LMK1D1208P [TI]

带引脚控制的 8 通道输出 1.8V、2.5V 和 3.3V LVDS 缓冲器;
LMK1D1208P
型号: LMK1D1208P
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

带引脚控制的 8 通道输出 1.8V、2.5V 和 3.3V LVDS 缓冲器

文件: 总31页 (文件大小:2260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
LMK1D1208P 引脚控制OE 低附加抖LVDS 缓冲器  
1 特性  
3 说明  
• 具2 路输入8 路输(2:8) 的高性LVDS 时  
钟缓冲器系列  
• 输出频率最高可2GHz  
• 通过硬件引脚实现启用/禁用独立输出  
• 电源电压1.8V/2.5V/3.3V ± 5%  
• 低附加抖动156.25MHz 下小12kHz 20MHz  
范围内60fs rms 最大值  
LMK1D1208P 时钟缓冲器将两个中的任何一个可选时  
钟输入IN0 IN1分配给 8 对差分 LVDS 时钟输出  
OUT0 OUT7),通过超小延迟实现时钟分配。输  
入可以为 LVDSLVPECLLVCMOSHCSL 或  
CML。  
LMK1D1208P 专为驱动 50传输线路而设计。在单端  
模式下驱动输入时对未使用的负输入引脚施加适当的  
偏置电压请参阅9-6IN_SEL 引脚用于选择要  
发送到输出的输入。该器件支持失效防护输入功能。该  
器件还整合了输入迟滞可防止在没有输入信号的情况  
下输出随机振荡。  
– 超低相位本底噪声-164dBc/Hz典型值)  
• 超低传播延迟< 575ps最大值)  
• 输出偏斜20ps最大值)  
• 失效防护输入  
• 通用输入接LVDSLVPECLLVCMOSHCSL  
CML  
LVDS 基准电(VAC_REF) 适用于容性耦合输入  
• 工业温度范围40°C 105°C  
• 可用封装:  
各个 LVDS 差分输出均可通过将对应的 OEx 引脚设置  
为逻辑高电平“1”来实现。如果此引脚设置为逻辑低  
电平“0输出将被禁用呈现高阻态从而降低功  
耗。  
6mm × 6mm 40 VQFN (RHA)  
该器件可在 1.8V2.5V 3.3V 电源环境下工作额  
定温度范围40°C 105°C环境温度。  
2 应用  
封装信息  
电信及网络  
医疗成像  
封装尺寸标称值)  
封装(1)  
器件型号  
(2)  
测试和测量  
无线基础设施  
专业音频、视频和标牌  
LMK1D1208P  
VQFN (40)  
6.00mm × 6.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 封装尺寸× 为标称值并包括引脚如适用。  
ADC CLOCK  
500 MHz  
156.25 MHz  
Oscillator  
LMK1D1208P  
LVDS Buffer  
IN_SEL  
FPGA CLOCK  
OEx  
应用示例  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNAS832  
 
 
 
 
 
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
Table of Contents  
9.2 Functional Block Diagram.........................................13  
9.3 Feature Description...................................................14  
9.4 Device Functional Modes..........................................14  
10 Application and Implementation................................17  
10.1 Application Information........................................... 17  
10.2 Typical Application.................................................. 17  
10.3 Power Supply Recommendations...........................20  
10.4 Layout..................................................................... 21  
11 Device and Documentation Support..........................22  
11.1 Documentation Support.......................................... 22  
11.2 支持资源..................................................................22  
11.3 Trademarks............................................................. 22  
11.4 静电放电警告...........................................................22  
11.5 术语表..................................................................... 22  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison.........................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings............................................................... 6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................7  
7.5 Electrical Characteristics.............................................7  
7.6 Typical Characteristics..............................................10  
8 Parameter Measurement Information.......................... 11  
9 Detailed Description......................................................13  
9.1 Overview...................................................................13  
Information.................................................................... 22  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (October 2021) to Revision A (June 2023)  
Page  
• 将表标题从“器件信息”更改为“封装信息”....................................................................................................1  
Added the Device Comparison table for LMK1Dxxxx buffer family of devices................................................... 3  
Moved the Power Supply Recommendations and Layout section to the Application and Implementation  
section.............................................................................................................................................................. 20  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS832  
2
Submit Document Feedback  
Product Folder Links: LMK1D1208P  
 
