LMP8640HVMK-F [TI]

Precision High Voltage Current Sense Amplifier; 精密高电压电流检测放大器
LMP8640HVMK-F
型号: LMP8640HVMK-F
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Precision High Voltage Current Sense Amplifier
精密高电压电流检测放大器

放大器 光电二极管
文件: 总22页 (文件大小:1166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMP8640  
LMP8640HV  
www.ti.com  
SNOSB28F AUGUST 2010REVISED APRIL 2013  
Precision High Voltage Current Sense Amplifier  
Check for Samples: LMP8640, LMP8640HV  
1
FEATURES  
DESCRIPTION  
The LMP8640 and the LMP8640HV are precision  
2
Typical Values, TA = 25°C  
current sense amplifiers that detect small differential  
voltages across a sense resistor in the presence of  
high input common mode voltages with a supply  
voltage range from 2.7V to 12V.  
High Common-Mode Voltage Range  
LMP8640: -2V to 42V  
LMP8640HV: -2V to 76V  
Supply Voltage Range: 2.7V to 12V  
Gain Options: 20V/V; 50V/V; 100V/V  
Max Gain Error: 0.25%  
The LMP8640 accepts input signals with common  
mode voltage range from -2V to 42V, while the  
LMP8640HV accepts input signal with common mode  
voltage range from -2V to 76V. The LMP8640 and  
LMP8640HV have fixed gain for applications that  
demand accuracy over temperature. The LMP8640  
and LMP8640HV come out with three different fixed  
Low Offset Voltage: 900µV  
Input Bias Current: 13 µA  
PSRR: 85 dB  
gains 20V/V, 50V/V, 100V/V ensuring  
a gain  
CMRR (2.1V to 42V): 103 dB  
Temperature Range: -40°C to 125°C  
6-Pin SOT Package  
accuracy as low as 0.25%. The output is buffered in  
order to provide low output impedance. This high side  
current sense amplifier is ideal for sensing and  
monitoring currents in DC or battery powered  
systems, excellent AC and DC specifications over  
temperature, and keeps errors in the current sense  
loop to a minimum. The LMP8640 and LMP8640HV  
are ideal choice for industrial, automotive and  
consumer applications, and it is available in SOT-6  
package.  
APPLICATIONS  
High-Side Current Sense  
Vehicle Current Measurement  
Motor Controls  
Battery Monitoring  
Remote Sensing  
Power Management  
Typical Application  
I
S
R
S
+IN  
-IN  
R
L
LMP8640  
R
IN  
IN  
o
a
d
-
+
+
V
V
A
G
ADC  
V
OUT  
R
= 2*R  
IN  
G
-
V
G = 10 V/V in 20 V/V gain option  
G = 25 V/V in 50 V/V gain option  
G = 50 V/V in 100 V/V gain option  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2010–2013, Texas Instruments Incorporated  
LMP8640  
LMP8640HV  
SNOSB28F AUGUST 2010REVISED APRIL 2013  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
(1)(2)(3)  
Absolute Maximum Ratings  
ESD Tolerance  
(4)  
Human Body Model  
For input pins +IN, -IN  
For all other pins  
5000V  
2000V  
Machine Model  
200V  
Charge device model  
1250V  
Supply Voltage (VS = V+ - V)  
Differential Voltage +IN- (-IN)  
Voltage at pins +IN, -IN  
13.2V  
6V  
LMP8640HV  
LMP8640  
-6V to 80V  
-6V to 60V  
V-to V+  
Voltage at VOUT pin  
Storage Temperature Range  
-65°C to 150°C  
150°C  
(5)  
Junction Temperature  
(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of  
device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or  
other conditions beyond those indicated in the Operating Ratings is not implied. Operating Ratings indicate conditions at which the  
device is functional and the device should not be operated beyond such conditions.  
(2) For soldering specifications,see product folder at www.ti.com and http://www.ti.com/lit/SNOA549.  
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
(4) Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of  
JEDEC) Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).  
(5) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJ(MAX), θJA, and the ambient temperature,  
TA. The maximum allowable power dissipation PDMAX = (TJ(MAX) - TA)/ θJA or the number given in Absolute Maximum Ratings, whichever  
is lower.  
2
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: LMP8640 LMP8640HV  
LMP8640  
LMP8640HV  
www.ti.com  
SNOSB28F AUGUST 2010REVISED APRIL 2013  
(1)  
Operating Ratings  
Supply Voltage (VS = V+ - V)  
2.7V to 12V  
(2)  
Temperature Range  
-40°C to 125°C  
Package Thermal Resistance(2)  
SOT-6  
96°C/W  
(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of  
device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or  
other conditions beyond those indicated in the Operating Ratings is not implied. Operating Ratings indicate conditions at which the  
device is functional and the device should not be operated beyond such conditions.  
(2) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJ(MAX), θJA, and the ambient temperature,  
TA. The maximum allowable power dissipation PDMAX = (TJ(MAX) - TA)/ θJA or the number given in Absolute Maximum Ratings, whichever  
is lower.  
(1)  
2.7V Electrical Characteristics  
Unless otherwise specified, all limits ensured for at TA = 25°C, VS=V+ – V-, VSENSE= +IN-(-IN), V+ = 2.7V, V= 0V, 2V < VCM  
76V, RL = 10M. Boldface limits apply at the temperature extremes.  
<
Parameter  
Test Conditions  
Min(2)  
Typ(3)  
Max(2)  
Unit  
-900  
-1160  
