LMP8603QMA/NOPB [TI]

具有直列式滤波器功能的 AEC-Q100、-22V 至 60V、双向电流感应放大器 | D | 8 | -40 to 125;
LMP8603QMA/NOPB
型号: LMP8603QMA/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有直列式滤波器功能的 AEC-Q100、-22V 至 60V、双向电流感应放大器 | D | 8 | -40 to 125

放大器
文件: 总44页 (文件大小:1825K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
LMP860xLMP860x-Q1 60V、双向、低侧或高侧、电压输出  
电流感测放大器  
1 特性  
3 说明  
1
增益 = 20xLMP8601 LMP8601-Q1)  
LMP8601LMP8602LMP8603 (LMP860x) 和  
LMP8601-Q1LMP8602-Q1LMP8603-Q1  
(LMP860x-Q1) 器件均为增益固定的精密电流感测放大  
器(也称分流监测计)。当由 5V 3.3V 单电源供电  
时,输入共模电压范围分别为 –22V +60V –4V  
+27VLMP860x LMP860x-Q1 是单向和双向电  
流感测 应用的理想元件。。  
增益 = 50xLMP8602 LMP8602-Q1)  
增益 = 100xLMP8603 LMP8603-Q1)  
TCVOS10μV/°C(最大值)  
共模抑制比 (CMRR)90dB(最小值)  
输入偏移电压:1mV(典型值)  
VS = 3.3V 时的共模电压范围 (CMVR)-4V 至  
27V  
此类器件的精密增益分别为 20x LPM8601 和  
LPM8601-Q1)、50xLPM8602 LPM8602-Q1)  
100xLPM8603 LPM8603-Q1),足以满足多  
数目标 应用 将模数转换器 (ADC) 驱动至满量程值的要  
求。固定增益在两个独立级中实现,包括增益为 10x  
的前置放大器和增益为 2xLMP8601 LMP8601-  
Q1)、5xLMP8602 LMP8602-Q1)或  
VS = 5V 时的 CMVR–22V 60V  
单电源双向供电运行  
所有最小和最大限值完全经过测试  
符合汽车类应用的 Q1 器件  
Q1 器件具有符合 ACE-Q100 标准的下列结果:  
器件温度等级 1:环境运行温度范围为 -40°C  
125°C  
10xLMP8603 LMP8603-Q1)的输出级缓冲放大  
器。连接两级的路径通过两引脚引出,支持选择使用附  
加滤波器网络或修改增益。  
器件温度等级 0-40°C 150°C(仅限  
LMP8601EDRQ1)  
器件人体模型 (HBM) 静电放电 (ESD) 分类等级  
2
偏移输入引脚允许此类器件执行单向或双向单电源电压  
电流感测。  
(输入电流为 3A)  
器件带电器件模型 (CDM) ESD 分类等级 C6  
器件机器模型 (MM) ESD 分类等级 M2  
LMP860x-Q1 器件采用增强型制造与支持工艺,适用  
于汽车市场,符合 AEC-Q100 标准。  
2 应用  
器件信息(1)  
高侧和低侧驱动器配置电流感测  
器件型号  
封装  
封装尺寸(标称值)  
双向电流测量  
电压转换的电流循环  
汽车喷油控制  
传动控制  
LMP860x  
SOIC (8)  
4.90mm x 3.91mm  
LMP860x-Q1  
LMP8602LMP8603  
LMP8602-Q1LMP8603-Q1  
VSSOP (8) 3.00mm × 3.00mm  
电动助力转向  
电池管理系统  
(1) 要了解所有可用封装,请参见数据表末尾的封装选项附录。  
典型 应用  
D
I
I
L
Inductive  
Load  
C
load  
G
+5V  
48V  
48V  
I
B
+
-
+5V  
S
+3.3V  
+
-
+
-
Charger  
D
S
G
Inductive  
Load  
24V  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNOSAR2  
 
 
 
 
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 19  
7.4 Device Functional Modes........................................ 22  
Application and Implementation ........................ 26  
8.1 Application Information............................................ 26  
8.2 Typical Applications ............................................... 26  
Power Supply Recommendations...................... 31  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings: LMP860x ............................................ 4  
6.3 ESD Ratings: LMP860x-Q1 ...................................... 4  
6.4 Recommended Operating Conditions....................... 4  
6.5 Thermal Information.................................................. 5  
6.6 Electrical Characteristics: VS = 3.3 V........................ 5  
6.7 Electrical Characteristics: VS = 5 V........................... 7  
6.8 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 18  
7.1 Overview ................................................................. 18  
7.2 Functional Block Diagram ....................................... 18  
8
9
10 Layout................................................................... 31  
10.1 Layout Guidelines ................................................. 31  
10.2 Layout Example .................................................... 31  
11 器件和文档支持 ..................................................... 32  
11.1 器件支持................................................................ 32  
11.2 相关链接................................................................ 32  
11.3 社区资源................................................................ 32  
11.4 ....................................................................... 32  
11.5 静电放电警告......................................................... 32  
11.6 Glossary................................................................ 32  
12 机械、封装和可订购信息....................................... 32  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision G (July 2015) to Revision H  
Page  
已添加新温度等级 0 型号 LMP8601-Q1 ................................................................................................................................. 1  
已将 LMP8602LMP8602-Q1LMP8603 LMP8603-Q1 器件及相关信息添加至数据表 ................................................. 1  
已更改特性要点....................................................................................................................................................................... 1  
已更改 说明部分...................................................................................................................................................................... 1  
Added new values to Thermal Information table.................................................................................................................... 5  
Changed RθJA value in Thermal Information table.................................................................................................................. 5  
Deleted previous Note 1 from Electrical Characteristics tables.............................................................................................. 5  
Changed all AV1 to K1 throughout data sheet for consistency.............................................................................................. 6  
Changed all AV2 to K2 throughout data sheet for consistency.............................................................................................. 6  
Deleted previous Note 1 from Electrical Characteristics tables.............................................................................................. 7  
已删除相关文档部分;SNOSB36 数据表内容现与本数据表合并 ......................................................................................... 32  
Changes from Revision F (January 2014) to Revision G  
Page  
已添加 ESD 额定值表以及引脚配置和功能特性 描述器件功能模式应用和实施电源相关建议布局器件和  
文档支持以及机械、封装和可订购信息部分........................................................................................................................ 1  
Changes from Revision E (March 2013) to Revision F  
Page  
Added four typical curves ..................................................................................................................................................... 17  
Changes from Revision D (October 2009) to Revision E  
Page  
Changed layout of National Data Sheet to TI format ........................................................................................................... 30  
2
Copyright © 2008–2016, Texas Instruments Incorporated  
 
