LMK61PD0A2-SIAT [TI]

±50ppm、超低抖动、引脚可选、差动振荡器 | SIA | 8 | -40 to 85;
LMK61PD0A2-SIAT
型号: LMK61PD0A2-SIAT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

±50ppm、超低抖动、引脚可选、差动振荡器 | SIA | 8 | -40 to 85

振荡器
文件: 总27页 (文件大小:867K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LMK61PD0A2  
ZHCSEB9A OCTOBER 2015REVISED NOVEMBER 2015  
LMK61PD0A2 超低抖动引脚可选振荡器  
1 特性  
2 应用  
1
超低噪声、高性能  
晶体振荡器、表面声波 (SAW) 振荡器或芯片振荡  
器的高性能替换产品  
抖动:fOUT > 100MHz 时的典型值为 90fs  
开关、路由器、网卡、基带装置 (BBU)、服务器、  
存储/SAN  
(RMS)  
高电源抑制比 (PSRR)-70dBc,出色的电源抗  
扰度  
测试和测量  
医疗成像  
灵活的输出频率和格式;用户可选择  
现场可编程门阵列 (FPGA),处理器连接  
频率:62.5MHz100MHz106.25MHz、  
125MHz156.25MHz212.5MHz312.5MHz  
3 说明  
格式:低电压正射极耦合逻辑 (LVPECL)、低压  
差分信令 (LVDS) 或高速收发器逻辑 (HSTL)  
LMK61PD0A2 是一款超低抖动的 PLLatinumTM 引脚  
可选振荡器。该振荡器可生成通用基准时钟。 该器件  
在出厂前进行了预编程,可支持七种不同基准时钟频  
率。相应频率可通过将每个 FS[1:0] 配置为 VDD、  
GND NC(无连接)进行选择。 输出格式可通过将  
操作系统 (OS) 的引脚配置为 VDDGND NC 进行  
选择,三种配置方式分别对应格式 LVPECLLVDS  
以及 HCSL。 内部电源调节功能提供出色的电源纹波  
抑制 (PSRR),降低了供电网络的成本和复杂性。 该  
器件由单个 3.3V ± 5% 电源供电。  
总频率容差:±50ppm  
内部存储器存储了多个启动配置,可通过引脚控制  
进行选择  
3.3V 工作电压  
工业温度范围(-40ºC +85ºC)  
7mm x 5mm 8 引脚封装  
器件信息(1)  
部件号  
封装  
封装尺寸(标称值)  
LMK61PD0A2  
8 引脚 QFM (SIA)  
7.0mm x 5.0mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
引脚分布和简化框图  
FS1  
7
Power Conditioning  
OE  
OS  
1
2
3
6
5
4
VDD  
Output  
Divider  
Output  
Buffer  
Integrated  
Oscillator  
PLL  
OUTN  
OUTP  
GND  
Interface  
ROM (Pin Control)  
8
FS0  
LMK61PD0A2  
Ultra-high performance oscillator  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNAS675  
 
 
 
 
LMK61PD0A2  
ZHCSEB9A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
目录  
7.15 Additional Reliability and Qualification.................... 9  
7.16 Typical Performance Characteristics .................... 10  
Parameter Measurement Information ................ 11  
8.1 Device Output Configurations ................................. 11  
Detailed Description ............................................ 13  
9.1 Overview ................................................................. 13  
9.2 Functional Block Diagram ....................................... 13  
9.3 Feature Description................................................. 13  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Control........................................................ 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings ............................................................ 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics - Power Supply ................. 6  
7.6 LVPECL Output Characteristics................................ 6  
7.7 LVDS Output Characteristics .................................... 6  
7.8 HCSL Output Characteristics.................................... 7  
7.9 OE Input Characteristics........................................... 7  
7.10 OS, FS[1:0] Input Characteristics ........................... 7  
7.11 Frequency Tolerance Characteristics ..................... 7  
7.12 Power-On/Reset Characteristics (VDD).................. 8  
7.13 PSRR Characteristics ............................................. 8  
7.14 PLL Clock Output Jitter Characteristics .................. 9  
8
9
10 Application and Implementation........................ 14  
10.1 Application Information.......................................... 14  
10.2 Typical Application ................................................ 14  
11 Power Supply Recommendations ..................... 16  
12 Layout................................................................... 17  
12.1 Layout Guidelines ................................................. 17  
13 器件和文档支持 ..................................................... 19  
13.1 社区资源................................................................ 19  
13.2 ....................................................................... 19  
13.3 静电放电警告......................................................... 19  
13.4 Glossary................................................................ 19  
14 机械、封装和可订购信息....................................... 19  
4 修订历史记录  
Changes from Original (October 2015) to Revision A  
Page  
产品预览量产数据”........................................................................................................................................................... 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
LMK61PD0A2  
www.ti.com.cn  
ZHCSEB9A OCTOBER 2015REVISED NOVEMBER 2015  
5 Device Control  
Table 1. Output Frequency Mapping for FS[1:0] Selection  
FS1  
0
FS0  
0
OUT FREQUENCY (MHz)  
RELEVANT STANDARDS  
PCI Express  
100  
0
NC  
1
312.5  
10 Gbps Ethernet  
1 Gbps Ethernet  
Fiber Channel  
10 Gbps Ethernet  
Fiber Channel  
1 Gbps Ethernet  
n/a  
0
125  
NC  
NC  
NC  
1
0
106.25  
156.25  
212.5  
NC  
1
0
62.5  
1
NC  
1
Reserved  
Reserved  
1
n/a  
Table 2. Output Type Mapping for OS, OE Selection  
OS  
X
OE  
0
OUTPUT TYPE  
Disabled (PLL functional)  
0
1
LVPECL  
LVDS  
NC  
1
1
1
HCSL  
Copyright © 2015, Texas Instruments Incorporated  
3
 