900  
1160  
VOS  
TCVOS  
IB  
Input Offset Voltage  
VCM = 2.1V  
VCM = 2.1V  
VCM = 2.1V  
f > 10 kHz  
µV  
Input Offset Voltage Drift(4) (5)  
2.6  
µV/°C  
µA  
20  
27  
(6)  
Input Bias Current  
12  
117  
20  
(5)  
eni  
Input Voltage Noise  
nV/Hz  
Fixed Gain LMP8640-T  
LMP8640HV-T  
V/V  
Fixed Gain LMP8640-F  
LMP8640HV-F  
50  
V/V  
V/V  
%
Gain AV  
Fixed Gain LMP8640-H  
LMP8640HV-H  
100  
-0.25  
-0.51  
0.25  
0.51  
Gain error  
VCM = 2.1V  
Accuracy over temperature(5)  
Power Supply Rejection Ratio  
40°C to 125°C, VCM=2.1V  
VCM = 2.1V, 2.7V < V+ < 12V,  
26.2  
ppm/°C  
dB  
PSRR  
CMRR  
85  
LMP8640HV 2.1V < VCM < 42V  
LMP8640 2.1V < VCM< 42V  
103  
Common Mode Rejection Ratio  
Fixed Gain LMP8640-T  
dB  
LMP8640HV 2.1V < VCM < 76V  
-2V <VCM < 2V,  
95  
60  
DC VSENSE = 67.5 mV,  
CL = 30 pF,RL= 1MΩ  
950  
450  
230  
(5)  
LMP8640HV-T  
Fixed Gain LMP8640-F  
DC VSENSE =27 mV,  
CL = 30 pF, RL= 1MΩ  
BW  
kHz  
(5)  
LMP8640HV-F  
Fixed Gain LMP8640-H  
DC VSENSE = 13.5 mV,  
CL = 30 pF ,RL= 1MΩ  
(5)  
LMP8640HV-H  
(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very  
limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables under  
conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond which the  
device may be permanently degraded, either mechanically or electrically.  
(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using  
statistical quality control (SQC) method.  
(3) Typical values represent the most likely parametric norm at the time of characterization. Actual typical values may vary over time and  
will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped production  
material.  
(4) Offset voltage temperature drift is determined by dividing the change in VOS at the temperature extremes by the total temperature  
change.  
(5) This parameter is ensured by design and/or characterization and is not tested in production.  
(6) Positive Bias Current corresponds to current flowing into the device.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LMP8640 LMP8640HV  
LMP8640  
LMP8640HV  
SNOSB28F AUGUST 2010REVISED APRIL 2013  
www.ti.com  
2.7V Electrical Characteristics (1) (continued)  
Unless otherwise specified, all limits ensured for at TA = 25°C, VS=V+ – V-, VSENSE= +IN-(-IN), V+ = 2.7V, V= 0V, 2V < VCM  
76V, RL = 10M. Boldface limits apply at the temperature extremes.  
<
Parameter  
Test Conditions  
Min(2)  
Typ(3)  
Max(2)  
Unit  
V/µs  
kΩ  
VCM =5V, CL = 30 pF, RL = 1M,  
LMP8640-T LMP8640HV-T VSENSE =100mVpp,  
LMP8640-F LMP8640HV-F VSENSE =40mVpp,  
LMP8640-H LMP8640HV-H VSENSE =20mVpp,  
(7) (5)  
SR  
RIN  
Slew Rate  
1.4  
Differential Mode Input Impedance(5)  
Supply Current  
5
600  
800  
VCM = 2.1V  
420  
IS  
µA  
V
2500  
2750  
VCM = 2V  
2000  
Maximum Output Voltage  
VCM = 2.1V  
2.65  
LMP8640-T LMP8640HV-T  
VCM = 2.1V  
18.2  
40  
VOUT  
LMP8640-F LMP8640HV-F  
VCM = 2.1V  
Minimum Output Voltage  
mV  
pF  
LMP8640-H LMP8640HV-H  
VCM = 2.1V  
80  
CLOAD  
Max Output Capacitance Load(5)  
30  
(7) The number specified is the average of rising and falling slew rates and measured at 90% to 10%.  
(1)  
5V Electrical Characteristics  
Unless otherwise specified, all limits ensured for at TA = 25°C, VS=V+ – V-, VSENSE= +IN-(-IN), V+ = 5V, V= 0V, 2V < VCM  
76V, RL = 10M. Boldface limits apply at the temperature extremes.  
<
Parameter  
Test Conditions  
Min(2)  
Typ(3)  
Max(2)  
Unit  
-900  
-1160  
900  
1160  
VOS  
TCVOS  
IB  
Input Offset Voltage  
VCM = 2.1V  
VCM = 2.1V  
VCM = 2.1V  
f > 10 kHz  
µV  
Input Offset Voltage Drift(4) (5)  
2.6  
µV/°C  
µA  
21  
28  
(6)  
Input Bias Current  
13  
117  
20  
(5)  
eni  
Input Voltage Noise  
nV/Hz  
Fixed Gain LMP8640-T  
LMP8640HV-T  
V/V  
Fixed Gain LMP8640-F  
LMP8640HV-F  
50  
V/V  
V/V  
%
Gain AV  
PSRR  
Fixed Gain LMP8640-H  
LMP8640HV-H  
100  
-0.25  
-0.51  
0.25  
0.51  
Gain error  
VCM = 2.1V  
Accuracy over temperature(5)  
Power Supply Rejection Ratio  
40°C to 125°C, VCM=2.1V  
VCM = 2.1V, 2.7V < V+ < 12V,  
26.2  
ppm/°C  
dB  
85  
(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very  
limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables under  
conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond which the  
device may be permanently degraded, either mechanically or electrically.  
(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using  
statistical quality control (SQC) method.  
(3) Typical values represent the most likely parametric norm at the time of characterization. Actual typical values may vary over time and  
will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped production  
material.  
(4) Offset voltage temperature drift is determined by dividing the change in VOS at the temperature extremes by the total temperature  
change.  
(5) This parameter is ensured by design and/or characterization and is not tested in production.  
(6) Positive Bias Current corresponds to current flowing into the device.  
4
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: LMP8640 LMP8640HV  
 
