DDLYd_STEP_CNT field for all outputs with DDLYdX_EN = 1.  
By programming a larger alternate divider (delay) value, the phase of the adjusted outputs is delayed with  
respect to the other clocks.  
By programming a smaller alternate divider (delay) value, the phase of the adjusted output is advanced with  
respect to the other clocks.  
Table 3 shows the recommended DCLKoutX_DDLY_CNTH and DCLKoutX_DDLY_CNTL alternate divide setting  
for delay by one VCO cycle. The clock output is high during the DCLKoutX_DDLY_CNTH time to permit a  
continuous output clock. The clock output is low during the DCLKoutX_DDLY_CNTL time.  
Table 3. Recommended DCLKoutX_DDLY_CNTH/_CNTL Values for Delay by One VCO Cycle  
CLOCK DIVIDER  
_CNTH  
_CNTL  
CLOCK DIVIDER  
_CNTH  
9
_CNTL  
9
2
3
2
3
2
3
3
4
4
5
5
6
6
7
7
8
8
3
4
3
3
4
4
5
5
6
6
7
7
8
8
9
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
9
10  
4
10  
10  
11  
11  
12  
12  
13  
13  
14  
14  
15  
15  
0(1)  
10  
5
11  
6
11  
7
12  
8
12  
9
13  
10  
11  
12  
13  
14  
15  
16  
13  
14  
14  
15  
15  
0(1)  
0(1)  
(1) To achieve _CNTH/_CNTL value of 16, 0 must be programmed into the _CNTH/_CNTL field.  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.3.3.3 Single and Multiple Dynamic Digital Delay Example  
In this example, two separate adjustments are made to the device clocks. In the first adjustment, a single delay  
of 1 VCO cycle occurs between DCLKout2 and DCLKout0. In the second adjustment, two delays of 1 VCO cycle  
occur between DCLKout2 and DCLKout0. At this point in the example, DCLKout2 is delayed 3 VCO cycles  
behind DCLKout0.  
Assuming the device already has the following initial configurations:  
VCO frequency: 2949.12 MHz  
DCLKout0 = 368.64 MHz, DCLKout0_DIV = 8  
DCLKout2 = 368.64 MHz, DCLKout2_DIV = 8  
The following steps illustrate the example above:  
1. Set DCLKout2_DDLY_CNTH = 4. First part of delay for DCLKout2.  
2. Set DCLKout2_DDLY_CNTL = 5. Second part of delay for DCLKout2.  
3. Set DCLKout2_DDLY_PD = 0. Enable the digital delay for DCLKout2.  
4. Set DDLYd2_EN = 1. Enable dynamic digital delay for DCLKout2.  
5. Set SYNC_DIS0 = 1 and SYNC_DIS2 = 0. Sync should be disabled to DCLKout0, but not DCLKout2.  
6. Set SYNC_MODE = 3. Enable SYNC event from SPI write to the DDLYd_STEP_CNT register.  
7. Set SYNC_MODE = 2, SYSREF_MUX = 2. Setup proper SYNC settings.  
8. Set DDLYd_STEP_CNT = 1. This begins the first adjustment.  
Before step 8 DCLKout2 clock edge is aligned with DCLKout0.  
After step 8, DCLKout2 counts four VCO cycles high and then five VCO cycles low as programmed by  
DCLKout2_DDLY_CNTH and DCLKout2_DDLY_CNTL fields, effectively delaying DCLKout2 by one VCO  
cycle with respect to DCLKout0. This is the first adjustment.  
9. Set DDLYd_STEP_CNT = 2. This begins the second adjustment.  
Before step 9, DCLKout2 clock edge was delayed 1 VCO cycle from DCLKout0.  
After step 9, DCLKout2 counts four VCO cycles high and then five VCO cycles low, as programmed by  
DCLKout2_DDLY_CNTH and DCLKout2_DDLY_CNTL fields twice, delaying DCLKout2 by two VCO cycles  
with respect to DCLKout0. This is the second adjustment.  
VCO  
2949.12 MHz  
DCLKout0  
368.64 MHz  
DCLKout2  
368.64 MHz  
First  
Adjustment  
CNTH = 4 CNTL = 5  
DCLKout2  
368.64 MHz  
Second  
Adjustment  
CNTH = 4 CNTL = 5  
CNTH = 4 CNTL = 5  
Figure 15. Single and Multiple Adjustment Dynamic Digital Delay Example  
44  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.3.4 SYSREF to Device Clock Alignment  
To ensure proper JESD204B operation, the timing relationship between the SYSREF and the device clock must  
be adjusted for optimum setup and hold time as shown in  
Added timing alignment figure, alignment equations to SYSREF to Device Clock Alignment . The global SYSREF  
digital delay (SYSREF_DDLY). local SYSREF digital delay (SDCLKoutY_DDLY), local SYSREF half step  
(SDCLKoutY_HS), and local SYSREF analog delay (SDCLKoutY_ADLY, SDCLKoutY_ADLY_EN) can be  
adjusted to provide the required setup and hold time between SYSREF and device clock. It is also possible to  
adjust the device clock digital delay (DCLKoutX_DDLY_CNTH, DCLKoutX_DDLY_CNTL), device clock half step  
(DCLKoutX_HS), device clock analog delay (DCLKoutX_ADLY, DCLKoutX_ADLY_EN), and device clock muxes  
(DCLKoutX_MUX, DCLKoutX_ADLY_MUX) to adjust phase with respect to SYSREF.  
Figure 16. SYSREF to Device Clock Timing Alignment  
Depending on the settings for DCLKoutX and the SYSREF divider, some adjustment may be needed to correctly  
align DCLKoutX to SDCLKoutY. Equation 1 and Equation 2 predict the relative DCLKoutX to SDCLKoutY delay:  
DELAYDCLK = DCLKoutX_DDLY_CNTH + DCLKoutX_DDLY_CNTL  
(1)  
DELAYSDCLK = SYSREF_DDLY + SDCLKoutY_DDLY + SYSREF_DIV_ADJUST + DCLKout_MUX_ADJUST  
where  
SYSREF_DIV_ADJUST = 2 IF (SYSREF_DIV % 4 < 2) ELSE 3  
DCLKoutX_MUX_ADJUST = 1 IF (Duty Cycle Correction enabled) ELSE 0  
(2)  
For the relative delay equations, the cycle delay rather than the register value should be used, since cycle delay  
does not always equal register value (example: _CNTH/_CNTL=0, delay=16). Device clock duty cycle correction  
can be enabled for both digital and analog paths, either by setting DCLKoutX_MUX=1 (digital only), or by setting  
DCLKoutX_MUX=3 and DCLKoutX_ADLY_MUX=1. If half step is enabled on either path, delay can be included  
by subtracting 0.5 from the enabled path. As an example, if DCLKoutX_DDLY_CNTH=7,  
DCLKoutX_DDLY_CNTL=6,  
SYSREF_DDLY=8,  
SDCLKoutY_DDLY=2  
cycles,  
SYSREF_DIV=30,  
DCLKoutX_MUX=1, DCLKoutX_HS=0, SDCLKoutX_HS=0:  
DELAYDCLK = 7 + 6 = 13  
SYSREF_DIV_ADJUST = (30 % 4 < 2) ? 2 : 3 = 3  
DCLKoutX_MUX_ADJUST = DCC ? 1 : 0 = 0  
DELAYSDCLK = 8 + 2 + 3 + 0 = 13  
To calculate the expected time delay from the first edge of DCLKoutX to the first edge of SDCLKoutY, refer to  
Equation 3. Substitute the analog delays with the appropriate time values (in seconds) according to  
DCLKoutX_ADLY, DCLKoutX_ADLY_MUX, DCLKout_MUX and SDCLKoutY_ADLY_EN, SDCLKoutY_ADLY.  
tsJESD204B is provided in the Electrical Characteristics section for the conditions in the example above as -80 ps.  
tDCLK-to-SDCLK = (FDistribution  
)
-1 × (DELAYSDCLK - DELAYDCLK) + SDCLKoutY_ADLY - DCLKoutY_ADLY + tsJESD204B  
(3)  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
 
 
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.3.5 Input Clock Switching  
Manual, pin select, and automatic are three kinds clock input switching modes that can be set with the  
CLKin_SEL_MODE register.  
The following sections describe how the active input clock is selected and what causes a switching event in the  
various clock input selection modes.  
9.3.5.1 Input Clock Switching - Manual Mode  
When CLKin_SEL_MODE is 0, 1, or 2, then CLKin0, CLKin1, or CLKin2 respectively is always selected as the  
active input clock. Manual mode also overrides the EN_CLKinX bits, such that the CLKinX buffer operates even if  
EN_CLKinX = 0.  
If holdover is entered in this mode, the device re-locks to the selected CLKin upon holdover exit.  
9.3.5.2 Input Clock Switching - Pin Select Mode  
When CLKin_SEL_MODE is 3, the pins CLKin_SEL0 and CLKin_SEL1 select which clock input is active.  
Configuring Pin Select Mode  
The CLKin_SEL0_TYPE must be programmed to an input value for the CLKin_SEL0 pin to function as an input  
for pin select mode.  
The CLKin_SEL1_TYPE must be programmed to an input value for the CLKin_SEL1 pin to function as an input  
for pin select mode.  
If the CLKin_SELX_TYPE is set as output, the pin input value is considered low.  
The polarity of CLKin_SEL0 and CLKin_SEL1 input pins can be inverted with the CLKin_SEL_INV bit.  
Table 4 defines which input clock is active depending on CLKin_SEL0 and CLKin_SEL1 state.  
Table 4. Active Clock Input - Pin Select Mode, CLKin_SEL_INV = 0  
PIN CLKin_SEL1  
PIN CLKin_SEL0  
ACTIVE CLOCK  
CLKin0  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
CLKin1  
CLKin2  
Holdover  
The pin select mode ignores the EN_CLKinX bits, such that the CLKinX buffer operates even if EN_CLKinX = 0.  
To switch as fast as possible, keep the switchable clock input buffers enabled (EN_CLKinX = 1).  
46  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
 
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.3.5.3 Input Clock Switching - Automatic Mode  
When CLKin_SEL_MODE is 4 and LOS_EN = 1, the active clock is selected in round-robin order of enabled  
clock inputs, starting on an input clock switch event. The switching order of the clocks is CLKin0 CLKin1 →  
CLKin2 CLKin0, and so forth.  
For a clock input to be eligible to be switched through, it must be enabled using EN_CLKinX. The  
LOS_TIMEOUT should also be set to a frequency below the input frequency.  
To ensure LOS is valid for AC-coupled inputs, the MOS mode must be set for CLKinX and no termination is  
allowed to be between the pins unless DC-blocked. For example, with an LVDS differential signal into CLKin0, no  
100-Ω termination should be placed directly across CLKin0 and CLKin0* pins on the IC side of the AC coupling  
capacitors. 100 Ω could instead be placed on the transmitter side of the AC coupling capacitors.  
Starting Active Clock  
When programming this mode, the currently active clock remains active if PLL1 lock detect is high. To ensure a  
particular clock input is the active clock when starting this mode, program CLKin_SEL_MODE to the manual  
mode which selects the desired clock input (CLKin0, 1, or 2). Wait for PLL1 to lock PLL1_DLD = 1, then select  
this mode with CLKin_SEL_MODE = 4.  
9.3.6 Digital Lock Detect  
Both PLL1 and PLL2 support digital lock detect. Digital lock detect compares the phase between the reference  
path (R) and the feedback path (N) of the PLL at the phase detector. When the time error(phase error) between  
the two signals is less than a specified window size (ε), a lock detect count increments. When the lock detect  
count reaches a user-specified value, PLL1_DLD_CNT or PLL2_DLD_CNT, lock detect is asserted (true). When  
digital lock detect is true, a single phase comparison outside the specified window causes digital lock detect to  
be deasserted (false). This is illustrated in Figure 17 .  
NO  
NO  
PLLX  
Lock Detected = False  
Lock Count = 0  
YES  
YES  
Increment  
PLLX Lock Count  
PLLX  
Lock Detected = True  
PLLX Lock Count =  
PLLX_DLD_CNT  
START  
Phase Error < g  
Phase Error < g  
YES  
NO  
Figure 17. Digital Lock Detect Flowchart  
This incremental lock detect count feature functions as a digital filter, to ensure that lock detect is not asserted  
when the phases of R and N are within the specified tolerance for a brief time during initial phase lock.  
See Digital Lock Detect Frequency Accuracy for more detailed information on programming the registers to  
achieve a specified frequency accuracy in ppm with lock detect.  
The digital lock detect signal can be monitored on the Status_LD1 or Status_LD2 pin. The pin may be  
programmed to output the status of lock detect for PLL1, PLL2, or both PLL1 and PLL2.  
The digital lock detect feature can also be used with holdover to automatically exit holdover mode. See Exiting  
Holdover for more info.  
NOTE  
In cases where the period of the phase detector frequency approaches the value of the  
default PLL1_WND_SIZE increment (40 ns), the lock detect circuit will not function with  
the default value of PLL1_WND_SIZE. For PLL1 phase detector frequencies at or above  
25 MHz, TI recommends setting PLL1_WND_SIZE less than or equal to 0x02 (19 ns).  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.3.7 Holdover  
Holdover mode causes PLL2 to stay locked on frequency with minimal frequency drift when an input clock  
reference to PLL1 becomes invalid, when PLL1 loses lock, or when the CPout1 voltage is outside of a user-  
specified acceptable range. While in holdover mode, the PLL1 charge pump is TRI-STATED and a fixed tuning  
voltage is set on CPout1 to operate PLL1 in open loop.  
9.3.7.1 Enable Holdover  
Program HOLDOVER_EN = 1 to enable holdover mode. Enabling holdover mode does not place the device in  
holdover unless the relevant criteria have been met (example: PLL1 loss of lock). Program HOLDOVER_FORCE  
= 1 to force the device into holdover.  
Holdover mode can be configured to set the CPout1 voltage upon holdover entry, to a fixed user-defined voltage  
or a tracked voltage.  
9.3.7.1.1 Fixed (Manual) CPout1 Holdover Mode  
By programming MAN_DAC_EN = 1, the MAN_DAC value is set on the CPout1 pin during holdover.  
The user can optionally enable CPout1 voltage tracking (TRACK_EN = 1), read back the tracked DAC value,  
then reprogram MAN_DAC value to a user-desired value based on information from previous DAC read backs.  
This allows the most user control over the holdover CPout1 voltage, but also requires more user intervention.  
9.3.7.1.2 Tracked CPout1 Holdover Mode  
By programming MAN_DAC_EN = 0 and TRACK_EN = 1, the tracked voltage of CPout1 is set on the CPout1  
pin during holdover. When the DAC has acquired the current CPout1 voltage, the DAC_Locked signal is set,  
which may be observed on Status_LD1 or Status_LD2 pins by programming PLL1_LD_MUX or PLL2_LD_MUX,  
respectively.  
Updates to the DAC value for the Tracked CPout1 sub-mode occurs at the rate of the PLL1 phase detector  
frequency divided by (DAC_CLK_MULT × DAC_CLK_CNTR).  
The DAC update rate should be programmed for 100 kHz to ensure DAC holdover accuracy.  
The ability to program slow DAC update rates, for example one DAC update per 4.08 seconds when using 1024-  
kHz PLL1 phase-detector frequency with DAC_CLK_MULT = 16,384 and DAC_CLK_CNTR = 255, allows the  
device to look-back and set CPout1 at previous "good" CPout1 tuning voltage values before the event which  
caused holdover to occur.  
The current voltage of DAC value can be read back using RB_DAC_VALUE; see RB_DAC_VALUE.  
9.3.7.2 Entering Holdover  
There are several ways to enter holdover.  
HOLDOVER_LOS_DET = 1 and a loss of active reference is detected.  
HOLDOVER_PLL1_DET = 1 and PLL1 loss of lock is detected.  
HOLDOVER_VTUNE_DET = 1 and the voltage monitored by the DAC on CPout1 is less than the value set  
by DAC_TRIP_LOW, or greater than the value set by DAC_TRIP_HIGH.  
HOLDOVER_FORCE = 1.  
9.3.7.3 During Holdover  
PLL1 is run in open-loop mode.  
PLL1 charge pump is set to TRI-STATE.  
PLL1 DLD is deasserted.  
The HOLDOVER status is asserted.  
During holdover, if PLL2 was locked prior to entry of holdover mode, PLL2 DLD continues to be asserted.  
CPout1 voltage is set to:  
a voltage set in the MAN_DAC register (MAN_DAC_EN = 1).  
a voltage determined to be the last valid CPout1 voltage (MAN_DAC_EN = 0).  
PLL1 attempts to lock with the active clock input.  
48  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
The HOLDOVER status signal can be monitored on the Status_LD1 or Status_LD2 pin by programming the  
PLL1_DLD_MUX or PLL2_DLD_MUX register to Holdover Status.  
9.3.7.4 Exiting Holdover  
Holdover mode can be exited in one of two ways.  
Manually, by programming the device from the host.  
Automatically, by a clock operating within a specified ppm of the current PLL1 frequency on the active clock  
input.  
9.3.7.5 Holdover Frequency Accuracy and DAC Performance  
When in holdover mode, PLL1 runs in open loop and the DAC sets the CPout1 voltage. If fixed CPout1 mode is  
used, then the output of the DAC is voltage-dependant upon the MAN_DAC register. If tracked CPout1 mode is  
used, then the output of the DAC is the voltage at the CPout1 pin before holdover mode was entered. When  
using tracked mode and MAN_DAC_EN = 1, during holdover the DAC value is loaded with the programmed  
value in MAN_DAC, not the tracked value.  
When in tracked CPout1 mode, the DAC has a worst-case tracking error of ±2 LSBs when PLL1 tuning voltage is  
acquired. The step size is approximately 3.2 mV, thus the VCXO frequency error during holdover mode caused  
by the DAC tracking accuracy is ±6.4 mV × Kv, where Kv is the tuning sensitivity of the VCXO in use. Thus, the  
accuracy of the system when in holdover mode in ppm is:  
6.4 mV × Kv × 1e6  
Holdover accuracy (ppm) =  
VCXO Frequency  
(4)  
Example: consider a system with a 19.2-MHz clock input, and a 153.6-MHz VCXO with a Kv of 17 kHz/V. The  
accuracy of the system in holdover in ppm is:  
±0.71 ppm = ±6.4 mV × 17 kHz/V × 1e6 / 153.6 MHz  
(5)  
It is important to account for this frequency error when determining the allowable frequency error window to  
cause holdover mode to exit.  
9.3.7.6 Holdover Mode - Automatic Exit of Holdover  
The LMK0482x device can be programmed to automatically exit holdover mode when the frequency on the  
active clock input achieves a specified accuracy. The programmable variables include PLL1_WND_SIZE and  
HOLDOVER_DLD_CNT.  
See Digital Lock Detect Frequency Accuracy to calculate the register values to cause holdover to automatically  
exit upon reference signal recovery to within a user specified ppm error of the holdover frequency.  
The time to exit holdover may vary, because the condition for automatic holdover exit is for the reference and  
feedback signals to have a time/phase error less than a programmable value. Because two clock signals may be  
very close in frequency but not close in phase, it may take a long time for the phases of the clocks to align  
themselves within the allowable time/phase error before holdover exits.  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.4 Device Functional Modes  
The following section describes the settings to enable various modes of operation for the LMK0482x family. See  
Figure 12 and Figure 13 for visual diagrams of each mode.  
The LMK0482x family is a flexible device that can be configured for many different use cases. The following  
simplified block diagrams show the user the different use cases of the device.  
9.4.1 Dual PLL  
Figure 18 illustrates the typical use case of the LMK0482x family in dual-loop mode. In dual-loop mode, the  
reference to PLL1 is from CLKin0, CLKin1, or CLKin2. An external VCXO or tunable crystal is used to provide  
feedback for the first PLL, and a reference to the second PLL. This first PLL cleans the jitter with the VCXO or  
low-cost tunable crystal by using a narrow loop bandwidth. The VCXO or tunable crystal output may be buffered  
through the OSCout port. The VCXO or tunable crystal is used as the reference to PLL2, and may be doubled  
using the frequency doubler. The internal VCO drives up to seven divide/delay blocks, which drive up to 14 clock  
outputs.  
Hitless switching and holdover functionality are optionally available when the input reference clock is lost.  
Holdover works by fixing the tuning voltage of PLL1 to the VCXO or tunable crystal.  
It is also possible to use an external VCO in place of the PLL2 internal VCO. In this case, one less CLKin is  
available as a reference.  
LMK04821 includes VCO1 divider on VCO1 output.  
PLL1  
PLL2  
Up to 1 OSCout  
External  
Loop Filter  
OSCout  
External VCXO  
or Tunable  
Crystal  
OSCout*  
CLKinX  
CLKinX*  
Up to 3  
inputs  
R
N
7 Device  
Clocks  
DCLKoutX  
7 blocks  
Phase  
Detector  
PLL1  
CPout2  
External  
Loop Filter  
R
Device Clock  
Divider  
Digital Delay  
Analog Delay  
Phase  
Detector  
PLL2  
Partially  
Integrated  
Loop Filter  
DCLKoutX*  
Input  
Buffer  
N
Dual  
Internal  
VCOs  
7 SYSREF  
or Device  
Clocks  
SYSREF  
Digital Delay  
Analog Delay  
SDCLKoutY  
SDCLKoutY*  
LMK0482x  
1 Global SYSREF Divider  
Figure 18. Simplified Functional Block Diagram for Dual-Loop Mode  
Table 5. Dual-Loop Mode Register Configuration  
REGISTER  
ADDRESS  
FIELD  
FUNCTION  
VALUE  
SELECTED VALUE  
PLL1_NCLK_MUX  
PLL2_NCLK_MUX  
FB_MUX_EN  
FB_MUX  
0x13F  
Selects the input to the PLL1 N divider  
Selects the input to the PLL2 N divider  
Enables the feedback mux  
0
0
0
X
0
OSCin  
PLL2_P  
Disabled  
0x13F  
0x13F  
0x13F  
Selects the output of the feedback mux  
Powers down the OSCin port  
Don't care because FB_MUX is disabled  
Powered up  
OSCin_PD  
0x140  
Selects where the output of CLKin0 is  
directed.  
CLKin0_OUT_MUX  
0x147  
2
PLL1  
Selects where the output of CLKin1 is  
directed.  
CLKin1_OUT_MUX  
VCO_MUX  
0x147  
0x138  
2
PLL1  
Selects the VCO 0, 1 or an external VCO  
0 or 1  
VCO 0 or VCO 1  
50  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
 