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
www.ti.com.cn  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
5 Pin Configuration and Functions  
D Package  
8-Pin SOIC  
Top View  
DGK Package  
8-Pin VSSOP  
Top View  
1
2
8
7
1
2
-IN  
-IN  
8
7
+IN  
+IN  
GND  
GND  
OFFSET  
OFFSET  
V
S
V
S
A1  
A2  
6
5
A1  
A2  
3
4
3
4
6
5
OUT  
OUT  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
A1  
NO.  
3
O
I
Preamplifier output  
A2  
4
Input from the external filter network and, or A1  
Power ground  
GND  
+IN  
2
P
I
8
Positive input  
-IN  
1
I
Negative input  
OFFSET  
OUT  
VS  
7
I
DC offset for bidirectional signals  
Single-ended output  
5
O
P
6
Positive supply voltage  
Copyright © 2008–2016, Texas Instruments Incorporated  
3
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–22  
MAX  
6
UNIT  
Supply voltage (VS – GND)  
V
V
V
V
Continuous input voltage (–IN and +IN)  
Transient (400 ms)  
60  
–25  
65  
Maximum voltage at A1, A2, OFFSET and OUT pins  
VS + 0.3  
–40  
GND – 0.3  
150  
LMP8601EDRQ1 only  
Operating temperature, TA  
°C  
°C  
°C  
°C  
All other devices  
–40  
125  
Junction temperature(2)  
–40  
150  
Infrared or convection (20 sec)  
Mounting temperature  
235  
Wave soldering lead (10 sec)  
260  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJ(MAX), RθJA, and the ambient  
temperature, TA. The maximum allowable power dissipation PDMAX = (TJ(MAX) – TA) / RθJA or the number given in Absolute Maximum  
Ratings, whichever is lower.  
6.2 ESD Ratings: LMP860x  
VALUE  
±2000  
±4000  
±1000  
±200  
UNIT  
All pins except 1 and 8  
Pins 1 and 8  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
V
Machine model  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 ESD Ratings: LMP860x-Q1  
VALUE  
±2000  
±4000  
±1000  
±200  
UNIT  
All pins except 1 and 8  
Human body model (HBM), per AEC Q100-002(1)  
Pins 1 and 8  
Electrostatic  
discharge  
V(ESD)  
V
Charged-device model (CDM), per AEC Q100-011  
Machine model  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
MAX  
UNIT  
Supply voltage (VS – GND)  
OFFSET voltage (Pin 7)  
5.5  
VS  
V
V
0
LMP8601EDRQ1 only  
All other devices  
–40  
–40  
150  
125  
(1)  
Operating temperature, TA  
°C  
(1) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJ(MAX), RθJA, and the ambient  
temperature, TA. The maximum allowable power dissipation PDMAX = (TJ(MAX) – TA) / RθJA or the number given in Absolute Maximum  
Ratings, whichever is lower.  
4
Copyright © 2008–2016, Texas Instruments Incorporated  
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
www.ti.com.cn  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
6.5 Thermal Information  
LMP8602,  
LMP860x,  
LMP860x-Q1  
LMP8602-Q1,  
LMP8603,  
THERMAL METRIC(1)  
UNIT  
LMP8603-Q1  
D (SOIC)  
8 PINS  
113.1  
57.3  
DGK (VSSOP)  
8 PINS  
171.1  
64.1  
RθJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
53.5  
91.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
11.1  
9.4  
ψJB  
53.0  
89.7  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJ(MAX), RθJA, and the ambient  
temperature, TA. The maximum allowable power dissipation PDMAX = (TJ(MAX) – TA) / RθJA or the number given in Absolute Maximum  
Ratings, whichever is lower.  
6.6 Electrical Characteristics: VS = 3.3 V  
at TA = 25°C, VS = 3.3 V, GND = 0 V, –4 V VCM 27 V, RL = , OFFSET (pin 7) is grounded, and 10 nF between VS and  
GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN(1)  
TYP(2)  
MAX(1)  
UNIT  
mA  
OVERALL PERFORMANCE (FROM -IN (PIN 1) AND +IN (PIN 8) TO OUT (PIN 5) WITH PINS A1 (PIN 3) AND A2 (PIN 4) CONNECTED)  
1
IS  
Supply current  
Total gain  
Over full temperature range  
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
Over full temperature range  
VIN = ±0.165 V  
0.6  
19.9  
1.3  
20.1  
20  
50  
AV  
49.75  
99.5  
50.25  
100.5  
V/V  
100  
–2.7  
0.7  
60  
Gain Drift(3)  
Slew rate(4)  
±20 ppm/°C  
V/μs  
SR  
0.4  
50  
BW  
Bandwidth  
kHz  
VOS  
Input offset voltage  
Input offset voltage drift(5)  
VCM = VS / 2  
0.15  
2
±1  
mV  
TCVOS  
Over full temperature range  
0.1 Hz - 10 Hz, 6 sigma  
Spectral density, 1 kHz  
±10  
μV/°C  
μVP-P  
16.4  
830  
86  
en  
Input-referred voltage noise  
Power-supply rejection ratio  
nV/Hz  
3.0 V VS 3.6 V,  
DC, VCM = VS/2  
PSRR  
dB  
Over full temperature range  
70  
±0.15%  
±0.25%  
±0.45%  
±0.5%  
±0.413  
±1%  
LMP8601,  
LMP8601-Q1  
Input referred  
Input referred  
Input referred  
mV  
mV  
mV  
LMP8602,  
LMP8602-Q1  
Midscale offset scaling accuracy  
±0.33  
±1.5%  
±0.248  
LMP8603,  
LMP8603-Q1  
(1) Data sheet min and max limits are specified by test.  
(2) Typical values represent the most likely parameter norms at TA = 25°C, and at the Recommended Operation Conditions at the time of  
product characterization.  
(3) Both the gain of preamplifier K1 and the gain of buffer amplifier K2 are measured individually. The overall gain of both amplifiers (AV) is  
also measured to assure the gain of all parts is always within the AV limits.  
(4) Slew rate is the average of the rising and falling slew rates.  
(5) Offset voltage drift determined by dividing the change in VOS at temperature extremes into the total temperature change.  
Copyright © 2008–2016, Texas Instruments Incorporated  
5
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
www.ti.com.cn  
Electrical Characteristics: VS = 3.3 V (continued)  
at TA = 25°C, VS = 3.3 V, GND = 0 V, –4 V VCM 27 V, RL = , OFFSET (pin 7) is grounded, and 10 nF between VS and  
GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN(1)  
TYP(2)  
295  
MAX(1)  
UNIT  
PREAMPLIFIER (FROM INPUT PINS -IN, (PIN 1) AND +IN (PIN 8) TO A1 (PIN 3))  
RCM  
Input impedance common mode  
–4 V VCM 27 V  
kΩ  
Over full temperature range  
Over full temperature range  
250  
500  
350  
590  
RDM  
Input impedance differential mode  
Input offset voltage  
–4 V VCM 27 V  
VCM = VS / 2  
kΩ  
mV  
dB  
700  
±1  
VOS  
±0.15  
96  
DC CMRR  
DC common-mode rejection ratio  
–2 V VCM 24 V  
Over full temperature range  
Over full temperature range  
86  
80  
f = 1 kHz  
94  
85  
AC CMRR  
AC common-mode rejection ratio(6)  
dB  
f = 10 kHz  
CMVR  
K1  
Input common-mode voltage range  
Preamplifier gain(3)  
for 80-dB CMRR  
–4  
27  
V
9.95  
10.0  
100  
10.05  
V/V  
RF-INT  
Output impedance filter resistor  
–40°C TA 125°C  
99  
97  
101  
103  
kΩ  
–40°C TA 150°C, LMP8601EDRQ1 only  
TCRF-INT  
Output impedance filter resistor drift  
Over full temperature range  
±5  
2
±50 ppm/°C  
VOL, RL = ∞  
mV  
10  
Over full temperature range  
A1 VOUT  
A1 output voltage swing  
3.25  
±0.5  
VOH, RL = ∞  
V
Over full temperature range  
3.2  
OUTPUT BUFFER (FROM A2 (PIN 4) TO OUT (PIN 5 ))  
–2  
–2.5  
2
mV  
2.5  
VOS  
K2  
IB  
Input offset voltage  
0V VCM VS  
Over full temperature range  
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
1.99  
2
5
2.01  
Output buffer gain(3)  
Input bias current of A2(7)  
4.975  
9.95  
5.025  
10.05  
V/V  
10  
–40  
fA  
,
Over full temperature range  
LMP8601,  
±20  
20  
nA  
4
10  
Over full  
temperature range  
LMP8601-Q1,  
LMP8602,  
LMP8602-Q1  
VOL, RL = 100 kΩ  
mV  
Over full  
temperature range  
40  
80  
(9)  
A2 VOUT  
A2 output voltage swing(8)  
10  
LMP8603,  
LMP8603-Q1  
Over full  
temperature range  
3.29  
VOH, RL = 100 kΩ  
V
Over full temperature range  
3.28  
–25  
30  
Sourcing, VIN = VS, VOUT = GND  
Sinking, VIN = GND, VOUT = VS  
–38  
46  
–60  
65  
ISC  
Output short-circuit current(10)  
mA  
(6) AC common-mode signal is a 5-VPP sine-wave (0 V to 5 V) at the given frequency.  
(7) Positive current corresponds to current flowing into the device.  
(8) For this test input is driven from A1 stage.  
(9) For VOL, RL is connected to VS and for VOH, RL is connected to GND.  
(10) Short-Circuit test is a momentary test. Continuous short circuit operation at elevated ambient temperature can result in exceeding the  
maximum allowed junction temperature of 150°C.  
6
Copyright © 2008–2016, Texas Instruments Incorporated  
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
www.ti.com.cn  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
6.7 Electrical Characteristics: VS = 5 V  
at TA = 25°C, VS = 5 V, GND = 0 V, –22 V VCM 60 V, RL = , OFFSET (pin 7) is grounded, and 10 nF between VS and  
GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN(1)  
TYP(2)  
MAX(1)  
UNIT  
mA  
OVERALL PERFORMANCE (FROM -IN (PIN 1) AND +IN (PIN 8) TO OUT (PIN 5) WITH PINS A1 (PIN 3) AND A2 (PIN 4) CONNECTED)  
1.1  
IS  
Supply current  
Total gain(3)  
Over full temperature range  
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
–40°C TA 125°C  
0.7  
19.9  
1.5  
20.1  
20  
50  
AV  
49.75  
99.5  
50.25  
100.5  
V/V  
100  
–2.8  
0.83  
60  
Gain drift  
±20 ppm/°C  
V/μs  
SR  
Slew rate(4)  
VIN = ±0.25 V  
0.6  
50  
BW  
Bandwidth  
kHz  
VOS  
Input offset voltage  
Input offset voltage drift(5)  
0.15  
2
±1  
mV  
TCVOS  
–40°C TA 125°C  
±10  
μV/°C  
μVP-P  
0.1 Hz - 10 Hz, 6 sigma  
Spectral density, 1 kHz  
17.5  
890  
90  
eN  
Input-referred voltage noise  
Power-supply rejection ratio  
nV/Hz  
4.5 V VS 5.5 V,  
DC  
PSRR  
dB  
Over full temperature range  
70  
±0.15%  
±0.25%  
±0.45%  
±0.5%  
±0.625  
±1%  
LMP8601,  
LMP8601-Q1  
Input-referred  
Input-referred  
Input-referred  
mV  
mV  
mV  
LMP8602,  
LMP8602-Q1  
Midscale offset scaling accuracy  
±0.50  
±1.5%  
±0.375  
LMP8603,  
LMP8603-Q1  
(1) Data sheet min and max limits are specified by test.  
(2) Typical values represent the most likely parameter norms at TA = 25°C, and at the Recommended Operation Conditions at the time of  
product characterization.  
(3) Both the gain of preamplifier K1 and the gain of buffer amplifier K2 are measured individually. The overall gain of both amplifiers (AV) is  
also measured to assure the gain of all parts is always within the AV limits.  
(4) Slew rate is the average of the rising and falling slew rates.  
(5) Offset voltage drift determined by dividing the change in VOS at temperature extremes into the total temperature change.  
Copyright © 2008–2016, Texas Instruments Incorporated  
7
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
www.ti.com.cn  
Electrical Characteristics: VS = 5 V (continued)  
at TA = 25°C, VS = 5 V, GND = 0 V, –22 V VCM 60 V, RL = , OFFSET (pin 7) is grounded, and 10 nF between VS and  
GND (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN(1)  
TYP(2)  
295  
MAX(1)  
UNIT  
PREAMPLIFIER (FROM INPUT PINS -IN (PIN 1) AND +IN (PIN 8) TO A1 (PIN 3))  
0 V VCM 60 V  
kΩ  
kΩ  
kΩ  
Over full temperature range  
Over full temperature range  
Over full temperature range  
Over full temperature range  
250  
165  
500  
300  
350  
250  
700  
RCM  
Input impedance, common mode  
Input impedance, differential mode  
193  
–20 V VCM 0 V  
0 V VCM 60 V  
590  
RDM  
386  
–20 V VCM 0 V  
VCM = VS / 2  
kΩ  
mV  
dB  
500  
±1  
VOS  
Input offset voltage  
±0.15  
105  
DC CMRR  
DC common-mode rejection ratio  
–20 V VCM 60 V  
Over full temperature range  
Over full temperature range  
90  
80  
f = 1 kHz  
96  
83  
AC CMRR  
AC common-mode rejection ratio(6)  
dB  
f = 10 kHz  
CMVR  
K1  
Input common-mode voltage range  
Preamplifier gain(3)  
for 80-dB CMRR  
–22  
60  
V
9.95  
10  
10.05  
V/V  
100  
RF-INT  
Output impedance filter resistor  
–40°C TA 125°C,  
99  
97  
101  
103  
kΩ  
–40°C TA 150°C, LMP8601EDRQ1 only  
TCRF-INT  
Output impedance filter resistor drift  
±5  
2
±50 ppm/°C  
VOL, RL = ∞  
mV  
10  
Over full temperature range  
A1 VOUT  
A1 output voltage swing  
4.985  
±0.5  
VOH, RL = ∞  
V
Over full temperature range  
4.95  
OUTPUT BUFFER (FROM A2 (PIN 4) TO OUT (PIN 5))  
–2  
–2.5  
2
mV  
2.5  
VOS  
K2  
IB  
Input offset voltage  
0V VCM VS  
Over full temperature range  
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
1.99  
2
5
2.01  
Output buffer gain(3)  
Input bias current of A2(7)  
4.975  
9.95  
5.025  
10.05  
V/V  
10  
–40  
fA  
Over full temperature range  
LMP8601,  
±20  
20  
nA  
4
10  
Over full  
temperature range  
LMP8601-Q1,  
LMP8602,  
LMP8602-Q1  
VOL, RL = ∞  
mV  
Over full  
temperature range  
40  
80  
(9)  
A2 VOUT  
A2 output voltage swing(8)  
10  
LMP8602,  
LMP8603-Q1  
Over full  
temperature range  
4.99  
VOH, RL = ∞  
V
Over full temperature range  
4.98  
–25  
30  
Sourcing, VIN = VS, VOUT = GND  
Sinking, VIN = GND, VOUT = VS  
–42  
48  
–60  
65  
ISC  
Output short-circuit current(10)  
mA  
(6) AC common-mode signal is a 5-VPP sine-wave (0 V to 5 V) at the given frequency.  
(7) Positive current corresponds to current flowing into the device.  
(8) For this test input is driven from A1 stage.  
(9) For VOL, RL is connected to VS and for VOH, RL is connected to GND.  
(10) Short-Circuit test is a momentary test. Continuous short circuit operation at elevated ambient temperature can result in exceeding the  
maximum allowed junction temperature of 150°C.  
8
Copyright © 2008–2016, Texas Instruments Incorporated  
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
www.ti.com.cn  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
6.8 Typical Characteristics  
at TA = 25°C, VS = 5 V, GND = 0 V, –22 VCM 60 V, RL = , OFFSET (pin 7) connected to VS, and 10 nF between VS and  
GND (unless otherwise noted)  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
V
S
= 3.3V  
V
S
= 5V  
-4  
0
4
8
12 16 20 24 28 30  
(V)  
-20 -10  
0
10 20 30 40 50 60  
(V)  
V
CM  
V
CM  
Figure 1. VOS vs VCM at VS = 3.3 V  
Figure 2. VOS vs VCM at VS = 5 V  
100  
75  
50  
25  
0
200  
150  
100  
50  
125°C  
125°C  
0
-40°C  
-25  
-50  
-40°C  
-50  
-100  
-30  
-10  
10  
V
30  
(V)  
50  
70  
-10  
0
10  
(V)  
20  
30  
V
CM  
CM  
Figure 4. Input Bias Current Over Temperature (+IN and –IN  
pins) at VS = 5 V  
Figure 3. Input Bias Current Over Temperature (+IN and –IN  
pins) at VS = 3.3 V  
100  
200  
150  
100  
-40°C  
0
-100  
50  
25°C  
-200  
-300  
0
-50  
0
1
2
3
4
5
0
1
2
3
4
5
V
(V)  
V
(V)  
CM  
CM  
Figure 5. Input Bias Current Over Temperature (A2 pin) at  
VS = 5 V  
Figure 6. Input Bias Current Over Temperature (A2 pin) at  
VS = 5 V  
Copyright © 2008–2016, Texas Instruments Incorporated  
9
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, GND = 0 V, –22 VCM 60 V, RL = , OFFSET (pin 7) connected to VS, and 10 nF between VS and  
GND (unless otherwise noted)  
1.5  
1.2  
0.9  
0.6  
0.3  
0
100  
80  
60  
40  
20  
0
V
= 5V  
S
V
= 3.3V  
S
0.1  
1
10  
100  
1k  
10k 100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7. Input-Referred Voltage Noise vs Frequency  
Figure 8. PSRR vs Frequency  
30  
30  
20  
20  
10  
10  
0
0
-10  
-10  
-20  
-30  
-40  
-50  
-20  
-30  
V
V
= 5V  
V
V
= 3.3V  
S
S
-40  
= V /2  
S
= V /2  
S
OUT  
OUT  
-50  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 10. Gain vs Frequency at VS = 5 V  
120  
FREQUENCY (Hz)  
Figure 9. Gain vs Frequency at VS = 3.3 V  
120  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
V
= 5V  
S
V
S
= 3.3V  
100  
1k  
10k  
100k  
100  
1k  
FREQUENCY (Hz)  
Figure 11. CMRR vs Frequency at VS = 3.3 V  
10k  
100k  
FREQUENCY (Hz)  
Figure 12. CMRR vs Frequency at VS = 5 V  
10  
Copyright © 2008–2016, Texas Instruments Incorporated  
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
www.ti.com.cn  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, GND = 0 V, –22 VCM 60 V, RL = , OFFSET (pin 7) connected to VS, and 10 nF between VS and  
GND (unless otherwise noted)  
V
= 5V  
V
= 3.3V  
S
S
R
= 10 kΩ  
R
= 10 kΩ  
L
L
TIME (20 µs/DIV)  
TIME (20 µs/DIV)  
Figure 13. Step Response at VS = 3.3 V  
LMP8601 and LMP8601-Q1  
Figure 14. Step Response at VS = 5 V  
LMP8601 and LMP8601-Q1  
V
S
= 3.3V  
V
S
= 5V  
TIME (5 µs/DIV)  
TIME (5 µs/DIV)  
Figure 15. Settling Time (Falling Edge) at VS = 3.3 V  
LMP8601 and LMP8601-Q1  
Figure 16. Settling Time (Falling Edge) at VS = 5 V  
LMP8601 and LMP8601-Q1  
V
= 5V  
V
= 3.3V  
S
S
TIME (5 µs/DIV)  
TIME (5 µs/DIV)  
Figure 17. Settling Time (Rising Edge) at VS = 3.3 V  
LMP8601 and LMP8601-Q1  
Figure 18. Settling Time (Rising Edge) at VS = 5 V  
LMP8601 and LMP8601-Q1  
Copyright © 2008–2016, Texas Instruments Incorporated  
11  
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, GND = 0 V, –22 VCM 60 V, RL = , OFFSET (pin 7) connected to VS, and 10 nF between VS and  
GND (unless otherwise noted)  
TIME (20 ms/DIV)  
TIME (20 ms/DIV)  
Figure 19. Step Response at VS = 3.3 V, RL = 10 k  
Figure 20. Step Response at VS = 5 V, RL = 10 kΩ  
LMP8602 and LMP8602-Q1  
LMP8602 and LMP8602-Q1  
TIME (5 ms/DIV)  
TIME (5 us/DIV)  
Figure 21. Settling Time (Falling Edge) at VS = 3.3 V  
LMP8602 and LMP8602-Q1  
Figure 22. Settling Time (Falling Edge) at VS = 5 V  
LMP8602 and LMP8602-Q1  
TIME (5 ms/DIV)  
TIME (5 us/DIV)  
Figure 23. Settling Time (Rising Edge) at VS = 3.3 V  
LMP8602 and LMP8602-Q1  
Figure 24. Settling Time (Rising Edge) at VS = 5 V  
LMP8602 and LMP8602-Q1  
12  
Copyright © 2008–2016, Texas Instruments Incorporated  
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
www.ti.com.cn  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, GND = 0 V, –22 VCM 60 V, RL = , OFFSET (pin 7) connected to VS, and 10 nF between VS and  
GND (unless otherwise noted)  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
TIME (20 us/DIV)  
TIME (20 us/DIV)  
Figure 25. Step Response at VS = 3.3 V, RL = 10 kΩ  
Figure 26. Step Response at VS = 5 V, RL = 10 kΩ  
LMP8603 and LMP8603-Q1  
LMP8603 and LMP8603-Q1  
TIME (5 us/DIV)  
TIME (5 us/DIV)  
Figure 27. Settling Time (Falling Edge) at VS = 3.3 V  
LMP8603 and LMP8603-Q1  
Figure 28. Settling Time (Falling Edge) at VS = 5 V  
LMP8603 and LMP8603-Q1  
TIME (5 us/DIV)  
TIME (5 us/DIV)  
Figure 29. Settling Time (Rising Edge) at VS = 3.3 V  
LMP8603 and LMP8603-Q1  
Figure 30. Settling Time (Rising Edge) at VS = 5 V  
LMP8603 and LMP8603-Q1  
Copyright © 2008–2016, Texas Instruments Incorporated  
13  
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, GND = 0 V, –22 VCM 60 V, RL = , OFFSET (pin 7) connected to VS, and 10 nF between VS and  
GND (unless otherwise noted)  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
60  
50  
40  
30  
20  
10  
0
V
= 3.3V  
= 0V  
= V /2  
S
S
V
IN  
V
CM  
V
= 3.3V  
= 165 mV  
= V /2  
S
S
V
IN  
V
CM  
1k  
10k  
LOAD RESISTANCE (Ω)  
100k  
1k  
10k  
LOAD RESISTANCE (Ω)  
100k  
Figure 31. Positive Swing vs RLOAD at VS = 3.3 V  
Figure 32. Negative Swing vs RLOAD at VS = 3.3 V  
90  
5.00  
V
= 5V  
= 0V  
S
75  
60  
45  
30  
15  
0
4.98  
4.96  
4.94  
4.92  
V
IN  
V
CM  
= V /2  
S
4.90  
4.88  
V
= 5V  
= 250 mV  
= V /2  
S
S
V
IN  
V
CM  
1k  
10k  
LOAD RESISTANCE (Ω)  
100k  
1k  
10k  
LOAD RESISTANCE (Ω)  
100k  
Figure 34. Negative Swing vs RLOAD at VS = 5 V  
Figure 33. Positive Swing vs RLOAD VS = 5 V  
35  
35  
V
= 3.3V  
6000 parts  
V
= 5V  
6000 parts  
S
S
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
-1.0  
0
-1.0  
-0.6  
-0.2  
0
0.2  
0.6  
1.0  
-0.6  
-0.2  
0
0.2  
0.6  
1.0  
V
(mV)  
V
(mV)  
OS  
OS  
Figure 35. VOS Distribution at VS = 3.3 V  
Figure 36. VOS Distribution at VS = 5 V  
14  
Copyright © 2008–2016, Texas Instruments Incorporated  
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
www.ti.com.cn  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, GND = 0 V, –22 VCM 60 V, RL = , OFFSET (pin 7) connected to VS, and 10 nF between VS and  
GND (unless otherwise noted)  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
1300 parts  
1300 parts  
0
-10 -8 -6 -4 -2  
0
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
0
2
4
6
8
10  
TCV  
(µV/°C)  
GAIN DRIFT (ppm/°C)  
OS  
Figure 37. TCVOS Distribution  
Figure 38. Gain Drift Distribution, 1300 Parts  
LMP8601 and LMP8601-Q1  
20  
15  
10  
5
15  
12  
9
6
3
0
0
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
GAIN DRIFT (ppm/°C)  
GAIN DRIFT (ppm/°C)  
Figure 39. Gain Drift Distribution, 5000 Parts  
LMP8602 and LMP8602-Q1  
Figure 40. Gain Drift Distribution, 5000 Parts  
LMP8603 and LMP8603-Q1  
20  
20  
V
= 3.3V  
S
V
= 5V  
S
6000 parts  
6000 parts  
15  
10  
5
15  
10  
5
0
0
-0.50  
-0.25  
0.00  
0.25  
0.50  
-0.50  
-0.25  
0.00  
0.25  
0.50  
GAIN ERROR (%)  
GAIN ERROR (%)  
Figure 41. Gain Error Distribution at VS = 3.3 V  
LMP8601 and LMP8601-Q1  
Figure 42. Gain Error Distribution at VS = 5 V  
LMP8601 and LMP8601-Q1  
Copyright © 2008–2016, Texas Instruments Incorporated  
15  
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, GND = 0 V, –22 VCM 60 V, RL = , OFFSET (pin 7) connected to VS, and 10 nF between VS and  
GND (unless otherwise noted)  
20  
15  
10  
5
20  
15  
10  
5
0
0
-0.50  
-0.25  
0.00  
0.25  
0.50  
-0.50  
-0.25  
0.00  
0.25  
0.50  
GAIN ERROR (%)  
GAIN ERROR (%)  
Figure 43. Gain Error Distribution at VS = 3.3 V, 5000 Parts  
LMP8602 and LMP8602-Q1  
Figure 44. Gain Error Distribution at VS = 5 V, 5000 Parts  
LMP8602 and LMP8602-Q1  
20  
15  
10  
5
20  
15  
10  
5
0
0
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
GAIN DRIFT (ppm/°C)  
GAIN DRIFT (ppm/°C)  
Figure 45. Gain Error Distribution at VS = 3.3 V, 5000 Parts  
LMP8603 and LMP8603-Q1  
Figure 46. Gain Error Distribution at VS = 5 V  
LMP8603 and LMP8603-Q1  
30  
30  
V
S
= 5V  
V
S
= 3.3V  
6000 parts  
6000 parts  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
80  
90  
100  
CMRR (dB)  
Figure 47. CMRR Distribution at VS = 3.3 V  
110  
120  
130  
140  
80  
90  
100  
110  
120  
130  
140  
CMRR (dB)  
Figure 48. CMRR Distribution at VS = 5 V  
16  
Copyright © 2008–2016, Texas Instruments Incorporated  
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
www.ti.com.cn  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
Typical Characteristics (continued)  
at TA = 25°C, VS = 5 V, GND = 0 V, –22 VCM 60 V, RL = , OFFSET (pin 7) connected to VS, and 10 nF between VS and  
GND (unless otherwise noted)  
5
4
3
2
1
0
60  
50  
40  
30  
20  
10  
0
VS = 5V, VCM = 0V  
VS = 5V, VCM = 0V  
0
50  
100  
150  
200  
250  
-2.5  
-1.5  
-0.5  
0.5  
1.5  
2.5  
VIN (mV)  
VIN (mV)  
C001  
C003  
Figure 49. Output Voltage vs VIN  
Figure 50. Output Voltage vs VIN (Enlarged Close to 0 V)  
5
4
3
2
1
0
60  
VS = 3.3V, VCM = 0V  
VS = 3.3V, VCM = 0V  
50  
40  
30  
20  
10  
0
0
50  
100  
150  
200  
250  
-2.5  
-1.5  
-0.5  
0.5  
1.5  
2.5  
VIN (mV)  
VIN (mV)  
C002  
C004  
Figure 51. Output Voltage vs VIN  
Figure 52. Output Voltage vs VIN (Enlarged Close to 0 V)  
Copyright © 2008–2016, Texas Instruments Incorporated  
17  
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMP860x and LMP860x-Q1 are fixed gain differential voltage precision amplifiers, with a –22-V to +60-V  
input common-mode voltage range when operating from a single 5-V supply, or a –4-V to +27-V input common-  
mode voltage range when operating from a single 3.3-V supply. The LMP8601 and LMP8601-Q1 have a gain of  
20x, the LMP8602 and LMP8602-Q1 have a gain of 50x, and the LMP8603 and LMP8603-Q1 have a gain of  
100x.  
The LMP860x and LMP860x-Q1 are members of the LMP family and are ideal parts for unidirectional and  
bidirectional current sensing applications. Because of the proprietary chopping level-shift input stage, the  
LMP860x and LMP860x-Q1 achieve very low offset, very low thermal offset drift, and very high CMRR. The  
LMP860x and LMP860x-Q1 amplify and filter small differential signals in the presence of high common-mode  
voltages.  
The LMP860x and LMP860x-Q1 use level shift resistors at the inputs. Because of these resistors, the LMP860x  
and LMP860x-Q1 can easily withstand very large differential input voltages that may exist in fault conditions  
where some other less protected high-performance current sense amplifiers might sustain permanent damage.  
7.1.1 Theory of Operation  
The schematic shown in the Functional Block Diagram gives a basic representation of the internal operation of  
the LMP860x and LMP860x-Q1.  
The signal on the input pins is typically a small differential voltage developed across a current sensing shunt  
resistor. The input signal may also appear at a high common-mode voltage. The input signals are accessed  
through two input resistors that change the voltage into a current. The proprietary chopping level-shift current  
circuit pulls or pushes current through the input resistors to bring the common-mode voltage behind these  
resistors within the supply rails.  
Subsequently, the signal is gained up by a factor of 10 and brought out on the A1 pin through a trimmed 100-k  
resistor. In the application, additional gain adjustment or filtering components can be added between the A1 and  
A2 pins as explained in subsequent sections. The signal on the A2 pin is further amplified by a factor of 2  
(LMP8601 and LMP8601-Q1), 5 (LMP8602, LMP8602-Q1), or 10 (LMP8603, LMP8603-Q1), and brought out on  
the OUT pin.  
7.2 Functional Block Diagram  
OFFSET  
7
V
S
6
Level shift  
+IN  
-IN  
8
1
+
5
Preamplifier  
Gain = 10  
-
Output Buffer  
Gain = K2  
OUT  
100 kW  
2
3
4
GND  
A1 A2  
NOTE: K2 = 2 for LMP8601, LMP8601-Q1; 5 for LMP8602, LMP8602-Q1; or 10 for LMP8603, LMP8603-Q1.  
18  
Copyright © 2008–2016, Texas Instruments Incorporated  
 