LMP8640  
LMP8640HV  
www.ti.com  
SNOSB28F AUGUST 2010REVISED APRIL 2013  
5V Electrical Characteristics (1) (continued)  
Unless otherwise specified, all limits ensured for at TA = 25°C, VS=V+ – V-, VSENSE= +IN-(-IN), V+ = 5V, V= 0V, 2V < VCM  
<
76V, RL = 10M. Boldface limits apply at the temperature extremes.  
Parameter  
Test Conditions  
Min(2)  
Typ(3)  
Max(2)  
Unit  
LMP8640HV 2.1V < VCM < 42V  
LMP8640 2.1V < VCM< 42V  
103  
CMRR  
BW  
Common Mode Rejection Ratio  
Fixed Gain LMP8640-T  
dB  
LMP8640HV 2.1V < VCM < 76V  
-2V <VCM < 2V,  
95  
60  
DC VSENSE = 67.5 mV,  
CL = 30 pF ,RL= 1MΩ  
950  
450  
230  
(5)  
LMP8640HV-T  
Fixed Gain LMP8640-F  
LMP8640HV-F(5)  
DC VSENSE =27 mV,  
CL = 30 pF ,RL= 1MΩ  
kHz  
Fixed Gain LMP8640-H  
LMP8640HV-H(5)  
DC VSENSE = 13.5 mV,  
CL = 30 pF ,RL= 1MΩ  
VCM =5V, CL = 30 pF, RL = 1M,  
LMP8640-T LMP8640HV-T VSENSE =200mVpp,  
LMP8640-F LMP8640HV-F VSENSE =80mVpp,  
LMP8640-H LMP8640HV-H VSENSE =40mVpp,  
(7) (5)  
SR  
RIN  
Slew Rate  
1.6  
V/µs  
Differential Mode Input Impedance(5)  
Supply Current  
5
kΩ  
722  
922  
VCM = 2.1V  
500  
IS  
µA  
V
2500  
2750  
VCM = 2V  
2050  
Maximum Output Voltage  
VCM = 2.1V  
4.95  
LMP8640-T LMP8640HV-T  
VCM = 2.1V  
18.2  
40  
VOUT  
LMP8640-F LMP8640HV-F  
VCM = 2.1V  
Minimum Output Voltage  
mV  
pF  
LMP8640-H LMP8640HV-H  
VCM = 2.1V  
80  
CLOAD  
Max Output Capacitance Load(5)  
30  
(7) The number specified is the average of rising and falling slew rates and measured at 90% to 10%.  
12V Electrical Characteristics(1)  
Unless otherwise specified, all limits ensured for at TA = 25°C, VS=V+ – V-, VSENSE= +IN-(-IN), V+ = 12V, V= 0V, 2V < VCM  
76V, RL = 10M. Boldface limits apply at the temperature extremes.  
<
Parameter  
Test Conditions  
Min(2)  
Typ(3)  
Max(2)  
Unit  
-900  
-1160  
900  
1160  
VOS  
TCVOS  
IB  
Input Offset Voltage  
VCM = 2.1V  
VCM = 2.1V  
VCM = 2.1V  
f > 10 kHz  
µV  
Input Offset Voltage Drift(4) (5)  
2.6  
µV/°C  
µA  
22  
28  
(6)  
Input Bias Current  
13  
(5)  
eni  
Input Voltage Noise  
117  
nV/Hz  
(1) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very  
limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables under  
conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond which the  
device may be permanently degraded, either mechanically or electrically.  
(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using  
statistical quality control (SQC) method.  
(3) Typical values represent the most likely parametric norm at the time of characterization. Actual typical values may vary over time and  
will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped production  
material.  
(4) Offset voltage temperature drift is determined by dividing the change in VOS at the temperature extremes by the total temperature  
change.  
(5) This parameter is ensured by design and/or characterization and is not tested in production.  
(6) Positive Bias Current corresponds to current flowing into the device.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LMP8640 LMP8640HV  
LMP8640  
LMP8640HV  
SNOSB28F AUGUST 2010REVISED APRIL 2013  
www.ti.com  
12V Electrical Characteristics(1) (continued)  
Unless otherwise specified, all limits ensured for at TA = 25°C, VS=V+ – V-, VSENSE= +IN-(-IN), V+ = 12V, V= 0V, 2V < VCM  
76V, RL = 10M. Boldface limits apply at the temperature extremes.  
<
Parameter  
Test Conditions  
Min(2)  
Typ(3)  
Max(2)  
Unit  
Fixed Gain LMP8640-T  
LMP8640HV-T  
20  
V/V  
Fixed Gain LMP8640-F  
LMP8640HV-F  
50  
V/V  
V/V  
%
Gain AV  
Fixed Gain LMP8640-H  
LMP8640HV-H  
100  
-0.25  
-0.51  
0.25  
0.51  
Gain error  
VCM = 2.1V  
Accuracy over temperature(5)  
Power Supply Rejection Ratio  
40°C to 125°C, VCM=2.1V  
VCM = 2.1V, 2.7V < V+ < 12V,  
26.2  
ppm/°C  
dB  
PSRR  
CMRR  
85  
LMP8640HV 2.1V < VCM < 42V  
LMP8640 2.1V < VCM< 42V  
103  
Common Mode Rejection Ratio  
Fixed Gain LMP8640-T  
dB  
LMP8640HV 2.1V < VCM < 76V  
