LMP90080QMH/NOPB [TI]

具有真正连续后台校准的汽车类多通道低功耗 16 位传感器 AFE | PWP | 28 | -40 to 150;
LMP90080QMH/NOPB
型号: LMP90080QMH/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有真正连续后台校准的汽车类多通道低功耗 16 位传感器 AFE | PWP | 28 | -40 to 150

光电二极管 传感器
文件: 总66页 (文件大小:1478K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
具有后台校准的 LMP90080-Q1 多通道 16 位传感器模拟前端 (AFE)  
查询样片: LMP90080-Q1  
1
特性  
应用  
23  
16 位低功耗三角积分 (Σ-Δ) 模数转换器 (ADC)  
所有增益上的真连续背景校准  
温度和压力发送器  
应变仪接口  
使用期望值编程进行适当的系统校准  
低噪声可编程增益 (1x - 128x)  
工业过程控制  
说明  
连续后台开路/短路和范围外传感器诊断  
单周期稳定的 8 个输出数据速率 (ODR)  
源自 100µA 1000 µA 2 个已匹配激励电流  
4 个差分 (DIFF) / 7 个单端 (SE) 输入  
2 DIFF / 4 SE 输入  
LMP90080-Q1 是一款高集成、多通道、低功耗 16 位  
传感器 AFE。 此器件特有一个精密 16 位三角积分模  
数转换器 (ADC),此转换器具有一个低噪声可编程增  
益放大器和一个完全差分高阻抗模拟输入复用器。 一  
个真连续后台校准特性可在所有增益和输出数据速率上  
实现校准而又不会中断信号路径。 后台校准特性在温  
度和时间范围内从根本上消除了增益和偏移误差,从而  
在不损失速度和功耗的情况下提供测量精度。  
7 个通用输入/输出引脚  
用于实现低偏移的斩波稳定缓冲器  
支持循环冗余码校验 (CRC) 数据链接误差检测的  
SPI 4/3 线制接口  
ODR 13.42SPS 时的 50Hz 60Hz 线路扰动抑  
LMP90080-Q1 的另外一个特性是其连续后台传感器诊  
断,此诊断可在无需用户干预的情况下实现开路和短路  
情况以及范围以外信号的检测,从而提高了系统可靠  
性。  
每通道独立增益和 ODR 选择  
WEBENCH® 传感器 AFE 设计工具提供支持  
自动通道排序器  
两组独立外部基准引脚可实现多个比率测量。 此外,  
LMP90080-Q1 上还提供两个已匹配的可编程电流  
源来为诸如阻性温度检测器和桥式传感器等外部传感器  
供电。 此外,还提供了 7 GPIO 引脚与外部发光二  
极管 (LED) 和开关进行对接以简化绝缘格栅上的控  
制。  
主要技术规格  
有效位数 (ENOB)/NFR:高达 16/16 位  
偏移误差(典型值):8.4nV  
增益误差(典型值):7ppm  
总体噪声:< 10µV-rms  
积分非线性(INL 最大值):±1 最低有效位 (LSB)  
输出数据速率 (ODR)1.6775 - 214.65SPS  
模拟电压,VA+4.75V +5.5V  
工作温度范围:-40 +150°C  
总的来说,这些特性使得 LMP90080-Q1 成为针对诸  
如温度、压力、应变仪和工业过程控制等低功耗、精密  
传感器应用的完整模拟前端。 LMP90080-Q1 可在 -  
40°C +150°C 的扩展温度范围内稳定工作并采用 28  
引脚带外露焊盘封装。  
封装:28 引脚带外露垫封装  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
版权 © 2013–2014, Texas Instruments Incorporated  
English Data Sheet: SNIS186  
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
Typical Application  
VA  
VA  
VIO  
VREFP1 VREFN1  
SCLK  
CSB  
IB1  
IB2  
Micro-  
Controller  
SDO/DRDYB  
SDI  
1
2
VIN0  
...  
LMP90080  
+
-
VIN2  
...  
VIN4  
...  
3
4
D0  
...  
VIN6/VREFP2  
LEDs/  
Switches  
D6/DRDYB  
VIN7/  
VREFN2  
XOUT  
CLK/XIN  
GND  
Block Diagram  
Chip Configurable  
Channel Configurable  
Fixed  
LMP90080  
VIO  
VA  
VA  
EXC.  
CURRENT  
EXC.  
CURRENT  
IB1  
IB2  
LMP90080/  
Open/Short  
LMP90078 only  
POR  
Sensor Diag.  
SERIAL I/F  
CONTROL  
&
CALIBRATION  
DATA PATH  
VIN0  
VIN1  
VIN2  
VIN3  
SCLK  
SDI  
PGA  
1x, 2x,  
4x, 8x  
BACKGROUND  
CALIBRATION  
SDO/DRDYB  
CSB  
FGA  
16x  
BUFF  
LMP90080/  
LMP90079 only  
VIN4  
VIN5  
16 bit 6'  
Module  
DIGITAL  
FILTER  
VIN6/VREFP2  
VIN7/VREFN2  
CLK  
MUX  
Ext. Clk  
Detect  
Internal  
CLK  
VREF  
MUX  
GPIO  
GND  
VREFN1  
XOUT  
D6/  
DRDYB  
D0  
CLK/  
XIN  
VREFP1  
Figure 1. Block Diagram  
2
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
True Continuous Background Calibration  
The LMP90080-Q1 features a 16 bit ΣΔ core with continuous background calibration to compensate for gain and  
offset errors in the ADC, virtually eliminating any drift with time and temperature. The calibration is performed in  
the background without user or ADC input interruption, making it unique in the industry and eliminating down time  
associated with field calibration required with other solutions. Having this continuous calibration improves  
performance over the entire life span of the end product.  