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
5 Device Comparison  
5-1. Device Comparison  
OUTPUT  
DEVICE  
DEVICE TYPE  
FEATURES  
SWING  
PACKAGE  
BODY SIZE  
Global output enable and  
swing control through pin  
control  
350 mV  
500 mV  
350 mV  
500 mV  
350 mV  
500 mV  
350 mV  
500 mV  
LMK1D2108  
Dual 1:8  
Dual 1:6  
Dual 1:4  
Dual 1:2  
VQFN (48)  
7.00 mm × 7.00 mm  
Global output enable and  
swing control through pin  
control  
LMK1D2106  
LMK1D2104  
LMK1D2102  
VQFN (40)  
VQFN (28)  
VQFN (16)  
6.00 mm × 6.00 mm  
5.00 mm × 5.00 mm  
3.00 mm × 3.00 mm  
Global output enable and  
swing control through pin  
control  
Global output enable and  
swing control through pin  
control  
350 mV  
500 mV  
350 mV  
500 mV  
350 mV  
500 mV  
350 mV  
500 mV  
Global output enable control  
through pin control  
LMK1D1216  
LMK1D1212  
LMK1D1208P  
LMK1D1208I  
2:16  
2:12  
2:8  
VQFN (48)  
VQFN (40)  
VQGN (40)  
VQFN (40)  
7.00 mm × 7.00 mm  
6.00 mm × 6.00 mm  
6.00 mm × 6.00 mm  
6.00 mm × 6.00 mm  
Global output enable control  
through pin control  
Individual output enable  
control through pin control  
Individual output enable  
control through I2C  
2:8  
Global output enable control  
through pin control  
LMK1D1208  
LMK1D1204P  
LMK1D1204  
2:8  
2:4  
2:4  
350 mV  
350 mV  
350 mV  
VQFN (28)  
VQGN (28)  
VQFN (16)  
5.00 mm × 5.00 mm  
5.00 mm × 5.00 mm  
3.00 mm × 3.00 mm  
Individual output enable  
control through pin control  
Global output enable control  
through pin control  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMK1D1208P  
English Data Sheet: SNAS832  
 
 
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
6 Pin Configuration and Functions  
V
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
DD  
DD  
NC  
NC  
OE4  
OE5  
OE3  
OE2  
OE1  
OE6  
DAP  
OUT6_P  
OUT6_N  
OUT7_P  
OUT7_N  
OUT1_N  
OUT1_P  
OUT0_N  
OUT0_P  
V
V
DD  
DD  
Not to scale  
6-1. LMK1D1208P: RHA Package 40-Pin VQFN Top View  
6-1. Pin Functions  
NAME  
NO.  
TYPE(1)  
DESCRIPTION  
DIFFERENTIAL/SINGLE-ENDED CLOCK INPUT  
IN0_P  
8
9
2
3
I
I
Primary: Differential input pair or single-ended input  
Secondary: Differential input pair or single-ended input.  
IN0_N  
IN1_P  
Note that INP0, INN0 are used indistinguishably with IN0_P, IN0_N.  
IN1_N  
INPUT SELECT  
Input selection with an internal 500-kΩpullup and 320-kΩpulldown,  
selects input port. See 9-2.  
IN_SEL  
1
I
I
AMPLITUDE SELECT  
AMP_SEL  
Output amplitude swing select with an internal 500-kΩpullup and 320-kΩ  
pulldown. See 9-4.  
10  
OUTPUT ENABLE  
Output Enable for channel 0  
OE0  
OE1  
OE2  
OE3  
OE4  
6
I
I
I
I
I
HIGH (default): Enable output channel 0  
LOW: Disable output channel 0 in Hi-Z state  
Output Enable for channel 1  
HIGH (default): Enable output channel 1  
LOW: Disable output channel 1 in Hi-Z state  
16  
17  
18  
33  
Output Enable for channel 2  
HIGH (default): Enable output channel 2  
LOW: Disable output channel 2 in Hi-Z state  
Output Enable for channel 3  
HIGH (default): Enable output channel 3  
LOW: Disable output channel 3 in Hi-Z state  
Output Enable for channel 4  
HIGH (default): Enable output channel 4  
LOW: Disable output channel 4 in Hi-Z state  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMK1D1208P  
English Data Sheet: SNAS832  
 
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
6-1. Pin Functions (continued)  
TYPE(1)  
NAME  
NO.  
DESCRIPTION  
Output Enable for channel 5  
OE5  
OE6  
OE7  
34  
I
I
I
HIGH (default): Enable output channel 5  
LOW: Disable output channel 5 in Hi-Z state  
Output Enable for channel 6  
HIGH (default): Enable output channel 6  
LOW: Disable output channel 6 in Hi-Z state  
35  
5
Output Enable for channel 7  
HIGH (default): Enable output channel 7  
LOW: Disable output channel 7 in Hi-Z state  
BIAS VOLTAGE OUTPUT  
VAC_REF0  
4
7
Bias voltage output for capacitive-coupled inputs. If used, TI recommends  
using a 0.1-µF capacitor to GND on this pin.  
O
VAC_REF1  
DIFFERENTIAL CLOCK OUTPUT  
OUT0_P  
12  
13  
14  
15  
22  
23  
24  
25  
26  
27  
28  
29  
36  
37  
38  
39  
O
O
O
O
O
O
O
O
Differential LVDS output pair number 0  
Differential LVDS output pair number 1  
Differential LVDS output pair number 2  
Differential LVDS output pair number 3  
Differential LVDS output pair number 4  
Differential LVDS output pair number 5  
Differential LVDS output pair number 6  
Differential LVDS output pair number 7  
OUT0_N  
OUT1_P  
OUT1_N  
OUT2_P  
OUT2_N  
OUT3_P  
OUT3_N  
OUT4_P  
OUT4_N  
OUT5_P  
OUT5_N  
OUT6_P  
OUT6_N  
OUT7_P  
OUT7_N  
SUPPLY VOLTAGE  
VDD  
11, 20, 31, 40  
21, 30  
P
Device power supply (1.8 V, 2.5 V, or 3.3 V)  
Ground  
GROUND  
GND  
G
MISC  
DAP  
G
Die Attach Pad. Connect to the printed circuit board (PCB) ground plane for  
heat dissipation.  
DAP  
NC  
19, 32  
No Connection. Leave floating.  
(1) G = Ground, I = Input, O = Output, P = Power  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMK1D1208P  
English Data Sheet: SNAS832  
 