-2V <VCM < 2V,  
95  
60  
DC VSENSE = 67.5 mV,  
CL = 30 pF ,RL= 1MΩ  
950  
450  
230  
(5)  
LMP8640HV-T  
Fixed Gain LMP8640-F  
DC VSENSE =27 mV,  
CL = 30 pF ,RL= 1MΩ  
BW  
kHz  
(5)  
LMP8640HV-F  
Fixed Gain LMP8640-H  
DC VSENSE = 13.5 mV,  
CL = 30 pF ,RL= 1MΩ  
(5)  
LMP8640HV-H  
VCM =5V, CL = 30 pF, RL = 1M,  
LMP8640-T LMP8640HV-T VSENSE =500mVpp,  
LMP8640-F LMP8640HV-F VSENSE =200mVpp,  
LMP8640-H LMP8640HV-H VSENSE =100mVpp,  
(7) (5)  
SR  
RIN  
Slew Rate  
1.8  
V/µs  
Differential Mode Input Impedance(5)  
Supply Current  
5
kΩ  
1050  
1250  
VCM = 2.1V  
720  
IS  
µA  
V
2800  
3000  
VCM = 2V  
2300  
Maximum Output Voltage  
VCM = 2.1V  
11.85  
LMP8640-T LMP8640HV-T  
VCM = 2.1V  
18.2  
40  
VOUT  
LMP8640-F LMP8640HV-F  
VCM = 2.1V  
Minimum Output Voltage  
mV  
pF  
LMP8640-H LMP8640HV-H  
VCM = 2.1V  
80  
CLOAD  
Max Output Capacitance Load(8)  
30  
(7) The number specified is the average of rising and falling slew rates and measured at 90% to 10%.  
(8) This parameter is ensured by design and/or characterization and is not tested in production.  
6
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: LMP8640 LMP8640HV  
LMP8640  
LMP8640HV  
www.ti.com  
SNOSB28F AUGUST 2010REVISED APRIL 2013  
DEVICE INFORMATION  
Block Diagram  
+IN  
-IN  
LMP8640  
LMP8640HV  
R
R
IN  
IN  
-
+
+
V
G
V
OUT  
R
G
= 2*R  
IN  
-
V
Connection Diagram  
Top View  
+
6
5
4
V
1
2
3
V
OUT  
LMP8640  
LMP8640HV  
-
NC  
-IN  
V
+IN  
Figure 1. 6-Pin SOT Package  
see package number DDC0006A  
Table 1. Pin Descriptions  
Pin  
1
Name  
VOUT  
V-  
Description  
Single Ended Output  
2
Negative Supply Voltage  
Positive Input  
3
+IN  
-IN  
4
Negative Input  
5
NC  
Not Connected  
6
V+  
Positive Supply Voltage  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LMP8640 LMP8640HV  
LMP8640  
LMP8640HV  
SNOSB28F AUGUST 2010REVISED APRIL 2013  
www.ti.com  
Typical Performance Characteristics  
Unless otherwise specified: TA = 25°C, VS=V+-V-, VSENSE= +IN - (-IN), RL = 10 M.  
Supply Curent vs. Supply Voltage  
Supply Current vs. VCM  
VS =2.7V  
2300  
2100  
1900  
1700  
1500  
1300  
1100  
900  
2500  
2400  
2300  
2200  
2100  
2000  
1900  
800  
125°C  
ö
ö
700  
-40°C  
600  
700  
500  
500  
400  
300  
2.7  
300  
-2 -1  
5.3  
8.0  
10.6  
13.2  
0
1
2
3
4 16 28 40 52 64 76  
VS (V)  
Figure 2.  
VCM (V)  
Figure 3.  
Supply Current vs. VCM  
VS = 5V  
Supply Current vs. VCM  
VS = 12V  
2300  
2100  
1900  
1700  
1500  
1300  
1100  
900  
2500  
2300  
2100  
1900  
1700  
1500  
1300  
1100  
900  
125°C  
125 °C  
25°C  
-40°C  
25°C  
-40°C  
700  
500  
700  
300  
-2 -1  
500  
-2 -1  
0
1
2
3
4
16 28 40 52 64 76  
0
1
2
3
4
16 28 40 52 64 76  
VCM (V)  
Figure 4.  
VCM (V)  
Figure 5.  
CMRR vs. VCM (Gain 20V/V)  
CMRR vs. VCM (Gain 50V/V)  
140  
130  
120  
110  
100  
90  
140  
130  
120  
110  
100  
90  
25°C  
-40°C  
125 °C  
25°C  
125°C  
-40°C  
V
= 5V  
V
= 5V  
S
S
80  
-2  
80  
-2  
11  
24  
37  
50  
63  
76  
11  
24  
37  
50  
63  
76  
V
(V)  
V
(V)  
CM  
CM  
Figure 6.  
Figure 7.  
8
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: LMP8640 LMP8640HV  
LMP8640  
LMP8640HV  
www.ti.com  
SNOSB28F AUGUST 2010REVISED APRIL 2013  
Typical Performance Characteristics (continued)  
Unless otherwise specified: TA = 25°C, VS=V+-V-, VSENSE= +IN - (-IN), RL = 10 M.  
CMRR vs. VCM (Gain 100V/V)  
Input Voltage Offset vs. VCM  
200  
140  
V
S
= 5V  
-40°C  
150  
100  
50  
130  
120  
110  
100  
90  
125 °C  
25°C  
125°C  
0
25°C  
-50  
-100  
-150  
-200  
-40°C  
V
= 5V  
S
80  
-2  
-2  
11  
24  
37  
50  
63  
76  
11  
24  
37  
50  
63  
76  
V
(V)  
V
(V)  
CM  
CM  
Figure 8.  
Figure 9.  
Ibias vs. VCM  
Ibias vs. VCM  
100  
0
100  
0
-40°C  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-40°C  
125°C  
125 °C  
25°C  
25°C  
V
= 2.7V  
V = 5V  
S
S
-2 -1  
0
1
2
3
4
16 28 40 52 64 76  
(V)  
-2 -1  
0
1
2
3
4
16 28 40 52 64 76  
(V)  
V
V
CM  