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.4.2 Zero-Delay Dual PLL  
Figure 19 illustrates the use case of cascaded zero-delay dual-loop mode. This configuration differs from dual-  
loop mode Figure 18 in that the feedback for PLL2 is driven by a clock output instead of the VCO output.  
Figure 20 illustrates the use case of nested zero-delay dual-loop mode. This configuration is similar to the dual  
PLL in Dual PLL, except that the feedback to the first PLL is driven by a clock output. This causes the clock  
outputs to have deterministic phase relationship with the clock input. Because all the clock outputs can be  
synchronized together, all the clock outputs can share the same deterministic phase relationship with the clock  
input signal. The feedback to PLL1 can be connected internally as shown using CLKout6, CLKout8, SYSREF, or  
externally using FBCLKin (CLKin1).  
It is also possible to use an external VCO in place of the PLL2 internal VCO; however, because CLKin1 must be  
used as Fin for the external VCO, it is unavailable as a reference to PLL1 or as external zero-delay feedback.  
LMK04821 includes VCO1 divider on VCO1 output.  
PLL1  
PLL2  
Up to 1 OSCout  
External  
Loop Filter  
OSCout  
External VCXO  
or Tunable  
Crystal  
OSCout*  
CLKinX  
CLKinX*  
R
N
Phase  
Detector  
PLL1  
CPout2  
External  
Loop Filter  
Up to 3  
inputs  
Divider  
Digital Delay  
Analog Delay  
SDCLKoutY  
R
Phase  
Detector  
PLL2  
Partially  
Integrated  
Loop Filter  
SDCLKoutY*  
7 SYSREF  
or Device  
Clocks  
Input  
Buffer  
N
Dual  
Internal  
VCOs  
7 blocks  
SYSREF  
Analog Delay  
Digital Delay  
DCLKoutX  
DCLKoutX*  
7 Device  
Clocks  
Internal or external loopback, user programmable  
1 Global SYSREF Divider  
LMK0482x  
Figure 19. Simplified Functional Block Diagram for Cascaded Zero-Delay Dual-Loop Mode  
Table 6. Cascaded Zero-Delay Dual-Loop Mode Register Configuration  
REGISTER  
ADDRESS  
FIELD  
FUNCTION  
VALUE  
SELECTED VALUE  
PLL1_NCLK_MUX  
PLL2_NCLK_MUX  
FB_MUX_EN  
0x13F  
Selects the input to the PLL1 N divider  
Selects the input to the PLL2 N divider  
Enables the feedback mux.  
0
1
1
OSCin  
0x13F  
Feedback mux  
0x13F  
Feedback mux enabled  
Select between DCLKout6,  
DCLKout8, SYSREF  
FB_MUX  
0x13F  
Selects the output of the feedback mux.  
0, 1, or 2  
OSCin_PD  
CLKin0_OUT_MUX  
CLKin1_OUT_MUX  
VCO_MUX  
0x140  
0x147  
0x147  
0x138  
Powers down the OSCin port.  
0
Powered up  
PLL1  
Selects where the output of CLKin0 is directed.  
Selects where the output of CLKin1 is directed.  
Selects the VCO 0, 1 or an external VCO  
0
0 or 2  
0 or 1  
Fin or PLL1  
VCO 0 or VCO 1  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
PLL1  
PLL2  
Up to 1 OSCout  
External  
Loop Filter  
OSCout  
External VCXO  
or Tunable  
Crystal  
OSCout*  
CLKinX  
R
CLKinX*  
Phase  
CPout2  
External  
Loop Filter  
Up to 3  
inputs  
Detector  
PLL1  
Divider  
Digital Delay  
Analog Delay  
SDCLKoutY  
R
Phase  
Detector  
PLL2  
Partially  
Integrated  
Loop Filter  
SDCLKoutY*  
7 SYSREF  
or Device  
Clocks  
N
Input  
Buffer  
N
Dual  
Internal  
VCOs  
7 blocks  
SYSREF  
Analog Delay  
Digital Delay  
DCLKoutX  
DCLKoutX*  
7 Device  
Clocks  
Internal or external loopback, user programmable  
1 Global SYSREF Divider  
LMK0482x  
Figure 20. Simplified Functional Block Diagram for Nested Zero-Delay Dual-Loop Mode  
LMK04821 includes the VCO1 divider on the VCO1 output.  
Table 7 illustrates nested zero-delay mode. This is the same as cascaded, except the clock out feedback is to  
PLL1. The CLKin and CLKout have the same deterministic phase relationship, but the VCXO's phase is not  
deterministic to the CLKin or CLKouts.  
Table 7. Nested Zero-Delay Dual-Loop Mode Register Configuration  
REGISTER  
ADDRESS  
FIELD  
FUNCTION  
VALUE  
SELECTED VALUE  
PLL1_NCLK_MUX  
PLL2_NCLK_MUX  
FB_MUX_EN  
0x13F  
Selects the input to the PLL1 N divider  
Selects the input to the PLL2 N divider  
Enables the feedback mux.  
1
0
1
Feedback mux  
PLL2 P  
0x13F  
0x13F  
Enabled  
Select between DCLKout6,  
DCLKout8, SYSREF  
FB_MUX  
0x13F  
Selects the output of the feedback mux.  
0, 1, or 2  
OSCin_PD  
CLKin0_OUT_MUX  
CLKin1_OUT_MUX  
VCO_MUX  
0x140  
0x147  
0x147  
0x138  
Powers down the OSCin port.  
0
Powered up  
PLL1  
Selects where the output of CLKin0 is directed.  
Selects where the output of CLKin1 is directed.  
Selects the VCO 0, 1 or an external VCO  
2
0 or 2  
0 or 1  
Fin or PLL1  
VCO 0 or VCO 1  
52  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.4.3 Single-Loop Mode  
Figure 21 illustrates the use case of PLL2 single loop mode. When used with a clean high frequency reference  
on OSCin, performance can be comparable to (or even better than) dual-loop mode.  
Figure 21. Simplified Functional Block Diagram for Single-Loop Mode  
Table 8. Single-Loop Mode Register Configuration  
REGISTER  
ADDRESS  
FIELD  
FUNCTION  
VALUE  
SELECTED VALUE  
PLL1_NCLK_MUX  
PLL2_NCLK_MUX  
FB_MUX_EN  
0x13F  
Selects the input to the PLL1 N divider  
Selects the input to the PLL2 N divider  
Enables the feedback mux.  
X
0
0
Don't care  
PLL2 P  
0x13F  
0x13F  
Disabled  
Select between DCLKout6, DCLKout8,  
SYSREF  
FB_MUX  
0x13F  
Selects the output of the feedback mux. 0, 1, or 2  
OSCin_PD  
PLL1_PD  
0x140  
0x140  
Powers down the OSCin port.  
Powers down PLL1.  
0
1
Powered up  
Powered down  
Selects where the output of CLKin0 is  
directed.  
CLKin0_OUT_MUX  
0x147  
X
Don't care  
Selects where the output of CLKin1 is  
directed.  
CLKin1_OUT_MUX  
VCO_MUX  
0x147  
0x138  
3
Off  
Selects the VCO 0, 1 or an external VCO  
0 or 1  
VCO 0 or VCO 1  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.4.4 Single-Loop Mode With External VCO  
Adding an external VCO is possible using the CLKin1/Fin input port. The input may be single-ended or  
differential. At high frequency the input impedance to Fin is low, so a resistive pad is recommended for matching.  
Figure 22. Simplified Functional Block Diagram for Single-Loop Mode With External VCO  
Table 9. Single-Loop Mode With External VCO Register Configuration  
REGISTER  
FIELD  
FUNCTION  
VALUE  
SELECTED VALUE  
ADDRESS  
0x13F  
0x13F  
0x13F  
0x13F  
0x140  
0x140  
0x140  
0x140  
PLL1_NCLK_MUX  
PLL2_NCLK_MUX  
FB_MUX_EN  
FB_MUX  
Selects the input to the PLL1 N divider  
Selects the input to the PLL2 N divider  
Enables the feedback mux.  
X
0
0
X
0
1
1
1
Don't care  
PLL2_P  
Disabled  
Selects the output of the feedback mux.  
Powers down the OSCin port.  
Powers down the VCO LDO.  
Powers down the VCO.  
Don't care  
OSCin_PD  
Powered up  
Powered down  
Powered down  
Powered down  
VCO_LDO_PD  
VCO_PD  
PLL1_PD  
Powers down PLL1.  
Selects where the output of CLKin0 is  
directed.  
CLKin0_OUT_MUX  
0x147  
X
Don't care  
Selects where the output of CLKin1 is  
directed.  
CLKin1_OUT_MUX  
VCO_MUX  
0x147  
0x138  
0
2
Fin  
Selects the VCO 0, 1 or an external VCO  
External VCO  
54  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.4.5 Distribution Mode  
Figure 23 illustrates the use case of distribution mode. As in all other use cases, OSCin to OSCout can be used  
as a buffer to OSCin or from clock distribution path via CLKout6, CLKout8, or the SYSREF divider. At high  
frequency the input impedance to Fin is low, so a resistive pad is recommended for matching.  
Figure 23. Simplified Functional Block Diagram for Distribution Mode  
Table 10. Distribution Mode Register Configuration  
REGISTER  
FIELD  
FUNCTION  
VALUE  
SELECTED VALUE  
ADDRESS  
0x13F  
0x13F  
0x13F  
0x13F  
0x140  
0x140  
0x140  
0x140  
0x173  
0x173  
PLL1_NCLK_MUX  
PLL2_NCLK_MUX  
FB_MUX_EN  
FB_MUX  
Selects the input to the PLL1 N divider  
Selects the input to the PLL2 N divider  
Enables the feedback mux.  
Selects the output of the feedback mux.  
Powers down the OSCin port.  
Powers down the VCO LDO.  
Powers down the VCO.  
X
X
0
X
1
1
1
1
1
1
Don't care  
Don't care  
Disabled  
Don't care  
OSCin_PD  
Powered down  
Powered down  
Powered down  
Powered down  
Powered down  
Powered down  
VCO_LDO_PD  
VCO_PD  
PLL1_PD  
Powers down PLL1.  
PLL2_PRE_PD  
PLL2_PD  
Powers down PLL2 prescaler.  
Powers down PLL2.  
Selects where the output of CLKin0 is  
directed.  
CLKin0_OUT_MUX  
0x147  
X
Don't care  
Selects where the output of CLKin1 is  
directed.  
CLKin1_OUT_MUX  
VCO_MUX  
0x147  
0x138  
0
2
Fin  
Selects the VCO 0, 1 or an external VCO  
External VCO  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.5 Programming  
LMK0482x family devices are programmed using 24-bit registers. Each register consists of a 1-bit command field  
(R/W), a 2-bit multi-byte field (W1, W0), a 13-bit address field (A12 to A0), and an 8-bit data field (D7 to D0). The  
contents of each register is clocked in MSB first (R/W), and the LSB (D0) last. During programming, the CS*  
signal is held low. The serial data is clocked in on the rising edge of the SCK signal. After the LSB is clocked in,  
the CS* signal goes high to latch the contents into the shift register. TI recommends programming registers in  
numeric order – for example, 0x000 to 0x1FFF – to achieve proper device operation. Each register consists of  
one or more fields which control the device functionality. See Electrical Characteristics and Figure 1 for timing  
details.  
R/W bit = 0 is for SPI write. R/W bit = 1 is for SPI read.  
W1 and W0 should be written as 0.  
9.5.1 Recommended Programming Sequence  
Registers are programmed in numeric order, with 0x000 being the first and 0x1FFF being the last register  
programmed. The recommended programming sequence from POR involves:  
1. Program register 0x000 with RESET = 1.  
2. Program registers in numeric order from 0x000 to 0x165. Ensure the following register is programmed as  
follows:  
– 0x145 = 127 (0x7F)  
3. Program register 0x171 to 0xAA and 0x172 to 0x02.  
4. If using LMK04821, program register 0x174.  
5. Program registers 0x17C and 0x17D as required by OPT_REG_1 and OPT_REG_2.  
6. Program registers 0x166 to 0x1FFF.  
When using LMK04821: Program register 0x174, bits 4:0 (VCO1_DIV) with the proper value before programming  
the PLL2_N register in 0x166, 0x167, and 0x168 for proper total PLL2_N value.  
Program register 0x171, 0x172, 0x17C (OPT_REG_1) and 0x17D (OPT_REG_2) before programming PLL2 in  
registers: 0x166, 0x167, and 0x168, to optimize PLL2_N and VCO1 phase-noise performance over temperature.  
9.5.1.1 SPI LOCK  
When writing to SPI_LOCK, registers 0x1FFD, 0x1FFE, and 0x1FFF should all always be written sequentially.  
9.5.1.2 SYSREF_CLR  
When using SYSREF output, SYSREF local digital delay block should be cleared using SYSREF_CLR bit. See  
SYSREF_CLR for more info.  
9.5.1.3 RESET Pin  
If the RESET pin is not used during normal operation, TI recommends programming the RESET_TYPE register  
to an output setting, to prevent noise from spontaneously resetting the device.  
56  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.6 Register Maps  
9.6.1 Register Map for Device Programming  
Table 11 provides the register map for device programming. Any register can be read from the same data  
address it is written to.  
Table 11. LMK0482x Register Map  
ADDRESS  
[11:0]  
DATA  
7
6
5
4
3
2
1
0
SPI_3WIRE  
_DIS  
0x000  
0x002  
RESET  
0
0
0
0
0
0
POWER  
DOWN  
0
0
0
0
0
0
0
0x003  
0x004  
0x005  
0x006  
0x00C  
0x00D  
ID_DEVICE_TYPE  
ID_PROD[15:8]  
ID_PROD[7:0]  
ID_MASKREV  
ID_VNDR[15:8]  
ID_VNDR[7:0]  
CLKout0_1  
_ODL  
CLKout0_1  
_IDL  
0x100  
0x101  
0x103  
0
DCLKout0_DIV  
DCLKout0_DDLY_CNTH  
DCLKout0_ADLY  
SDCLKout1  
DCLKout0_DDLY_CNTL  
DCLKout0_  
DCLKout0_MUX  
ADLY_MUX  
SDCLKout1_DDLY  
SDCLKout1_ADLY  
SDCLKout1_DIS_MODE  
CLKout0_FMT  
DCLKout0  
_HS  
SDCLKout1  
_HS  
0x104  
0x105  
0x106  
0x107  
0
0
_MUX  
SDCLKout1_  
ADLY_EN  
0
0
CLKout0_1  
_PD  
SDCLKout1  
_PD  
DCLKout0  
_ DDLY_PD  
DCLKout0  
_ HSg_PD  
DCLKout0  
_ ADLYg_PD  
DCLKout0  
_ADLY _PD  
SDCLKout1  
_POL  
DCLKout0  
_POL  
CLKout1_FMT  
CLKout2_3  
_ODL  
CLKout2_3  
_IDL  
0x108  
0x109  
0x10B  
0
DCLKout2_DIV  
DCLKout2_DDLY_CNTH  
DCLKout2_ADLY  
SDCLKout3  
DCLKout2_DDLY_CNTL  
DCLKout2_  
DCLKout2_MUX  
ADLY_MUX  
SDCLKout3_DDLY  
SDCLKout3_ADLY  
SDCLKout3_DIS_MODE  
CLKout2_FMT  
DCLKout2  
_HS  
SDCLKout3  
_HS  
0x10C  
0x10D  
0x10E  
0x10F  
0
0
_MUX  
SDCLKout3  
_ ADLY_EN  
0
0
DCLKout2  
_ DDLY_PD  
DCLKout2  
_ HSg_PD  
DCLKout2  
_ ADLYg_PD  
DCLKout2  
_ADLY _PD  
CLKout2_3  
_PD  
SDCLKout3  
_PD  
SDCLKout3  
_POL  
DCLKout2  
_POL  
CLKout3_FMT  
CLKout4_5  
_ODL  
CLKout4_5  
_IDL  
0x110  
0x111  
0x113  
0
DCLKout4_DIV  
DCLKout4_DDLY_CNTH  
DCLKout4_ADLY  
SDCLKout5  
DCLKout4_DDLY_CNTL  
DCLKout4_  
DCLKout4_MUX  
ADLY_MUX  
SDCLKout5_DDLY  
SDCLKout5_ADLY  
SDCLKout5_DIS_MODE  
CLKout4_FMT  
DCLKout4  
_HS  
SDCLKout5  
_HS  
0x114  
0x115  
0x116  
0x117  
0x118  
0
0
_MUX  
SDCLKout5  
_ ADLY_EN  
0
0
DCLKout4  
_ DDLY_PD  
DCLKout4  
_ HSg_PD  
DCLKout4  
_ ADLYg_PD  
DCLKout4  
_ADLY _PD  
CLKout4_5  
_PD  
SDCLKout5  
_PD  
SDCLKout5  
_POL  
DCLKout4  
_POL  
CLKout5_FMT  
CLKout6_7  
_ODL  
CLKout6_8  
_IDL  
0
DCLKout6_DIV  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Register Maps (continued)  
Table 11. LMK0482x Register Map (continued)  
ADDRESS  
[11:0]  
DATA  
7
6
5
4
3
2
1
0
0x119  
DCLKout6_DDLY_CNTH  
DCLKout6_ADLY  
SDCLKout7  
DCLKout6_DDLY_CNTL  
DCLKout6_  
0x11B  
0x11C  
0x11D  
0x11E  
0x11F  
DCLKout6_MUX  
ADLY_MUX  
SDCLKout7_DDLY  
SDCLKout7_ADLY  
SDCLKout7_DIS_MODE  
CLKout6_FMT  
DCLKout6  
_HS  
SDCLKout7  
_HS  
0
0
_MUX  
SDCLKout7  
_ ADLY_EN  
0
0
DCLKout6  
_ DDLY_PD  
DCLKout6  
_ HSg_PD  
DCLKout6  
_ ADLYg_PD  
DCLKout6  
_ADLY _PD  
CLKout6_7  
_PD  
SDCLKout7  
_PD  
SDCLKout7  
_POL  
CLKout7  
_FMT  
DCLKout6  
_POL  
CLKout8_9  
_ODL  
CLKout8_9  
_IDL  
0x120  
0x121  
0x123  
0
DCLKout8_DIV  
DCLKout8_DDLY_CNTH  
DCLKout8_ADLY  
SDCLKout9  
DCLKout8_DDLY_CNTL  
DCLKout8  
DCLKout8_MUX  
_ ADLY_MUX  
SDCLKout9_DDLY  
SDCLKout9_ADLY  
SDCLKout9_DIS_MODE  
CLKout8_FMT  
DCLKout8  
_HS  
SDCLKout9  
_HS  
0x124  
0x125  
0x126  
0x127  
0
0
_MUX  
SDCLKout9  
_ ADLY_EN  
0
0
DCLKout8  
_ DDLY_PD  
DCLKout8  
_ HSg_PD  
DCLKout8  
_ ADLYg_PD  
DCLKout8  
_ADLY _PD  
CLKout8_9  
_PD  
SDCLKout9  
_PD  
SDCLKout9  
_POL  
DCLKout8  
_POL  
CLKout9_FMT  
CLKout10  
_11 _ODL  
CLKout10  
_11_IDL  
0x128  
0x129  
0x12B  
0
DCLKout10_DIV  
DCLKout10_DDLY_CNTH  
DCLKout10_ADLY  
SDCLKout11  
DCLKout10_DDLY_CNTL  
DCLKout10  
DCLKout10_MUX  
_ ADLY_MUX  
SDCLKout11_DDLY  
SDCLKout11_ADLY  
SDCLKout11_DIS_MODE  
CLKout10_FMT  
DCLKout10  
_HS  
SDCLKout11  
_HS  
0x12C  
0x12D  
0x12E  
0x12F  
0
0
_MUX  
SDCKLout11  
_ ADLY_EN  
0
0
DCLKout10  
_ DDLY_PD  
DCLKout10  
_ HSg_PD  
DLCLKout10  
_ ADLYg_PD  
DCLKout10  
_ ADLY_PD  
CLKout10  
_11_PD  
SDCLKout11  
_PD  
SDCLKout11  
_POL  
DCLKout10  
_POL  
CLKout11_FMT  
CLKout12  
_13 _ODL  
CLKout12  
_13_IDL  
0x130  
0x131  
0x133  
0
DCLKout12_DIV  
DCLKout12_DDLY_CNTH  
DCLKout12_ADLY  
SDCLKout13  
DCLKout12_DDLY_CNTL  
DCLKout12_  
DCLKout12_MUX  
ADLY_MUX  
SDCLKout13_DDLY  
SDCLKout13_ADLY  
SDCLKout13_DIS_MODE  
CLKout12_FMT  
OSCout_FMT  
SYSREF_  
DCLKout12  
_HS  
SDCLKout13  
_HS  
0x134  
0x135  
0x136  
0x137  
0x138  
0x139  
0
0
_MUX  
SDCLKout13  
_ ADLY_EN  
0
0
DCLKout12  
_ DDLY_PD  
DCLKout12  
_ HSg_PD  
DCLKout12  
_ ADLYg_PD  
DCLKout12  
_ ADLY_PD  
CLKout12  
_13_PD  
SDCLKout13  
_PD  
SDCLKout13  
_POL  
DCLKout12  
_POL  
CLKout13_FMT  
OSCout  
_MUX  
0
VCO_MUX  
0
0
0
0
0
0
0
0
SYSREF_MUX  
CLKin0_MUX  
0x13A  
0x13B  
0x13C  
SYSREF_DIV[12:8]  
SYSREF_DIV[7:0]  
0
0
0
SYSREF_DDLY[12:8]  
58  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
Register Maps (continued)  
Table 11. LMK0482x Register Map (continued)  
ADDRESS  
DATA  
[11:0]  
0x13D  
0x13E  
7
6
5
4
3
2
1
0
SYSREF_DDLY[7:0]  
0
0
0
0
0
0
0
0
0
SYSREF_PULSE_CNT  
PLL2_NCLK  
_MUX  
PLL1_NCLK  
_MUX  
FB_MUX  
_EN  
0x13F  
0x140  
FB_MUX  
SYSREF_GBL  
_PD  
SYSREF  
_DDLY_PD  
SYSREF  
_PLSR_PD  
PLL1_PD  
VCO_LDO_PD  
VCO_PD  
OSCin_PD  
SYSREF_PD  
DDLYd_  
SYSREF_EN  
DDLYd12  
_EN  
DDLYd10  
_EN  
0x141  
0x142  
0x143  
DDLYd7_EN  
DDLYd6_EN  
DDLYd4_EN  
DDLYd2_EN  
DDLYd0_EN  
0
0
0
DDLYd_STEP_CNT  
SYSREF_DDLY SYNC_1SHOT  
SYNC_PLL2  
_DLD  
SYNC_PLL1  
_DLD  
SYNC_POL  
SYNC_EN  
SYNC_MODE  
_CLR  
_EN  
SYNC  
_DISSYSREF  
0x144  
SYNC_DIS12  
SYNC_DIS10  
SYNC_DIS8  
SYNC_DIS6  
SYNC_DIS4  
SYNC_DIS2  
SYNC_DIS0  
0x145  
0x146  
0
0
1
1
1
1
1
1
1
0
CLKin2_EN  
CLKin1_EN  
CLKin0_EN  
CLKin2_TYPE  
CLKin1_TYPE  
CLKin0_TYPE  
CLKin_SEL  
_POL  
0x147  
0x148  
0x149  
0x14A  
0x14B  
CLKin_SEL_MODE  
CLKin1_OUT_MUX  
CLKin0_OUT_MUX  
0
0
0
0
CLKin_SEL0_MUX  
CLKin_SEL1_MUX  
RESET_MUX  
CLKin_SEL0_TYPE  
CLKin_SEL1_TYPE  
RESET_TYPE  
SDIO_RDBK  
_TYPE  
0
HOLDOVER  
_ FORCE  
MAN_DAC  
_EN  
LOS_TIMEOUT  
LOS_EN  
TRACK_EN  
MAN_DAC[9:8]  
0x14C  
0x14D  
0x14E  
0x14F  
MAN_DAC[7:0]  
0
0
DAC_TRIP_LOW  
DAC_TRIP_HIGH  
DAC_CLK_MULT  
DAC_CLK_CNTR  
HOLDOVER  
_HITLESS  
_SWITCH  
CLKin  
_OVERRIDE  
HOLDOVER  
_ PLL1_DET  
HOLDOVER  
_LOS _DET  
HOLDOVER  
_VTUNE_DET  
HOLDOVER  
_EN  
0x150  
0
0
0
0x151  
0x152  
0x153  
0x154  
0x155  
0x156  
0x157  
0x158  
0x159  
0x15A  
0
0
0
0
0
HOLDOVER_DLD_CNT[13:8]  
HOLDOVER_DLD_CNT[7:0]  
CLKin0_R[13:8]  
0
0
0
0
CLKin0_R[7:0]  
CLKin1_R[7:0]  
CLKin2_R[7:0]  
PLL1_N[7:0]  
CLKin1_R[13:8]  
CLKin2_R[13:8]  
PLL1_N[13:8]  
PLL1  
_CP_TRI  
PLL1  
_CP_POL  
0x15B  
PLL1_WND_SIZE  
PLL1_CP_GAIN  
0x15C  
0x15D  
0x15E  
0x15F  
0x160  
0x161  
0
0
0
0
0
0
PLL1_DLD_CNT[13:8]  
PLL1_DLD_CNT[7:0]  
PLL1_R_DLY  
PLL1_N_DLY  
PLL1_LD_MUX  
0
PLL1_LD_TYPE  
0
PLL2_R[11:8]  
PLL2_R[7:0]  
OSCin_FREQ  
PLL2  
_XTAL_EN  
PLL2  
_REF_2X_EN  
0x162  
PLL2_P  
0
0x163  
0x164  
0x165  
0
0
0
0
0
PLL2_N_CAL[17:16]  
PLL2_N_CAL[15:8]  
PLL2_N_CAL[7:0]  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Register Maps (continued)  
Table 11. LMK0482x Register Map (continued)  
ADDRESS  
[11:0]  
DATA  
7
6
5
4
3
2
1
0
1
PLL2_FCAL  
_DIS  
0x166  
0
0
0
0
0
PLL2_N[17:16]  
0x167  
0x168  
PLL2_N[15:8]  
PLL2_N[7:0]  
PLL2  
_CP_POL  
PLL  
2_CP_TRI  
0x169  
0x16A  
0
0
PLL2_WND_SIZE  
PLL2_CP_GAIN  
SYSREF_REQ_  
EN  
PLL2_DLD_CNT[15:8]  
0x16B  
0x16C  
0x16D  
0x16E  
0x171  
0x172  
0x173  
0x174  
0x17C  
0x17D  
PLL2_DLD_CNT[7:0]  
PLL2_LF_R4  
0
0
PLL2_LF_R3  
PLL2_LF_C4  
PLL2_LF_C3  
PLL2_LD_MUX  
PLL2_LD_TYPE  
1
0
0
0
0
1
0
1
0
0
0
1
1
0
0
0
0
0
0
PLL2_PD  
0
0
0
0
PLL2_PRE_PD  
0
0
VCO1_DIV  
OPT_REG_1  
OPT_REG_2  
RB_PLL1_  
LD_LOST  
CLR_PLL1_  
LD_LOST  
0x182  
0x183  
0
0
0
0
0
0
0
0
0
0
RB_PLL1_LD  
RB_PLL2_LD  
RB_PLL2_  
LD_LOST  
CLR_PLL2_  
LD_LOST  
RB_CLKin2_  
SEL  
RB_CLKin1_  
SEL  
RB_CLKin0_  
SEL  
RB_CLKin1_  
LOS  
RB_CLKin0_  
LOS  
0x184  
0x185  
0x188  
RB_DAC_VALUE[9:8]  
X
RB_DAC_VALUE[7:0]  
RB_  
HOLDOVER  
0
0
0
X
X
X
X
0x1FFD  
0x1FFE  
0x1FFF  
SPI_LOCK[23:16]  
SPI_LOCK[15:8]  
SPI_LOCK[7:0]  
60  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7 Device Register Descriptions  
The following section details the fields of each register, the power-on reset defaults, and specific descriptions of  
each bit.  
In some cases, similar fields are located in multiple registers. In this case, specific outputs may be designated as  
X or Y. In these cases, the X represents even numbers from 0 to 12, and the Y represents odd numbers from 1  
to 13. In the case where X and Y are both used in a bit name, then Y = X + 1.  
9.7.1 System Functions  
9.7.1.1 RESET, SPI_3WIRE_DIS  
This register contains the RESET function, and a setting to disable 3-wire SPI mode.  
Table 12. Register 0x000  
BIT  
NAME  
POR  
DEFAULT  
DESCRIPTION  
0: Normal operation  
1: Reset (automatically cleared)  
7
RESET  
NA  
0
0
6:5  
Reserved  
Disable 3-wire SPI mode. 4-wire SPI mode is enabled by selecting SPI Read back in one  
of the output MUX settings. For example, CLKin0_SEL_MUX.  
0: 3-wire mode enabled  
4
SPI_3WIRE_DIS  
NA  
0
1: 3-wire mode disabled  
3:0  
NA  
Reserved  
9.7.1.2 POWERDOWN  
This register contains the POWERDOWN function.  
Table 13. Register 0x002  
POR  
DEFAULT  
BIT  
7:1  
0
NAME  
NA  
DESCRIPTION  
0
Reserved  
0: Normal operation  
1: Powerdown  
POWERDOWN  
0
9.7.1.3 ID_DEVICE_TYPE  
This register contains the product device type. This is read only register.  
Table 14. Register 0x003  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:0  
ID_DEVICE_TYPE  
6
PLL product device type  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.7.1.4 ID_PROD[15:8], ID_PROD  
These registers contain the product identifier. This is a read only register.  
Table 15. ID_PROD Register Configuration, ID_PROD[15:0]  
MSB  
LSB  
0x004[7:0]  
0x005[7:0]  
POR  
DEFAULT  
BIT REGISTERS  
FIELD NAME  
DESCRIPTION  
7:0  
7:0  
0x004  
0x005  
ID_PROD[15:8]  
ID_PROD  
208  
91  
MSB of the product identifier  
LSB of the product identifier  
9.7.1.5 ID_MASKREV  
This register contains the IC version identifier. This is a read only register.  
Table 16. Register 0x006  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
36  
37  
32  
IC version identifier for LMK04821  
IC version identifier for LMK04826  
IC version identifier for LMK04828  
7:0  
ID_MASKREV  
9.7.1.6 ID_VNDR[15:8], ID_VNDR  
These registers contain the vendor identifier. This is a read only register.  
Table 17. ID_VNDR Register Configuration, ID_VNDR[15:0]  
MSB  
LSB  
0x00C[7:0]  
0x00D[7:0]  
Table 18. Registers 0x00C, 0x00D  
BIT REGISTERS  
NAME  
POR  
DEFAULT  
DESCRIPTION  
7:0  
7:0  
0x00C  
0x00D  
ID_VNDR[15:8]  
ID_VNDR  
81  
MSB of the vendor identifier  
LSB of the vendor identifier  
4
62  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.2 (0x100 - 0x138) Device Clock and SYSREF Clock Output Controls  
9.7.2.1 CLKoutX_Y_ODL, CLKoutX_Y_IDL, DCLKoutX_DIV  
These registers control the input and output drive level, as well as the device clock out divider values.  
Table 19. Registers 0x100, 0x108, 0x110, 0x118, 0x120, 0x128, and 0x130  
POR  
DEFAULT  
BIT  
7
NAME  
NA  
DESCRIPTION  
0
Reserved  
Output drive level. Setting this bit increases the current to the CLKoutX_Y output buffers,  
which can slightly improve noise floor.  
6
CLKoutX_Y_ODL  
0
0
Input drive level. Setting this bit increases the current to the clock distribution buffer  
sourcing CLKoutX_Y, which can slightly improve noise floor.  
5
CLKoutX_Y_IDL  
DCLKoutX_DIV  
DCLKoutX_DIV sets the divide value for the clock output; the divide may be even or odd.  
Both even or odd divides output a 50% duty cycle clock if duty cycle correction (DCC) is  
selected.  
Divider is unused if DCLKoutX_MUX = 2 (bypass), equivalent divide of 1.  
X = 0 2  
X = 2 4  
X = 4 8  
X = 6 8  
X = 8 8  
X = 10 8  
X = 12 2  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Divider Value  
32  
4:0  
(1)  
1
2
...  
30 (0x1E)  
31 (0x1F)  
30  
31  
(1) Not valid if DCLKoutX_MUX = 0, divider only. Not valid if DCLKoutX_MUX = 3 (analog delay + divider) and DCLKoutX_ADLY_MUX = 0  
(without duty cycle correction/halfstep).  
9.7.2.2 DCLKoutX_DDLY_CNTH, DCLKoutX_DDLY_CNTL  
This register controls the digital delay high and low count values for the device clock outputs.  
Table 20. Registers 0x101, 0x109, 0x111, 0x119, 0x121, 0x129, 0x131  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Number of clock cycles the output is high when digital delay is engaged.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Delay Values  
16  
DCLKoutX  
_DDLY_CNTH  
7:4  
5
Reserved  
2
...  
15 (0x0F)  
15  
Number of clock cycles the output is low when dynamic digital delay is engaged.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Delay Values  
16  
DCLKoutX  
_DDLY_CNTL  
3:0  
5
Reserved  
2
...  
15 (0x0F)  
15  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.7.2.3 DCLKoutX_ADLY, DCLKoutX_ADLY_MUX, DCLKout_MUX  
These registers control the analog delay properties for the device clocks.  
Table 21. Registers 0x103, 0x10B, 0x113, 0x11B, 0x123, 0x12B, 0x133  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Device clock analog delay value. Delay step size is 25 ps. DCLKoutX_ADLY_PD = 0  
(DCLK analog delay powered up) also adds a fixed 500-ps delay. Effective range is 500 ps  
to 1075 ps.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
...  
Delay Value  
0 ps  
7:3  
DCLKoutX_ALDY  
0
25 ps  
50 ps  
...  
23 (0x17)  
575 ps  
This register selects the input to the analog delay for the device clock. Used when  
DCLKoutX_MUX = 3.  
0: Divided without duty cycle correction or half step.  
DCLKoutX_ADLY  
_MUX  
2
0
0
(1)  
1: Divided with duty cycle correction and half step.  
This selects the input to the device clock buffer.  
Field Value  
Mux Output  
(1)  
0 (0x0)  
Divider only  
1:0  
DCLKoutX_MUX  
Divider with duty cycle Correction  
and half step  
1 (0x1)  
2 (0x2)  
3 (0x3)  
Bypass  
Analog delay + divider  
(1) DCLKoutX_DIV = 1 is not valid when DCLKoutX_MUX = 0. DCLKoutX_DIV = 1 is valid for DCLKoutX_MUX = 1, or DCLKoutX_MUX = 3  
and DCLKoutX_ADLY_MUX = 1.  
9.7.2.4 DCLKoutX_HS, SDCLKoutY_MUX, SDCLKoutY_DDLY, SDCLKoutY_HS  
These registers set the half step for the device clock, the SYSREF output MUX, the SYSREF clock digital delay,  
and half step.  
Table 22. Registers 0x104, 0x10C, 0x114, 0x11C, 0x124, 0x12C, 0x134  
BIT  
7
NAME  
NA  
POR  
DEFAULT  
DESCRIPTION  
0
0
Reserved  
Sets the device clock half step value. Half step must be zero (0) for a divide of 1.  
6
DCLKoutX_HS  
0: 0 cycles  
1: -0.5 cycles  
Sets the input the the SDCLKoutX outputs.  
0: Device clock output  
1: SYSREF output  
5
4:1  
0
SDCLKoutY_MUX  
SDCLKoutY_DDLY  
SDCLKoutY_HS  
0
0
0
Sets the number of VCO cycles to delay the SDCLKout by.  
Field Value  
0 (0x00)  
Delay Cycles  
Bypass  
1 (0x01)  
2
2 (0x02)  
3
...  
...  
10 (0x0A)  
11  
11 to 15 (0x0B to 0x0F)  
Reserved  
Sets the SYSREF clock half-step value.  
0: 0 cycles  
1: -0.5 cycles  
64  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.2.5 SDCLKoutY_ADLY_EN, SDCLKoutY_ADLY  