 
LMK61PD0A2  
ZHCSEB9A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
6 Pin Configuration and Functions  
SIA Package  
8 pin QFM  
FS1  
7
OE  
OS  
1
6
5
4
VDD  
2
3
OUTN  
OUTP  
GND  
8
FS0  
Table 3. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
POWER  
GND  
NO.  
3
6
Ground  
Analog  
Device Ground.  
3.3 V Power Supply.  
VDD  
OUTPUT BLOCK  
OUTP,  
OUTN  
4, 5  
Universal  
Differential Output Pair (LVPECL, LVDS or HCSL).  
DIGITAL CONTROL / INTERFACES  
FS[1:0]  
OE  
7, 8  
1
LVCMOS  
LVCMOS  
LVCMOS  
Output Frequency Select. Refer toTable 1.  
Output Enable (internal pullup). Refer toTable 2.  
Output Type Select. Refer toTable 2.  
OS  
3
4
Copyright © 2015, Texas Instruments Incorporated  
LMK61PD0A2  
www.ti.com.cn  
ZHCSEB9A OCTOBER 2015REVISED NOVEMBER 2015  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
-0.3  
-0.3  
MAX  
3.6  
UNIT  
V
VDD  
VIN  
Device Supply Voltage  
Output Voltage Range for Logic Inputs  
Output Voltage Range for Clock Outputs  
Junction Temperature  
VDD + 0.3  
VDD + 0.3  
150  
V
VOUT  
TJ  
V
°C  
°C  
TSTG  
Storage Temperature  
-40  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.135  
-40  
NOM  
3.3  
MAX  
3.465  
85  
UNIT  
V
VDD  
TA  
Device Supply Voltage  
Ambient Temperature  
Junction Temperature  
VDD Power-Up Ramp Time  
25  
°C  
TJ  
125  
°C  
tRAMP  
0.1  
100  
ms  
7.4 Thermal Information  
(2) (3) (4)  
LMK61PD0A2  
QFM (SIA)  
8 PINS  
THERMAL METRIC(1)  
UNIT  
Airflow (LFM) 0  
Airflow (LFM) 200  
Airflow (LFM) 400  
RθJA  
Junction-to-ambient thermal resistance  
54  
34  
44  
n/a  
41.2  
n/a  
RθJC(top) Junction-to-case (top) thermal resistance  
RθJB  
ψJT  
Junction-to-board thermal resistance  
36.7  
11.2  
36.7  
n/a  
n/a  
n/a  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
16.9  
37.8  
n/a  
21.9  
38.9  
n/a  
ψJB  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) The package thermal resistance is calculated on a 4 layer JEDEC board.  
(3) Connected to GND with 3 thermal vias (0.3-mm diameter).  
(4) ψJB (junction to board) is used when the main heat flow is from the junction to the GND pad. Please refer to Thermal Considerations  
section for more information on ensuring good system reliability and quality.  
Copyright © 2015, Texas Instruments Incorporated  
5
LMK61PD0A2  
ZHCSEB9A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
7.5 Electrical Characteristics - Power Supply(1)  
VDD = 3.3 V ± 5%, TA = -40C to 85°C  
PARAMETER  
Device Current Consumption LVPECL(2)  
TEST CONDITIONS  
MIN  
TYP  
162  
152  
155  
136  
MAX  
208  
196  
196  
UNIT  
IDD  
mA  
LVDS  
HCSL  
IDD-PD  
Device Current Consumption OE = GND  
when output is disabled  
(1) Refer to Parameter Measurement Information for relevant test conditions.  
(2) On-chip power dissipation should exclude 40 mW, dissipated in the 150 ohm termination resistors, from total power dissipation.  
7.6 LVPECL Output Characteristics(1)  
VDD = 3.3 V ± 5%, TA = -40C to 85°C  
PARAMETER  
Output Frequency(2)  
TEST CONDITIONS  
MIN  
62.5  
700  
TYP  
MAX  
312.5  
1200  
UNIT  
MHz  
mV  
fOUT  
VOD  
Output Voltage Swing  
800  
2 x  
(2)  
(VOH - VOL  
)
VOUT, DIFF, PP Differential Output Peak-to-  
Peak Swing  
V
V
|VOD  
|
VOS  
Output Common Mode  
Voltage  
VDD –  
1.55  
tR / tF  
PN-Floor  
ODC  
Output Rise/Fall Time (20% to  
80%)(3)  
120  
200  
ps  
Output Phase Noise Floor  
(fOFFSET > 10 MHz)  
Output Duty Cycle(3)  
156.25 MHz  
-165  
dBc/Hz  
45%  
55%  
(1) Refer to Parameter Measurement Information for relevant test conditions.  
(2) An output frequency over fOUT max spec is possible, but output swing may be less than VOD min spec.  
(3) Ensured by characterization.  
7.7 LVDS Output Characteristics(1)  
VDD = 3.3 V ± 5%, TA = -40°C to 85°C  
PARAMETER  
Output Frequency(1)  
TEST CONDITIONS  
MIN  
62.5  
300  
TYP  
MAX  
312.5  
480  
UNIT  
MHz  
mV  
fOUT  
VOD  
Output Voltage Swing  
390  
2 x  
(1)  
(VOH - VOL  
)
VOUT, DIFF, PP Differential Output Peak-to-  
Peak Swing  
V
V
|VOD  
|
VOS  
Output Common Mode  
Voltage  
1.2  
tR / tF  
Output Rise/Fall Time (20% to  
80%)(2)  
150  
250  
ps  
PN-Floor  
Output Phase Noise Floor  
(fOFFSET > 10 MHz)  