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
20  
50  
MAX  
3.6  
UNIT  
V
VDD  
VIN  
VO  
IIN  
Supply voltage  
Input voltage  
3.6  
V
Output voltage  
VDD + 0.3  
20  
V
Input current  
mA  
mA  
°C  
°C  
IO  
Continuous output current  
Junction temperature  
Storage temperature (2)  
50  
TJ  
135  
Tstg  
150  
65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Device unpowered  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±3000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002, all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.135  
2.375  
1.71  
NOM  
3.3  
MAX  
3.465  
2.625  
1.89  
UNIT  
3.3-V supply  
2.5-V supply  
1.8-V supply  
VDD  
Core supply voltage  
Supply voltage ramp  
2.5  
V
1.8  
Supply  
Ramp  
Requires monotonic ramp (10-90 % of  
VDD)  
0.1  
20  
ms  
TA  
TJ  
Operating free-air temperature  
Operating junction temperature  
105  
135  
°C  
°C  
40  
40  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS832  
6
Submit Document Feedback  
Product Folder Links: LMK1D1208P  
 
 
 
 
 
 
 
 
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
7.4 Thermal Information  
LMK1D1208P  
THERMAL METRIC(1)  
RHA (VQFN)  
40 PINS  
30.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
21.6  
13.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ΨJT  
13  
ΨJB  
RθJC(bot)  
4.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
VDD = 1.8 V ± 5 %, 40°C TA 105°C. Typical values are at VDD = 1.8 V, 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY CHARACTERISTICS  
Core supply current, static  
(LMK1D1208P)  
All outputs enabled and  
unterminated, f = 0 Hz  
IDDSTAT  
75  
87  
mA  
mA  
All outputs enabled, RL = 100 Ω, f  
=100 MHz  
IDD100M  
Core supply current (LMK1D1208P)  
110  
IN_SEL/AMP_SEL CONTROL INPUT CHARACTERISTICS (Applies to VDD = 1.8 V ± 5%, 2.5 V ± 5% and 3.3 V ± 5%)  
VdI3  
VIH  
Tri-state input  
Open  
0.4 × VCC  
V
V
Minimum input voltage for a  
logical "1" state in table 1  
Input high voltage  
0.7 × VCC  
VCC + 0.3  
0.3 × VCC  
30  
Maximum input voltage for a  
logical "0" state in table 1  
VIL  
IIH  
IIL  
Input low voltage  
Input high current  
Input low current  
V
0.3  
VDD can be 1.8V, 2.5V, or 3.3V  
with VIH = VDD  
µA  
µA  
VDD can be 1.8V, 2.5V, or 3.3V  
with VIH = VDD  
30  
Rpull-up  
Input pullup resistor  
500  
320  
kΩ  
kΩ  
Rpull-down  
Input pulldown resistor  
SINGLE-ENDED LVCMOS/LVTTL CLOCK INPUT (Applies to VDD = 1.8 V ± 5%, 2.5 V ± 5% and 3.3 V ± 5%)  
fIN  
Input frequency  
Clock input  
DC  
0.4  
250  
MHz  
V
Assumes a square wave input  
with two levels  
VIN_S-E  
Single-ended Input Voltage Swing  
3.465  
Input Slew Rate (20% to 80% of the  
amplitude)  
dVIN/dt  
0.05  
V/ns  
IIH  
Input high current  
Input low current  
Input capacitance  
VDD = 3.465 V, VIH = 3.465 V  
VDD = 3.465 V, VIL = 0 V  
at 25°C  
60  
µA  
µA  
pF  
IIL  
30  
CIN_SE  
3.5  
DIFFERENTIAL CLOCK INPUT (Applies to VDD = 1.8 V ± 5%, 2.5 V ± 5% and 3.3 V ± 5%)  
fIN  
Input frequency  
Clock input  
2
2.4  
2.4  
GHz  
VPP  
VICM = 1 V (VDD = 1.8 V)  
VICM = 1.25 V (VDD = 2.5 V/3.3 V)  
0.3  
0.3  
Differential input voltage peak-to-peak {2  
× (VINP VINN)}  
VIN,DIFF(p-p)  
VIN,DIFF(P-P) > 0.4 V (VDD = 1.8  
V/2.5 V/3.3 V)  
VICM  
Input common-mode voltage  
0.25  
2.3  
V
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMK1D1208P  
English Data Sheet: SNAS832  
 
 
 