These registers set the analog delay parameters for the SYSREF outputs.  
Table 23. Registers 0x105, 0x10D, 0x115, 0x11D, 0x125, 0x12D, 0x135  
BIT  
7:5  
4
NAME  
POR  
DEFAULT  
DESCRIPTION  
NA  
0
Reserved  
Enables analog delay for the SYSREF output.  
SDCLKoutY  
_ADLY_EN  
0
0: Disabled  
1: Enabled  
Sets the analog delay value for the SYSREF output. Step size is 150 ps, except first step  
(600 ps). SDCLKoutY_ADLY_EN = 1 (SDCLK analog delay enabled) also adds a fixed  
700-ps delay. Effective range is 700 ps to 2950 ps.  
Field Value  
0 (0x0)  
1 (0x1)  
2 (0x2)  
3 (0x3)  
...  
Delay Value  
0 ps  
SDCLKoutY  
_ADLY  
600 ps  
3:0  
0
750 ps (+150 ps from 0x1)  
900 ps (+150 ps from 0x2)  
...  
14 (0xE)  
15 (0xF)  
2100 ps (+150 ps from 0xD)  
2250 ps (+150 ps from 0xE)  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.7.2.6 DCLKoutX_DDLY_PD, DCLKoutX_HSg_PD, DCLKout_ADLYg_PD, DCLKout_ADLY_PD,  
DCLKoutX_Y_PD, SDCLKoutY_DIS_MODE, SDCLKoutY_PD  
This register controls the power-down functions for the digital delay, glitchless half step, glitchless analog delay,  
analog delay, outputs, and SYSREF disable modes.  
Table 24. Registers 0x106, 0x10E, 0x116, 0x11E, 0x126, 0x12E, 0x136  
BIT  
NAME  
POR DEFAULT  
DESCRIPTION  
Powerdown the device clock digital delay circuitry.  
0: Enabled  
1: Powerdown  
DCLKoutX  
_DDLY_PD  
7
0
Powerdown the device clock glitchless half-step feature.  
0: Enabled  
1: Powerdown  
DCLKoutX  
_HSg_PD  
6
5
4
1
1
1
Powerdown the device clock glitchless analog delay feature.  
0: Enabled, analog delay step size of one code is glitchless between values 1 to 23.  
1: Powerdown  
DCLKoutX  
_ADLYg_PD  
Powerdown the device clock analog delay feature.  
0: Enabled  
1: Powerdown  
DCLKoutX  
_ADLY_PD  
X_Y = 0_1 1  
X_Y = 2_3 1  
X_Y = 4_5 0  
X_Y = 6_7 0  
X_Y = 8_9 0  
X_Y = 10_11 0  
X_Y = 12_13 1  
Powerdown the clock group defined by X and Y.  
0: Enabled  
1: Powerdown  
3
CLKoutX_Y_PD  
Configures the output state of the SYSREF  
Field Value  
0 (0x00)  
Disable Mode  
Active in normal operation  
1 (0x01)  
If SYSREF_GBL_PD = 1, the output is a  
logic low, otherwise it is active.  
SDCLKoutY  
_DIS_MODE  
2:1  
0
1
2 (0x02)  
3 (0x03)  
If SYSREF_GBL_PD = 1, the output is a  
nominal Vcm voltage(1), otherwise it is  
active.  
Output is a nominal Vcm voltage(1)  
0
SDCLKoutY_PD  
Powerdown SDCLKoutY and set to the state defined by SDCLKoutY_DIS_MODE  
(1) If LVPECL mode is used with emitter resistors to ground, the output Vcm is ~0 V, and each pin is ~0 V.  
66  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.2.7 SDCLKoutY_POL, SDCLKoutY_FMT, DCLKoutX_POL, DCLKoutX_FMT  
These registers configure the output polarity, and format.  
Table 25. Registers 0x107, 0x10F, 0x117, 0x11F, 0x127, 0x12F, 0x137  
BIT  
POR  
DEFAULT  
NAME  
DESCRIPTION  
Sets the polarity of clock on SDCLKoutY when device clock output is selected with  
SDCLKoutY_MUX.  
0: Normal  
7
SDCLKoutY_POL  
0
1: Inverted  
Sets the output format of the SYSREF clocks  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Output Format  
Powerdown  
LVDS  
HSDS 6 mA  
HSDS 8 mA  
HSDS 10 mA  
LVPECL 1600 mV  
LVPECL 2000 mV  
LCPECL  
6:4  
SDCLKoutY_FMT  
DCLKoutX_POL  
DCLKoutX_FMT  
0
Sets the polarity of the device clocks from the DCLKoutX outputs  
3
0
0: Normal  
1: Inverted  
Sets the output format of the device clocks.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Output Format  
LMK04821: 0  
LMK04826/  
LMK04828:  
X = 0 0  
X = 2 0  
X = 4 1  
X = 6 1  
X = 8 1  
X = 10 1  
X = 12 0  
Powerdown  
LVDS  
HSDS 6 mA  
HSDS 8 mA  
HSDS 10 mA  
LVPECL 1600 mV  
LVPECL 2000 mV  
LCPECL  
2:0  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.7.3 SYSREF, SYNC, and Device Config  
9.7.3.1 VCO_MUX, OSCout_MUX, OSCout_FMT  
This register selects the clock distribution source, and OSCout parameters.  
Table 26. Register 0x138  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7
NA  
0
Reserved  
Selects clock distribution path source from VCO0, VCO1, or CLKin (external VCO)  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
VCO Selected  
VCO 0  
6:5  
VCO_MUX  
0
0
VCO 1  
CLKin1 (external VCO)  
Reserved  
Select the source for OSCout:  
0: Buffered OSCin  
4
OSCout_MUX  
1: Feedback mux  
Selects the output format of OSCout. When powered down, these pins may be used as  
CLKin2.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
OSCout Format  
Powerdown (CLKin2)  
LVDS  
Reserved  
Reserved  
LVPECL 1600 mVpp(1)  
LVPECL 2000 mVpp(1)  
LVCMOS (Norm / Inv)  
LVCMOS (Inv / Norm)  
LVCMOS (Norm / Norm)  
LVCMOS (Inv / Inv)  
LVCMOS (Off / Norm)  
LVCMOS (Off / Inv)  
LVCMOS (Norm / Off)  
LVCMOS (Inv / Off)  
LVCMOS (Off / Off)  
3:0  
OSCout_FMT  
4
(1) When set to an LVPECL drive format, OSCout emitter resistors must be 240 Ω to GND.  
68  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.3.2 SYSREF_CLKin0_MUX, SYSREF_MUX  
This register sets the source for the SYSREF outputs. Refer to Figure 13 and SYNC/SYSREF.  
Table 27. Register 0x139  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:3  
NA  
0
Reserved  
Selects the SYSREF output from SYSREF_MUX or CLKin0 direct  
Field Value  
SYSREF Source  
SYSREF_  
CLKin0_MUX  
2
0
0
0
SYSREF Mux  
1
Selects the SYSREF source.  
Field Value  
CLKin0 direct (from CLKin0_OUT_MUX)  
SYSREF Source  
Normal SYNC  
0 (0x00)  
1:0  
SYSREF_MUX  
1 (0x01)  
Re-clocked  
2 (0x02)  
SYSREF pulser  
SYSREF continuous  
3 (0x03)  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
69  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.7.3.3 SYSREF_DIV[12:8], SYSREF_DIV[7:0]  
These registers set the value of the SYSREF output divider.  
Table 28. Registers 0x13A, 0x13B  
MSB  
LSB  
0x13A[4:0]  
0x13B[7:0]  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:5  
0x13A  
NA  
0
Reserved  
Divide value for the SYSREF outputs.  
Field Value  
0x00 to 0x07  
8 (0x08)  
Divide Value  
4:0  
0x13A  
SYSREF_DIV[12:8]  
SYSREF_DIV[7:0]  
12  
Reserved  
8
9
9 (0x09)  
...  
...  
7:0  
0x13B  
0
8190 (0x1FFE)  
8191 (0X1FFF)  
8190  
8191  
9.7.3.4 SYSREF_DDLY[12:8], SYSREF_DDLY[7:0]  
These registers set the delay of the SYSREF digital delay value.  
Table 29. SYSREF Digital Delay Register Configuration, SYSREF_DDLY[12:0]  
MSB  
LSB  
0x13C[4:0]  
0x13D[7:0]  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:5  
0x13C  
NA  
0
Reserved  
Sets the value of the SYSREF digital delay.  
Field Value  
0x00 to 0x07  
8 (0x08)  
Delay Value  
4:0  
0x13C  
SYSREF_DDLY[12:8]  
SYSREF_DDLY[7:0]  
0
Reserved  
8
9
9 (0x09)  
...  
...  
7:0  
0x13D  
8
8190 (0x1FFE)  
8191 (0X1FFF)  
8190  
8191  
70  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.3.5 SYSREF_PULSE_CNT  
This register sets the number of SYSREF pulses if SYSREF is not in continuous mode. See  
SYSREF_CLKin0_MUX, SYSREF_MUX for further description of SYSREF's outputs.  
Programming the register causes the specified number of pulses to be output if "SYSREF Pulses" is selected by  
SYSREF_MUX and SYSREF functionality is powered up.  
Table 30. Register 0x13E  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:2  
NA  
0
Reserved  
Sets the number of SYSREF pulses generated when not in continuous mode.  
See SYSREF_CLKin0_MUX, SYSREF_MUX for more information on SYSREF modes.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Number of Pulses  
1 pulse  
1:0  
SYSREF_PULSE_CNT  
3
2 pulses  
4 pulses  
8 pulses  
9.7.3.6 PLL2_NCLK_MUX, PLL1_NCLK_MUX, FB_MUX, FB_MUX_EN  
This register controls the feedback feature.  
Table 31. Register 0x13F  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:5  
NA  
0
Reserved  
Selects the input to the PLL2 N divider  
0: PLL prescaler  
1: Feedback mux  
4
3
PLL2_NCLK_MUX  
PLL1_NCLK_MUX  
0
0
Selects the input to the PLL1 N delay  
0: OSCin  
1: Feedback mux  
When in zero-delay mode, the feedback mux selects the clock output to be fed back into  
the PLL1 N divider.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Source  
DCLKout6  
2:1  
FB_MUX  
0
0
DCLKout8  
SYSREF Divider  
External  
When using zero-delay, FB_MUX_EN must be set to 1 to power up the feedback mux.  
0: Feedback mux powered down  
0
FB_MUX_EN  
1: Feedback mux enabled  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
71  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.7.3.7 PLL1_PD, VCO_LDO_PD, VCO_PD, OSCin_PD, SYSREF_GBL_PD, SYSREF_PD,  
SYSREF_DDLY_PD, SYSREF_PLSR_PD  
This register contains powerdown controls for OSCin and SYSREF functions.  
Table 32. Register 0x140  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Powerdown PLL1  
0: Normal operation  
1: Powerdown  
7
PLL1_PD  
0
Powerdown VCO_LDO  
0: Normal operation  
1: Powerdown  
6
5
4
VCO_LDO_PD  
VCO_PD  
0
0
0
Powerdown VCO  
0: Normal operation  
1: Powerdown  
Powerdown the OSCin port.  
0: Normal operation  
1: Powerdown  
OSCin_PD  
Powerdown individual SYSREF outputs depending on the setting of  
SDCLKoutY_DIS_MODE for each SYSREF output. SYSREF_GBL_PD allows many  
SYSREF outputs to be controlled through a single bit.  
0: Normal operation  
3
2
SYSREF_GBL_PD  
SYSREF_PD  
0
1
1: Activate powerdown mode  
Powerdown the SYSREF circuitry and divider. If powered down, SYSREF output mode  
cannot be used. SYNC cannot be provided either.  
0: SYSREF can be used as programmed by individual SYSREF output registers.  
1: Powerdown  
Powerdown the SYSREF digital delay circuitry.  
0: Normal operation, SYSREF digital delay may be used. Must be powered up during  
SYNC for deterministic phase relationship with other clocks.  
1: Powerdown  
1
0
SYSREF_DDLY_PD  
SYSREF_PLSR_PD  
1
1
Powerdown the SYSREF pulse generator.  
0: Normal operation  
1: Powerdown  
9.7.3.8 DDLYdSYSREF_EN, DDLYdX_EN  
This register enables dynamic digital delay for enabled device clocks and SYSREF when DDLYd_STEP_CNT is  
programmed.  
Table 33. Register 0x141  
BIT  
7
NAME  
DDLYd _SYSREF_EN  
DDLYd12_EN  
DDLYd10_EN  
DDLYd8_EN  
POR DEFAULT  
DESCRIPTION  
Enables dynamic digital delay on SYSREF outputs  
Enables dynamic digital delay on DCLKout12  
Enables dynamic digital delay on DCLKout10  
Enables dynamic digital delay on DCLKout8  
Enables dynamic digital delay on DCLKout6  
Enables dynamic digital delay on DCLKout4  
Enables dynamic digital delay on DCLKout2  
Enables dynamic digital delay on DCLKout0  
0
0
0
0
0
0
0
0
6
5
4
0: Disabled  
1: Enabled  
3
DDLYd6_EN  
2
DDLYd4_EN  
1
DDLYd2_EN  
0
DDLYd0_EN  
72  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.3.9 DDLYd_STEP_CNT  
This register sets the number of dynamic digital delay adjustments occur. Upon programming, the dynamic digital  
delay adjustment begins for each clock output with dynamic digital delay enabled. Dynamic digital delay can only  
be started by SPI.  
Other registers must be set: SYNC_MODE = 3  
Table 34. Register 0x142  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:4  
NA  
0
Reserved  
Sets the number of dynamic digital delay adjustments that occur.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
SYNC Generation  
No adjust  
1 step  
3:0  
DDLYd_STEP_CNT  
0
2 steps  
3 steps  
...  
14 (0x0E)  
15 (0x0F)  
14 steps  
15 steps  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
73  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.7.3.10 SYSREF_CLR, SYNC_1SHOT_EN, SYNC_POL, SYNC_EN, SYNC_PLL2_DLD, SYNC_PLL1_DLD,  
SYNC_MODE  
This register sets general SYNC parameters such as polarization, and mode. Refer to Figure 13 for block  
diagram. Refer to Table 1 for using SYNC_MODE for specific SYNC use cases.  
Table 35. Register 0x143  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Resets and arms the SDCLKoutY_DDLY path, allowing local digital delays to take effect  
after a SYNC event. Except during the SYSREF setup procedure (see SYNC/SYSREF), this  
bit should always be programmed to 0. While this bit is set, extra current is used. Refer to  
Table 87.  
7
SYSREF_CLR  
1
SYNC one shot enables edge-sensitive SYNC.  
0: SYNC is level sensitive and outputs are held in SYNC while SYNC is asserted.  
1: SYNC is edge sensitive, outputs are SYNCed on rising edge of SYNC. This results in the  
clock being held in SYNC for a minimum amount of time.  
6
SYNC_1SHOT_EN  
0
Sets the polarity of the SYNC pin.  
0: Normal  
1: Inverted  
5
4
SYNC_POL  
SYNC_EN  
0
1
Enables the SYNC functionality.  
0: Disabled  
1: Enabled  
0: Off  
3
2
SYNC_PLL2_DLD  
SYNC_PLL1_DLD  
0
0
1: Assert SYNC until PLL2 DLD = 1  
0: Off  
1: Assert SYNC until PLL1 DLD = 1  
Sets the method of generating a SYNC event.  
Field Value  
SYNC Generation  
Prevents SYNC pin, SYNC_PLL1_DLD flag, or  
SYNC_PLL2_DLD flag from generating a SYNC event.  
0 (0x00)  
SYNC event generated from SYNC pin or, if enabled, the  
SYNC_PLL1_DLD flag or SYNC_PLL2_DLD flag.  
1 (0x01)  
2 (0x02)  
1:0  
SYNC_MODE  
1
For use with pulser – SYNC/SYSREF pulses are generated by  
pulser block through the SYNC pin or, if enabled, the  
SYNC_PLL1_DLD flag or SYNC_PLL2_DLD flag.  
For use with pulser – SYNC/SYSREF pulses are generated by  
pulser block when programming register 0x13E  
3 (0x03)  
(SYSREF_PULSE_CNT) is written to (see SYSREF Pulser).  
74  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.3.11 SYNC_DISSYSREF, SYNC_DISX  
SYNC_DISX prevents a clock output from being synchronized or interrupted by a SYNC event, or when  
outputting SYSREF.  
Table 36. Register 0x144  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Prevents the SYSREF clocks from becoming synchronized during a SYNC event. If  
SYNC_DISSYSREF is enabled, it continues to operate normally during a SYNC event.  
7
SYNC_DISSYSREF  
0
6
5
4
3
2
1
0
SYNC_DIS12  
SYNC_DIS10  
SYNC_DIS8  
SYNC_DIS6  
SYNC_DIS4  
SYNC_DIS2  
SYNC_DIS0  
0
0
0
0
0
0
0
Prevents the device clock output from becoming synchronized during a SYNC event or  
SYSREF clock. If SYNC_DIS bit for a particular output is enabled, then it continues to  
operate normally during a SYNC event or SYSREF clock.  
9.7.3.12 Fixed Registers (0x145, 0x171 - 0x172)  
Always program this register to value 127.  
Table 37. Register 0x145  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:0  
Fixed Register  
0
Always program to 127  
Always program this register to value 170.  
Table 38. Register 0x171  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:0  
Fixed Register  
10 (0x0A)  
Always program to 170 (0xAA)  
Always program this register to value 2.  
Table 39. Register 0x172  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:0  
Fixed Register  
0
Always program to 2 (0x02)  
9.7.4 (0x146 - 0x149) CLKin Control  
9.7.4.1 CLKin2_EN, CLKin1_EN, CLKin0_EN, CLKin2_TYPE, CLKin1_TYPE, CLKin0_TYPE  
This register has CLKin enable and type controls.  
Table 40. Register 0x146  
BIT  
7:6  
5
POR  
DEFAULT  
NAME  
DESCRIPTION  
NA  
0
Reserved  
Enable CLKin2 to be used during auto-switching of CLKin_SEL_MODE.  
0: Not enabled for auto mode  
CLKin2_EN  
CLKin1_EN  
0
1: Enabled for auto mode  
Enable CLKin1 to be used during auto-switching of CLKin_SEL_MODE.  
0: Not enabled for auto mode  
4
1
1: Enabled for auto mode  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
75  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Table 40. Register 0x146 (continued)  
BIT  
POR  
DEFAULT  
NAME  
DESCRIPTION  
Enable CLKin0 to be used during auto-switching of CLKin_SEL_MODE.  
0: Not enabled for auto mode  
3
CLKin0_EN  
1
1: Enabled for auto mode  
2
1
CLKin2_TYPE  
CLKin1_TYPE  
0
0
There are two buffer types for CLKin0, 1, and 2: bipolar and CMOS.  
Bipolar is recommended for differential inputs such as LVDS or  
LVPECL. CMOS is recommended for DC-coupled single-ended  
inputs.  
0: Bipolar  
1: MOS  
When using bipolar, CLKinX and CLKinX* must be AC coupled.  
When using CMOS, CLKinX and CLKinX* may be AC or DC coupled  
if the input signal is differential. If the input signal is single-ended, the  
used input may be either AC or DC coupled, and the unused input  
must AC grounded (see Driving CLKin and OSCin Pins With a Single-  
Ended Source).  
0
CLKin0_TYPE  
0
9.7.4.2 CLKin_SEL_POL, CLKin_SEL_MODE, CLKin1_OUT_MUX, CLKin0_OUT_MUX  
Table 41. Register 0x147  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Inverts the CLKin polarity for use in pin select mode.  
7
CLKin_SEL_POL  
0
0: Active high  
1: Active low  
Sets the mode used in determining the reference for PLL1.  
Field Value  
CLKin Mode  
CLKin0 manual  
CLKin1 manual  
CLKin2 manual  
Pin select mode  
Auto mode  
0 (0x00)  
1 (0x01)  
2 (0x02)  
6:4  
CLKin_SEL_MODE  
3
3 (0x03)  
4 (0x04)  
5 (0x05)  
Reserved  
6 (0x06)  
Reserved  
7 (0x07)  
Reserved  
Selects where the output of the CLKin1 buffer is directed.  
Field Value  
CLKin1 Destination  
0 (0x00)  
Fin  
3:2  
1:0  
CLKin1_OUT_MUX  
CLKin0_OUT_MUX  
2
2
1 (0x01)  
2 (0x02)  
3 (0x03)  
Feedback mux (zero-delay mode)  
PLL1  
Off  
Selects where the output of the CLKin0 buffer is directed.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
CLKin0 Destination  
SYSREF mux  
Reserved  
PLL1  
Off  
76  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.4.3 CLKin_SEL0_MUX, CLKin_SEL0_TYPE  
This register has CLKin_SEL0 controls.  
Table 42. Register 0x148  
BIT  
NAME  
POR  
DEFAULT  
DESCRIPTION  
7:6  
NA  
0
Reserved  
This set the output value of the CLKin_SEL0 pin. This register only applies if  
CLKin_SEL0_TYPE is set to an output mode  
Field Value  
Output Format  
Logic low  
0 (0x00)  
1 (0x01)  
CLKin0 LOS  
CLKin0 selected  
DAC locked  
DAC low  
2 (0x02)  
5:3  
CLKin_SEL0_MUX  
0
3 (0x03)  
4 (0x04)  
5 (0x05)  
DAC high  
6 (0x06)  
SPI readback  
Reserved  
7 (0x07)  
This sets the I/O type of the CLKin_SEL0 pin.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Configuration  
Input  
Function  
Input mode, see Input  
Clock Switching - Pin  
Select Mode for  
Input with pull-up resistor  
Input with pull-down resistor  
Output (push-pull)  
2:0  
CLKin_SEL0_TYPE  
2
description of input mode.  
Output modes; the  
CLKin_SEL0_MUX  
register for description of  
outputs.  
Output inverted (push-pull)  
Reserved  
Output (open drain)  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
77  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.7.4.4 SDIO_RDBK_TYPE, CLKin_SEL1_MUX, CLKin_SEL1_TYPE  
This register has CLKin_SEL1 controls and register readback SDIO pin type.  
Table 43. Register 0x149  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7
NA  
0
Reserved  
Sets the SDIO pin to open drain when during SPI readback in 3-wire mode.  
6
SDIO_RDBK_TYPE  
1
0: Output, push-pull  
1: Output, open drain.  
This set the output value of the CLKin_SEL1 pin. This register only applies if  
CLKin_SEL1_TYPE is set to an output mode.  
Field Value  
Output Format  
Logic low  
0 (0x00)  
1 (0x01)  
CLKin1 LOS  
CLKin1 selected  
DAC locked  
DAC low  
2 (0x02)  
5:3  
CLKin_SEL1_MUX  
0
3 (0x03)  
4 (0x04)  
5 (0x05)  
DAC high  
6 (0x06)  
SPI readback  
Reserved  
7 (0x07)  
This sets the I/O type of the CLKin_SEL1 pin.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Configuration  
Input  
Function  
Input mode, see Input Clock  
Switching - Pin Select Mode for  
description of input mode.  
Input with pull-up resistor  
Input with pull-down resistor  
Output (push-pull)  
Output inverted (push-pull)  
Reserved  
2:0  
CLKin_SEL1_TYPE  
2
Output modes; see the  
CLKin_SEL1_MUX register for  
description of outputs.  
Output (open drain)  
78  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.5 RESET_MUX, RESET_TYPE  
This register contains control of the RESET pin.  
Table 44. Register 0x14A  
POR  
DEFAUL  
T
BIT  
NAME  
DESCRIPTION  
7:6  
NA  
0
Reserved  
This sets the output value of the RESET pin. This register only applies if RESET_TYPE is set to an  
output mode.  
Field Value  
Output Format  
Logic low  
0 (0x00)  
1 (0x01)  
Reserved  
5:3  
RESET_MUX  
0
2 (0x02)  
CLKin2 selected  
DAC locked  
DAC low  
3 (0x03)  
4 (0x04)  
5 (0x05)  
DAC high  
6 (0x06)  
This sets the I/O type of the RESET pin.  
Field Value  
SPI readback  
Configuration  
Function  
0 (0x00)  
Input  
Reset mode  
Reset pin high = reset  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Input with pull-up resistor  
Input with pull-down resistor  
Output (push-pull)  
2:0 RESET_TYPE  
2
Output modes; see the  
RESET_MUX register for  
description of outputs.  
Output inverted (push-pull)  
Reserved  
Output (open drain)  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
79  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.7.6 (0x14B - 0x152) Holdover  
9.7.6.1 LOS_TIMEOUT, LOS_EN, TRACK_EN, HOLDOVER_FORCE, MAN_DAC_EN, MAN_DAC[9:8]  
This register contains the holdover functions.  
Table 45. Register 0x14B  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
This controls the amount of time in which no activity on a CLKin forces a clock switch  
event.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Timeout  
370 kHz (2.7 µs)  
2.1 MHz (480 ns)  
8.8 MHz (115 ns)  
22 MHz (45 ns)  
7:6  
LOS_TIMEOUT  
0
Enables the LOS (loss-of-signal) timeout control. Valid only for MOS clock inputs. To  
ensure LOS is valid for AC-coupled inputs, no termination is allowed between CLKinX and  
CLKinX* pins unless DC-blocked. For example, 100-Ω termination across CLKin0 and  
CLKin0* pins on the IC side of AC coupling capacitors would invalidate the LOS detector. If  
termination is required, it should be placed on the other side of the AC coupling capacitors,  
away from the IC pins.  
5
LOS_EN  
0
0: Disabled  
1: Enabled  
Enable the DAC to track the PLL1 tuning voltage, optionally for use in holdover mode. After  
device reset, tracking starts at DAC code = 512 (midrange).  
Tracking can be used to monitor PLL1 voltage in any mode.  
0: Disabled  
4
3
TRACK_EN  
1
0
1: Enabled, only tracks when PLL1 is locked.  
This bit forces holdover mode. When holdover mode is forced, if MAN_DAC_EN = 1, then  
the DAC sets the programmed MAN_DAC value. Otherwise the tracked DAC value sets the  
DAC voltage.  
0: Disabled  
1: Enabled  
HOLDOVER  
_FORCE  
This bit enables the manual DAC mode.  
2
MAN_DAC_EN  
MAN_DAC[9:8]  
1
2
0: Automatic  
1: Manual  
1:0  
See MAN_DAC[9:8], MAN_DAC[7:0] for more information on the MAN_DAC settings.  
80  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.6.2 MAN_DAC[9:8], MAN_DAC[7:0]  
These registers set the value of the DAC in holdover mode when used manually.  
Table 46. MAN_DAC[9:0]  
MSB  
LSB  
0x14B[1:0]  
0x14C[7:0]  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
See LOS_TIMEOUT, LOS_EN, TRACK_EN, HOLDOVER_FORCE,  
MAN_DAC_EN, MAN_DAC[9:8] for information on these bits.  
7:2  
0x14B  
Sets the value of the manual DAC when in manual DAC mode.  
Field Value  
0 (0x00)  
DAC Value  
1:0  
0x14B  
MAN_DAC[9:8]  
MAN_DAC[7:0]  
2
0
0
1
1 (0x01)  
2 (0x02)  
2
...  
...  
7:0  
0x14C  
1022 (0x3FE)  
1023 (0x3FF)  
1022  
1023  
9.7.6.3 DAC_TRIP_LOW  
This register contains the high value at which holdover mode is entered.  
Table 47. Register 0x14D  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:6  
NA  
0
Reserved  
Voltage from GND at which holdover is entered if HOLDOVER_VTUNE_DET is enabled.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
DAC Trip Value  
1 x Vcc / 64  
2 x Vcc / 64  
3 x Vcc / 64  
4 x Vcc / 64  
...  
5:0  
DAC_TRIP_LOW  
0
61 (0x17)  
62 (0x18)  
63 (0x19)  
62 x Vcc / 64  
63 x Vcc / 64  
64 x Vcc / 64  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
81  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.7.6.4 DAC_CLK_MULT, DAC_TRIP_HIGH  
This register contains the multiplier for the DAC clock counter, and the low value at which holdover mode is  
entered.  
Table 48. Register 0x14E  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
This is the multiplier for the DAC_CLK_CNTR which sets the rate at which the DAC value is  
tracked.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
DAC Multiplier Value  
4
7:6  
DAC_CLK_MULT  
0
64  
1024  
16384  
Voltage from Vcc at which holdover is entered if HOLDOVER_VTUNE_DET is enabled.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
DAC Trip Value  
1 x Vcc / 64  
2 x Vcc / 64  
3 x Vcc / 64  
4 x Vcc / 64  
...  
5:0  
DAC_TRIP_HIGH  
0
61 (0x17)  
62 (0x18)  
63 (0x19)  
62 x Vcc / 64  
63 x Vcc / 64  
64 x Vcc / 64  
9.7.6.5 DAC_CLK_CNTR  
This register contains the value of the DAC when in tracked mode.  
Table 49. Register 0x14F  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
This with DAC_CLK_MULT set the rate at which the DAC is updated. The update rate (in  
seconds) is = DAC_CLK_MULT * DAC_CLK_CNTR / PLL1 PDF (Hz)  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
...  
DAC Value  
0
1
2
7:0  
DAC_CLK_CNTR  
127  
3
...  
253 (0xFD)  
254 (0xFE)  
255 (0xFF)  
253  
254  
255  
82  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.6.6 CLKin_OVERRIDE, HOLDOVER_PLL1_DET, HOLDOVER_LOS_DET, HOLDOVER_VTUNE_DET,  
HOLDOVER_HITLESS_SWITCH, HOLDOVER_EN  
This register has controls for enabling clock in switch events.  
Table 50. Register 0x150  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7
NA  
0
Reserved  
When CLKin_SEL_MODE = 0/1/2 to select a manual clock input, CLKin_OVERRIDE = 1  
forces that clock input. Used with clock distribution mode for best performance.  
0: Normal, no override.  
CLKin  
_OVERRIDE  
6
0
1: Force select of only CLKin0/1/2, as specified by CLKin_SEL_MODE in manual mode.  
5
4
NA  
0
0
Reserved  
This enables the HOLDOVER when PLL1 lock detect signal transitions from high to low.  
0: PLL1 DLD does not cause a clock switch event  
1: PLL1 DLD causes a clock switch event  
HOLDOVER  
_PLL1_DET  
This enables HOLDOVER when PLL1 LOS signal is detected.  
0: Disabled  
1: Enabled  
HOLDOVER  
_LOS_DET  
3
2
0
0
Enables the DAC Vtune rail detections. When the DAC achieves a specified Vtune, if this  
bit is enabled, the current clock input is considered invalid and an input clock switch event  
is generated.  
0: Disabled  
1: Enabled  
HOLDOVER  
_VTUNE_DET  
HOLDOVER  
_HITLESS  
_SWITCH  
Determines whether a clock switch event will enter holdover use hitless switching.  