Output Duty Cycle(2)  
156.25 MHz  
-162  
125  
dBc/Hz  
ODC  
ROUT  
45%  
55%  
Differential Output Impedance  
Ohm  
(1) An output frequency over fOUT max spec is possible, but output swing may be less than VOD min spec.  
(2) Ensured by characterization.  
6
Copyright © 2015, Texas Instruments Incorporated  
LMK61PD0A2  
www.ti.com.cn  
ZHCSEB9A OCTOBER 2015REVISED NOVEMBER 2015  
7.8 HCSL Output Characteristics(1)  
VDD = 3.3 V ± 5%, TA = -40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
62.5  
600  
TYP  
MAX  
312.5  
850  
UNIT  
MHz  
mV  
fOUT  
Output Frequency  
Output High Voltage  
Output Low Voltage  
VOH  
VOL  
-100  
250  
100  
mV  
VCROSS  
Absolute Crossing  
Voltage(2)(3)  
475  
mV  
(2)(3)  
VCROSS-DELTA Variation of VCROSS  
0
140  
2
mV  
V/ns  
dV/dt  
Slew Rate(4)  
0.8  
PN-Floor  
Output Phase Noise Floor  
(fOFFSET > 10 MHz)  
100 MHz  
-164  
dBc/Hz  
ODC  
Output Duty Cycle(4)  
45%  
55%  
(1) Refer to Parameter Measurement Information for relevant test conditions.  
(2) Measured from -150 mV to +150 mV on the differential waveform with the 300 mVpp measurement window centered on the differential  
zero crossing.  
(3) Ensured by design.  
(4) Ensured by characterization.  
7.9 OE Input Characteristics  
VDD = 3.3 V ± 5%, TA = -40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIH  
VIL  
IIH  
Input High Voltage  
Input Low Voltage  
Input High Current  
Input Low Current  
Input Capacitance  
1.4  
0.6  
40  
40  
V
VIH = VDD  
VIL = GND  
-40  
-40  
uA  
uA  
pF  
IIL  
CIN  
2
7.10 OS, FS[1:0] Input Characteristics  
VDD = 3.3 V ± 5%, TA = -40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIH  
VIL  
IIH  
Input High Voltage  
Input Low Voltage  
Input High Current  
Input Low Current  
Input Capacitance  
1.4  
0.4  
40  
40  
V
VIH = VDD  
VIL = GND  
-40  
-40  
uA  
uA  
pF  
IIL  
CIN  
2
7.11 Frequency Tolerance Characteristics(1)  
VDD = 3.3 V ± 5%, TA = -40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fT  
Total Frequency Tolerance  
All output formats, frequency bands and  
device junction temperature up to 125°C;  
includes initial freq tolerance, temperature &  
supply voltage variation, solder reflow and  
aging (10 years)  
-50  
50  
ppm  
(1) Ensured by characterization.  
Copyright © 2015, Texas Instruments Incorporated  
7
LMK61PD0A2  
ZHCSEB9A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
7.12 Power-On/Reset Characteristics (VDD)  
VDD = 3.3 V ± 5%, TA = -40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
2.95  
0.1  
UNIT  
V
VTHRESH  
VDROOP  
tSTARTUP  
Threshold Voltage(1)  
Allowable Voltage Droop(2)  
2.72  
V
(1)  
Startup Time  
Time elapsed from VDD at 3.135 V to output  
enabled  
10  
ms  
tOE-EN  
tOE-DIS  
Output enable time(2)  
Output disable time(2)  
Time elapsed from OE at VIH to output enabled  
Time elapsed from OE at VIL to output disabled  
50  
50  
us  
us  
(1) Ensured by characterization.  
(2) Ensured by design.  
7.13 PSRR Characteristics(1)  
VDD = 3.3 V, TA = 25°C, FS[1:0] = NC, NC  
PARAMETER  
TEST CONDITIONS  
Sine wave at 50 kHz  
MIN  
TYP  
-70  
-70  
-70  
-70  
MAX  
UNIT  
PSRR  
Spurs Induced by 50 mV  
Power Supply Ripple(2)(3) at  
156.25 MHz output, all  
output types  
dBc  
Sine wave at 100 kHz  
Sine wave at 500 kHz  
Sine wave at 1 MHz  
(1) Refer to Parameter Measurement Information for relevant test conditions.  
(2) Measured max spur level with 50 mVpp sinusoidal signal between 50 kHz and 1 MHz applied on VDD pin  
(3) DJSPUR (ps, pk-pk) = [2*10(SPUR/20) / (π*fOUT)]*1e6, where PSRR or SPUR in dBc and fOUT in MHz.  
8
Copyright © 2015, Texas Instruments Incorporated  
LMK61PD0A2  
www.ti.com.cn  
ZHCSEB9A OCTOBER 2015REVISED NOVEMBER 2015  
7.14 PLL Clock Output Jitter Characteristics(1)(2)  
VDD = 3.3 V ± 5%, TA = -40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
OUT 100 MHz, All output frequencies and  
output types  
MIN  
TYP  
MAX  
UNIT  
RJ  
RJ  
RMS Phase Jitter(3)  
(12 kHz – 20 MHz)  
(1 kHz – 5 MHz)  
f
100  
200  
fs RMS  
RMS Phase Jitter(3)  
(12 kHz – 20 MHz)  
(1 kHz – 5 MHz)  
fOUT = 62.5 MHz, All output frequencies and  
output types  
200  
400  
fs RMS  
(1) Refer to Parameter Measurement Information for relevant test conditions.  