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
www.ti.com.cn  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
7.3 Feature Description  
7.3.1 Offset Input Pin  
The OFFSET pin allows the output signal to be level-shifted to enable bidirectional current sensing. The output  
signal is bidirectional and mid-rail referenced when the offset pin is connected to the positive supply rail. With the  
offset pin connected to ground, the output signal is unidirectional and ground-referenced.  
The signal on the A1 and OUT pins is ground-referenced when the offset pin is connected to ground. This means  
that the output signal can only represent positive values of the current through the shunt resistor, so only  
currents flowing in one direction can be measured.  
When the offset pin is tied to the positive supply rail, the signal on the A1 and OUT pins is referenced to a mid-  
rail voltage which allows bidirectional current sensing. The operation of the amplifier will be fully bidirectional and  
symmetrical around 0 V differential at the input pins. The signal at the output will follow this voltage difference  
multiplied by the gain and at an offset voltage at the output of half VS.  
When the offset pin is connected to an external voltage source, the output signal will be level shifted to that  
voltage divided by two. In principle, the output signal can be shifted to any voltage between 0 and VS / 2 by  
applying twice that voltage to the OFFSET pin.  
NOTE  
The OFFSET pin must be driven from a very low-impedance source (< 10 ). This low  
source impedance is required because the OFFSET pin internally connects directly to the  
resistive feedback networks of the two gain stages. When the OFFSET pin is driven from  
a relatively large impedance (for example, a resistive divider between the supply rails),  
accuracy decreases.  
Examples:  
LMP8601, LMP8601-Q1: A 5-V supply, a gain of 20x, OFFSET pin tied to VS, and a differential input signal of  
10 mV results in 2.7 V at the output pin. Similarly, –10 mV at the input results in 2.3 V at the output pin.  
LMP8602, LMP8602-Q1: A 5-V supply, a gain of 50x, and a differential input signal of 10 mV results in 3.0 V  
at the output pin. Similarly, –10 mV at the input results in 2.0 V at the output pin.  
LMP8603, LMP8603-Q1: A 5-V supply, a gain of 100x, and a differential input signal of 10 mV results in 3.5 V  
at the output pin. Similarly, –10 mV at the input results in 1.5 V at the output pin.(1)  
(1)  
(1) The OFFSET pin must be driven from a very low-impedance source (< 10 ) because the OFFSET pin internally connects directly to the  
resistive feedback networks of the two gain stages. When the OFFSET pin is driven from a relatively large impedance (for example, a  
resistive divider between the supply rails), accuracy decreases.  
Copyright © 2008–2016, Texas Instruments Incorporated  
19  
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
www.ti.com.cn  
Feature Description (continued)  
7.3.2 Additional Second-Order Low-Pass Filter  
The LMP86x1 and LMP86x1-Q1 have a third-order Butterworth lowpass characteristic with a typical bandwidth of  
60 kHz integrated in the preamplifier stage. The bandwidth of the output buffer can be reduced by adding a  
capacitor on the A1 pin to create a first-order low-pass filter with a time constant determined by the 100-kΩ  
internal resistor and the external filter capacitor.  
It is also possible to create an additional second-order, Sallen-Key, low-pass filter by adding external  
components R2, C1 and C2. Together with the internal 100-kresistor R1 as illustrated in Figure 53, this circuit  
creates a second-order, low-pass filter characteristic.  
OFFSET  
7
8
IN  
IN  
+
5
Level  
shift  
Output Buffer  
Gain = K2  
Preamplifier  
Gain = K1  
-
OUT  
1
Internal  
R
1
100 kW  
3
4
A1  
A2  
R
2
C
1
C
2
NOTE: K1 = 10; K2 = 2 for LMP8601, LMP8601-Q1; 5 for LMP8602, LMP8602-Q1; or 10 for LMP8603, LMP8603-Q1.  
Figure 53. Second-Order Low-Pass Filter  
When the corner frequency of the additional filter is much lower than 60 kHz, the transfer function of the  
described amplifier can be written as:  
1
K1 * K2  
R1R2C1C2  
H(s) =  
(1 - K2)  
1
1
s2 + s *  
+
1
+
+
R1C2  
R2C1  
R2C2  
R1R2C1C2  
where  
K1 equals the gain of the preamplifier and K2 that of the buffer amplifier.  
(1)  
Equation 1 can be written in the normalized frequency response for a second-order lowpass filter:  
K2  
G(jw) = K1 *  
(jw)2  
wo  
jw  
+
+ 1  
2
Qwo  
(2)  
(3)  
The cutoff frequency ωo in rad/sec (divide by 2π to get the cut-off frequency in Hz) is given by:  
1
wo =  
R1R2C1C2  
20  
Copyright © 2008–2016, Texas Instruments Incorporated  
 