0: Hard Switch  
1: Hitless switching (has an undefined switch time)  
1
0
1
1
Sets whether holdover mode can be entered when holdover conditions are met.  
0: Disabled  
1: Enabled  
HOLDOVER_EN  
9.7.6.7 HOLDOVER_DLD_CNT[13:8], HOLDOVER_DLD_CNT[7:0]  
Table 51. HOLDOVER_DLD_CNT[13:0]  
MSB  
LSB  
0x151[5:0]  
0x152[7:0]  
This register has the number of valid clocks of PLL1 PDF before holdover is exited.  
Table 52. Registers 0x151 and 0x152  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:6  
0x151  
NA  
0
Reserved  
The number of valid clocks of PLL1 PDF before holdover mode is exited.  
Field Value  
0 (0x00)  
Count Value  
HOLDOVER  
_DLD_CNT[13:8]  
5:0  
0x151  
2
0
0
1
1 (0x01)  
2 (0x02)  
2
...  
...  
HOLDOVER  
_DLD_CNT[7:0]  
7:0  
0x152  
16382 (0x3FFE)  
16383 (0x3FFF)  
16382  
16383  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
83  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.7.7 (0x153 - 0x15F) PLL1 Configuration  
9.7.7.1 CLKin0_R[13:8], CLKin0_R[7:0]  
Table 53. CLKin0_R[13:0]  
MSB  
LSB  
0x153[5:0]  
0x154[7:0]  
These registers contain the value of the CLKin0 divider.  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:6  
0x153  
NA  
0
Reserved  
The value of PLL1 R divider when CLKin0 is selected.  
Field Value  
0 (0x00)  
Divide Value  
5:0  
0x153  
CLKin0_R[13:8]  
CLKin0_R[7:0]  
0
Reserved  
1 (0x01)  
1
2
2 (0x02)  
...  
...  
7:0  
0x154  
120  
16382 (0x3FFE)  
16383 (0x3FFF)  
16382  
16383  
9.7.7.2 CLKin1_R[13:8], CLKin1_R[7:0]  
Table 54. CLKin1_R[13:0]  
MSB  
LSB  
0x155[5:0]  
0x156[7:0]  
These registers contain the value of the CLKin1 R divider.  
Table 55. Registers 0x155 and 0x156  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:6  
5:0  
0x155  
0x155  
NA  
0
0
Reserved  
The value of PLL1 R divider when CLKin1 is selected.  
Field Value  
0 (0x00)  
Divide Value  
CLKin1_R[13:8]  
CLKin1_R[7:0]  
Reserved  
1 (0x01)  
1
2
2 (0x02)  
...  
...  
7:0  
0x156  
150  
16382 (0x3FFE)  
16383 (0x3FFF)  
16382  
16383  
84  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.7.3 CLKin2_R[13:8], CLKin2_R[7:0]  
MSB  
LSB  
0x157[5:0]  
0x158[7:0]  
These registers contain the value of the CLKin2 R divider.  
Table 56. Registers 0x157 and 0x158  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:6  
0x157  
NA  
0
0
Reserved  
The value of PLL1 R divider when CLKin2 is selected.  
Field Value  
0 (0x00)  
Divide Value  
5:0  
0x157  
CLKin2_R[13:8]  
CLKin2_R[7:0]  
Reserved  
1 (0x01)  
1
2
2 (0x02)  
...  
...  
7:0  
0x158  
150  
16382 (0x3FFE)  
16383 (0x3FFF)  
16382  
16383  
9.7.7.4 PLL1_N  
Table 57. PLL1_N[13:8], PLL1_N[7:0]  
PLL1_N[13:0]  
MSB  
LSB  
0x159[5:0]  
0x15A[7:0]  
These registers contain the N divider value for PLL1.  
Table 58. Registers 0x159 and 0x15A  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:6  
5:0  
0x159  
0x159  
NA  
0
0
Reserved  
The value of PLL1 N divider.  
Field Value  
0 (0x00)  
Divide Value  
PLL1_N[13:8]  
PLL1_N[7:0]  
Not valid  
1 (0x01)  
1
2
2 (0x02)  
7:0  
0x15A  
120  
...  
...  
16,383 (0x3FFF)  
16,383  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
85  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.7.7.5 PLL1_WND_SIZE, PLL1_CP_TRI, PLL1_CP_POL, PLL1_CP_GAIN  
This register controls the PLL1 phase detector.  
Table 59. Register 0x15B  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
PLL1_WND_SIZE sets the window size used for digital lock detect for PLL1. If the phase  
error between the reference and feedback of PLL1 is less than specified time, the PLL1  
lock counter increments.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Definition  
4 ns  
7:6  
PLL1_WND_SIZE  
3
9 ns  
19 ns  
43 ns  
This bit allows for the PLL1 charge pump output pin, CPout1, to be placed into TRI-STATE.  
0: PLL1 CPout1 is active  
1: PLL1 CPout1 is at TRI-STATE  
5
4
PLL1_CP_TRI  
PLL1_CP_POL  
0
1
PLL1_CP_POL sets the charge pump polarity for PLL1. Many VCXOs use positive slope.  
A positive-slope VCXO increases output frequency with increasing voltage. A negative-  
slope VCXO decreases output frequency with increasing voltage.  
0: Negative-slope VCO/VCXO  
1: Positive-slope VCO/VCXO  
This bit programs the PLL1 charge pump output current level.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
...  
Gain  
50 µA  
150 µA  
250 µA  
350 µA  
450 µA  
...  
3:0  
PLL1_CP_GAIN  
4
14 (0x0E)  
15 (0x0F)  
1450 µA  
1550 µA  
86  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.7.6 PLL1_DLD_CNT[13:8], PLL1_DLD_CNT[7:0]  
Table 60. PLL1_DLD_CNT[13:0]  
MSB  
LSB  
0x15C[5:0]  
0x15D[7:0]  
This register contains the value of the PLL1 DLD counter.  
Table 61. Registers 0x15C and 0x15D  
BIT REGISTERS  
NAME  
POR DEFAULT  
DESCRIPTION  
7:6  
0x15C  
NA  
0
Reserved  
The reference and feedback of PLL1 must be within the window of phase  
error, as specified by PLL1_WND_SIZE for this many phase detector  
cycles, before PLL1 digital lock detect is asserted.  
PLL1_DLD  
_CNT[13:8]  
5:0  
0x15C  
32  
Field Value  
0 (0x00)  
Delay Value  
Reserved  
1 (0x01)  
1
2 (0x02)  
2
3
3 (0x03)  
PLL1_DLD  
_CNT[7:0]  
7:0  
0x15D  
0
...  
...  
16,382 (0x3FFE)  
16,383 (0x3FFF)  
16,382  
16,383  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
87  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.7.7.7 PLL1_R_DLY, PLL1_N_DLY  
This register contains the delay value for PLL1 N and R delays.  
Table 62. Register 0x15E  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:6  
NA  
0
Reserved  
Increasing delay of PLL1_R_DLY causes the outputs to lag from CLKinX. For use in zero-  
delay mode.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Gain  
0 ps  
205 ps  
410 ps  
615 ps  
820 ps  
1025 ps  
1230 ps  
1435 ps  
5:3  
PLL1_R_DLY  
0
Increasing delay of PLL1_N_DLY causes the outputs to lead from CLKinX. For use in zero-  
delay mode.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Gain  
0 ps  
205 ps  
410 ps  
615 ps  
820 ps  
1025 ps  
1230 ps  
1435 ps  
2:0  
PLL1_N_DLY  
0
88  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.7.8 PLL1_LD_MUX, PLL1_LD_TYPE  
This register configures the PLL1 LD pin.  
Table 63. Register 0x15F  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
This sets the output value of the Status_LD1 pin.  
Field Value  
0 (0x00)  
MUX Value  
Logic low  
1 (0x01)  
PLL1 DLD  
PLL2 DLD  
PLL1 and PLL2 DLD  
Holdover status  
DAC locked  
Reserved  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
SPI readback  
DAC rail  
7:3  
PLL1_LD_MUX  
1
8 (0x08)  
9 (0x09)  
DAC low  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
DAC high  
PLL1_N  
PLL1_N/2  
PLL2_N  
PLL2_N/2  
PLL1_R  
16 (0x10)  
PLL1_R/2  
17 (0x11)  
PLL2_R(1)  
PLL2_R/2(1)  
18 (0x12)  
Sets the I/O type of the Status_LD1 pin.  
Field Value  
0 (0x00)  
TYPE  
Reserved  
1 (0x01)  
Reserved  
2:0  
PLL1_LD_TYPE  
6
2 (0x02)  
Reserved  
3 (0x03)  
Output (push-pull)  
Output inverted (push-pull)  
Reserved  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Output (open drain)  
(1) Only valid when PLL2_LD_MUX is not set to 2 (PLL2_DLD) or 3 (PLL1 and PLL2 DLD).  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
89  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.7.8 (0x160 - 0x16E) PLL2 Configuration  
9.7.8.1 PLL2_R[11:8], PLL2_R[7:0]  
Table 64. PLL2_R[11:0]  
MSB  
LSB  
0x160[3:0]  
0x161[7:0]  
This register contains the value of the PLL2 R divider.  
Table 65. Registers 0x160 and 0x161  
BIT REGISTERS  
NAME  
POR DEFAULT  
DESCRIPTION  
7:4  
0x160  
NA  
0
Reserved  
Valid values for the PLL2 R divider.  
Field Value  
0 (0x00)  
Divide Value  
3:0  
0x160  
PLL2_R[11:8]  
PLL2_R[7:0]  
0
2
Not valid  
1 (0x01)  
1
2
2 (0x02)  
3 (0x03)  
3
7:0  
0x161  
...  
...  
4,094 (0xFFE)  
4,095 (0xFFF)  
4,094  
4,095  
90  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.8.2 PLL2_P, OSCin_FREQ, PLL2_XTAL_EN, PLL2_REF_2X_EN  
This register sets other PLL2 functions.  
Table 66. Register 0x162  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
The PLL2 N prescaler divides the output of the VCO as selected by Mode_MUX1 and is  
connected to the PLL2 N divider.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Value  
8
2
2
3
4
5
6
7
7:5  
PLL2_P  
2
The frequency of the PLL2 reference input to the PLL2 phase detector (OSCin/OSCin* port)  
must be programmed to support proper operation of the frequency calibration routine,  
which locks the internal VCO to the target frequency.  
Field Value  
0 (0x00)  
OSCin Frequency  
0 to 63 MHz  
4:2  
OSCin_FREQ  
7
1 (0x01)  
>63 MHz to 127 MHz  
>127 MHz to 255 MHz  
Reserved  
2 (0x02)  
3 (0x03)  
4 (0x04)  
>255 MHz to 500 MHz  
Reserved  
5 (0x05) to 7(0x07)  
If an external crystal is being used to implement a discrete VCXO, the internal feedback  
amplifier must be enabled with this bit to complete the oscillator circuit.  
0: Oscillator amplifier disabled  
1
0
PLL2_XTAL_EN  
0
1
1: Oscillator amplifier enabled  
Enabling the PLL2 reference frequency doubler allows for higher phase-detector  
frequencies on PLL2 than would normally be allowed with the given VCXO or crystal  
frequency.  
PLL2_REF_2X_EN  
Higher phase-detector frequencies reduce the PLL N values, which makes the design of  
wider-loop bandwidth filters possible.  
0: Doubler disabled  
1: Doubler enabled  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
91  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.7.8.3 PLL2_N_CAL  
PLL2_N_CAL[17:0]  
PLL2 never uses zero-delay during frequency calibration. These registers contain the value of the PLL2 N divider  
used with the PLL2 prescaler during calibration for cascaded zero-delay mode. When calibration is complete,  
PLL2 uses the PLL2_N value. Cascaded zero-delay mode occurs when PLL2_NCLK_MUX = 1.  
Table 67. Register 0x162  
MSB  
LSB  
0x163[1:0]  
0x164[7:0]  
0x165[7:0]  
Table 68. Registers 0x163, 0x164, and 0x165  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:2  
1:0  
0x163  
0x163  
NA  
0
Reserved  
Field Value  
0 (0x00)  
Divide Value  
PLL2_N  
_CAL[17:16]  
0
0
Not valid  
1 (0x01)  
1
7:0  
7:0  
0x164  
0x165  
PLL2_N_CAL[15:8]  
2 (0x02)  
2
...  
...  
PLL2_N_CAL[7:0]  
12  
262,143 (0x3FFFF)  
262,143  
9.7.8.4 PLL2_FCAL_DIS, PLL2_N  
This register disables frequency calibration and sets the PLL2 N divider value. Programming register 0x168  
starts a VCO calibration routine if PLL2_FCAL_DIS = 0.  
Table 69. PLL2_N[17:0]  
MSB  
LSB  
0x166[1:0]  
0x167[7:0]  
0x168[7:0]  
Table 70. Registers 0x166, 0x167, and 0x168  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7:3  
2
0x166  
0x166  
NA  
0
Reserved  
This disables the PLL2 frequency calibration on programming register 0x168.  
0: Frequency calibration enabled  
PLL2_FCAL_DIS  
0
1: Frequency calibration disabled  
Field Value  
0 (0x00)  
Divide Value  
1:0  
7:0  
7:0  
0x166  
0x167  
0x168  
PLL2_N[17:16]  
PLL2_N[15:8]  
PLL2_N[7:0]  
0
0
Not valid  
1 (0x01)  
1
2 (0x02)  
2
...  
...  
12  
262,143 (0x3FFFF)  
262,143  
92  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.8.5 PLL2_WND_SIZE, PLL2_CP_GAIN, PLL2_CP_POL, PLL2_CP_TRI  
This register controls the PLL2 phase detector.  
Table 71. Register 0x169  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7
NA  
0
Reserved  
PLL2_WND_SIZE sets the window size used for digital lock detect for PLL2. If the phase  
error between the reference and feedback of PLL2 is less than the specified time, then the  
PLL2 lock counter increments. This value must be programmed to 2 (3.7 ns).  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Definition  
Reserved  
Reserved  
3.7 ns  
6:5  
PLL2_WND_SIZE  
2
Reserved  
This bit programs the PLL2 charge pump output current level. The table below also  
illustrates the impact of the PLL2 TRISTATE bit in conjunction with PLL2_CP_GAIN.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
Definition  
100 µA  
4:3  
PLL2_CP_GAIN  
3
400 µA  
1600 µA  
3200 µA  
PLL2_CP_POL sets the charge pump polarity for PLL2. The internal VCO requires the  
negative charge pump polarity to be selected. Many VCOs use positive slope.  
A positive-slope VCO increases output frequency with increasing voltage. A negative-slope  
VCO decreases output frequency with increasing voltage.  
2
PLL2_CP_POL  
0
Field Value  
Description  
0
1
Negative-slope VCO/VCXO  
Positive-slope VCO/VCXO  
PLL2_CP_TRI TRI-STATEs the output of the PLL2 charge pump.  
1
0
PLL2_CP_TRI  
Fixed Value  
0
1
0: Disabled  
1: TRI-STATE  
When programming register 0x169, this field must be set to 1.  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
93  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.7.8.6 SYSREF_REQ_EN, PLL2_DLD_CNT  
Table 72. PLL2_DLD_CNT[15:0]  
MSB  
LSB  
0x16A[5:0]  
0x16B[7:0]  
This register has the value of the PLL2 DLD counter.  
Table 73. Registers 0x16A and 0x16B  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
7
6
0x16A  
0x16A  
NA  
0
Reserved  
Enables the SYNC/SYSREF_REQ pin to force the SYSREF_MUX = 3 for  
continuous pulses. When using this feature, enable the pulser and set  
SYSREF_MUX = 2 (pulser).  
SYSREF_REQ_EN  
0
The reference and feedback of PLL2 must be within the window of phase error,  
as specified by PLL2_WND_SIZE for PLL2_DLD_CNT cycles, before PLL2  
digital lock detect is asserted.  
PLL2_DLD  
_CNT[13:8]  
5:0  
7:0  
0x16A  
0x16B  
32  
Field Value  
0 (0x00)  
Divide Value  
Not valid  
1 (0x01)  
1
2 (0x02)  
2
3
3 (0x03)  
PLL2_DLD_CNT  
0
...  
...  
16,382 (0x3FFE)  
16,383 (0x3FFF)  
16,382  
16,383  
94  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.8.7 PLL2_LF_R4, PLL2_LF_R3  
This register controls the integrated loop filter resistors.  
Table 74. Register 0x16C  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:6  
NA  
0
Reserved  
Internal loop filter components are available for PLL2, enabling either 3rd- or 4th-order loop  
filters without requiring external components.  
Internal loop filter resistor R4 can be set according to the following table.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Resistance  
200 Ω  
1 kΩ  
5:3  
PLL2_LF_R4  
0
2 kΩ  
4 kΩ  
16 kΩ  
Reserved  
Reserved  
Reserved  
Internal loop filter components are available for PLL2, enabling either 3rd- or 4th-order loop  
filters without requiring external components.  
Internal loop filter resistor R3 can be set according to the following table.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
Resistance  
200 Ω  
1 kΩ  
2:0  
PLL2_LF_R3  
0
2 kΩ  
4 kΩ  
16 kΩ  
Reserved  
Reserved  
Reserved  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
95  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.7.8.8 PLL2_LF_C4, PLL2_LF_C3  
This register controls the integrated loop filter capacitors.  
Table 75. Register 0x16D  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
Internal loop filter components are available for PLL2, enabling either 3rd- or 4th-order loop  
filters without requiring external components.  
Internal loop filter capacitor C4 can be set according to the following table.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
Capacitance  
10 pF  
15 pF  
29 pF  
34 pF  
47 pF  
52 pF  
7:4  
PLL2_LF_C4  
0
66 pF  
71 pF  
103 pF  
108 pF  
122 pF  
126 pF  
141 pF  
146 pF  
Reserved  
Reserved  
Internal loop filter components are available for PLL2, enabling either 3rd- or 4th-order loop  
filters without requiring external components.  
Internal loop filter capacitor C3 can be set according to the following table.  
Field Value  
0 (0x00)  
1 (0x01)  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
8 (0x08)  
9 (0x09)  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
Capacitance  
10 pF  
11 pF  
15 pF  
16 pF  
19 pF  
20 pF  
3:0  
PLL2_LF_C3  
0
24 pF  
25 pF  
29 pF  
30 pF  
33 pF  
34 pF  
38 pF  
39 pF  
Reserved  
Reserved  
96  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.8.9 PLL2_LD_MUX, PLL2_LD_TYPE  
This register sets the output value of the Status_LD2 pin.  
Table 76. Register 0x16E  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
This sets the output value of the Status_LD2 pin.  
Field Value  
0 (0x00)  
MUX Value  
Logic low  
1 (0x01)  
PLL1 DLD  
PLL2 DLD  
PLL1 and PLL2 DLD  
Holdover status  
DAC locked  
Reserved  
2 (0x02)  
3 (0x03)  
4 (0x04)  
5 (0x05)  
6 (0x06)  
7 (0x07)  
SPI readback  
DAC rail  
7:3  
PLL2_LD_MUX  
2
8 (0x08)  
9 (0x09)  
DAC low  
10 (0x0A)  
11 (0x0B)  
12 (0x0C)  
13 (0x0D)  
14 (0x0E)  
15 (0x0F)  
DAC high  
PLL1_N  
PLL1_N/2  
PLL2_N  
PLL2_N/2  
PLL1_R  
16 (0x10)  
PLL1_R/2  
17 (0x11)  
PLL2_R(1)  
PLL2_R/2(1)  
18 (0x12)  
Sets the I/O type of the Status_LD2 pin.  
Field Value  
0 (0x00)  
TYPE  
Reserved  
1 (0x01)  
Reserved  
2:0  
PLL2_LD_TYPE  
6
2 (0x02)  
Reserved  
3 (0x03)  
Output (push-pull)  
Output inverted (push-pull)  
Reserved  
4 (0x04)  
5 (0x05)  
6 (0x06)  
Output (open drain)  
(1) Only valid when PLL1_LD_MUX is not set to 2 (PLL2_DLD) or 3 (PLL1 and PLL2 DLD).  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
97  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.7.9 (0x16F - 0x1FFF) Misc Registers  
9.7.9.1 PLL2_PRE_PD, PLL2_PD  
Table 77. Register 0x173  
BIT  
NAME  
DESCRIPTION  
7
N/A  
Reserved  
Powerdown PLL2 prescaler  
0: Normal operation  
1: Powerdown  
6
PLL2_PRE_PD  
Powerdown PLL2  
0: Normal operation  
1: Powerdown  
5
PLL2_PD  
N/A  
4:0  
Reserved  
9.7.9.2 VCO1_DIV  
Sets the VCO1 VCO divider value. This divider cannot be bypassed, and has a minimum value of 2. This register  
is reserved for LMK04826 and LMK04828, and should be left unprogrammed.  
Table 78. Register 0x174  
POR  
DEFAULT  
BIT  
NAME  
DESCRIPTION  
7:5  
N/A  
0
Reserved  
When VCO_MUX selects VCO1 for LMK04821, the clock distribution frequency is equal to  
VCO1 frequency divided by this divide value. This divider is also on the PLL2 feedback  
path, and impacts the PLL2 N divider value.  
Unlisted field values are reserved.  
Field Value  
0 (0x00)  
Divide Value  
2
3
8
4
5
7
6
VCO1_DIV  
(LMK04821 only)  
4:0  
0
5 (0x05)  
10 (0x0A)  
20 (0x14)  
23 (0x17)  
27 (0x1B)  
30 (0x1E)  
9.7.9.3 OPT_REG_1  
This register must be written with the following value, depending on which LMK0482x family part is used to  
optimize VCO1 phase-noise performance over temperature. This register must be written before writing register  
0x168 when using VCO1.  
Table 79. Register 0x17C  
BIT  
NAME  
DESCRIPTION  
21: LMK04821  
24: LMK04826  
21: LMK04828  
7:0  
OPT_REG_1  
98  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.9.4 OPT_REG_2  
This register must be written with the following value, depending on which LMK0482x family part is used to  
optimize VCO1 phase-noise performance over temperature. This register must be written before writing register  
0x168 when using VCO1.  
Table 80. Register 0x17D  
BIT  
NAME  
DESCRIPTION  
51: LMK04821  
119: LMK04826  
51: LMK04828  
7:0  
OPT_REG_2  
9.7.9.5 RB_PLL1_LD_LOST, RB_PLL1_LD, CLR_PLL1_LD_LOST  
Table 81. Register 0x182  
BIT  
7:3  
2
NAME  
N/A  
DESCRIPTION  
Reserved  
RB_PLL1_LD_LOST  
This is set when PLL1 DLD edge falls. Does not set if cleared while PLL1 DLD is low.  
Read back 0: PLL1 DLD is low.  
Read back 1: PLL1 DLD is high.  
1
RB_PLL1_LD  
To reset RB_PLL1_LD_LOST, write CLR_PLL1_LD_LOST with 1 and then 0.  
0: RB_PLL1_LD_LOST is set on next falling PLL1 DLD edge.  
1: RB_PLL1_LD_LOST is held clear (0). User must clear this bit to allow RB_PLL1_LD_LOST to  
become set again.  
0
CLR_PLL1_LD_LOST  
9.7.9.6 RB_PLL2_LD_LOST, RB_PLL2_LD, CLR_PLL2_LD_LOST  
Table 82. Register 0x0x183  
BIT  
7:3  
2
NAME  
N/A  
DESCRIPTION  
Reserved  
RB_PLL2_LD_LOST  
This is set when PLL2 DLD edge falls. Does not set if cleared while PLL2 DLD is low.  
PLL1_LD_MUX or PLL2_LD_MUX must select setting 2 (PLL2 DLD) for valid reading of this bit.  
Read back 0: PLL2 DLD is low.  
1
RB_PLL2_LD  
Read back 1: PLL2 DLD is high.  
To reset RB_PLL2_LD_LOST, write CLR_PLL2_LD_LOST with 1 and then 0.  
0: RB_PLL2_LD_LOST is set on next falling PLL2 DLD edge.  
1: RB_PLL2_LD_LOST is held clear (0). User must clear this bit to allow RB_PLL2_LD_LOST to  
become set again.  
0
CLR_PLL2_LD_LOST  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
99  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
9.7.9.7 RB_DAC_VALUE(MSB), RB_CLKinX_SEL, RB_CLKinX_LOS  
This register provides read back access to CLKinX selection indicator and CLKinX LOS indicator. The 2 MSBs  
are shared with the RB_DAC_VALUE. See RB_DAC_VALUE section.  
Table 83. Register 0x184  
BIT  
NAME  
DESCRIPTION  
7:6  
RB_DAC_VALUE[9:8] See RB_DAC_VALUE section.  
Read back 0: CLKin2 is not selected for input to PLL1.  
Read back 1: CLKin2 is selected for input to PLL1.  
5
4
RB_CLKin2_SEL  
RB_CLKin1_SEL  
Read back 0: CLKin1 is not selected for input to PLL1.  
Read back 1: CLKin1 is selected for input to PLL1.  
Read back 0: CLKin0 is not selected for input to PLL1.  
Read back 1: CLKin0 is selected for input to PLL1.  
3
2
1
RB_CLKin0_SEL  
N/A  
Read back 1: CLKin1 LOS is active.  
Read back 0: CLKin1 LOS is not active.  
RB_CLKin1_LOS  
Read back 1: CLKin0 LOS is active.  
Read back 0: CLKin0 LOS is not active.  
0
RB_CLKin0_LOS  
9.7.9.8 RB_DAC_VALUE  
Contains the value of the DAC for user readback.  
FIELD NAME  
MSB  
LSB  
RB_DAC_VALUE  
0x184 [7:6]  
0x185 [7:0]  
Table 84. Registers 0x184 and 0x185  
POR  
DEFAULT  
BIT REGISTERS  
NAME  
DESCRIPTION  
RB_DAC_  
VALUE[9:8]  
DAC value is 512 on power-on reset; if PLL1 locks upon power-up, the DAC  
value changes.  
7:6  
7:0  
0x184  
0x185  
2
RB_DAC_  
VALUE[7:0]  
0
9.7.9.9 RB_HOLDOVER  
Table 85. Register 0x188  
BIT  
NAME  
DESCRIPTION  
7:5  
N/A  
Reserved  
Read back 0: Not in HOLDOVER  
Read back 1: In HOLDOVER  
4
RB_HOLDOVER  
N/A  
3:0  
Reserved  
100  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
9.7.9.10 SPI_LOCK  
Prevents SPI registers from being written to, except for 0x1FFD, 0x1FFE, and 0x1FFF. These registers must be  
written to sequentially and in order: 0x1FFD, 0x1FFE, 0x1FFF.  
These registers cannot be read back.  
MSB  
LSB  
0x1FFD [7:0]  
0x1FFE [7:0]  
0x1FFF [7:0]  
Table 86. Registers 0x1FFD, 0x1FFE, and 0x1FFF  
POR  
BIT REGISTERS  
NAME  
DESCRIPTION  
DEFAULT  
0: Registers unlocked.  
1 to 255: Registers locked  
7:0  
7:0  
0x1FFD  
0x1FFE  
SPI_LOCK[23:16]  
SPI_LOCK[15:8]  
0
0
0: Registers unlocked.  
1 to 255: Registers locked  
0 to 82: Registers locked  
83: Registers unlocked  
84 to 256: Registers locked  
7:0  
0x1FFF  
SPI_LOCK[7:0]  
83  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
101  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
10 Applications and Implementation  
10.1 Application Information  
To assist customers in frequency planning and designing loop filters, Texas Instruments provides PLLatinum Sim  
(www.ti.com/tool/PLLATINUMSIM-SW) and TICS Pro (www.ti.com/tool/TICSPRO-SW).  
10.2 Digital Lock Detect Frequency Accuracy  
The digital lock detect circuit is used to determine PLL1 locked, PLL2 locked, and holdover exit events. A window  
size and lock count register are programmed to set a ppm frequency accuracy of reference to feedback signals  
of the PLL, for each event to occur. When a PLL digital lock event occurs, the PLL digital lock detect is asserted  
true. When the holdover exit event occurs, the device exits holdover mode.  
EVENT  
PLL  
PLL1  
PLL2  
PLL1  
WINDOW SIZE  
PLL1_WND_SIZE  
PLL2_WND_SIZE  
PLL1_WND_SIZE  
LOCK COUNT  
PLL1_DLD_CNT  
PLL1 locked  
PLL2 locked  
Holdover exit  
PLL2_DLD_CNT  
HOLDOVER_DLD_CNT  
For a digital lock detect event to occur, there must be a “lock count” number of phase-detector cycles of PLLX,  
during which the time/phase error of the PLLX_R reference and PLLX_N feedback signal edges are within the  
user programmable "window size." Because there must be at least "lock count" phase-detector events before a  
lock event occurs, a minimum digital lock event time can be calculated as "lock count" / fPDX, where X = 1 for  
PLL1 or 2 for PLL2.  
By using Equation 6, values for a "lock count" and "window size" can be chosen to set the frequency accuracy  
required by the system in ppm before the digital lock detect event occurs:  
1e6 × PLLX_WND_SIZE × fPDX  
ppm =  
PLLX_DLD_CNT  
(6)  
The effect of the "lock count" value is that it shortens the effective lock window size by dividing the "window size"  
by "lock count".  
If at any time the PLLX_R reference and PLLX_N feedback signals are outside the time window set by "window  
size", then the “lock count” value is reset to 0.  
10.2.1 Minimum Lock Time Calculation Example  
To calculate the minimum PLL2 digital lock time given a PLL2 phase-detector frequency of 40 MHz and  
PLL2_DLD_CNT = 10,000: the minimum lock time of PLL2 is 10,000 / 40 MHz = 250 µs.  
102  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
10.3 Driving CLKin and OSCin Inputs  
10.3.1 Driving CLKin and OSCin Pins With a Differential Source  
Both CLKin ports can be driven by differential signals. TI recommends that the CLKin input mode be set to  
bipolar (CLKinX_TYPE = 0) when using differential reference clocks. The OSCin input mode is hard-wired to  
bipolar-equivalent. The LMK0482x family internally biases the input pins, thus the differential interface should be  
AC coupled. The recommended circuits for driving the CLKin/OSCin pins with either LVDS or LVPECL are  
shown in Figure 24 and Figure 25.  
Figure 24. CLKinX and OSCin Termination for an LVDS Reference Clock Source  
Figure 25. CLKinX and OSCin Termination for an LVPECL Reference Clock Source  
A reference clock source that produces a differential sine wave output can drive the CLKin/OSCin pins using the  
following circuit. The signal level must conform to the requirements for the CLKin/OSCin pins listed in Electrical  
Characteristics.  
Figure 26. CLKinX and OSCin Termination for a Differential Sinewave Reference Clock Source  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
103  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
 