(2) Phase jitter measured with Agilent E5052 signal source analyzer using a differential-to-single ended converter (balun or buffer).  
(3) Ensured by characterization.  
7.15 Additional Reliability and Qualification  
PARAMETER  
CONDITION / TEST METHOD  
MIL-STD-202, Method 213  
MIL-STD-202, Method 204  
J-STD-020, MSL3  
Mechanical Shock  
Mechanical Vibration  
Moisture Sensitivity Level  
Copyright © 2015, Texas Instruments Incorporated  
9
LMK61PD0A2  
ZHCSEB9A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
7.16 Typical Performance Characteristics  
Figure 1. Phase Noise of LVPECL Differential Output at  
156.25 MHz with FS[1:0] = NC, NC, OS = GND  
Figure 2. Phase Noise of LVDS Differential Output at 156.25  
MHz with FS[1:0] = NC, NC, OS = NC  
1.8  
1.75  
1.7  
1.65  
1.6  
1.55  
1.5  
0
50  
100  
150  
200  
250  
300  
350  
Output Frequency (MHz)  
D016  
Figure 4. LVPECL Differential Output Swing vs Frequency  
Figure 3. Phase Noise of HCSL Differential Output at 156.25  
MHz with FS[1:0] = NC, NC, OS = VDD  
0.95  
1.48  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
0.9  
0.85  
0.8  
0.75  
0.7  
0
50  
100  
150  
200  
250  
300  
350  
0
50  
100  
150  
200  
250  
300  
350  
Output Frequency (MHz)  
Output Frequency (MHz)  
D017  
D018  
Figure 5. LVDS Differential Output Swing vs Frequency  
Figure 6. HCSL Differential Output Swing vs Frequency  
10  
Copyright © 2015, Texas Instruments Incorporated  
LMK61PD0A2  
www.ti.com.cn  
ZHCSEB9A OCTOBER 2015REVISED NOVEMBER 2015  
8 Parameter Measurement Information  
8.1 Device Output Configurations  
High impedance differential probe  
LVPECL  
LMK61PD0A2  
Oscilloscope  
150  
150 ꢀ  
Figure 7. LVPECL Output DC Configuration during Device Test  
High impedance differential probe  
LMK61PD0A2  
LVDS  
Oscilloscope  
Figure 8. LVDS Output DC Configuration during Device Test  
High impedance differential probe  
HCSL  
LMK61PD0A2  
Oscilloscope  
50  
50 ꢀ  
Figure 9. HCSL Output DC Configuration during Device Test  
Phase Noise/  
Balun/  
Buffer  
Spectrum  
Analyzer  
LMK61PD0A2  
LVPECL  
150  
150 ꢀ  
Figure 10. LVPECL Output AC Configuration during Device Test  
Phase Noise/  
Balun/  
Buffer  
LMK61PD0A2  
Spectrum  
Analyzer  
LVDS  
Figure 11. LVDS Output AC Configuration during Device Test  
Copyright © 2015, Texas Instruments Incorporated  
11  
LMK61PD0A2  
ZHCSEB9A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Device Output Configurations (continued)  
Phase Noise/  
Spectrum  
Analyzer  
Balun/  
Buffer  
LMK61PD0A2  
HCSL  
50  
50 ꢀ  
Figure 12. HCSL Output AC Configuration during Device Test  
Sine wave  
Modulator  
Power Supply  
Phase Noise/  
LMK61PD0A2  
Spectrum  
Analyzer  
Balun  
150 (LVPECL)  
Open (LVDS)  
50 (HCSL)  
150 (LVPECL)  
Open (LVDS)  
50 (HCSL)  
Figure 13. PSRR Test Setup  
OUT_P  
OUT_N  
VOD  
80%  
VOUT,DIFF,PP = 2 x VOD  
0 V  
20%  
tR  
tF  
Figure 14. Differential Output Voltage and Rise/Fall Time  
12  
Copyright © 2015, Texas Instruments Incorporated  
LMK61PD0A2  
www.ti.com.cn  
ZHCSEB9A OCTOBER 2015REVISED NOVEMBER 2015  
9 Detailed Description  
9.1 Overview  
The LMK61PD0A2 is a pin selectable oscillator that generates commonly used reference clocks, greater than  
100 MHz, with less than 200 fs, rms max random jitter.  
9.2 Functional Block Diagram  
VDD  
Power Conditioning  
PLL  
Integrated  
Oscillator  
Output  
XO  
LVPECL  
or LVDS  
or HCSL  
Integer Div  
¥
Control  
N Div  
FS1  
FS0  
OS  
3
3
3
û fractional  
ROM  
(Pin Control)  
OE  
GND  
3
= tri-state  
NOTE  
Control blocks are compatible with 1.8/2.5/3.3 V I/O voltage levels.  
9.3 Feature Description  
9.3.1 Device Block-Level Description  
The LMK61PD0A2 comprises of an integrated oscillator that includes a 50 MHz crystal, a fractional PLL with  
integrated VCO. Completing the device is the combination of an integer output divider and a universal differential  
output buffer. The on-chip ROM contains seven pre-programmed output frequency plans that selects the  
appropriate settings for the integrated oscillator, PLL blocks and output divider. Table 1 lists the supported output  