Continuous Background Sensor Diagnostics  
Sensor diagnostics are also performed in the background, without interfering with signal path performance,  
allowing the detection of sensor shorts, opens, and out-of-range signals, which vastly improves system reliability.  
In addition, the fully flexible input multiplexer described below allows any input pin to be connected to any ADC  
input channel providing additional sensor path diagnostic capability.  
Flexible Input MUX Channels  
The flexible input MUX allows interfacing to a wide range of sensors such as thermocouples, RTDs, thermistors,  
and bridge sensors. The LMP90080-Q1’s multiplexer supports 4 differential channels. Each effective input  
voltage that is digitized is VIN = VINX – VINY, where x and y are any input. In addition, the input multiplexer of the  
LMP90080-Q1 also supports 7 single-ended channels, where the common ground is any one of the inputs.  
Programmable Gain Amplifiers (FGA & PGA)  
The LMP90080-Q1 contains an internal 16x fixed gain amplifier (FGA) and a 1x, 2x, 4x, or 8x programmable gain  
amplifier (PGA). This allows accurate gain settings of 1x, 2x, 4x, 8x, 16x, 32x, 64x, or 128x through configuration  
of internal registers. Having an internal amplifier eliminates the need for external amplifiers that are costly, space  
consuming, and difficult to calibrate.  
Excitation Current Sources (IB1 & IB2)  
Two matched internal excitation currents, IB1 and IB2, can be used for sourcing currents to a variety of sensors.  
The current range is from 100 µA to 1000 µA in steps of 100 µA.  
Connection Diagram  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VIO  
1
2
3
4
5
6
7
8
9
VA  
VIN0  
D6 / DRDYB  
D5  
D4  
D3  
VIN1  
VIN2  
VIN3  
VIN4  
D2  
D1  
D0  
VIN5  
LMP90080  
VREFP1  
VREFN1  
SDO/DRDYB  
VIN6/VREFP2 10  
VIN7/VREFN2 11  
SDI  
SCLK  
CSB  
12  
13  
14  
IB2  
IB1  
GND  
XIN/CLK  
XOUT  
Figure 2. 28-pin HTSSOP  
Copyright © 2013–2014, Texas Instruments Incorporated  
3
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
Pin Descriptions  
Pin #  
1
Pin Name  
VA  
Type  
Function  
Analog Supply  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog Input  
Analog output  
Analog output  
Analog input  
Ground  
Analog power supply pin  
2 - 4  
5 - 7  
8
VIN0 - VIN2  
VIN3 - VIN5  
VREFP1  
VREFN1  
VIN6 / VREFP2  
VIN7 / VREFN2  
IB2 & IB1  
XOUT  
Analog input pins  
Analog input pins  
Positive reference input  
Negative reference input  
9
10  
Analog input pin or VREFP2 input  
Analog input pin or VREFN2 input  
Excitation current sources for external RTDs  
External crystal oscillator connection  
11  
12 - 13  
14  
15  
XIN / CLK  
GND  
External crystal oscillator connection or external clock input  
Power supply ground  
16  
17  
CSB  
Digital Input  
Digital Input  
Digital Input  
Digital Output  
Digital IO  
Chip select bar  
18  
SCLK  
Serial clock  
19  
SDI  
Serial data input  
20  
SDO / DRDYB  
D0 - D5  
Serial data output and data ready bar  
General purpose input/output (GPIO) pins  
General purpose input/output pin or data ready bar  
Digtal input/output supply pin  
Leave the thermal pad floating  
21 - 26  
27  
D6 / DRDYB  
VIO  
Digital IO  
28  
Digital Supply  
Thermal Pad  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
Absolute Maximum Ratings(1)(2)(3)(4)  
Analog Supply Voltage, VA  
-0.3V to 6.0V  
-0.3V to 6.0V  
-0.3V to VA+0.3V  
-0.3V to VA+0.3V  
-0.3V to VIO+0.3V  
-0.3V to VIO + 0.3V  
5mA  
Digital I/O Supply Voltage, VIO  
Reference Voltage, VREF  
Voltage on Any Analog Input Pin to GND(5)  
Voltage on Any Digital Input PIN to GND(5)  
Voltage on SDO(5)  
Input Current at Any Pin(5)  
Output Current Source or Sink by SDO  
Total Package Input and Output Current  
3mA  
20mA  
Human Body Model (HBM)  
Machine Model (MM)  
2500V  
ESD Susceptibility  
200V  
Charged Device Model (CDM)  
1250V  
Junction Temperature (TJMAX  
)
+150°C  
Storage Temperature Range  
–65°C to +150°C  
(1) All voltages are measured with respect to GND, unless otherwise specified  
(2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the  
Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may  
degrade when the device is not operated under the listed test conditions.  
(3) For soldering specifications see product folder at http://www.ti.com and http://www.ti.com/lit/SNOA549  
(4) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(5) When the input voltage (VIN) exceeds the power supply (VIN < GND or VIN > VA), the current at that pin must be limited to 5mA and  
VIN has to be within the Absolute Maximum Rating for that pin. The 20 mA package input current rating limits the number of pins that  
can safely exceed the power supplies with current flow to four pins.  