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Driving CLKin and OSCin Inputs (continued)  
10.3.2 Driving CLKin and OSCin Pins With a Single-Ended Source  
The CLKin/OSCin pins of the LMK0482x family can be driven using a single-ended reference clock source; for  
example, either a sine wave source or an LVCMOS/LVTTL source. For the CLKin pins, either AC coupling or DC  
coupling may be used. For the OSCin pins, AC coupling is required. In the case of the sine wave source that is  
expecting a 50-Ω load, TI recommends using AC coupling, as shown in the circuit below with a 50-Ω termination.  
NOTE  
The signal level must conform to the requirements for the CLKin/OSCin pins listed in  
Electrical Characteristics. CLKinX_TYPE is recommended to be set to bipolar mode  
(CLKinX_TYPE = 0). OSCin is hard-wired to bipolar mode.  
Figure 27. CLKinX and OSCin Single-Ended Termination  
If the CLKin pins are being driven with a single-ended LVCMOS/LVTTL source, either DC coupling or AC  
coupling may be used. If DC coupling is used, the CLKinX_TYPE should be set to MOS buffer mode  
(CLKinX_TYPE = 1), and the voltage swing of the source must meet the specifications for DC-coupled, MOS-  
mode clock inputs given in Electrical Characteristics. If AC coupling is used, the CLKinX_TYPE should be set to  
the bipolar buffer mode (CLKinX_TYPE = 0), and the voltage swing at the input pins must meet the specifications  
for AC-coupled, bipolar-mode clock inputs given in Electrical Characteristics. In AC-coupled bipolar mode, some  
attenuation of the clock input level may be required. A simple resistive divider circuit before the AC coupling  
capacitor is sufficient.  
Figure 28. DC-Coupled LVCMOS/LVTTL Reference Clock  
104  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
10.4 Output Termination and Biasing  
10.4.1 LVPECL  
Figure 29 shows the recommended resistor biasing configuration for the LVPECL format for both CLKout and  
OSCout pins. The LVPECL emitter resistors for DCLKoutX or SDCLKoutY can be selected such that 120 Ω Re  
240 Ω. When OSCout (pins 40 and 41) are configured to provide a buffered oscillator output in LVPECL  
format, TI recommends setting the value of the emitter resistors for OSCout to 240 Ω. To avoid bias mismatch or  
excessive loading of the bias circuitry, TI recommends connecting LVPECL outputs to the load through AC-  
coupling capacitors as shown.  
Figure 29. LVPECL Biasing for CLKout and OSCout  
10.4.2 LVDS/HSDS  
Figure 30 shows the recommended resistor biasing configuration for the LVDS/HSDS format for both CLKout  
and OSCout pins. When connecting an HSDS output to a load, it should be AC-coupled. In cases where the  
common mode output voltage of the LMK0482x family LVDS matches the common mode input voltage of the  
LVDS receiver, DC coupling can be used; however, frequently LVDS is also AC-coupled to avoid any  
driver/receiver mismatch issues.  
The LVDS/HSDS driver requires a DC path for current from CLKoutX to CLKoutX* and from OSCout to OSCout*  
on initial startup. If a DC path for current is not present on startup, LVDS/HSDS outputs may start up with lower  
amplitude than expected, and in some cases could generate runt pulses or fail to oscillate for some time after  
startup. Whenever AC-coupled LVDS or HSDS is used with external termination, the 100-Ω termination should  
be placed on the LMK0482x side of the AC-coupling capacitors as illustrated in Figure 30.  
Figure 30. LVDS/HSDS Output Termination for OSCout and CLKout, External Receiver Termination  
In cases where the termination is internal to the receiver, place 560 Ω close to the CLKoutX/X* or  
OSCout/OSCout* pins, to provide a DC path for the output on startup as illustrated in Figure 31.  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
105  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
 