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
VDD = 1.8 V ± 5 %, 40°C TA 105°C. Typical values are at VDD = 1.8 V, 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDD = 3.465 V, VINP = 2.4 V, VINN  
= 1.2 V  
IIH  
Input high current  
30  
µA  
VDD = 3.465 V, VINP = 0 V, VINN  
1.2 V  
=
IIL  
Input low current  
µA  
pF  
30  
CIN_SE  
Input capacitance (Single-ended)  
at 25°C  
3.5  
LVDS DC OUTPUT CHARACTERISTICS  
Differential output voltage magnitude |  
VOUTP - VOUTN  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω
|VOD|  
|VOD|  
ΔVOD  
ΔVOD  
250  
400  
15  
20  
1
350  
500  
450  
650  
15  
mV  
mV  
mV  
mV  
|
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω, AMP_SEL = 1  
Differential output voltage magnitude |  
VOUTP - VOUTN  
|
Change in differential output voltage  
magnitude  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω, AMP_SEL = 1  
Change in differential output voltage  
magnitude  
20  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω(VDD = 1.8 V)  
1.2  
Steady-state, common-mode output  
voltage  
VOC(SS)  
V
V
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω(VDD = 2.5 V/3.3 V)  
1.1  
1.375  
1.05  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω(VDD = 1.8 V), AMP_SEL = 1  
0.8  
Steady-state, common-mode output  
voltage  
VOC(SS)  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω(VDD = 2.5 V/3.3 V), AMP_SEL  
= 1  
0.9  
1.15  
Change in steady-state, common-mode  
output voltage  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω
15  
20  
mV  
mV  
ΔVOC(SS)  
ΔVOC(SS)  
15  
20  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω, AMP_SEL = 1  
Change in steady-state, common-mode  
output voltage  
LVDS AC OUTPUT CHARACTERISTICS  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω, fOUT = 491.52 MHz  
Vring  
VOS  
Output overshoot and undershoot  
Output AC common-mode voltage  
0.1  
VOD  
0.1  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω
50  
75  
100  
mVpp  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
Ω, AMP_SEL = 1  
VOS  
Output AC common-mode voltage  
150  
12  
mVpp  
mA  
IOS  
Short-circuit output current (differential)  
VOUTP = VOUTN  
12  
24  
Short-circuit output current (common-  
mode)  
IOS(cm)  
VOUTP = VOUTN = 0  
24  
mA  
VIN,DIFF(P-P) = 0.3 V, RLOAD = 100  
tPD  
Propagation delay  
Output skew  
0.3  
0.575  
20  
ns  
ps  
Ω(1)  
Skew between outputs with the  
same load conditions (12 and 16  
channels) (2)  
tSK, O  
Skew between outputs on  
different parts subjected to the  
same operating conditions with  
the same input and output  
loading.  
tSK, PP  
Part-to-part skew  
Pulse skew  
200  
20  
ps  
ps  
50% duty cycle input, crossing  
tSK, P  
point-to-crossing-point distortion  
20  
(4)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS832  
8
Submit Document Feedback  
Product Folder Links: LMK1D1208P  
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
VDD = 1.8 V ± 5 %, 40°C TA 105°C. Typical values are at VDD = 1.8 V, 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fIN = 156.25 MHz with 50% duty-  
cycle, Input slew rate = 1.5V/ns,  
Integration range = 12 kHz to 20  
tRJIT(ADD)  
Random additive Jitter (rms)  
45  
60 fs, RMS  
MHz, with output load RLOAD  
=
100 Ω  
PN1kHz  
PN10kHz  
PN100kHz  
PN1MHz  
PNfloor  
143  
150  
157  
160  
164  
Phase Noise for a carrier frequency of  
156.25 MHz with 50% duty-cycle, Input  
slew rate = 1.5V/ns with output load  
RLOAD = 100 Ω  
Phase noise  
dBc/Hz  
fIN = 156.25 MHz. The difference  
in power level at fIN when the  
selected clock is active and the  
unselected clock is static versus  
when the selected clock is inactive  
and the unselected clock is active.  
MUXISO  
Mux Isolation  
80  
dB  
ODC  
tR/tF  
Output duty cycle  
With 50% duty cycle input  
45  
55  
%
Output rise and fall time  
300  
ps  
20% to 80% with RLOAD = 100 Ω  
20% to 80% with RLOAD = 100 Ω  
(AMP_SEL= 1)  
tR/tF  
Output rise and fall time  
300  
1
ps  
µs  
Time taken for outputs to go from  
disable state to enable state and  
vice versa. (3)  
ten/disable  
Output Enable and Disable Time  
Outputs are held in high Z mode  
with OUTP = OUTN (max applied  
external voltage is the lesser of  
VDD or 1.89V and minimum  
IleakZ  
Output leakage current in High Z  
Reference output voltage  
50  
µA  
V
applied external voltage is 0V)  
VAC_REF  
0.9  
1.25  
1.375  
VDD = 2.5 V, ILOAD = 100 μA  
POWER SUPPLY NOISE REJECTION (PSNR) VDD = 2.5 V/ 3.3 V  
10 kHz, 100 mVpp ripple injected  
70  
50  
on VDD  
Power Supply Noise Rejection (fcarrier  
156.25 MHz)  
=
PSNR  
dBc  
1 MHz, 100 mVpp ripple injected  
on VDD  
(1) Measured between single-ended/differential input crossing point to the differential output crossing point.  
(2) For the dual bank devices, the inputs are phase aligned and have 50% duty cycle.  
(3) Applies to the dual bank family.  
(4) Defined as the magnitude of the time difference between the high-to-low and low-to-high propagation delay times at an output.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMK1D1208P  
English Data Sheet: SNAS832  
 
 
 