4
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
Operating Ratings  
Analog Supply Voltage, VA  
Digital I/O Supply Voltage, VIO  
Full Scale Input Range, VIN  
Reference Voltage, VREF  
+4.75V to 5.5V  
+2.7V to 5.5V  
±VREF / PGA  
+0.5V to VA  
TMIN = –40°C  
Temperature Range for Electrical Characteristics  
TMAX = +150°C  
–40°C TA +150°C  
41°C/W  
Operating Temperature Range  
(1)  
Junction to Ambient Thermal Resistance (θJA  
)
(1) The maximum power dissipation is a function of TJ(MAX) AND θJA. The maximum allowable power dissipation at any ambient  
temperature is PD = (TJ(MAX) - TA) / θJA  
.
Copyright © 2013–2014, Texas Instruments Incorporated  
5
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
Electrical Characteristics  
Unless otherwise noted, the key for the condition is (VA = VIO = VREF) / ODR (SPS) / buffer / calibration / gain . Boldface  
limits apply for TMIN TA TMAX; the typical values apply for TA = +25°C.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
n
Resolution  
16  
Bits  
Effective Number  
of Bits and Noise  
Free Resolution  
5V / all / ON / OFF / all. Shorted input.  
ENOB /  
NFR  
See Table 1  
Bits  
ODR  
Output Data Rates  
Gain  
1.6675  
1
See  
214.6  
128  
SPS  
FGA × PGA  
See Table 1  
Integral Non-  
Linearity(1)  
5V / 214.65 / ON / ON / 1 - 128  
INL  
± 1  
LSB  
µV  
Total Noise  
5V / all / ON / OFF / all. Shorted input.  
5V / all / ON or OFF / ON / all  
See Table 2  
Below Noise  
Floor (rms)  
µV  
OE  
Offset Error  
5V / 214.65 / ON / ON / 1  
1.79  
0.0112  
100  
3
15  
10  
µV  
5V / 214.65 / ON / ON / 128  
5V / 214.65 / ON or OFF/OFF/1-8  
5V / 214.65 / ON / ON / 1-8  
5V / 214.65 / ON / OFF / 16  
5V / 214.65 / ON / ON / 16  
5V / 214.65 / ON / OFF / 128  
5V / 214.65 / ON / ON / 128  
µV  
nV/°C  
nV/°C  
nV/°C  
nV/°C  
nV/°C  
nV/°C  
25  
Offset Drift Over  
Temp(1)  
0.4  
6
0.125  
nV / 1000  
hours  
5V / 214.65 / ON / OFF / 1, TA = 150°C  
5V / 214.65 / ON / ON / 1, TA = 150°C  
2360  
100  
Offset Drift over  
Time(1)  
nV / 1000  
hours  
5V / 214.65 / ON / ON / 1  
5V / 214.65 / ON / ON / 16  
5V / 214.65 / ON / ON / 64  
5V / 214.65 / ON / ON / 128  
-80  
7
80  
ppm  
ppm  
ppm  
ppm  
50  
GE  
Gain Error(1)  
50  
100  
Gain Drift over  
Temp(1)  
5V / 214.65 / ON / ON / all  
0.5  
5.9  
1.6  
ppm/°C  
ppm / 1000  
hours  
5V / 214.65 / ON / OFF / 1, TA = 150°C  
5V / 214.65 / ON / ON / 1, TA = 150°C  
Gain Drift over  
Time(1)  
ppm / 1000  
hours  
CONVERTER'S CHARACTERISTIC  
Input Common  
Mode Rejection  
Ratio  
DC, 5V / 214.65 / ON / ON / 1  
90  
85  
120  
117  
dB  
dB  
CMRR  
50/60 Hz, 5V / 214.65 / OFF / OFF / 1  
VREF = 2.5V  
Reference  
Common Mode  
Rejection  
101  
112  
dB  
dB  
Power Supply  
Rejection Ratio  
PSRR  
NMRR  
DC, 5V / 214.65 / ON / ON / 1  
Normal Mode  
47 Hz to 63 Hz, 5V / 13.42 / OFF / OFF  
/ 1  
78  
95  
dB  
dB  
Rejection Ratio(1)  
Cross-talk(1)  
5V / 214.65 / OFF / OFF / 1  
143  
POWER SUPPLY CHARACTERISTICS  
Analog Supply  
Voltage  
VA  
4.75  
2.7  
5.0  
3.3  
5.5  
5.5  
V
V
Digital Supply  
Voltage  
VIO  
(1) This parameter is specified by design and/or characterization and is not tested in production.  