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Output Termination and Biasing (continued)  
Figure 31. LVDS/HSDS Output Termination for OSCout and CLKout, Internal Receiver Termination  
106  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
10.5 Typical Applications  
10.5.1 Design Example  
This design example below highlights using the available tools to design loop filters and create a programming  
map for the LMK0482x.  
10.5.1.1 Design Requirements  
Clocks outputs:  
1x 245.76-MHz clock for JESD204B ADC, LVPECL.  
This clock requires the best performance in this example.  
2x 983.04-MHz clock for JESD204B DAC, LVPECL.  
1x 122.88-MHz clock for JESD204B FPGA block, LVDS  
4x 10.24-MHz SYSREF for ADC (LCPECL), DAC (LVPECL), FPGA (LVDS).  
2x 122.88-MHz clock for FPGA, LVDS  
For best performance, the highest possible phase detector frequency is used at PLL2. As such, a 122.88-MHz  
VCXO is used.  
10.5.1.2 Detailed Design Procedure  
This information is current as of the date of the release of this data sheet. Design tools receive continuous  
improvements to add features and improve model accuracy. Refer to the software instructions or training for the  
latest features.  
10.5.1.2.1 Device Configuration and Simulation - PLLatinum Sim  
Select the LMK04828 and choose the PLL and VCO to simulate. Make adjustments for more accurate  
simulations depending on the application. For example:  
Enter the VCO gain of the external VCXO or possible external VCO-used device.  
Adjust the charge pump current to help with loop filter component selection. Lower charge pump currents  
result in smaller components, but may increase impacts of leakage, and at the lowest values reduce PLL  
phase-noise performance.  
PLLatinum Sim allows loading a custom phase noise plot for any block. Typically, a custom phase-noise plot  
is entered for CLKin to match the reference phase noise to device; a phase-noise plot for the VCXO can  
additionally be provided to match the performance of VCXO used. For improved accuracy in simulation and  
optimum loop filter design, load these custom noise profiles for use in the application.  
The design tools return with high reference and phase-detector frequencies by default. If desired, experiment  
with different reference divider settings, phase detector frequencies, and loop bandwidths. Due to the narrow  
loop bandwidth used on PLL1, it is common to reduce the phase detector frequency on PLL1.  
10.5.1.2.2 Device Programming  
Using the PLLatinum Sim configuration, the TICS Pro software is manually updated with this information to meet  
the required application. For the JESD204B outputs, place the device clocks on the DCLKoutX output, then turn  
on the paired SDCLKoutY output for SYSREF output. For non-JESD204B outputs, both DCLKoutX and paired  
SDCLKoutY may be driven by the device clock divider to maximize number of available outputs.  
Frequency planning for assignment of outputs:  
To minimize crosstalk, perform frequency planning / CLKout assignments to keep common frequencies on  
outputs close together.  
It is best to place common device clock output frequencies on outputs sharing the same Vcc group. For  
example, these outputs share Vcc4_CG2. Refer to Pin Configuration and Functions to see the Vcc groupings  
the clock outputs.  
In this example, the 245.76-MHz ADC output requires the best performance. DCLKout2 on the LMK0482x  
provides the best noise floor / performance. The 245.76 MHz is placed on DCLKout2 with 10.24-MHz SYSREF  
on SDCLKout3.  
For best performance, the input and output drive level bits may be set. Best noise floor performance is  
achieved with CLKout2_IDL = 1 and CLKout2_ODL = 1.  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
107  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Typical Applications (continued)  
In this example, the 983.04-MHz DAC output is placed on DCLKout4 and DCLKout6, with 10.24-MHz SYSREF  
on paired SDCLKout5 and SDCLKout7 outputs.  
These outputs share Vcc4_CG2.  
In this example, the 122.88-MHz FPGA JESD204B output is placed on DCLKout10, with 10.24-MHz SYSREF on  
paired SDCLKout11 output.  
Additionally, the 122.88-MHz FPGA non-JESD204B outputs are placed on DCLKout8 and SDCLKout9.  
When frequency planning, consider PLL2 as a clock output at the phase-detector frequency. As such, these  
122.88-MHz outputs have been placed on the outputs close to the PLL2 and charge pump power supplies.  
The register programming can be validated live on the device, with a SPI header wired to a TI USB2ANY  
programmer. When the device programming is completed as desired in the TICS Pro software, it is possible to  
export the register settings by using the Export Hex Registers option in the file menu.  
10.5.1.3 Application Curves  
Figure 32. DCLKout0, 245.76-MHz  
LVPECL20 With 240-Ω Emitter Resistors  
CLKout0_1_IDL = 1, CLKout0_1_ODL = 1  
Figure 33. DCLKout2, 245.76-MHz  
LVPECL20 With 240-Ω Emitter Resistors  
CLKout2_3_IDL = 1, CLKout2_3_ODL = 1  
108  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
Typical Applications (continued)  
Figure 34. DCLKout4, 983.04-MHz  
LVPECL16 With 240-Ω Emitter Resistors  
CLKout4_5_IDL = 1, CLKout4_5_ODL = 0  
Figure 35. DCLKout6, 983.04-MHz  
LVPECL16 With 240-Ω Emitter Resistors  
CLKout6_7_IDL = 1, CLKout6_7_ODL = 0  
Figure 36. DCLKout10, 122.88 MHz, LVDS  
CLKout10_11_IDL = 1, CLKout10_11_ODL = 0  
Figure 37. SDCLKout11, 122.88 MHz, LVDS  
CLKout10_11_IDL = 1, CLKout10_11_ODL = 0  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
109  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
Typical Applications (continued)  
Figure 38. OSCout, 122.88 MHz, LVCMOS (Norm/Inv)  
Normal Output Measured, Inverse 50-Ω Termination  
Figure 39. Direct VCXO Measurement  
Open Loop, Holdover Mode Set  
10.6 System Examples  
10.6.1 System Level Diagram  
Figure 40 and Figure 41 show an LMK0482x family device with external circuitry for clocking and for power  
supply to serve as a guideline for good practices when designing with the LMK0482x family. Refer to Pin  
Connection Recommendations for more details on the pin connections and bypassing recommendations. Also  
refer to the evaluation board in LMK04826/28 User's Guide. PCB design will also play a role in device  
performance.  
110  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
System Examples (continued)  
Figure 40. Example Application - System Schematic Except for Power  
Figure 40 shows the primary reference clock input is at CLKin0/0*. A secondary reference clock is driving  
CLKin1/1*. Both clocks are depicted as AC-coupled drivers. The VCXO attached to the OSCin/OSCin* port is  
configured as an AC-coupled single-ended driver. Any of the input ports (CLKin0/0*, CLKin1/1*, CLKin2/2*,  
OSCin/OSCin*) may be configured as either differential or single-ended (see Driving CLKin and OSCin Inputs).  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
111  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
System Examples (continued)  
The loop filter for PLL1 is configured as a 2nd-order passive filter, while the loop filter for PLL2 is configured as a  
4th order passive filter (using internal 3rd and 4th order components). Typically it is not necessary to increase the  
filter beyond 2nd order for PLL1. PLL2 allows software programmability of the 3rd and 4th order components  
(see PLL2 Integrated Loop Filter Poles). PLLatinum Sim can be used to compute the loop filter values for optimal  
phase noise.  
All the LVPECL clock outputs are AC-coupled with 0.1 µF capacitors. Some LVPECL outputs are depicted with  
240-Ω emitter resistors, and some are depicted with 150-Ω emitter resistors. LVPECL clock outputs can use  
emitter resistors between 120 Ω and 240 Ω. OSCout LVPECL format only supports 240-Ω emitter resistors is  
depicted with 240-Ω emitter resistors. The LCPECL SYSREF output is DC-coupled, with termination values  
matching the conditions specified for LCPECL in the Electrical Characteristics. The non-JESD204B LVDS  
outputs are AC-coupled, and include 560 Ω between the pins of the differential pair to create a DC path for  
current on startup (see LVDS/HSDS). The JESD204B LVDS outputs are DC-coupled. Unused outputs are left  
floating.  
PCB design will influence crosstalk performance. Tightly coupled clock traces will have less crosstalk than  
loosely coupled clock traces. Proximity to other clock traces will influence crosstalk.  
Figure 41. Example Application - Power System Schematic  
112  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
System Examples (continued)  
Figure 41 shows an example decoupling and bypassing scheme for the LMK0482x, which could apply to the  
configuration shown in Figure 40. Components drawn in dotted lines are optional (see Pin Connection  
Recommendations). Two power planes are used in these example designs, one for the clock outputs and one for  
the PLL circuits. It is possible to reduce the number of decoupling components by tying together clock output Vcc  
pins for CLKouts that share the same frequency or otherwise can tolerate potential crosstalk between outputs  
with different frequencies. In the two examples, Vcc2 and Vcc11 can be tied together since no outputs are  
utilized from Clock Group 0. PCB design will influence impedance to the supply. Vias and traces will increase the  
impedance to the power supply. Ensure good direct return current paths.  
10.7 Do's and Don'ts  
VCC Pins and Decoupling: all VCC pins must always be connected.  
Unused Clock Outputs: leave unused clock outputs floating and powered down.  
Unused Clock Inputs: unused clock inputs can be left floating.  
OSCout: When set to an LVPECL drive format, OSCout emitter resistors should be 240 Ω to GND.  
Otherwise, OSCout may be treated like any other clock output.  
LVDS/HSDS Outputs: Ensure that there is a DC path for current from CLKoutX to CLKoutX*, and from  
OSCout to OSCout*, for all LVDS/HSDS outputs at startup. See LVDS/HSDS.  
RESET Pin: If the RESET pin is used, place a capacitor on RESET pin to prevent external noise from  
causing device reset. If reset functionality is not used, consider resetting GPIO as output to prevent external  
noise from causing device reset.  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
113  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
11 Power Supply Recommendations  
11.1 Pin Connection Recommendations  
11.1.1 VCC Pins and Decoupling  
All Vcc pins must always be connected.  
Integrated capacitance on the LMK0482x makes external high frequency decoupling capacitors (<1 nF)  
unnecessary. The internal capacitance is more effective at filtering high frequency noise than off-device bypass  
capacitance because there is no bond wire inductance between the LMK0482x circuit and the bypass capacitor.  
For lower-frequency decoupling and voltage stabilization, decoupling capacitors are still beneficial.  
11.1.1.1 Clock Output Supplies  
These supplies include Vcc2_CG1, Vcc3_SYSREF, Vcc4_CG2, Vcc11_CG3, and Vcc12_CG0. If OSCout is  
used, Vcc7_OSCout can also be considered a clock output supply.  
Ferrite beads may be used to reduce crosstalk between different clock groups on the same LMK0482x device.  
Ferrite beads placed between the power supply and a clock group Vcc pin should reduce noise between the Vcc  
pin and the power supply modestly above 30 MHz. Below 30 MHz, integrated LDOs provide additional noise  
mitigation. When two clock groups share the same frequency, or if a clock group is not used, a single ferrite bead  
can be used between the power supply and each same-frequency clock group Vcc pin.  
When using ferrite beads on clock group Vcc pins, consider the following guidelines to ensure the power supply  
will source the needed switching current:  
In cases with an output frequency > 30 MHz, a ferrite bead may be placed and the internal capacitance is  
sufficient  
If a ferrite bead is used with a low frequency output (< 30 MHz), and the output format is set to a high current  
switching format such as LVPECL or LCPECL, then:  
The ferrite bead can be removed to lower the impedance to the main power supply and bypass capacitors,  
or  
Localized capacitance can be placed between the ferrite bead and Vcc pin to support the switching  
current.  
Note: the decoupling capacitors used between the ferrite bead and a clock group Vcc pin can permit  
high frequency switching noise to couple through the capacitors into the ground plane and onto other  
clock VCC pins through their decoupling capacitors. Placing unnecessary decoupling capacitances, or  
placing ferrite beads with excessive impedance at high frequency (> 200 Ω) can degrade crosstalk  
performance.  
If the OSCout buffer format is LVCMOS, TI recommends using a complementary output format such as  
LVCMOS (Norm/Inv) to reduce switching noise and crosstalk. If only a single LVCMOS output is required,  
the complementary LVCMOS output format can still be used by leaving the unused LVCMOS output  
floating.  
Vcc3_SYSREF powers both the SYSREF divider and the SYNC circuitry. If SYNC is used but the SYSREF  
divider is not, Vcc3_SYSREF can be connected to any other clock output supply without impacting noise  
performance.  
11.1.1.2 Low-Crosstalk Supplies  
These supplies include Vcc1_VCO, Vcc5_DIG, and Vcc6_PLL1.  
Each of these pins has internal bypass capacitance. Ferrite beads should not be needed between these pins and  
the power supply. A ferrite bead can optionally before the common point connecting these supplies, in which  
case a large decoupling capacitance (1 µF or more) should be used for voltage stability after the ferrite bead.  
The typical application diagram in Figure 41 shows all these supply pins connected together to the power supply  
with an optional ferrite bead and decoupling capacitance.  
114  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
Pin Connection Recommendations (continued)  
These supplies are considered low-crosstalk supplies because they do not generate much noise. Vcc1_VCO  
noise is effectively captured by the on-chip bypass capacitance, since noise from this pin is typically very high  
frequency. This pin also uses a high-quality integrated LDO to minimize noise below 30 MHz. Vcc5_DIG is only  
active at startup and during GPIO events, so after startup there is no continuous noise contribution from this pin.  
Vcc6_PLL1 is usually low-noise as well, due to the low frequency of the PLL1 phase detector. An on-chip LDO  
regulates this supply and prevents most PLL1 charge pump noise from escaping. If the PLL1 phase detector is  
set to a high frequency, a ferrite bead may optionally be used on this supply. If a ferrite bead is used with this  
supply, the DC resistance of this ferrite bead should be minimized to avoid voltage fluctuation at the PLL1  
supply/PLL1 charge pump, and a 0.1-µF decoupling capacitor should be placed after the ferrite bead close to the  
supply pin.  
11.1.1.3 PLL2 Supplies  
These supplies include Vcc9_CP2 and Vcc10_PLL2.  
Each of these pins has an internal bypass capacitor. A ferrite bead should be placed between the power supply  
and Vcc9. The DC resistance of this ferrite bead should be minimized to avoid voltage fluctuations at the PLL2  
charge pump. Typically the frequency of the PLL2 phase detector is >50 MHz and an external decoupling  
capacitor is not necessary. For lower PLL2 phase detector frequencies, a 0.1-µF decoupling capacitor should be  
placed after the ferrite bead close to the supply pin. Use of a ferrite bead between the power supply and  
Vcc10_PLL2 is optional. Normally the frequency of the dividers used by PLL2 is high enough that all noise is  
well-constrained by the on-chip bypass capacitance. If a ferrite bead is used, a 0.1-µF decoupling capacitor  
should be placed after the ferrite bead close to the supply pin.  
11.1.1.4 Clock Input Supplies  
These supplies include Vcc6_PLL1 and Vcc9_OSCin. If CLKin2 is used, Vcc7_OSCout is also included.  
For Vcc6_PLL1, follow guidance in Low-Crosstalk Supplies. For Vcc9_OSCin, a ferrite bead is recommended for  
VCXO frequencies above 30 MHz. Typically above 100 MHz no bypass capacitance is necessary on this pin, but  
if the OSCin frequency is < 100 MHz, a 0.1-µF decoupling capacitor should be placed after the ferrite bead close  
to the supply pin. Vcc7_OSCout should follow similar guidance to Vcc9 for CLKin2 above 30 MHz, and  
Vcc6_PLL1 for CLKin2 below 30 MHz.  
When CLKin1 is used as Fin or FBCLKin, TI recommends using CLKin2 as the source to PLL1 whenever  
possible. CLKin0 and CLKin1 share Vcc6_PLL1 supply, and in cases where Fin or FBCLKin is high frequency,  
CLKin0 can crosstalk to Fin/FBCLKin through Vcc6_PLL1. CLKin2 is powered from Vcc7_OSCout, and the  
crosstalk between Fin/FBCLKin and CLKin2 is significantly reduced as a result.  
11.1.1.5 Unused Clock Inputs/Outputs  
Leave unused clock inputs and outputs floating. Set unused clock outputs to powerdown format, and disable  
unused channel pairs. If the SYSREF is not used in a channel pair, SDCLKoutY_PD can be set. For maximum  
power savings and noise immunity, set DCLKoutX_PD, SDCLKoutY_PD, and CLKoutX_Y_PD on all unused  
channel pairs.  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
115  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
11.2 Current Consumption / Power Dissipation Calculations  
From Table 87, the current consumption can be calculated for any configuration. The data below is typical and  
not assured.  
The TICS Pro device profiles for LMK0482x family devices also include a current calculator, which performs real-  
time analysis of the register settings and estimates the current consumption based on which blocks are enabled.  
TI strongly recommends using TICS Pro to compute the current for any device profile, as it is faster and more  
flexible than manual computation using the table below. TICS Pro does not require a connection to the  
LMK0482x to generate a current consumption estimate or a register file.  
Table 87. Typical Current Consumption for Selected Functional Blocks  
(TA = 25 °C, VCC = 3.3 V)  
POWER  
TYPICAL ICC  
(mA)  
DISSIPATED  
in DEVICE  
(mW)  
BLOCK  
CONDITION  
CORE and FUNCTIONAL BLOCKS  
Core  
Dual loop, internal VCO0  
VCO1 is selected  
PLL1 and PLL2 locked  
131.5  
13.5  
22  
433.95  
44.55  
72.6  
LMK04826/LMK04828  
LMK04821  
VCO (with VCO divider for  
LMK04821)  
OSCin Doubler  
CLKin  
Doubler is enabled  
EN_PLL2_REF_2X = 1  
3
9.9  
Any one of the CLKinX is enabled  
4.9  
1.3  
16.17  
4.29  
Holdover is enabled  
Hitless switch is enabled  
Track mode  
HOLDOVER_EN = 1  
HOLDOVER_HITLESS_SWI  
TCH = 1  
Holdover  
0.9  
2.97  
TRACK_EN = 1  
2.5  
7.6  
8.25  
25.08  
89.76  
SYNC_EN = 1  
Required for SYNC and SYSREF functionality  
Enabled  
SYSREF_PD = 0  
27.2  
Dynamic digital delay  
enabled  
SYSREF_DDLY_PD = 0  
5
16.5  
SYSREF  
Pulser is enabled  
SYSREF_PLSR_PD = 0  
SYSREF_MUX = 2  
SYSREF_MUX = 3  
4.1  
3
13.53  
9.9  
SYSREF pulses mode  
SYSREF continuous mode  
3
9.9  
CLOCK GROUP  
Enabled  
IDL  
Any one of the CLKoutX_Y_PD = 0  
Any one of the CLKoutX_Y_IDL = 1  
Andy one of the CLKoutX_Y_ODL = 1  
20.1  
2.2  
66.33  
7.26  
ODL  
3.2  
10.56  
44.88  
58.41  
44.88  
Divider only  
DCLKoutX_MUX = 0  
13.6  
17.7  
13.6  
Clock Divider  
Divider + DCC + HS  
Analog delay + divider  
DCLKoutX_MUX = 1  
DCLKoutX_MUX = 3  
CLOCK OUTPUT BUFFERS  
LVDS  
100-Ω differential termination  
6
19.8  
29.04  
38.28  
64.02  
HSDS 6 mA, 100-Ω differential termination  
HSDS 8 mA, 100-Ω differential termination  
HSDS 10 mA, 100-Ω differential termination  
8.8  
HSDS  
11.6  
19.4  
OSCout BUFFERS  
LVDS  
100-Ω differential termination  
18.5  
42.6  
27  
61.05  
140.58  
89.1  
LVCMOS pair  
150 MHz  
150 MHz  
LVCMOS  
LVCMOS single  
116  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
 