frequency plans that can be selected by pin-strapping FS[1:0] as required. Table 2 lists the supported output  
types that can be selected by pin-strapping OS and OE as required. The device is powered by on-chip low  
dropout (LDO) linear voltage regulators and the regulated supply network is partitioned such that the sensitive  
analog supplies are running from separate LDOs than the digital supplies which use their own LDO. The LDOs  
provide isolation from any noise in the external power supply rail with a PSRR of better than -70 dBc at 50 kHz to  
1 MHz ripple frequencies at 3.3 V device supply.  
9.3.2 Device Configuration Control  
The LMK61PD0A2 selects an output frequency plan and output type using control pins FS[1:0].  
Copyright © 2015, Texas Instruments Incorporated  
13  
LMK61PD0A2  
ZHCSEB9A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The LMK61PD0A2 is an ultra-low jitter pin selectable oscillator that can be used to provide reference clocks for  
high-speed serial links resulting in improved system performance.  
10.2 Typical Application  
10.2.1 Jitter Considerations in Serdes Systems  
Jitter-sensitive applications such as 10 Gbps or 100 Gbps Ethernet, deploy a serial link utilizing a Serializer in the  
transmit section (TX) and a De-serializer in the receive section (RX). These SERDES blocks are typically  
embedded in an ASIC or FPGA. Estimating the clock jitter impact on the link budget requires understanding of  
the TX PLL bandwidth and the RX CDR bandwidth.  
As can be seen in Figure 15, the pass band region between the TX low pass cutoff and RX high pass cutoff  
frequencies is the range over which the reference clock jitter adds without any attenuation to the jitter budget of  
the link. Outside of these frequencies, the SERDES link will attenuate the reference clock jitter with a 20 dB/dec  
or even steeper roll-off. Modern ASIC or FPGA designs have some flexibility on deciding the optimal RX CDR  
bandwidth and TX PLL bandwidth. These bandwidths are typically set based on what is achievable in the ASIC  
or FPGA process node, without increasing design complexity, and on any jitter tolerance or wander specification  
that needs to be met, as related to the RX CDR bandwidth.  
The overall allowable jitter in a serial link is dictated by IEEE or other relevant standards. For example,  
IEEE802.3ba states that the maximum transmit jitter (peak-peak) for 10 Gbps Ethernet should be no more than  
0.28 * UI and this equates to a 27.1516 ps, p-p for the overall allowable transmit jitter.  
The jitter contributing elements are made up of the reference clock, generated potentially from a device like  
LMK61PD0A2, the transmit medium, transmit driver etc. Only a portion of the overall allowable transmit jitter is  
allocated to the reference clock, typically 20% or lower. Therefore, the allowable reference clock jitter, for a 20%  
clock jitter budget, is 5.43 ps, p-p.  
Jitter in a reference clock is made up of deterministic jitter (arising from spurious signals due to supply noise or  
mixing from other outputs or from the reference input) and random jitter (usually due to thermal noise and other  
uncorrelated noise sources). A typical clock tree in a serial link system consists of clock generators and fanout  
buffers. The allowable reference clock jitter of 5.43 ps, p-p is needed at the output of the fanout buffer. Modern  
fanout buffers have low additive random jitter (less than 100 fs, rms) with no substantial contribution to the  
deterministic jitter. Therefore, the clock generator and fanout buffer contribute to the random jitter while the  
primary contributor to the deterministic jitter is the clock generator. Rule of thumb, for modern clock generators, is  
to allocate 25% of allowable reference clock jitter to the deterministic jitter and 75% to the random jitter. This  
amounts to an allowable deterministic jitter of 1.36 ps, p-p and an allowable random jitter of 4.07 ps, p-p. For  
serial link systems that need to meet a bit error rate (BER) of 10-12, the allowable random jitter in root-mean-  
square is 0.29 ps, rms. This is calculated by dividing the p-p jitter by 14 for a BER of 10-12. Accounting for  
random jitter from the fanout buffer, the random jitter needed from the clock generator is 0.27 ps, rms. This is  