 
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
www.ti.com.cn  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
Feature Description (continued)  
and the quality factor of the filter is given by:  
R1R2C1C2  
Q =  
R1C1 + R2C1 + (1 - K2) * R1C2  
(4)  
(5)  
With K2 = 2x, Equation 4 transforms results in:  
R1R2C1C2  
Q =  
R1C1 + R2C1 - R1C2  
For any filter gain K > 1x, the design procedure can be very simple if the two capacitors are chosen to in a  
certain ratio.  
C1  
C2 =  
K2 - 1  
(6)  
Inserting this in Equation 4 for Q results in:  
2
C1  
R1R2  
K2 - 1  
Q =  
(K2 - 1)R1C1  
R1C1 + R2C1 -  
K2 - 1  
(7)  
Which results in:  
2
R1R2  
K2 - 1  
R2  
C1  
R1R2  
K2 - 1  
Q =  
=
C1R2  
(8)  
In this case, given the predetermined value of R1 = 100 k(the internal resistor), the quality factor is set solely  
by the value of the resistor R2.  
R2 can be calculated based on the desired value of Q as the first step of the design procedure with the following  
equation:  
R1  
R2  
=
2
(
)
-
K 1 Q  
(9)  
For the gain of 2 for the LMP8601 and LMP8601-Q1, the result is:  
R1  
Q2  
R2 =  
(10)  
For the gain of 5 for the LMP8602 and LMP8602-Q1, the result is:  
R1  
R2 =  
4Q2  
(11)  
(12)  
For the gain of 10 for the LMP8603 and LMP8603-Q1, the result is:  
R1  
R2 =  
9Q2  
Copyright © 2008–2016, Texas Instruments Incorporated  
21  
 