CM  
Figure 10.  
Figure 11.  
Gain vs. Frequency  
VS=5V, VCM=5V  
Ibias vs. VCM  
100  
0
50  
40  
30  
20  
10  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-2 -1  
0
1
2
3
4
16 28 40 52 64 76  
(V)  
100  
1k  
10k  
100k  
1M  
10M  
V
CM  
FREQUENCY (Hz)  
Figure 12.  
Figure 13.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LMP8640 LMP8640HV  
LMP8640  
LMP8640HV  
SNOSB28F AUGUST 2010REVISED APRIL 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
Unless otherwise specified: TA = 25°C, VS=V+-V-, VSENSE= +IN - (-IN), RL = 10 M.  
Output voltage vs. VSENSE  
Output voltage vs. VSENSE (ZOOM close to 0V)  
13.0  
12.0  
11.0  
10.0  
9.0  
300  
250  
200  
150  
100  
50  
VS=12V, VCM=12V  
VS=12V, VCM=12V  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
0
0
-3  
100  
200  
300  
400  
500  
600  
-2  
-1  
0
1
2
3
VSENSE (mV)  
Figure 14.  
VSENSE (mV)  
Figure 15.  
Large Step response  
Small Step response  
V
= 5V, V = 12V  
CM  
S
VS=12V, VCM=12V  
TIME (2 ms/DIV)  
TIME (2 ms/DIV)  
Figure 16.  
Figure 17.  
Settling time (fall)  
Settling time (rise)  
VS = 5V, VCM = 12V  
VS = 5V, VCM= 12V  
TIME (400 ns/DIV)  
TIME (400 ns/DIV)  
Figure 18.  
Figure 19.  
10  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: LMP8640 LMP8640HV  
LMP8640  
LMP8640HV  
www.ti.com  
SNOSB28F AUGUST 2010REVISED APRIL 2013  
Typical Performance Characteristics (continued)  
Unless otherwise specified: TA = 25°C, VS=V+-V-, VSENSE= +IN - (-IN), RL = 10 M.  
Common mode step response (rise)  
Common mode step response (fall)  
V
CM  
V
CM  
V
OUT  
V
OUT  
V
S
= 5V, GAIN 20 V/V  
V
= 5V, GAIN 20 V/V  
S
TIME (4 és/DIV)  
TIME (4 és/DIV)  
Figure 20.  
Figure 21.  
Load regulation (Sinking)  
Load regulation (Sourcing)  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
2.505  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
VS=5V, VCM=12V  
0
1
2
3
4
5
6
7
8
9
10  
VS=5V, VCM=12V  
IOUT (mA)  
0
1
2
3
4
5
6
7
8
9
10  
IOUT (mA)  
Figure .  
Figure 22.  
AC CMRR vs. Frequency  
AC PSRR vs. Frequency  
110  
90  
70  
50  
30  
10  
100  
80  
60  
40  
20  
0
V
= 5V, V  
= 12V  
V
= 5V, V  
CM  
= 12V  
S
S
CM  
GAIN 100V/V  
GAIN 50V/V  
GAIN 20V/V  
GAIN 100 V/V  
GAIN 50V/V  
GAIN 20V/V  
1k  
10  
100  
1k  
10k  
100k  
1M  
1
10  
100  
10k  
100k  
FREQUENCY (Hz)  
Frequency (Hz)  
Figure 23.  
Figure 24.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LMP8640 LMP8640HV  
LMP8640  
LMP8640HV  
SNOSB28F AUGUST 2010REVISED APRIL 2013  
www.ti.com  
APPLICATION INFORMATION  
GENERAL  
The LMP8640 and LMP8640HV are single supply high side current sense amplifiers with a fixed gain of 20V/V,  
50V/V, 100V/V and a common mode voltage range of -2V to 42V or -2V to 76V depending on the grade.  
THEORY OF OPERATION  
As seen from the picture below, the current flowing through RS develops a voltage drop equal to VSENSE across  
RS. The high impedance inputs of the amplifier doesn’t conduct this current and the high open loop gain of the  
sense amplifier forces its non-inverting input to the same voltage as the inverting input. In this way the voltage  
drop across RIN matches VSENSE. A current proportional to IS according to the following relation:  
IG = VSENSE/RIN = RS*IS/RIN  
,
(1)  
flows entirely in the internal gain resistor RG developing a voltage drop equal to  
VRG = IG *RG = (VSENSE/RIN) *RG = ((RS*IS)/RIN)*RG  
(2)  
This voltage is buffered and showed at the output with a very low impedance allowing a very easy interface of  
the LMP8640 with other ICs (ADC, µC…).  
VOUT = 2*(RS*IS)*G,  
(3)  
where G=RG/RIN = 10V/V, 25V/V, 50V/V, according to the gain options.  
V
SENSE  
I
s
R
s
+IN  
-IN  
R
LMP8640  
R
IN  
IN  
L
o
a
d
-
+
+
V
I
G
V
OUT  
G
R
G
= 2*R  
IN  
-
V
Figure 25. Current Monitor  
SELECTION OF THE SHUNT RESISTOR  
The value chosen for the shunt resistor, RS, depends on the application. It plays a big role in a current sensing  