calculated by the root-mean-square subtraction from the desired jitter at the fanout buffer's output assuming 100  
fs, rms of additive jitter from the fanout buffer.  
With careful frequency planning techniques, like spur optimization (covered in the Spur Mitigation Techniques  
section) and on-chip LDOs to suppress supply noise, the LMK61PD0A2 is able to generate clock outputs with  
deterministic jitter that is below 1 ps, p-p and random jitter that is below 0.2 ps, rms. This gives the serial link  
system with additional margin on the allowable transmit jitter resulting in a BER better than 10-12  
.
14  
Copyright © 2015, Texas Instruments Incorporated  
LMK61PD0A2  
www.ti.com.cn  
ZHCSEB9A OCTOBER 2015REVISED NOVEMBER 2015  
Typical Application (continued)  
TX  
RX  
Parallel  
Serializer  
Data  
Parallel  
Sampler  
Data  
Serialized clock/data  
Recovered  
Clock  
TX PLL  
Ref Clk  
CDR  
Deserializer  
Jitter Transfer (on clock)  
Jitter Tolerance (on data)  
Jitter Transfer (on clock)  
F1 = TX_PLL_BWmax  
F2 = RX_CDR_BWmin  
F2 = RX_CDR_BWmin  
Jitter Tolerance (on data)  
F2  
SoC trend:  
Increase stop band  
Less % of jitter budget  
Jitter Transfer (on clock)  
F2  
F1  
SoC trend:  
Decrease stop band  
Improved LO design  
Figure 15. Dependence of Clock Jitter in Serial Links  
Copyright © 2015, Texas Instruments Incorporated  
15  
LMK61PD0A2  
ZHCSEB9A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
11 Power Supply Recommendations  
For best electrical performance of LMK61PD0A2, it is preferred to utilize a combination of 10 uF, 1 uF and 0.1 uF  
on its power supply bypass network. It is also recommended to utilize component side mounting of the power  
supply bypass capacitors and it is best to use 0201 or 0402 body size capacitors to facilitate signal routing. Keep  
the connections between the bypass capacitors and the power supply on the device as short as possible. Ground  
the other side of the capacitor using a low impedance connection to the ground plane. Figure 16 shows the  
layout recommendation for power supply decoupling of LMK61PD0A2.  
16  
Copyright © 2015, Texas Instruments Incorporated  
LMK61PD0A2  
www.ti.com.cn  
ZHCSEB9A OCTOBER 2015REVISED NOVEMBER 2015  
12 Layout  
12.1 Layout Guidelines  
The following sections provides recommendations for board layout, solder reflow profile and power supply  
bypassing when using LMK61PD0A2 to ensure good thermal / electrical performance and overall signal integrity  
of entire system.  
12.1.1 Ensuring Thermal Reliability  
The LMK61PD0A2 is a high performance device. Therefore careful attention must be paid to device configuration  
and printed circuit board (PCB) layout with respect to power consumption. The ground pin needs to be connected  
to the ground plane of the PCB through three vias or more, as shown in Figure 16, to maximize thermal  
dissipation out of the package.  
Equation 1 describes the relationship between the PCB temperature around the LMK61PD0A2 and its junction  
temperature.  
TB = TJ ΨJB * P  
where  
TB: PCB temperature around the LMK61PD0A2  
TJ: Junction temperature of LMK61PD0A2  
ΨJB: Junction-to-board thermal resistance parameter of LMK61PD0A2 (36.7°C/W without airflow)  
P: On-chip power dissipation of LMK61PD0A2  
(1)  
In order to ensure that the maximum junction temperature of LMK61PD0A2 is below 125°C, it can be calculated  
that the maximum PCB temperature without airflow should be at 100°C or below when the device is optimized for  
best performance resulting in maximum on-chip power dissipation of 0.68 W.  
12.1.2 Best Practices for Signal Integrity  
For best electrical performance and signal integrity of entire system with LMK61PD0A2, it is recommended to  
route vias into decoupling capacitors and then into the LMK61PD0A2. It is also recommended to increase the via  
count and width of the traces wherever possible. These steps ensure lowest impedance and shortest path for  
high frequency current flow. Figure 16 shows the layout recommendation for LMK61PD0A2.  
Figure 16. LMK61PD0A2 Layout Recommendation for Power Supply and Ground  
版权 © 2015, Texas Instruments Incorporated  
17  
 