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
www.ti.com.cn  
Feature Description (continued)  
For instance, the value of Q can be set to 0.52 to create a Butterworth response, to 1/3 to create a Bessel  
response, or a 0.5 to create a critically damped response. After the value of R2 has been found, the second and  
last step of the design procedure is to calculate the required value of C to give the desired low-pass cut-off  
frequency using:  
(K2 - 1)Q  
C1 =  
R1w0  
(13)  
For the gain = 2, the result is:  
Q
C =  
R1wo  
(14)  
The gain = 5 results in:  
4Q  
C1 =  
R1w0  
(15)  
The gain = 10 gives:  
9Q  
C1 =  
R1w0  
(16)  
For C2 the value is calculated with:  
C1  
C2 =  
K2 - 1  
(17)  
For a gain = 2:  
C2 = C1  
(18)  
Or for a gain = 5:  
C1  
C2 =  
4
(19)  
(20)  
And for a gain = 10:  
C1  
C2 =  
9
Note that the frequency response achieved using this procedure is only accurate if the cut-off frequency of the  
second-order filter is much smaller than the intrinsic 60-kHz, low-pass filter. In other words, choose the frequency  
response of the LMP860x or LMP860x-Q1 circuit so that the internal poles do not affect the external second-  
order filter.  
7.4 Device Functional Modes  
7.4.1 Gain Adjustment  
The gain of the LMP860x and LMP860x-Q1 is fixed; however, the overall gain may be adjusted as the signal  
path between the two internal amplifiers is available on the A1 and A2 pins.  
22  
Copyright © 2008–2016, Texas Instruments Incorporated  
 