6
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
Electrical Characteristics (continued)  
Unless otherwise noted, the key for the condition is (VA = VIO = VREF) / ODR (SPS) / buffer / calibration / gain . Boldface  
limits apply for TMIN TA TMAX; the typical values apply for TA = +25°C.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
464  
690  
1760  
941  
5
Max  
700  
Units  
µA  
5V / 13.42 / OFF / OFF / 1, ext. CLK  
5V / 13.42 / ON / OFF / 64, ext. CLK  
5V / 214.65 / ON / OFF / 64, int. CLK  
5V / 214.65 / OFF / OFF / 1, int. CLK  
Standby, 5V, int. CLK  
1000  
2150  
1250  
40  
µA  
µA  
Analog Supply  
Current  
IVA  
µA  
µA  
Standby, 5V, ext. CLK  
300  
4.6  
µA  
Power-down, 5V, int/ext CLK  
40  
µA  
REFERENCE INPUT  
VREFP  
Positive Reference  
VREFN + 0.5  
GND  
VA  
V
V
Negative  
Reference  
VREFN  
VREFP - 0.5  
Differential  
Reference  
VREF  
ZREF  
IREF  
VREF = VREFP - VREFN  
0.5  
VA  
V
MOhm  
µA  
Reference  
Impedance  
VREF = 3V / 13.42 / OFF / OFF / 1  
10  
±2  
6
VREF = 3V / 13.42 / ON or OFF /ON or  
OFF/all  
Reference Input  
Capacitance of the  
Positive Reference  
CREFP  
gain = 1(2)  
gain = 1(2)  
Power-down  
pF  
Capacitance of the  
CREFN Negative  
Reference  
6
1
pF  
nA  
Reference  
ILREF  
Leakage Current  
ANALOG INPUT  
Gain = 1-8, buffer ON  
Gain = 16 - 128, buffer ON  
Gain = 1-8, buffer OFF  
Gain = 1-8, buffer ON  
Gain = 16 - 128, buffer ON  
Gain = 1-8, buffer OFF  
VIN = VINP - VINN  
GND + 0.1  
GND + 0.4  
GND  
VA - 0.1  
VA - 1.5  
VA  
V
V
V
V
V
V
VINP  
VINN  
Positive Input  
GND + 0.1  
GND + 0.4  
GND  
VA - 0.1  
VA - 1.5  
VA  
Negative Input  
VIN  
ZIN  
Differential Input  
±VREF / PGA  
15.4  
Differential Input  
Impedance  
ODR = 13.42 SPS  
MOhm  
pF  
Capacitance of the 5V / 214.65 / OFF / OFF / 1  
Positive Input  
CINP  
CINN  
4
4
Capacitance of the  
5V / 214.65 / OFF / OFF / 1  
Negative Input  
pF  
5V / 13.42 / ON / OFF / 1-8  
500  
100  
pA  
pA  
Input Leakage  
Current  
IIN  
5V / 13.42 / ON / OFF / 16 - 128  
DIGITAL INPUT CHARACTERISTICS at VA = VIO = VREF = 3.0V  
Logical "1" Input  
Voltage  
VIH  
0.7 x VIO  
-10  
V
V
Logical "0" Input  
Voltage  
VIL  
0.3 x VIO  
+10  
Digital Input  
IIL  
µA  
V
Leakage Current  
Digital Input  
VHYST  
0.1 x VIO  
Hysteresis  
(2) This parameter is specified by design and/or characterization and is not tested in production.  
Copyright © 2013–2014, Texas Instruments Incorporated  
7
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
Unless otherwise noted, the key for the condition is (VA = VIO = VREF) / ODR (SPS) / buffer / calibration / gain . Boldface  
limits apply for TMIN TA TMAX; the typical values apply for TA = +25°C.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DIGITAL OUTPUT CHARACTERISTICS at VA = VIO = VREF = 3.0V  
Logical "1" Output  
Voltage  
VOH  
VOL  
Source 300 µA  
Sink 300 µA  
2.6  
V
V
Logical "0" Output  
Voltage  
0.4  
10  
IOZH,  
IOZL  
TRI-STATE  
Leakage Current  
-10  
µA  
pF  
TRI-STATE  
Capacitance  
COUT  
See(2)  
5
EXCITATION CURRENT SOURCES CHARACTERISTICS  
0, 100, 200,  
300, 400, 500,  
600, 700, 800,  
900, 1000  
Excitation Current  
IB1, IB2  
µA  
Source Output  
IB1/IB2 Tolerance VA = VREF = 5V  
-5  
0.2  
5
%
V
IB1/IB2 Output  
VA = 5.0V, IB1/IB2 = 100 µA to 1000  
VA - 0.8  
Compliance Range µA  
VA = 5.0V, IB1/IB2 = 100 µA to 1000  
µA  
IB1/IB2 Regulation  
IB1/IB2 Drift  
0.07  
60  
% / V  
ppm/°C  
%
IBTC  
VA = 5.0V  
5V / 214.65 / OFF / OFF / 1, IB1/IB2 =  
100 µA  
0.34  
1.53  
1
5V / 214.65 / OFF / OFF / 1, IB1/IB2 =  
200 µA  
0.22  
0.2  
%
%
5V / 214.65 / OFF / OFF / 1, IB1/IB2 =  
300 µA  
0.85  
0.8  
5V / 214.65 / OFF / OFF / 1, IB1/IB2 =  
400 µA  
0.15  
0.14  
0.13  
0.075  
0.085  
0.11  
0.11  
2
%
5V / 214.65 / OFF / OFF / 1, IB1/IB2 =  
500 µA  
0.7  
%
IBMT  
IB1/IB2 Matching  
5V / 214.65 / OFF / OFF / 1, IB1/IB2 =  
600 µA  
0.7  
%
5V / 214.65 / OFF / OFF / 1, IB1/IB2 =  
700 µA  
0.65  
0.6  
%
5V / 214.65 / OFF / OFF / 1, IB1/IB2 =  
800 µA  
%
5V / 214.65 / OFF / OFF / 1, IB1/IB2 =  
900 µA  
0.55  
0.45  
%
5V / 214.65 / OFF / OFF / 1, IB1/IB2 =  
1000 µA  
%
IB1/IB2 Matching  
Drfit  
VA = 5.0V, IB1/IB2 = 100 µA to 1000  
µA  
IBMTC  
ppm/°C  
INTERNAL/EXTERNAL CLK  
Internal Clock  
CLKIN  
893  
kHz  
Frequency  
External Clock  
CLKEXT  
See(3)  
1.8  
1.8  
3.5717  
7.2  
7.2  
MHz  
Frequency  
Input Low Voltage  
Input High Voltage  
Frequency  
0
V
V
1
3.5717  
7
External Crystal  
Frequency  
MHz  
ms  
Start-up time  
(3) This parameter is specified by design and/or characterization and is not tested in production.  