 
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
7.6 Typical Characteristics  
7-1 captures the variation of the LMK1D1208P current consumption with input frequency and supply voltage. 7-2 shows  
the variation of the differential output voltage (VOD) swept across frequency. It is important to note that 7-1 and 7-2  
serve as a guidance to the users on what to expect for the range of operating frequency supported by LMK1D1208P. These  
graphs were plotted for a limited number of frequencies and load conditions, which may not represent the customer system.  
145  
140  
135  
130  
125  
120  
115  
110  
105  
100  
95  
VDD = 1.8 V, TA = -40  
VDD = 1.8 V, TA = 25  
VDD = 1.8 V,TA = 105  
VDD = 2.5 V, TA = -40  
VDD = 2.5 V, TA = 25  
VDD = 2.5 V,TA = 105  
VDD = 3.3 V, TA = -40  
VDD = 3.3 V, TA = 25  
VDD = 3.3 V,TA =105  
90  
85  
0
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000  
Frequency (MHz)  
7-1. LMK1D1208P Current Consumption vs Frequency  
380  
VDD = 1.8 V, TA = -40  
VDD = 1.8 V, TA = 25  
VDD = 1.8 V, Ta = 105  
VDD = 2.5 V, TA = -40  
VDD = 2.5 V, TA = 25  
VDD = 2.5 V, TA = 105  
VDD = 3.3 V, TA = -40  
VDD = 3.3 V, TA = 25  
VDD = 3.3 V, TA = 105  
370  
360  
350  
340  
330  
320  
310  
300  
290  
280  
270  
260  
250  
240  
100  
200  
300  
400  
500  
600 700 800 9001000  
2000  
Frequency (MHz)  
7-2. LMK1D1208P VOD vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS832  
10  
Submit Document Feedback  
Product Folder Links: LMK1D1208P  
 
 
 
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
8 Parameter Measurement Information  
Oscilloscope  
100 W  
LVDS  
8-1. LVDS Output DC Configuration During Device Test  
Phase Noise/  
Spectrum Analyzer  
LMK1D1208P  
Balun  
100 Ω  
8-2. LVDS Output AC Configuration During Device Test  
V
IH  
V
th  
IN  
V
IL  
IN  
V
th  
8-3. DC-Coupled LVCMOS Input During Device Test  
V
OUTNx  
OUTPx  
OH  
V
OD  
V
OL  
80%  
V
(= 2 x V  
)
OD  
20%  
0 V  
OUT,DIFF,PP  
t
r
t
f
8-4. Output Voltage and Rise/Fall Time  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMK1D1208P  
English Data Sheet: SNAS832  
 
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
INNx  
INPx  
t
t
t
PLH0  
PHL0  
PHL1  
OUTN0  
OUTP0  
t
PLH1  
OUTN1  
OUTP1  
t
t
PLH2  
PHL2  
OUTN2  
OUTP2  
t
t
PHL7  
PLH7  
OUTN7  
OUTP7  
A. Output skew is calculated as the greater of the following: the difference between the fastest and the slowest tPLHn or the difference  
between the fastest and the slowest tPHLn (n = 0, 1, 2, ..7)  
B. Part to part skew is calculated as the greater of the following: the difference between the fastest and the slowest tPLHn or the difference  
between the fastest and the slowest tPHLn across multiple devices (n = 0, 1, 2, ..7)  
8-5. Output Skew and Part-to-Part Skew  
V
ring  
OUTNx  
V
OD  
0 V Differential  
OUTPx  
8-6. Output Overshoot and Undershoot  
V
OS  
GND  
8-7. Output AC Common Mode  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS832  
12  
Submit Document Feedback  
Product Folder Links: LMK1D1208P  
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The LMK1D1208P LVDS drivers use CMOS transistors to control the output current. Therefore, proper biasing  
and termination are required to ensure correct operation of the device and to maximize signal integrity.  
The proper LVDS termination for signal integrity over two 50-Ω lines is 100 Ω between the outputs on the  
receiver end. Either DC-coupled termination or AC-coupled termination can be used for LVDS outputs. TI  
recommends placing a termination resistor close to the receiver. If the receiver is internally biased to a voltage  
different than the output common-mode voltage of the LMK1D1208P, AC coupling must be used. If the LVDS  
receiver has internal 100-Ωtermination, external termination must be omitted.  
9.2 Functional Block Diagram  
VDD  
1.8 to 3.3 V  
OE0  
OUT0  
LVDS  
OE1  
Reference  
Generator  
VAC_REF  
OE1  
IN0  
IN1  
LVDS  
OUT1  
IN_MUX  
OE2  
VDD  
Rpull-up  
LVDS  
OUT2  
IN_SEL  
OE2  
Rpull-down  
OE7  
VDD  
Rpull-up  
OUT7  
LVDS  
Output  
Swing  
AMP_SEL  
Control  
Rpull-down  
GND  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMK1D1208P  
English Data Sheet: SNAS832  
 
 
 