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
www.ti.com.cn  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
Device Functional Modes (continued)  
7.4.1.1 Reducing Gain  
Figure 54 shows the configuration that can be used to reduce the gain of the LMP8601 and LMP8601-Q1.  
OFFSET  
7
+IN  
-IN  
8
1
+
5
Level  
shift  
OUT  
Output Buffer  
Gain = K2  
Preamplifier  
Gain = 10  
-
Internal  
Resistor  
100 kW  
3
4
A2  
A1  
R
r
NOTE: K2 = 2 for LMP8601, LMP8601-Q1; 5 for LMP8602, LMP8602-Q1; or 10 for LMP8603, LMP8603-Q1.  
Figure 54. Reduce Gain  
Rr creates a resistive divider together with the internal 100-kresistor such that the reduced gain Gr becomes:  
20 Rr  
Gr =  
Rr + 100 kW  
(21)  
For the LMP8602 and LMP8602-Q1:  
50 Rr  
Gr =  
Rr + 100 kW  
(22)  
And for the LMP8603 and LMP8603-Q1:  
100 Rr  
Gr =  
Rr + 100 kW  
(23)  
Given a desired value of the reduced gain Gr, using this equation, the LMP8601 and LMP8601-Q1 required value  
for the Rr is calculated with:  
Gr  
Rr = 100 kW X  
20 - Gr  
(24)  
For the LMP8602 and LMP8602-Q1:  
Gr  
Rr = 100 kW X  
50 - Gr  
(25)  
And for the LMP8603 and LMP8603-Q1:  
Gr  
100 - Gr  
Rr = 100 kW x  
(26)  
7.4.1.2 Increasing Gain  
Figure 55 shows the configuration that can be used to increase the gain of the LMP8601 and LMP8601-Q1.  
Copyright © 2008–2016, Texas Instruments Incorporated  
23  
 
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
www.ti.com.cn  
Device Functional Modes (continued)  
OFFSET  
7
+IN  
-IN  
8
1
+
5
Level  
shift  
OUT  
Output Buffer  
Gain = K2  
Preamplifier  
Gain = 10  
-
Internal  
Resistor  
100 kW  
3
4
A2  
A1  
R
i
NOTE: K2 = 2 for LMP8601, LMP8601-Q1; 5 for LMP8602, LMP8602-Q1; or 10 for LMP8603, LMP8603-Q1.  
Figure 55. Increase Gain  
Ri creates positive feedback from the output pin to the input of the buffer amplifier. The positive feedback  
increases the gain. The increased gain Gi for the LMP8601 and LMP8601-Q1 becomes:  
20 Ri  
Gi =  
Ri - 100 kW  
(27)  
For the LMP8602 and LMP8602-Q1:  
50 Ri  
Gi =  
Ri - 400 kW  
(28)  
And for the LMP8603 and LMP8603-Q1:  
100 Ri  
Gi =  
Ri - 900 kW  
(29)  
From this equation, for a desired value of the gain, the LMP8601 and LMP8601-Q1 required value of Ri is  
calculated with:  
Gi  
Ri = 100 kW X  
Gi - 20  
(30)  
For the LMP8602 and LMP8602-Q1:  
Gi  
Ri = 400 kW X  
Gi - 50  
(31)  
And for the LMP8603 with:  
Gi  
Gi - 100  
Ri = 900 kW x  
(32)  
Note that from the equation for the gain Gi, for large gains, Ri approaches 100 k. In this case, the denominator  
in the equation becomes close to zero. In practice, for large gains, the denominator is determined by tolerances  
in the value of the external resistor Ri and the internal 100-kresistor. In this case, the gain becomes very  
inaccurate. If the denominator becomes equal to zero, the system becomes unstable. TI recommends to limit the  
application of this technique to gain values of 50 or smaller.  
24  
Copyright © 2008–2016, Texas Instruments Incorporated  
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
www.ti.com.cn  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
Device Functional Modes (continued)  
7.4.2 Driving Switched Capacitive Loads  
Some ADCs load their signal source with a sample and hold capacitor. The capacitor may be discharged prior to  
being connected to the signal source. If the LMP860x and LMP860x-Q1 are driving such ADCs, the sudden  
current that should be delivered when the sampling occurs may disturb the output signal. This effect was  
simulated with the circuit shown in Figure 56 where the output is to a capacitor that is driven by a rail-to-rail  
square wave.  
V
S
LMP8601/  
LMP8601Q  
0V  
Figure 56. Driving Switched Capacitive Load  
This circuit simulates the switched connection of a discharged capacitor to the LMP860x and LMP860x-Q1  
output. The resulting VOUT disturbance signals are shown in Figure 57 and Figure 58.  
0.4  
0.2  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
S
= 5V  
V
= 3.3V  
S
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
100  
0
50  
100  
150  
200  
250  
300  
0
50  
150  
TIME (ns)  
Figure 57. Capacitive Load Response at 3.3 V  
200  
250  
300  
TIME (ns)  
Figure 58. Capacitive Load Response at 5.0 V  
These figures can be used to estimate the disturbance that will be caused when driving a switched capacitive  
load. To minimize the error signal introduced by the sampling that occurs on the ADC input, place an additional  
RC filter between the LMP860x or LMP860x-Q1 and the ADC, as illustrated in Figure 59.  
Output Buffer  
ADC  
Figure 59. Reduce Error When Driving ADCs  
The external capacitor absorbs the charge that flows when the ADC sampling capacitor is connected. The  
external capacitor should be much larger than the sample-and-hold capacitor at the input of the ADC, and the  
RC time constant of the external filter should be such that the speed of the system is not affected.  
Copyright © 2008–2016, Texas Instruments Incorporated  
25  
 
 
 
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Specifying Performance  
To specify the high performance of the LMP860x and LMP860x-Q1, all minimum and maximum values shown in  
the parameter tables of this data sheet are 100% tested, and all over temperature limits are also 100% tested  
over temperature.  
8.2 Typical Applications  
8.2.1 High-Side, Current-Sensing Application  
Figure 60 illustrates the application of the LMP860x and LMP860x-Q1 in a high-side sensing application. This  
application is similar to the low-side sensing discussed below, except in this application the common-mode  
voltage on the shunt drops below ground when the driver is switched off. Because the common-mode voltage  
range of the LMP860x and LMP860x-Q1 extends below the negative rail, the LMP860x and LMP860x-Q1 are  
also very well suited for this application.  
POWER  
SWITCH  
OFFSET  
7
INDUCTIVE  
LOAD  
+IN  
8
1
24V  
+
5
Level  
shift  
OUT  
Output Buffer  
Gain = K2  
Preamplifier  
R
SENSE  
Gain = 10  
-
Internal  
Resistor  
100 kW  
-IN  
3
4
A2  
A1  
C1  
NOTE: For this application example, K2 = 2.  
Figure 60. High-Side, Current-Sensing Application  
26  
Copyright © 2008–2016, Texas Instruments Incorporated  
 