8
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
Electrical Characteristics (continued)  
Unless otherwise noted, the key for the condition is (VA = VIO = VREF) / ODR (SPS) / buffer / calibration / gain . Boldface  
limits apply for TMIN TA TMAX; the typical values apply for TA = +25°C.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
SCLK  
Serial Clock  
10  
MHz  
Table 1. ENOB (Noise Free Resolution) vs. Sampling Rate and Gain at VA = VIO = VREF = 5V  
Gain of the ADC  
SPS  
1
2
4
8
16  
32  
64  
128  
1.6775  
3.355  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (16)  
16 (15.5)  
16 (16)  
16 (16)  
16 (15.5)  
16 (15)  
16 (16)  
16 (15.5)  
16 (15)  
16 (15)  
16 (15.5)  
16 (15)  
16 (14.5)  
16 (14)  
6.71  
13.42  
26.83125  
53.6625  
107.325  
214.65  
Table 2. RMS Noise (µV) vs. Sampling Rate and Gain at VA = VIO = VREF = 5V  
Gain of the ADC  
SPS  
1
2
4
8
16  
32  
64  
128  
0.16  
0.22  
0.32  
0.43  
0.23  
0.31  
0.44  
0.63  
1.6775  
3.355  
2.68  
3.86  
5.23  
7.94  
2.90  
4.11  
5.74  
8.25  
1.65  
2.36  
3.49  
5.01  
1.86  
2.60  
3.72  
5.31  
1.24  
1.78  
2.47  
3.74  
1.34  
1.90  
2.72  
3.82  
1.00  
1.47  
2.09  
2.94  
1.08  
1.50  
2.11  
2.97  
0.22  
0.34  
0.44  
0.61  
0.29  
0.39  
0.56  
0.79  
0.19  
0.27  
0.34  
0.50  
0.24  
0.35  
0.48  
0.68  
0.17  
0.22  
0.30  
0.45  
0.23  
0.32  
0.46  
0.64  
6.71  
13.42  
26.83125  
53.6625  
107.325  
214.65  
Copyright © 2013–2014, Texas Instruments Incorporated  
9
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
Timing Diagrams  
Unless otherwise noted, specified limits apply for VA = 5V, VIO = 3.0V. Boldface limits apply for TMIN TA TMAX  
;
the typical values apply for TA = +25°C.  
CSB  
t
t
CL  
1/f  
SCLK  
CH  
4
1
2
3
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
n
SCLK  
SDI  
INST2  
MSB  
LSB  
DRDYB is driving the pin  
SDO is driving the pin  
Data Byte (s)  
MSB  
LSB  
SDO/  
...  
DRDYB  
Figure 3. Timing Diagram  
Symbol  
fSCLK  
tCH  
Parameter  
Conditions  
Min  
Typical  
Max  
Units  
MHz  
ns  
10  
SCLK High time  
SCLK Low time  
0.4 / fSCLK  
0.4 / fSCLK  
tCL  
ns  
CSB  
CSB  
0.3V  
IO  
t
t
CSSUmin  
CSHmin  
0.7V  
IO  
SCLK  
0.7V  
IO  
SCLK  
Symbol  
tCSSU  
Parameter  
Conditions  
Min  
10  
Typical  
Max  
Units  
ns  
CSB Setup time prior to an SCLK rising edge  
CSB Hold time after the last rising edge of SCLK  
tCSH  
10  
ns  
0.9V  
0.9V  
IO  
IO  
0.7V  
IO  
SCLK  
SCLK  
0.1V  
0.1V  
t
IO  
IO  
t
t
DIH  
t
DISU  
CLKR  
CLKF  
0.7V  
0.7V  
IO  
IO  
SDI  
DB  
0.3V  
0.3V  
IO  
IO  
10  
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
Symbol  
tCLKR  
tCLKF  
tDISU  
Parameter  
Conditions  
Min  
Typical  
1.15  
Max  
Units  
ns  
SCLK Rise time  
SCLK Fall time  
1.15  
ns  
SDI Setup time prior to an SCLK rising edge  
SDI Hold time after an SCLK rising edge  
10  
10  
ns  
tDIH  
ns  
0.7V  
IO  
SCLK  
0.3V  
DOH  
IO  
CSB  
t
t
DOD1  
t
DOA  
0.9V  
IO  
0.7V  
0.3V  
0.7V  
IO  
IO  
SDO  
DB0  
DB  
DB  
SDO  
0.3V  
IO  
0.1V  
IO  
IO  
Symbol  
Parameter  
Conditions  
Min  
Typical  
Max  
Units  
ns  
tDOA  
tDOH  
SDO Access time after an SCLK falling edge  
SDO Hold time after an SCLK falling edge  
SDO Disable time after the rising edge of CSB  
35  
0
ns  
tDOD1  
5
ns  
0.7V  
IO  
SCLK  
SDO  
SCLK  
0.3 V  
IO  
t
(optional,  
DOD2  
SW_OFF_TRG = 1)  
t
DOD2  
0.9 V  
0.1 V  
IO  
IO  
0.9V  
IO  
DB0  
SDO  
DB0  
0.1V  
IO  
Symbol  
Parameter  
SDO Disable time after either edge of SCLK  
Conditions  
Min  
Typical  
Max  
Units  
tDOD2  
27  
ns  
0.9V  
0.9V  
IO  
IO  
8
9
SCLK  
SDO  
0.3V  
IO  
SDO  
t
0.1V  
0.1V  
DOE  
IO  
IO  
t
t
DOF  
DOR  
0.7V  
IO  
DB7  
0.3V  
IO  
Symbol  
Parameter  
Conditions  
Min  
Typical  
Max  
Units  
SDO Enable time from the falling  
edge of the 8th SCLK  
tDOE  
35  
ns  
tDOR  
tDOF  
SDO Rise time  
SDO Fall time  
See(1)  
See(1)  
7
7
ns  
ns  
µs  
µs  
ODR 13.42 SPS  
64  
4
Data Ready Bar pulse at every  
1/ODR second  
tDRDYB  
13.42 < ODR 214.65 SPS  
(1) This parameter is specified by design and/or characterization and is not tested in production.  