 
LMK61PD0A2  
ZHCSEB9A OCTOBER 2015REVISED NOVEMBER 2015  
www.ti.com.cn  
Layout Guidelines (接下页)  
12.1.3 Recommended Solder Reflow Profile  
It is recommended to follow the solder paste supplier's recommendations to optimize flux activity and to achieve  
proper melting temperatures of the alloy within the guidelines of J-STD-20. It is preferrable for the LMK61PD0A2  
to be processed with the lowest peak temperature possible while also remaining below the components peak  
temperature rating as listed on the MSL label. The exact temperature profile would depend on several factors  
including maximum peak temperature for the component as rated on the MSL label, Board thickness, PCB  
material type, PCB geometries, component locations, sizes, densities within PCB, as well solder manufactures  
recommended profile, and capability of the reflow equipment to as confirmed by the SMT assembly operation.  
18  
版权 © 2015, Texas Instruments Incorporated  
LMK61PD0A2  
www.ti.com.cn  
ZHCSEB9A OCTOBER 2015REVISED NOVEMBER 2015  
13 器件和文档支持  
13.1 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.2 商标  
E2E is a trademark of Texas Instruments.  
13.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMK61PD0A2-SIAR  
LMK61PD0A2-SIAT  
ACTIVE  
QFM  
QFM  
SIA  
8
8
2500 RoHS & Green  
250 RoHS & Green  
NIAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
LMK61  
PD0A2  
ACTIVE  
SIA  
NIAU  
LMK61  
PD0A2  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMK61PD0A2-SIAR  
LMK61PD0A2-SIAT  
QFM  
QFM  
SIA  
SIA  
8
8
2500  
250  
330.0  
178.0  
16.4  
16.4  
5.5  
5.5  
7.5  
7.5  
1.5  
1.5  
8.0  
8.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMK61PD0A2-SIAR  
LMK61PD0A2-SIAT  
QFM  
QFM  
SIA  
SIA  
8
8
2500  
250  
356.0  
208.0  
356.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
SIA0008B  
QFM - 1.15 mm max height  
S
C
A
L
E
1
.
9
0
0
QUAD FLAT MODULE  
B
A
5±0.1  
PIN 1 INDEX  
AREA  
7±0.1  
4X  
0.15 C  
0.1 C  
C
1.15 MAX  
0.1 C  
6X (0.15)  
0.83  
0.77  
2X  
2X (0.24)  
8
4
4X (0.26)  
3
2X  
2.865  
SYMM  
6X  
2X  
5.08  
4X  
1.43  
1.37  
2.54  
0.1  
0.05  
C A  
C
B
6
1
7
1.03  
0.97  
6X  
6X 1.85  
SYMM  
4221443/B 09/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
SIA0008B  
QFM - 1.15 mm max height  
QUAD FLAT MODULE  
2X ( 0.8)  
6X (1)  
7
1
6
6X (1.4)  
(2.865)  
SYMM  
4X (2.54)  
4
3
8
(R0.05) TYP  
SYMM  
(3.7)  
LAND PATTERN EXAMPLE  
1:1 RATIO WITH PACKAGE SOLDER PADS  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221443/B 09/2015  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
SIA0008B  
QFM - 1.15 mm max height  
QUAD FLAT MODULE  
2X ( 0.8)  
12X (1)  
7
6
1
12X (0.6)  
2X  
(2.865)  
(R0.05) TYP  
SYMM  
4X (2.54)  
4
3
(0.4) TYP  
EXPOSED METAL  
TYP  
8
SYMM  
(3.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA  
PADS 1-3 & 4-6: 86%  
SCALE:10X  
4221443/B 09/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LMK62A2-100M