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
12 Layout  
12.1 Layout Guidelines  
12.1.1 Thermal Management  
Power consumption of the LMK0482x family of devices can be high enough to require attention to thermal  
management. For reliability and performance reasons, the die temperature should be limited to a maximum of  
125°C. That is, as an estimate, TA (ambient temperature) plus device power consumption multiplied by RθJA  
should not exceed 125°C.  
The package of the device has an exposed pad that provides the primary heat removal path, as well as excellent  
electrical grounding to a printed circuit board. To maximize the removal of heat from the package, a thermal land  
pattern, including multiple vias to a ground plane, must be incorporated on the PCB within the footprint of the  
package. The exposed pad must be soldered down to ensure adequate heat conduction out of the package.  
7.2 mm  
0.2 mm  
1.46 mm  
1.15 mm  
Figure 42. Recommended Land and Via Pattern  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
117  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
SNAS605AS MARCH 2013REVISED MAY 2020  
www.ti.com  
12.2 Layout Example  
Figure 43. LMK0482x Layout Example  
118  
Submit Documentation Feedback  
Copyright © 2013–2020, Texas Instruments Incorporated  
Product Folder Links: LMK04821 LMK04826 LMK04828  
LMK04821, LMK04826, LMK04828  
www.ti.com  
SNAS605AS MARCH 2013REVISED MAY 2020  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 Development Support  
13.1.1.1 PLLatinum Sim  
Loop filter design and simulation.  
For PLLatinum Sim, go to www.ti.com/tool/PLLATINUMSIM-SW.  
13.1.1.2 TICS Pro  
EVM programming software. Can also be used to generate register map for programming for a specific  
application.  
For TICS Pro, go to www.ti.com/tool/TICSPRO-SW  
13.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 88. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
LMK04821  
LMK04826  
LMK04828  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
13.3 Trademarks  
PLLatinum is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.4 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
13.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2013–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
119  
Product Folder Links: LMK04821 LMK04826 LMK04828  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMK04821NKDR  
LMK04821NKDT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
NKD  
NKD  
NKD  
NKD  
NKD  
NKD  
NKD  
NKD  
64  
64  
64  
64  
64  
64  
64  
64  
1000 RoHS & Green  
250 RoHS & Green  
1000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
K04821NKD  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
K04821NKD  
K04826BISQ  
K04826BISQ  
K04826BISQ  
K04828BISQ  
K04828BISQ  
K04828BISQ  
LMK04826BISQ/NOPB  
LMK04826BISQE/NOPB  
LMK04826BISQX/NOPB  
LMK04828BISQ/NOPB  
LMK04828BISQE/NOPB  
LMK04828BISQX/NOPB  
2000 RoHS & Green  
1000 RoHS & Green  
250  
RoHS & Green  
2000 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LMK04828 :  
Enhanced Product: LMK04828-EP  
NOTE: Qualified Version Definitions:  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMK04821NKDR  
LMK04821NKDT  
WQFN  
WQFN  
WQFN  
NKD  
NKD  
NKD  
NKD  
NKD  
NKD  
NKD  
NKD  
64  
64  
64  
64  
64  
64  
64  
64  
1000  
250  
330.0  
178.0  
330.0  
178.0  
330.0  
330.0  
178.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
9.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
LMK04826BISQ/NOPB  
1000  
250  
LMK04826BISQE/NOPB WQFN  
LMK04826BISQX/NOPB WQFN  
2000  
1000  
250  
LMK04828BISQ/NOPB  
WQFN  
LMK04828BISQE/NOPB WQFN  
LMK04828BISQX/NOPB WQFN  
2000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMK04821NKDR  
LMK04821NKDT  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
NKD  
NKD  
NKD  
NKD  
NKD  
NKD  
NKD  
NKD  
64  
64  
64  
64  
64  
64  
64  
64  
1000  
250  
356.0  
208.0  
356.0  
208.0  
356.0  
356.0  
208.0  
356.0  
356.0  
191.0  
356.0  
191.0  
356.0  
356.0  
191.0  
356.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
LMK04826BISQ/NOPB  
LMK04826BISQE/NOPB  
LMK04826BISQX/NOPB  
LMK04828BISQ/NOPB  
LMK04828BISQE/NOPB  
LMK04828BISQX/NOPB  
1000  
250  
2000  
1000  
250  
2000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
NKD 64  
9 x 9, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4229637/A  
www.ti.com  
PACKAGE OUTLINE  
NKD0064A  
WQFN - 0.8 mm max height  
S
C
A
L
E
1
.
6
0
0
WQFN  
9.1  
8.9  
A
B
PIN 1 INDEX AREA  
0.5  
0.3  
9.1  
8.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
0.8 MAX  
C
SEATING PLANE  
(0.1)  
TYP  
7.2 0.1  
SEE TERMINAL  
DETAIL  
17  
32  
60X 0.5  
33  
16  
4X  
7.5  
1
48  
0.3  
64X  
PIN 1 ID  
64  
49  
0.2  
(OPTIONAL)  
0.1  
C A  
C
B
0.5  
0.3  
64X  
0.05  
4214996/A 08/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NKD0064A  
WQFN - 0.8 mm max height  
WQFN  
(
7.2)  
SYMM  
64X (0.6)  
64X (0.25)  
SEE DETAILS  
49  
64  
1
48  
60X (0.5)  
SYMM  
(8.8)  
(1.36)  
TYP  
8X (1.31)  
33  
(
0.2) VIA  
TYP  
16  
17  
32  
(1.36) TYP  
8X (1.31)  
(8.8)  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214996/A 08/2013  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NKD0064A  
WQFN - 0.8 mm max height  
WQFN  
SYMM  
(1.36) TYP  
49  
64X (0.6)  
64X (0.25)  
64  
1
48  
(1.36)  
TYP  
60X (0.5)  
SYMM  
(8.8)  
METAL  
TYP  
16  
33  
17  
32  
25X (1.16)  
(8.8)  
SOLDERPASTE EXAMPLE  
BASED ON 0.125mm THICK STENCIL  
EXPOSED PAD  
65% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
4214996/A 08/2013  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