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
9.3 Feature Description  
The LMK1D1208P is a low additive jitter LVDS fan-out buffer that can generate up to four copies of two  
selectable LVPECL, LVDS, HCSL, CML, or LVCMOS inputs. The LMK1D1208P can accept reference clock  
frequencies up to 2 GHz while providing low output skew.  
9-1 lists the LMK1D1208P outputs divided into two banks.  
9-1. Output Bank Mapping  
BANK  
CLOCK OUTPUTS  
0
1
OUT0, OUT1, OUT2, OUT3  
OUT4, OUT5, OUT6, OUT7  
Apart from providing a very low additive jitter and low output skew, the LMK1D1208P has an input select pin  
(IN_SEL) and an output amplitude control pin (AMP_SEL).  
9.3.1 Fail-Safe Input  
The LMK1D120x family of devices is designed to support fail-safe input operation feature. This feature allows the  
user to drive the device inputs before VDD is applied without damaging the device. Refer to Specifications for  
more information on the maximum input supported by the device. The user should note that incorporating the  
fail-safe inputs also results in a slight increase in clock input pin capacitance. The device also incorporates an  
input hysteresis which prevents random oscillation in absence of an input signal. Furthermore, this feature allows  
the input pins to be left open.  
9.4 Device Functional Modes  
The two inputs of the LMK1D1208P are internally muxed together and can be selected through the control pin  
(see 9-2). Unused inputs can be left floating to reduce overall component cost. Both AC- and DC-coupling  
schemes can be used with the LMK1D1208P to provide greater system flexibility.  
9-2. Input Selection Table  
IN_SEL  
ACTIVE CLOCK INPUT  
IN0_P, IN0_N  
IN1_P, IN1_N  
None (1)  
0
1
Open  
(1) The input buffers are disabled and the state of the outputs are  
dependent on the state of OEx (see 9-3). If OEx = 0, the  
corresponding output will be disabled in Hi-Z state, whereas if  
OEx = 1 (default), the corresponding output will be logic low.  
The outputs of the LMK1D1208P can be individually enabled or disabled using the OEx hardware pins (see 表  
9-3). The disabled state of the outputs is Hi-Z (high impedance) as this reduces the power consumption and also  
prevents back-biasing of the devices connected to these outputs.  
Unused outputs should be disabled to eliminate the need for a termination resistor. In the case of enabled  
unused outputs, TI recommends a 100-Ωtermination for optimal performance.  
9-3. Output Control  
OEx  
0
CLOCK OUTPUTS  
OUTPx, OUTNx disabled in Hi-Z  
state  
1 (default)  
OUTPx, OUTNx enabled  
The output amplitude of the banks of the LMK1D1208P can be selected through the amplitude selection pin (see  
9-4). The higher output amplitude mode (boosted LVDS swing mode) can be used in applications which  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS832  
14  
Submit Document Feedback  
Product Folder Links: LMK1D1208P  
 
 
 
 
 
 
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
require higher amplitude either for better noise performance (higher slew rate) or if the receiver has swing  
requirements which the standard LVDS swing cannot meet.  
9-4. Amplitude Selection  
AMP_SEL  
OUTPUT AMPLITUDE (mV)  
Bank 0: boosted LVDS swing (500 mV)  
Bank 1: standard LVDS swing (350 mV)  
0
Bank 0: standard LVDS swing (350 mV)  
Bank 1: standard LVDS swing (350 mV)  
OPEN  
1
Bank 0: boosted LVDS swing (500 mV)  
Bank 1: boosted LVDS swing (500 mV)  
9.4.1 LVDS Output Termination  
TI recommends that unused outputs are terminated differentially with a 100-Ωresistor for optimum performance,  
although unterminated outputs are also okay but will result in slight degradation in performance (Output AC  
common-mode VOS) in the outputs being used.  
The LMK1D1208P can be connected to LVDS receiver inputs with DC and AC coupling as shown in 9-1 and  
9-2, respectively.  
100 W  
LVDS  
LMK1D120xP  
Z = 50 W  
9-1. Output DC Termination  
100 nF  
100 W  
LVDS  
LMK1D120xP  
Z = 50 W  
100 nF  
9-2. Output AC Termination (With the Receiver Internally Biased)  
9.4.2 Input Termination  
The LMK1D1208P inputs can be interfaced with LVDS, LVPECL, HCSL, or LVCMOS drivers.  
LVDS drivers can be connected to LMK1D1208P inputs with DC and AC coupling as shown 9-3 and 9-4,  
respectively.  
100 W  
LVDS  
LMK1D120xP  
Z = 50 W  
9-3. LVDS Clock Driver Connected to LMK1D1208P Input (DC-Coupled)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMK1D1208P  
English Data Sheet: SNAS832  
 
 
 
 
 
 
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
100 nF  
LVDS  
LMK1D120xP  
Z = 50 W  
100 nF  
50 W  
50 W  
V
AC_REF  
9-4. LVDS Clock Driver Connected to LMK1D1208P Input (AC-Coupled)  
9-5 shows how to connect LVPECL inputs to the LMK1D1208P. The series resistors are required to reduce  
the LVPECL signal swing if the signal swing is >1.6 VPP  
.
75 W  
100 nF  
LMK1D120xP  
LVPECL  
Z = 50 W  
100 nF  
50 W  
75 W  
150 W  
150 W  
50 W  
V
AC_REF  
9-5. LVPECL Clock Driver Connected to LMK1D1208P Input  
9-6 shows how to couple a LVCMOS clock input to the LMK1D1208P directly.  
R
S
LVCMOS  
(1.8/2.5/3.3 V)  
LMK1D120XP  
V
V
+
2
V
=
IH  
IL  
th  
9-6. 1.8-V, 2.5-V, or 3.3-V LVCMOS Clock Driver Connected to LMK1D1208P Input  
For unused input, TI recommends grounding both input pins (INP, INN) using 1-kΩresistors.  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LMK1D1208P  
English Data Sheet: SNAS832  
 