system and must be chosen with care. The selection of the shunt resistor needs to take in account the small-  
signal accuracy, the power dissipated and the voltage loss across the shunt itself. In applications where a small  
current is sensed, a bigger value of RS is selected to minimize the error in the proportional output voltage. Higher  
resistor value improves the SNR at the input of the current sense amplifier and hence gives an accurate output.  
Similarly when high current is sensed, the power losses in RS can be significant so a smaller value of RS is  
suggested. In this condition is required to take in account also the power rating of RS resistor. The low input  
offset of the LMP8640 allows the use of small sense resistors to reduce power dissipation still providing a good  
input dynamic range. The input dynamic range is the ratio expressed in dB between the maximum signal that can  
be measured and the minimum signal that can be detected, usually the input offset is the principal limiting factor.  
12  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: LMP8640 LMP8640HV  
LMP8640  
LMP8640HV  
www.ti.com  
SNOSB28F AUGUST 2010REVISED APRIL 2013  
DRIVING ADC  
The input stage of an Analog to Digital converter can be modeled with a resistor and a capacitance versus  
ground. So if the voltage source doesn't have a low impedance an error in the amplitude's measurement will  
occur. In this case a buffer is needed to drive the ADC. The LMP8640 has an internal output buffer able to drive  
a capacitance load up to 30 pF or the input stage of an ADC. If required an external low pass RC filter can be  
added at the output of the LMP8640 to reduce the noise and the bandwidth of the current sense.  
I
S
R
S
+IN  
-IN  
R
L
o
a
d
LMP8640  
R
IN  
IN  
-
+
+
V
V
A
R
F
G
ADC  
V
OUT  
C
F
R
= 2*R  
G
IN  
-
V
Figure 26. LMP8640 to ADC Interface  
DESIGN EXAMPLE  
For example in a current monitor application is required to measure the current sunk by a load (peak current  
10A) with a resolution of 10mA and 0.5% of accuracy. The 10bit analog to digital converter accepts a max input  
voltage of 4.1V. Moreover in order to not burn much power on the shunt resistor it needs to be less than 10m.  
In the table below are summarized the other working condition.  
Value  
Working Condition  
Min  
5V  
Max  
5.5V  
70V  
Supply Voltage  
Common mode Voltage  
Temperature  
48V  
0°C  
70°C  
50kHz  
Signal BW  
First step – LMP8640 / LMP8640HV selection  
The required common mode voltage of the application implies that the right choice is the LMP8640HV (High  
common mode voltage up tp 76V).  
Second step – Gain option selection  
We can choose between three gain option (20V/V, 50V/V, 100V/V). considering the max input voltage of the  
ADC (4.1V) , the max Sense voltage across the shunt resistor is evaluated according the following formula:  
VSENSE= (MAX Vin ADC) / Gain;  
hence the max VSENSE will be 205mV, 82mV, 41mV respectively. The shunt resistor are then evaluated  
considering the maximum monitored current :  
RS = (max VSENSE) / I_MAX  
For each gain option the max shunt resistors are the following : 20.5m, 8.2m, 4.1mrespectively.  
Copyright © 2010–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LMP8640 LMP8640HV  
LMP8640  
LMP8640HV  
SNOSB28F AUGUST 2010REVISED APRIL 2013  
www.ti.com  
One of the project constraints requires RS<10m, it means that the 20.5mwill be discarded and hence the  
50V/V and 100V/V gain options are still in play.  
Third step – Shunt resistor selection  
At this point an error budget calculation, considering the calibration of the Gain, Offset, CMRR, and PSRR, helps  
in the selection of the shunt resistor. In the table below the contribution of each error source is calculated  
considering the values of the Electrical Characteristics table at 5V supply.  
Table 2. Resolution Calculation  
ERROR SOURCE  
CMRR calibrated ad mid VCM range  
PSRR calibrated at 5V  
RS = 4.1m  
77.9µV  
8.9µV  
RS = 8.1mΩ  
77.9µV  
8.9µV  