Copyright © 2013–2014, Texas Instruments Incorporated  
11  
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
Specific Definitions  
COMMON MODE REJECTION RATIO is a measure of how well in-phase signals common to both input pins are  
rejected. To calculate CMRR, the change in output offset is measured while the common mode input voltage is  
changed.  
CMRR = 20 LOG(ΔCommon Input / ΔOutput Offset)  
EFFECTIVE NUMBER OF BITS (ENOB, or EFFECTIVE BITS) – says that the converter is equivalent to a  
perfect ADC of this (ENOB) number of bits. LMP90080-Q1’s ENOB is a DC ENOB spec, not the dynamic ENOB  
that is measured using FFT and SINAD. Its equation is as follows:  
§
·
2 x VREF/Gain  
RMS Noise  
ENOB =  
¨
¨
¸
¸
log2  
©
¹
(1)  
GAIN ERROR is the deviation from the ideal slope of the transfer function.  
INTEGRAL NON-LINEARITY (INL) is a measure of the deviation of each individual code from a straight line  
through the input to output transfer function. The deviation of any given code from this straight line is measured  
from the center of that code value. The end point fit method is used. INL for this product is specified over a  
limited range, per the Electrical Tables.  
NEGATIVE FULL-SCALE ERROR is the difference between the differential input voltage at which the output  
code transitions to negative full scale and (-VREF + 1LSB).  
NEGATIVE GAIN ERROR is the difference between the negative full-scale error and the offset error divided by  
(VREF / Gain).  
NOISE FREE RESOLUTION is a method of specifying the number of bits for a converter with noise.  
§
·
2 x VREF/Gain  
Peak-to-Peak Noise  
¨
¨
¸
¸
log2  
NFR =  
©
¹
(2)  
ODR Output Data Rate.  
OFFSET ERROR is the difference between the differential input voltage at which the output code transitions from  
code 0000h to 0001h and 1 LSB.  
POSITIVE FULL-SCALE ERROR is the difference between the differential input voltage at which the output  
code transitions to positive full scale and (VREF – 1LSB).  
POSITIVE GAIN ERROR is the difference between the positive full-scale error and the offset error divided by  
(VREF / Gain).  
POWER SUPPLY REJECTION RATIO (PSRR) is a measure of how well a change in the analog supply voltage  
is rejected. PSRR is calculated from the ratio of the change in offset error for a given change in supply voltage,  
expressed in dB.  
PSRR = 20 LOG (ΔVA / ΔOutput Offset)  
12  
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
Typical Performance Characteristics  
Unless otherwise noted, specified limits apply for VA = 5V, VIO = VREF = 3.0V. The maximum and minimum values apply for  
TA = TMIN to TMAX; the typical values apply for TA = +25°C.  
Noise Measurement without Calibration at Gain = 1  
Noise Measurement with Calibration at Gain = 1  
300  
275  
250  
225  
200  
175  
150  
60  
40  
20  
0
-20  
-40  
-60  
G=1, Calibration off  
G=1, Calibration on  
0
200  
400  
TIME (ms)  
Figure 4.  
600  
800  
1000  
0
200  
400  
TIME (ms)  
Figure 5.  
600  
800  
1000  
C001  
C002  
Histogram without Calibration at Gain = 1  
Histogram with Calibration at Gain = 1  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0
0
-50 -40 -30 -20 -10  
0
10 20 30 40 50  
VOUT (µV)  
VOUT (µV)  
C007  
C008  
Figure 6.  
Figure 7.  
Noise Measurement without Calibration at Gain = 8  
Noise Measurement with Calibration at Gain = 8  
35  
30  
25  
20  
15  
10  
5
15  
10  
5
0
-5  
-10  
-15  
G=8, Calibration off  
G=8, Calibration on  
0
0
200  
400  
TIME (ms)  
Figure 8.  
600  
800  
1000  
0
200  
400  
TIME (ms)  
Figure 9.  
600  
800  
1000  
C003  
C004  
Copyright © 2013–2014, Texas Instruments Incorporated  
13  
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
Typical Performance Characteristics (continued)  
Unless otherwise noted, specified limits apply for VA = 5V, VIO = VREF = 3.0V. The maximum and minimum values apply for  
TA = TMIN to TMAX; the typical values apply for TA = +25°C.  
Histogram without Calibration at Gain = 8  
Histogram with Calibration at Gain = 8  
6000  
5000  
4000  
3000  
2000  
1000  
0
6000  
5000  
4000  
3000  
2000  
1000  
0
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
VOUT (µV)  
-10 -8  
-6  
-4  
-2  
0
2
4
6
8
10  
VOUT (µV)  
C009  
C010  
Figure 10.  
Figure 11.  
Noise Measurement without Calibration at Gain = 128  
Noise Measurement with Calibration at Gain = 128  
5
2
1.5  
1
4.5  
4
3.5  
3
0.5  
0
2.5  
2
-0.5  
-1  
1.5  
1
-1.5  
-2  
G=128, Calibration off  
G=128, Calibration on  
0
200  
400  
TIME (ms)  
Figure 12.  
600  
800  
1000  
0
200  
400  
TIME (ms)  
Figure 13.  