100MHz、LVDS ±50ppm、高性能、低抖动、标准振荡器
TI

LMK62A2-100M00SIAR

100MHz、LVDS ±50ppm、高性能、低抖动、标准振荡器 | SIA | 6 | -40 to 85
TI

LMK62A2-100M00SIAT

100MHz、LVDS ±50ppm、高性能、低抖动、标准振荡器 | SIA | 6 | -40 to 85
TI

LMK62A2-150M

150MHz、LVDS ±50ppm、高性能、低抖动、标准振荡器
TI

LMK62A2-150M00SIAR

150MHz、LVDS ±50ppm、高性能、低抖动、标准振荡器 | SIA | 6 | -40 to 85
TI

LMK62A2-150M00SIAT

150MHz、LVDS ±50ppm、高性能、低抖动、标准振荡器 | SIA | 6 | -40 to 85
TI

LMK62A2-156M

156.25MHz、LVDS ±50ppm、高性能、低抖动振荡器
TI

LMK62A2-156M25SIAR

156.25MHz、LVDS ±50ppm、高性能、低抖动振荡器 | SIA | 6 | -40 to 85
TI

LMK62A2-156M25SIAT

156.25MHz、LVDS ±50ppm、高性能、低抖动振荡器 | SIA | 6 | -40 to 85
TI

LMK62A2-200M

200MHz、LVDS ±50ppm、高性能、低抖动、标准振荡器
TI

LMK62A2-200M00SIAR

200MHz、LVDS ±50ppm、高性能、低抖动、标准振荡器 | SIA | 6 | -40 to 85
TI

LMK62A2-200M00SIAT

200MHz、LVDS ±50ppm、高性能、低抖动、标准振荡器 | SIA | 6 | -40 to 85
TI