 
 
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
10 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Application Information  
The LMK1D1208P is a low additive jitter universal to LVDS fan-out buffer with two selectable inputs, output  
amplitude selection, and pin-controlled output enables. The small package size, low output skew, low  
propagation delay and low additive jitter of this device is designed for applications that require high-performance  
clock distribution as well as for low-power and space-constraint applications.  
10.2 Typical Application  
1.8 V / 2.5 V / 3.3 V  
PHY  
PRIREF_P  
156.25 MHz LVDS  
From Backplane  
100  
PRIREF_N  
50  
50  
VAC_REF  
ASIC  
100  
156.25 MHz LVCMOS  
Oscillator  
SECREF_P  
FPGA  
100  
2.5 V  
1k  
SECREF_N  
CPU  
1k  
100  
10-1. Fan-Out Buffer for Line Card Application  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMK1D1208P  
English Data Sheet: SNAS832  
 
 
 
 
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
10.2.1 Design Requirements  
The LMK1D1208P shown in 10-1 is configured to select two inputs: a 156.25-MHz LVDS clock from the  
backplane, or a secondary 156.25-MHz, LVCMOS, 2.5-V oscillator. The LVDS clock is AC-coupled and biased  
using the integrated reference voltage generator. A resistor divider is used to set the threshold voltage correctly  
for the LVCMOS clock. 0.1-µF capacitors are used to reduce noise on both VAC_REF and SECREF_N. Either  
input signal can be then fanned out to desired devices, as shown. The configuration example is driving 4 LVDS  
receivers in a line card application with the following properties:  
The PHY device is capable of DC coupling with an LVDS driver such as the LMK1D1208P. This PHY device  
features internal termination so no additional components are required for proper operation.  
The ASIC LVDS receiver features internal termination and operates at the same common-mode voltage as  
the LMK1D1208P. Again, no additional components are required.  
The FPGA requires external AC coupling, but has internal termination. 0.1-µF capacitors are placed to  
provide AC coupling. Similarly, the CPU is internally terminated, and requires only external AC-coupling  
capacitors.  
The unused outputs of the LMK1D1208P can be disabled using the corresponding OEx pin. This results in a  
lower power consumption.  
10.2.2 Detailed Design Procedure  
See Input Termination for proper input terminations, dependent on single-ended or differential inputs.  
See LVDS Output Termination for output termination schemes depending on the receiver application.  
Unused outputs can be disabled using the corresponding OEx pin setting according to 9-3. Disabling the  
outputs also eliminates requirement of termination resistors.  
In this example, the PHY, ASIC, FPGA and CPU require different schemes. Power supply filtering and bypassing  
is critical for low-noise applications.  
See Power Supply Recommendations for recommended filtering techniques. A reference layout is provided in  
Low-Additive Jitter, Four LVDS Outputs Clock Buffer Evaluation Board user's guide (SCAU043).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS832  
18  
Submit Document Feedback  
Product Folder Links: LMK1D1208P  
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
10.2.3 Application Curves  
This section shows the low additive noise for the LMK1D1208P. The low noise 156.25-MHz source with 24-fs  
RMS jitter shown in 10-2 drives the LMK1D1208P, resulting in 46.4-fs RMS when integrated from 12 kHz to  
20 MHz (see 10-3). The resultant additive jitter is 39.7-fs RMS for this configuration.  
Note: Reference signal is a low-noise Rhode and Schwarz SMA100B  
10-2. LMK1D1208P Reference Phase Noise, 156.25 MHz, 24-fs RMS (12 kHz to 20 MHz)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMK1D1208P  
English Data Sheet: SNAS832  
 
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
10-3. LMK1D1208P Output Phase Noise, 156.25 MHz, 46.4-fs RMS (12 kHz to 20 MHz)  
10.3 Power Supply Recommendations  
High-performance clock buffers are sensitive to noise on the power supply, which can dramatically increase the  
additive jitter of the buffer. Thus, it is essential to reduce noise from the system power supply, especially when  
jitter or phase noise is critical to applications.  
Filter capacitors are used to eliminate the low-frequency noise from the power supply, where the bypass  
capacitors provide the low impedance path for high-frequency noise and guard the power-supply system against  
the induced fluctuations. These bypass capacitors also provide instantaneous current surges as required by the  
device and must have low equivalent series resistance (ESR). To properly use the bypass capacitors, they must  
be placed close to the power-supply pins and laid out with short loops to minimize inductance. TI recommends  
adding as many high-frequency (for example, 0.1-µF) bypass capacitors as there are supply pins in the package.  
TI recommends, but does not require, inserting a ferrite bead between the board power supply and the chip  
power supply that isolates the high-frequency switching noises generated by the clock driver. These ferrite beads  
prevent the switching noise from leaking into the board supply. Choose an appropriate ferrite bead with low DC  
resistance because it is imperative to provide adequate isolation between the board supply and the chip supply,  
as well as to maintain a voltage at the supply pins that is greater than the minimum voltage required for proper  
operation.  
10-4 shows this recommended power-supply decoupling method.  
Board  
Supply  
Chip  
Supply  
Ferrite Bead  
1 μF  
0.1 μF (x4)  
10 μF  
GND  
GND  
GND  
10-4. Power Supply Decoupling  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS832  
20  
Submit Document Feedback  
Product Folder Links: LMK1D1208P  
 