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
www.ti.com.cn  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
Typical Applications (continued)  
8.2.1.1 Design Requirements  
Using the circuit in Figure 60, the requirement is to measure coil current up to 10 A and drive the ADC input to a  
maximum of 3.3 V. The OFFSET pin is grounded, so zero current will result in a zero volt output.  
8.2.1.2 Detailed Design Procedure  
First, the value of RSENSE must be determined. RSENSE can be found by dividing the maximum desired output  
swing by the gain to determine the maximum input voltage. In this example, the LMP8601 is used, with a gain of  
20 V/V, as shown in Equation 33:  
3.3 V  
VOUTMAX  
Gain  
=
=
= 165 mV  
VINMAX  
20 V/V  
(33)  
Knowing 165 mV must be generated, the ideal value of the sense resistor can be determined through simple  
ohms law:  
165 mV  
VINMAX  
=
=
= 16.5 mΩ  
RSENSE  
10A  
ILOADMAX  
(34)  
The ideal sense resistor value is 16.5 mΩ. The closest standard value is 15 mΩ, but this value may cause the  
output to slightly overrange at 10 V. It is recommended to reduce the expected maximum output by a few percent  
to allow for overloads and component tolerances. The next most popular values would be 10 mΩ, 15 mΩ, and 20  
mΩ. 10 mΩ allows for a maximum output of 2 V at 10 A, but may be too low and not use the full output range. 20  
mΩ provides more sensitivity, but limits the maximum current to 8.25 A. 15 mΩ is a good compromise at 11 A  
maximum, and allows for some component tolerance variation.  
If a suitable sense resistor value is not available, it is possible to adjust the gain as detailed in the Gain  
Adjustment section.  
The sense resistor does dissipates power, so the maximum wattage rating and appropriate power deratings must  
be observed. In the example above, the sense resistor dissipates 0.165 V × 10 A = 1.65 W, so a sense resistor  
of at least twice the maximum expected power should be used (greater than 4 W).  
8.2.1.3 Application Curve  
Below is the expected output value using a 15-mΩ sense resistor.  
5.0  
V
= 5V  
S
4.0  
3.0  
2.0  
1.0  
0.0  
V
= 3.3V  
S
R
= 15m  
SENSE  
0
2
4
6
8
10  
12  
14 16  
18  
20  
Load Current (A)  
C001  
Figure 61. Expected Output Voltage vs Load Current Using 15-mΩ Sense Resistor  
Copyright © 2008–2016, Texas Instruments Incorporated  
27  
 
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
www.ti.com.cn  
Typical Applications (continued)  
8.2.2 Low-Side, Current-Sensing Application  
Figure 62 illustrates a low-side, current-sensing application with a low-side driver. The power transistor is pulse  
width modulated to control the average current flowing through the inductive load which is connected to a  
relatively high battery voltage. The current through the load is measured across a shunt resistor RSENSE in series  
with the load. When the power transistor is on, current flows from the battery through the inductive load, the  
shunt resistor and the power transistor to ground. In this case, the common-mode voltage on the shunt is close  
to ground. When the power transistor is off, current flows through the inductive load, through the shunt resistor  
and through the freewheeling diode. In this case the common-mode voltage on the shunt is at least one diode  
voltage drop above the battery voltage. Therefore, in this application the common-mode voltage on the shunt is  
varying between a large positive voltage and a relatively low voltage. Because the large common-mode voltage  
range of the LMP860x and LMP860x-Q1 and because of the high ac common-mode rejection ratio, the LMP860x  
and LMP860x-Q1 are very well suited for this application.  
OFFSET  
7
INDUCTIVE  
LOAD  
+IN  
-IN  
8
1
+
5
Level  
shift  
OUT  
Output Buffer  
Gain = K2  
Preamplifier  
R
SENSE  
Gain = 10  
-
24V  
Internal  
Resistor  
100 kW  
3
4
A2  
A1  
POWER  
SWITCH  
C1  
RSENSE = 0.01 Ω, K2 = 2, VOUT = 0.2 V/A  
Figure 62. Low-Side Current-Sensing Application  
For this application, the following example can be used for the calculation of the sense voltage (VSENSE):  
When using a sense resistor, RSENSE, of 0.01 Ω and a current, ILOAD, of 1 A, the sense voltage at the input pins of  
the LMP860x and LMP860x-Q1 is:  
VSENSE = RSENSE × ILOAD = 0.01 Ω × 1 A = 0.01 V  
(35)  
With the gain of 20 for the LMP8601, the result is an output of 0.2 V. Or in other words, VOUT = 0.2 V/A. The  
result is the same for the LMP8601-Q1.  
For the LMP8602 and LMP8602-Q1 with a gain of 50, the output is 0.5 V/A.  
For the LMP8603 and LMP8603-Q1 with a gain of 100, the output is 1 V/A.  
28  
Copyright © 2008–2016, Texas Instruments Incorporated  
 
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
www.ti.com.cn  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
Typical Applications (continued)  
8.2.3 Battery Current Monitor Application  
This application example shows how the LMP860x and LMP860x-Q1 can be used to monitor the current flowing  
in and out of a battery pack. The fact that the LMP860x and LMP860x-Q1 can measure small voltages at a high  
offset voltage outside the parts own supply range makes this part a very good choice for such applications. If the  
load current of the battery is higher then the charging current, the output voltage of the LMP860x and LMP860x-  
Q1 will be above the half offset voltage for a net current flowing out of the battery. When the charging current is  
higher then the load current the output will be below this half offset voltage.  
I
I
Charge  
Load  
LOAD  
Charger  
V
S
OFFSET  
I
- I  
Charge Load  
7
+IN  
-IN  
8
1
+
5
Level  
shift  
OUT  
Output Buffer  
Gain = K2  
Preamplifier  
R
SENSE  
Gain = 10  
-
Internal  
Resistor  
100 kW  
3
4
A2  
A1  
C1  
NOTE: K2 = 2 for LMP8601, LMP8601-Q1; 5 for LMP8602, LMP8602-Q1; or 10 for LMP8603, LMP8603-Q1.  
Figure 63. Battery Current Monitor Application  
Copyright © 2008–2016, Texas Instruments Incorporated  
29  
 
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
www.ti.com.cn  
Typical Applications (continued)  
8.2.4 Advanced Battery Charger Application  
Figure 63 can be used to realize an advanced battery charger that has the capability to monitor the exact net  
current that flows in and out the battery as show in Figure 64. The output signal of the LMP860x and LMP860x-  
Q1 is digitized with the ADC and used as an input for the charge controller. The Charge controller can be used to  
regulate the charger circuit to deliver exactly the current that is required by the load, avoiding overcharging a fully  
loaded battery.  
I
Load  
LOAD  
V
S
I
- I  
OFFSET  
Charge Load  
7
+IN  
-IN  
8
I
Charge  
+
5
Level  
shift  
OUT  
Output Buffer  
Gain = K2  
Preamplifier  
Gain = 10  
A/D  
R
SENSE  
12V  
1
-
Internal  
Resistor  
100 kW  
3
4
A2  
A1  
C1  
Charge  
Controler  
Charger  
NOTE: K2 = 2 for LMP8601, LMP8601-Q1; 5 for LMP8602, LMP8602-Q1; or 10 for LMP8603, LMP8603-Q1.  
Figure 64. Advanced Battery Charger Application  
8.2.5 Current Loop Receiver Application  
Many industrial applications use 4-mA to 20-mA transmitters to send an analog value of a sensor to a central  
control room. The LMP860x and LMP860x-Q1 can be used as a current loop receiver as shown in Figure 65.  
V
S
OFFSET  
7
+IN  
-IN  
8
1
+
4 mA to 20 mA  
CURRENT LOOP  
5
OUT  
Level  
shift  
Output Buffer  
Gain = K2  
Preamplifier  
R
SENSE  
Gain = 10  
-
Internal  
Resistor  
100 kW  
3
4
A2  
A1  
C1  
NOTE: K2 = 2 for LMP8601, LMP8601-Q1; 5 for LMP8602, LMP8602-Q1; or 10 for LMP8603, LMP8603-Q1.  
Figure 65. Current-Loop Receiver Application  
30  
Copyright © 2008–2016, Texas Instruments Incorporated  
 