600  
800  
1000  
C005  
C006  
Histogram without Calibration at Gain = 128  
Histogram with Calibration at Gain = 128  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0
0
-0.6 -0.5 -0.4 -0.3 -0.2 -0.1  
0
0.1 0.2 0.3 0.4 0.5 0.6  
VOUT (µV)  
VOUT (µV)  
C011  
C012  
Figure 14.  
Figure 15.  
14  
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
Typical Performance Characteristics (continued)  
Unless otherwise noted, specified limits apply for VA = 5V, VIO = VREF = 3.0V. The maximum and minimum values apply for  
TA = TMIN to TMAX; the typical values apply for TA = +25°C.  
Noise vs.  
Noise vs.  
Gain without Calibration at ODR = 13.42 SPS  
Gain with Calibration at ODR = 13.42 SPS  
12  
12  
VA = 5V  
VA = 5V  
10  
10  
8
6
4
2
0
8
6
4
2
0
1
2
4
8
16 32 64 128  
1
2
4
8
16 32 64 128  
GAIN  
GAIN  
Figure 16.  
Noise vs.  
Figure 17.  
Noise vs.  
Gain without Calibration at ODR = 214.65 SPS  
Gain with Calibration at ODR = 214.65 SPS  
12  
12  
VA = 5V  
VA = 5V  
10  
10  
8
6
4
2
0
8
6
4
2
0
1
2
4
8
16 32 64 128  
1
2
4
8
16 32 64 128  
GAIN  
Figure 18.  
GAIN  
Figure 19.  
Offset Error vs.  
Offset Error vs.  
Temperature with Calibration at Gain = 1  
2.0  
Temperature without Calibration at Gain = 1  
300  
250  
200  
1.5  
1.0  
0.5  
0.0  
VA = 5V  
150  
100  
50  
0
VA = 5V  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 20.  
Figure 21.  
Copyright © 2013–2014, Texas Instruments Incorporated  
15  
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
Typical Performance Characteristics (continued)  
Unless otherwise noted, specified limits apply for VA = 5V, VIO = VREF = 3.0V. The maximum and minimum values apply for  
TA = TMIN to TMAX; the typical values apply for TA = +25°C.  
Offset Error vs.  
Offset Error vs.  
Temperature without Calibration at Gain = 8  
25  
Temperature with Calibration at Gain = 8  
0.4  
20  
0.2  
0.0  
VA = 5V  
15  
10  
5
VA = 5V  
-0.2  
-0.4  
0
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 22.  
Figure 23.  
Gain Error vs.  
Gain Error vs.  
Temperature without Calibration at Gain = 1  
160  
Temperature with Calibration at Gain = 1  
40  
150  
20  
VA = 5V  
VA = 5V  
140  
130  
120  
110  
0
-20  
-40  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 24.  
Figure 25.  
Gain Error vs.  
Gain Error vs.  
Temperature without Calibration at Gain = 8  
Temperature with Calibration at Gain = 8  
-100  
-20  
-110  
-120  
-130  
-40  
-60  
-80  
VA = 5V  
-140  
VA = 5V  
-100  
-120  
-150  
-160  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 26.  
Figure 27.  
16  
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
Typical Performance Characteristics (continued)  
Unless otherwise noted, specified limits apply for VA = 5V, VIO = VREF = 3.0V. The maximum and minimum values apply for  
TA = TMIN to TMAX; the typical values apply for TA = +25°C.  
Digital Filter Frequency Response  
Digital Filter Frequency Response  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
1.7 SPS  
3.4 SPS  
6.7 SPS  
13.4 SPS  
26.83 SPS  
53.66 SPS  
107.33 SPS  
214.65 SPS  
-100  
-120  
-100  
-120  
1
10  
100  
10  
100  
1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 28.  
Figure 29.  
INL at Gain = 1  
10  
5
0
-5  
-10  
VA = 5V, 13.4 SPS  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
VIN (V)  
Figure 30.  
Copyright © 2013–2014, Texas Instruments Incorporated  
17  
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
Functional Description  
The LMP90080-Q1 is a low-power 16-Bit ΣΔ ADC with 4 fully differential / 7 single-ended analog channels. Its  
serial data output is two’s complement format. The output data rate (ODR) ranges from 1.6775 SPS to 214.65  
SPS.  
The serial communication for LMP90080-Q1 is SPI, a synchronous serial interface that operates using 4 pins:  
chip select bar (CSB), serial clock (SCLK), serial data in (SDI), and serial data out / data ready bar  
(SDO/DRYDYB).  
True continuous built-in offset and gain background calibration is also available to improve measurement  
accuracy. Unlike other ADCs, the LMP90080-Q1’s background calibration can run without heavily impacting the  
input signal. This unique technique allows for positive as well as negative gain calibration and is available at all  
gain settings.  
The registers can be found in Registers, and a detailed description of the LMP90080-Q1 are provided in the  
following sections.  
Signal Path  
Reference Input (VREF  
)
The differential reference voltage VREF (VREFP – VREFN) sets the range for VIN.  
The muxed VREF allows the user to choose between VREF1 or VREF2 for each channel. This selection can be  
made by programming the VREF_SEL bit in the CHx_INPUTCN registers (CHx_INPUTCN: VREF_SEL). The default  
mode is VREF1. If VREF2 is used, then VIN6 and VIN7 cannot be used as inputs because they share the same pin.  
Refer to VREF for VREF applications information.  
Flexible Input MUX (VIN)  
LMP90080-Q1 provides a flexible input MUX as shown in Figure 31. The input that is digitized is VIN = VINP  
VINN; where VINP and VINN can be any availablie input.  