 
 
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
10.4 Layout  
10.4.1 Layout Guidelines  
For reliability and performance reasons, the die temperature must be limited to a maximum of 135°C.  
The device package has an exposed pad that provides the primary heat removal path to the PCB. To maximize  
the heat dissipation from the package, a thermal landing pattern including multiple vias to a ground plane must  
be incorporated into the PCB within the footprint of the package. The thermal pad must be soldered down to  
ensure adequate heat conduction to of the package. 10-5 and 10-6 show the recommended land and via  
patterns for the 40-pin LMK1D1208P device.  
10.4.2 Layout Examples  
10-5. Recommended PCB Layout, Top Layer  
10-6. Recommended PCB Layout, GND Layer  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMK1D1208P  
English Data Sheet: SNAS832  
 
 
 
LMK1D1208P  
ZHCSOB1A OCTOBER 2021 REVISED JUNE 2023  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Low-Additive Jitter, Four LVDS Outputs Clock Buffer Evaluation Board user's guide  
Texas Instruments, Power Consumption of LVPECL and LVDS Analog design journal  
Texas Instruments, Using Thermal Calculation Tools for Analog Components application report  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNAS832  
22  
Submit Document Feedback  
Product Folder Links: LMK1D1208P  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMK1D1208PRHAR  
LMK1D1208PRHAT  
ACTIVE  
VQFN  
VQFN  
RHA  
40  
40  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 105  
-40 to 105  
LMK1D  
1208P  
Samples  
Samples  
ACTIVE  
RHA  
NIPDAU  
LMK1D  
1208P  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jun-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMK1D1208PRHAR  
LMK1D1208PRHAT  
VQFN  
VQFN  
RHA  
RHA  
40  
40  
2500  
250  
330.0  
180.0  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMK1D1208PRHAR  
LMK1D1208PRHAT  
VQFN  
VQFN  
RHA  
RHA  
40  
40  
2500  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHA 40  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225870/A  
www.ti.com  
PACKAGE OUTLINE  
RHA0040B  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
PIN 1 INDEX AREA  
6.1  
5.9  
1 MAX  
C
SEATING PLANE  
0.08  
0.05  
0.00  
2X 4.5  
4.15 0.1  
(0.2) TYP  
11  
20  
36X 0.5  
10  
21  
EXPOSED  
THERMAL PAD  
2X  
4.5  
SYMM  
41  
30  
0.27  
40X  
1
0.17  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
40  
31  
SYMM  
0.05  
0.5  
0.3  
40X  
4219052/A 06/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHA0040B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.15)  
SYMM  
40X (0.6)  
40X (0.22)  
40  
31  
1
30  
(0.25) TYP  
36X (0.5)  
SYMM  
41  
(5.8)  
(0.685)  
TYP  
(1.14)  
TYP  
(
0.2) TYP  
VIA  
10  
21  
(R0.05) TYP  
20  
11  
(0.685)  
TYP  
(1.14)  
TYP  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:12X  
0.07 MIN  
ALL SIDES  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219052/A 06/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHA0040B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
9X ( 1.17)  
(1.37) TYP  
40X (0.6)  
40X (0.22)  
31  
40  
1
30  
41  
(1.37)  
TYP  
(0.25) TYP  
SYMM  
(5.8)  
36X (0.5)  
(R0.05) TYP  
10  
21  
11  
20  
METAL  
TYP  
SYMM  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 41:  
72% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4219052/A 06/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LMK1D1208PRHAR

带引脚控制的 8 通道输出 1.8V、2.5V 和 3.3V LVDS 缓冲器 | RHA | 40 | -40 to 105
TI

LMK1D1208PRHAT

带引脚控制的 8 通道输出 1.8V、2.5V 和 3.3V LVDS 缓冲器 | RHA | 40 | -40 to 105
TI

LMK1D1208RHDR

LMK1D120x Low Additive Jitter LVDS Buffer
TI

LMK1D1208RHDT

LMK1D120x Low Additive Jitter LVDS Buffer
TI

LMK1D120X

LMK1D120x Low Additive Jitter LVDS Buffer
TI

LMK1D1212

LMK1D121x Low Additive Jitter LVDS Buffer
TI

LMK1D1212RHAR

LMK1D121x Low Additive Jitter LVDS Buffer
TI

LMK1D1212RHAT

LMK1D121x Low Additive Jitter LVDS Buffer
TI

LMK1D1216

LMK1D121x Low Additive Jitter LVDS Buffer
TI

LMK1D1216RGZR

LMK1D121x Low Additive Jitter LVDS Buffer
TI

LMK1D1216RGZT

LMK1D121x Low Additive Jitter LVDS Buffer
TI

LMK1D121X

LMK1D121x Low Additive Jitter LVDS Buffer
TI