Total error (squared sum of contribution)  
Resolution (Total error / RS)  
78µV  
78µV  
19.2mA  
9.6mA  
Table 3. Accuracy Calculation  
ERROR SOURCE  
RS = 4.1mΩ  
182µV  
RS = 8.1mΩ  
182µV  
Tc Vos  
Nosie  
216µV  
216µV  
Gain drift  
75.2µV  
293µV  
151µV  
Total error (squared sum of contribution)  
Accuracy 100*(Max_VSENSE / Total Error)  
320µV  
0.7%  
0.4%  
From the tables above is clear that the 8.2mshunt resistor allows the respect of the project's constraints. The  
power burned on the Shunt is 820mW at 10A.  
14  
Submit Documentation Feedback  
Copyright © 2010–2013, Texas Instruments Incorporated  
Product Folder Links: LMP8640 LMP8640HV  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Apr-2013  
PACKAGING INFORMATION  
Orderable Device  
LMP8640HVMK-F/NOPB  
LMP8640HVMK-H/NOPB  
LMP8640HVMK-T/NOPB  
LMP8640HVMKE-F/NOPB  
LMP8640HVMKE-H/NOPB  
LMP8640HVMKE-T/NOPB  
LMP8640HVMKX-F/NOPB  
LMP8640HVMKX-H/NOPB  
LMP8640HVMKX-T/NOPB  
LMP8640MK-F/NOPB  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
DDC  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
AD6A  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
1000  
1000  
250  
Green (RoHS  
& no Sb/Br)  
AF6A  
AB6A  
AD6A  
AF6A  
AB6A  
AD6A  
AF6A  
AB6A  
AC6A  
AE6A  
AA6A  
AC6A  
AE6A  
AA6A  
AC6A  
AE6A  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
3000  
3000  
3000  
1000  
1000  
1000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
LMP8640MK-H/NOPB  
Green (RoHS  
& no Sb/Br)  
LMP8640MK-T/NOPB  
Green (RoHS  
& no Sb/Br)  
LMP8640MKE-F/NOPB  
LMP8640MKE-H/NOPB  
LMP8640MKE-T/NOPB  
LMP8640MKX-F/NOPB  
LMP8640MKX-H/NOPB  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
3000  
3000  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Apr-2013  
Orderable Device  
LMP8640MKX-T/NOPB  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
SOT  
DDC  
6
3000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
AA6A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMP8640HVMK-F/NOPB  
LMP8640HVMK-H/NOPB  
LMP8640HVMK-T/NOPB  
SOT  
SOT  
SOT  
DDC  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
6
1000  
1000  
1000  
250  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
LMP8640HVMKE-F/NOPB SOT  
LMP8640HVMKE-H/NOP  
B
SOT  
250  
LMP8640HVMKE-T/NOPB SOT  
LMP8640HVMKX-F/NOPB SOT  
DDC  
DDC  
DDC  
6
6
6
250  
3000  
3000  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
LMP8640HVMKX-H/NOP  
B
SOT  
LMP8640HVMKX-T/NOPB SOT  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
6
6
6
6
6
3000  
1000  
1000  
1000  
250  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
LMP8640MK-F/NOPB  
LMP8640MK-H/NOPB  
LMP8640MK-T/NOPB  
LMP8640MKE-F/NOPB  
LMP8640MKE-H/NOPB  
LMP8640MKE-T/NOPB  
LMP8640MKX-F/NOPB  
LMP8640MKX-H/NOPB  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
250  
250  
3000  
3000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2013  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMP8640MKX-T/NOPB  
SOT  
DDC  
6
3000  
178.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMP8640HVMK-F/NOPB  
LMP8640HVMK-H/NOPB  
LMP8640HVMK-T/NOPB  
LMP8640HVMKE-F/NOPB  
LMP8640HVMKE-H/NOPB  
LMP8640HVMKE-T/NOPB  
LMP8640HVMKX-F/NOPB  
LMP8640HVMKX-H/NOPB  
LMP8640HVMKX-T/NOPB  
LMP8640MK-F/NOPB  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
SOT  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1000  
1000  
1000  
250  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
250  
250  
3000  
3000  
3000  
1000  
1000  
1000  
250  
LMP8640MK-H/NOPB  
LMP8640MK-T/NOPB  
LMP8640MKE-F/NOPB  
LMP8640MKE-H/NOPB  
LMP8640MKE-T/NOPB  
LMP8640MKX-F/NOPB  
250  
250  
3000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2013  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMP8640MKX-H/NOPB  
LMP8640MKX-T/NOPB  
SOT  
SOT  
DDC  
DDC  
6
6
3000  
3000  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 3  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