LMK04826

具有集成式 1840 至 1970MHz VCO0 且符合 JESD204B 标准的超低噪声时钟抖动消除器
TI

LMK04826B

LMK0482xB Ultra Low-Noise JESD204B Compliant Clock Jitter Cleaner with Dual Loop PLLs
TI

LMK04826BISQ/NOPB

LMK0482xB Ultra Low-Noise JESD204B Compliant Clock Jitter Cleaner with Dual Loop PLLs
TI

LMK04826BISQE/NOPB

LMK0482xB Ultra Low-Noise JESD204B Compliant Clock Jitter Cleaner with Dual Loop PLLs
TI

LMK04826BISQX/NOPB

LMK0482xB Ultra Low-Noise JESD204B Compliant Clock Jitter Cleaner with Dual Loop PLLs
TI

LMK04828

具有集成式 2370 至 2630MHz VCO0 且符合 JESD204B 标准的超低噪声时钟抖动消除器
TI

LMK04828-EP

温度范围为 -55°C 至 105°C 且符合 JESD204B 标准的超低噪声时钟抖动消除器
TI

LMK04828B

LMK0482xB Ultra Low-Noise JESD204B Compliant Clock Jitter Cleaner with Dual Loop PLLs
TI

LMK04828BISQ

IC OTHER CLOCK GENERATOR, Clock Generator
TI

LMK04828BISQ/NOPB

LMK0482xB Ultra Low-Noise JESD204B Compliant Clock Jitter Cleaner with Dual Loop PLLs
TI

LMK04828BISQE/NOPB

LMK0482xB Ultra Low-Noise JESD204B Compliant Clock Jitter Cleaner with Dual Loop PLLs
TI

LMK04828BISQX/NOPB

LMK0482xB Ultra Low-Noise JESD204B Compliant Clock Jitter Cleaner with Dual Loop PLLs
TI