 
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
www.ti.com.cn  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
9 Power Supply Recommendations  
In order to decouple the LMP860x and LMP860x-Q1 from AC noise on the power supply, place a 0.1-μF bypass  
capacitor between the VS and GND pins. Place this capacitor as close as possible to the supply pins. In some  
cases, an additional 10-μF bypass capacitor may further reduce the supply noise.  
10 Layout  
10.1 Layout Guidelines  
The traces leading to and from the sense resistor can be significant error sources. With small value sense  
resistors (< 100 mΩ), any trace resistance shared with the load current can cause significant errors.  
The amplifier inputs should be directly connected to the sense resistor pads using Kelvin or 4-wire connection  
techniques. The traces should be one continuous piece of copper from the sense resistor pad to the amplifier  
input pin pad, and ideally on the same copper layer with minimal vias or connectors. This can be important  
around the sense resistor if it is generating any significant heat gradients.  
To minimize noise pickup and thermal errors, the input traces should be treated as a differential signal pair and  
routed tightly together with a direct path to the input pins. The input traces should be run away from noise  
sources, such as digital lines, switching supplies or motor drive lines. Remember that these traces can contain  
high voltage, and should have the appropriate trace routing clearances.  
Since the sense traces only carry the amplifier bias current, the connecting input traces can be thinner, signal  
level traces. Excessive Resistance in the trace should also be avoided.  
The paths of the traces should be identical, including connectors and vias, so that any errors will be equal and  
cancel.  
The sense resistor will heat up as the load increases. As the resistor heats up, the resistance generally goes up,  
which will cause a change in the readings. The sense resistor should have as much heatsinking as possible to  
remove this heat through the use of heatsinks or large copper areas coupled to the resistor pads. A reading  
drifting over time after turnon can usually be traced back to sense resistor heating.  
10.2 Layout Example  
Figure 66. Kelvin or 4–wire Connection to the Sense Resistor  
版权 © 2008–2016, Texas Instruments Incorporated  
31  
LMP8601, LMP8601-Q1  
LMP8602, LMP8602-Q1  
LMP8603, LMP8603-Q1  
ZHCSFO1H SEPTEMBER 2008REVISED APRIL 2016  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
LMP8601 TINA SPICE 模型》,SNOM084  
TINA-TI 基于 SPICE 的模拟仿真程序,http://www.ti.com.cn/tool/cn/tina-ti  
11.2 相关链接  
1 列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买链  
接。  
1. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
LMP8601  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
LMP8601-Q1  
LMP8602  
LMP8602-Q1  
LMP8603  
LMP8603-Q1  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
32  
版权 © 2008–2016, Texas Instruments Incorporated  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMP8601EDRQ1  
LMP8601MA/NOPB  
LMP8601MAX/NOPB  
LMP8601QMA/NOPB  
LMP8601QMAX/NOPB  
LMP8602MA/NOPB  
LMP8602MAX/NOPB  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
D
8
8
8
8
8
8
8
2500 RoHS & Green  
95 RoHS & Green  
2500 RoHS & Green  
95 RoHS & Green  
2500 RoHS & Green  
95 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 150  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
LMP86  
01EDQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SN  
SN  
SN  
SN  
SN  
SN  
LMP86  
01MA  
LMP86  
01MA  
LMP86  
01QMA  
LMP86  
01QMA  
LMP86  
02MA  
2500 RoHS & Green  
1000 RoHS & Green  
LMP86  
02MA  
LMP8602MM/NOPB  
LMP8602MME/NOPB  
LMP8602MMX/NOPB  
LMP8602QMA/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
D
8
8
8
8
SN  
SN  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
AN3A  
AN3A  
AN3A  
250  
3500 RoHS & Green  
95 RoHS & Green  
RoHS & Green  
LMP86  
02QMA  
LMP8602QMAX/NOPB  
ACTIVE  
SOIC  
D
8
2500 RoHS & Green  
1000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
-40 to 125  
LMP86  
02QMA  
LMP8602QMM/NOPB  
LMP8602QMME/NOPB  
LMP8602QMMX/NOPB  
LMP8603MA/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
D
8
8
8
8
SN  
SN  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
AF7A  
AF7A  
AF7A  
250  
3500 RoHS & Green  
95 RoHS & Green  
RoHS & Green  
LMP86  
03MA  
LMP8603MAX/NOPB  
LMP8603MM/NOPB  
ACTIVE  
ACTIVE  
SOIC  
D
8
8
2500 RoHS & Green  
1000 RoHS & Green  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
LMP86  
03MA  
VSSOP  
DGK  
AP3A  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMP8603MME/NOPB  
LMP8603MMX/NOPB  
LMP8603QMA/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
250  
RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
AP3A  
AP3A  
3500 RoHS & Green  
95 RoHS & Green  
SN  
SN  
LMP86  
03QMA  
LMP8603QMAX/NOPB  
ACTIVE  
SOIC  
D
8
2500 RoHS & Green  
1000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
-40 to 125  
LMP86  
03QMA  
LMP8603QMM/NOPB  
LMP8603QMME/NOPB  
LMP8603QMMX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
DGK  
DGK  
DGK  
8
8
8
SN  
SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
AH7A  
AH7A  
AH7A  
250  
RoHS & Green  
3500 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMP8601QMAX/NOPB  
LMP8602MMX/NOPB  
LMP8602QMAX/NOPB  
LMP8603MAX/NOPB  
LMP8603MM/NOPB  
LMP8603MME/NOPB  
LMP8603MMX/NOPB  
LMP8603QMAX/NOPB  
LMP8603QMM/NOPB  
SOIC  
VSSOP  
SOIC  
D
8
8
8
8
8
8
8
8
8
8
8
2500  
3500  
2500  
2500  
1000  
250  
330.0  
330.0  
330.0  
330.0  
178.0  
178.0  
330.0  
330.0  
178.0  
178.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
6.5  
5.3  
6.5  
6.5  
5.3  
5.3  
5.3  
6.5  
5.3  
5.3  
5.3  
5.4  
3.4  
5.4  
5.4  
3.4  
3.4  
3.4  
5.4  
3.4  
3.4  
3.4  
2.0  
1.4  
2.0  
2.0  
1.4  
1.4  
1.4  
2.0  
1.4  
1.4  
1.4  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
DGK  
D
SOIC  
D
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
D
3500  
2500  
1000  
250  
VSSOP  
DGK  
DGK  
DGK  
LMP8603QMME/NOPB VSSOP  
LMP8603QMMX/NOPB VSSOP  
3500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMP8601QMAX/NOPB  
LMP8602MMX/NOPB  
LMP8602QMAX/NOPB  
LMP8603MAX/NOPB  
LMP8603MM/NOPB  
SOIC  
VSSOP  
SOIC  
D
8
8
8
8
8
8
8
8
8
8
8
2500  
3500  
2500  
2500  
1000  
250  
356.0  
356.0  
356.0  
356.0  
208.0  
208.0  
356.0  
356.0  
208.0  
208.0  
356.0  
356.0  
356.0  
356.0  
356.0  
191.0  
191.0  
356.0  
356.0  
191.0  
191.0  
356.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
DGK  
D
SOIC  
D
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
D
LMP8603MME/NOPB  
LMP8603MMX/NOPB  
LMP8603QMAX/NOPB  
LMP8603QMM/NOPB  
LMP8603QMME/NOPB  
LMP8603QMMX/NOPB  
3500  
2500  
1000  
250  
VSSOP  
VSSOP  
VSSOP  
DGK  
DGK  
DGK  
3500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Jun-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LMP8601MA/NOPB  
LMP8601QMA/NOPB  
LMP8602MA/NOPB  
LMP8602QMA/NOPB  
LMP8603MA/NOPB  
LMP8603QMA/NOPB  
D
D
D
D
D
D
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
8
8
8
8
8
8
95  
95  
95  
95  
95  
95  
495  
495  
495  
495  
495  
495  
8
8
8
8
8
8
4064  
4064  
4064  
4064  
4064  
4064  
3.05  
3.05  
3.05  
3.05  
3.05  
3.05  
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LMP8603QMAX

60V Common Mode, Fixed Gain, Bidirectional Precision Current Sensing Amplifier
NSC

LMP8603QMAX

60V Common Mode, Fixed Gain, Bidirectional Precision Current Sensing Amplifier
TI

LMP8603QMAX/NOPB

具有直列式滤波器功能的 AEC-Q100、-22V 至 60V、双向电流感应放大器 | D | 8 | -40 to 125
TI

LMP8603QMM

60V Common Mode, Fixed Gain, Bidirectional Precision Current Sensing Amplifier
NSC

LMP8603QMM

60V Common Mode, Fixed Gain, Bidirectional Precision Current Sensing Amplifier
TI

LMP8603QMM/NOPB

具有直列式滤波器功能的 AEC-Q100、-22V 至 60V、双向电流感应放大器 | DGK | 8 | -40 to 125
TI

LMP8603QMME

60V Common Mode, Fixed Gain, Bidirectional Precision Current Sensing Amplifier
TI

LMP8603QMME/NOPB

具有直列式滤波器功能的 AEC-Q100、-22V 至 60V、双向电流感应放大器 | DGK | 8 | -40 to 125
TI

LMP8603QMMX

60V Common Mode, Fixed Gain, Bidirectional Precision Current Sensing Amplifier
NSC

LMP8603QMMX

60V Common Mode, Fixed Gain, Bidirectional Precision Current Sensing Amplifier
TI

LMP8603QMMX/NOPB

具有直列式滤波器功能的 AEC-Q100、-22V 至 60V、双向电流感应放大器 | DGK | 8 | -40 to 125
TI

LMP8640

Precision High Voltage Current Sense Amplifier
NSC