LMP8640HVMK-F/NOPB

-2 to 76V, 950kHz current sense amplifier 6-SOT-23-THIN -40 to 125
TI

LMP8640HVMK-H

Precision High Voltage Current Sense Amplifier
NSC

LMP8640HVMK-H

Precision High Voltage Current Sense Amplifier
TI

LMP8640HVMK-H/NOPB

-2 to 76V, 950kHz current sense amplifier 6-SOT-23-THIN -40 to 125
TI

LMP8640HVMK-T

Precision High Voltage Current Sense Amplifier
NSC

LMP8640HVMK-T

Precision High Voltage Current Sense Amplifier
TI

LMP8640HVMK-T/NOPB

-2 to 76V, 950kHz current sense amplifier 6-SOT-23-THIN -40 to 125
TI

LMP8640HVMKE-F

Precision High Voltage Current Sense Amplifier
NSC

LMP8640HVMKE-F

Precision High Voltage Current Sense Amplifier
TI

LMP8640HVMKE-F/NOPB

-2V 至 76V、950kHz 电流感应放大器 | DDC | 6 | -40 to 125
TI

LMP8640HVMKE-H

Precision High Voltage Current Sense Amplifier
NSC

LMP8640HVMKE-H

Precision High Voltage Current Sense Amplifier
TI