The digitized input is also known as a channel, where CH = VIN = VINP – VINN. Thus, there are a maximum of 4  
differential channels: CH0, CH1, CH2, and CH3.  
LMP90080-Q1 can also be configured single-endedly, where the common ground is any one of the inputs. There  
are a maximum of 7 single-ended channels: CH0, CH1, CH2, CH3, CH4, CH5, and CH6 for the LMP90080-Q1.  
The input MUX can be programmed in the CHx_INPUTCN registers. For example, to program CH0 = VIN = VIN4  
VIN1, go to the CH0_INPUTCN register and set:  
1. VINP = 0x4  
2. VINN = 0x1  
18  
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
VREFP1  
VIN0  
VIN1  
VIN2  
VIN3*  
VINP  
VINN  
+
-
+
+
-
ADC  
FGA  
BUFF  
-
VIN4*  
VIN5*  
VIN6/VREFP2  
VIN7/VREFN2  
VREFN1  
* VIN3, VIN4, VIN5 are only available for LMP90080 and LMP90079  
Figure 31. Simplified VIN Circuitry  
Selectable Gains (FGA & PGA)  
LMP90080-Q1 provides two types of gain amplifiers: a fixed gain amplifier (FGA) and a programmable gain  
amplifier (PGA). FGA has a fixed gain of 16x or it can be bypassed, while the PGA has programmable gain  
settings of 1x, 2x, 4x, or 8x.  
Total gain is defined as FGA x PGA. Thus, the LMP90080-Q1 provides gain settings of 1x, 2x, 4x, 8x, 16x, 32x,  
64x, or 128x with true continuous background calibration.  
The gain is channel specific, which means that one channel can have one gain, while another channel can have  
the same or a different gain.  
The gain can be selected by programming the CHx_CONFIG: GAIN_SEL bits.  
Buffer (BUFF)  
There is an internal unity gain buffer that can be included or excluded from the signal path. Including the buffer  
provides a high input impedance but increases the power consumption.  
When gain 16, the buffer is automatically included in the signal path. When gain < 16, including or excluding  
the buffer from the signal path can be done by programming the CHX_CONFIG: BUF_EN bit.  
Internal/External CLK Selection  
The LMP90080-Q1 allows two clock options: internal CLK or external CLK (crystal (XTAL) or clock source).  
There is an “External Clock Detection” mode, which detects the external XTAL if it is connected to XOUT and  
XIN. When operating in this mode, the LMP90080-Q1 shuts off the internal clock to reduce power consumption.  
Below is a flow chart to help set the appropriate clock registers.  
Copyright © 2013–2014, Texas Instruments Incorporated  
19  
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
Clock  
Options  
Internal CLK  
External CLK Source  
External  
XTAL  
Is there a XTAL  
connected to XIN and  
XOUT?  
LMP900xx will use the  
No  
internal clock  
Connect an external  
CLK source to the  
XIN/CLK pin  
Connect a XTAL  
to XIN and XOUT  
Yes  
LMP900xx will  
automatically use the  
external CLK source  
Set CLK_EXT_DET = 1 to  
E\SDVVꢀWKHꢀ³([WHUQDO-Clock  
'HWHFWLRQ´ꢀPRGH  
LMP900xx will  
automatically detect  
and use the XTAL if  
CLK_EXT_DET = 0  
(default)  
Set CLK_SEL = 0 to select  
the internal clock  
Figure 32. CLK Register Settings  
The recommended value for the external CLK is discussed in the next sections.  
Programmable ODRs  
If using the internal CLK or external CLK of 3.5717 MHz, then the output date rates (ODR) can be selected  
(using the ODR_SEL bit) as:  
1. 13.42/8 = 1.6775 SPS  
2. 13.42/4 = 3.355 SPS  
3. 13.42/2 = 6.71SPS  
4. 13.42 SPS  
5. 214.65/8 = 26.83125 SPS  
6. 214.65/4 = 53.6625 SPS  
7. 214.65/2 = 107.325 SPS  
8. 214.65 SPS (default)  
If the internal CLK is not being used and the external CLK is not 3.5717 MHz, then the ODR will be different. If  
this is the case, use the equation below to calculate the new ODR values.  
ODR_Base1 = (CLKEXT) / (266,240)  
(3)  
(4)  
(5)  
(6)  
ODR_Base2 = (CLKEXT) / (16,640)  
ODR1 = (ODR_Base1) / n, where n = 1,2,4,8  
ODR2 = (ODR_Base2) / n, where n = 1,2,4,8  
For example, a 3.6864 MHz XTAL or external clock has the following ODR values:  
ODR_Base1 = (3.6864 MHz) / (266,240) = 13.85 SPS  
(7)  
(8)  
ODR_Base2 = (3.6864 MHz) / (16,640) = 221.54 SPS  
ODR1 = (13.85 SPS) / n = 13.85, 6.92, 3.46, 1.73 SPS  
(9)  
ODR2 = (221.54 SPS) / n = 221.54, 110.77, 55.38, 27.69 SPS  
(10)  
The ODR is channel specific, which means that one channel can have one ODR, while another channel can  
have the same or a different ODR.  
20  
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
Note that these ODRs are meant for a single channel conversion; the ODR needs to be divided by n for n  
channels scanning. For example, if the ADC were running at 214.65 SPS and four channels are being scanned,  
then the ODR per channel would be 214.65/4 = 53.6625 SPS.  
Digital Filter  
The LMP90080-Q1 has a fourth order rotated sinc filter that is used to configure various ODRs and to reject  
power supply frequencies of 50Hz and 60Hz. The 50/60 Hz rejection is only effective when the device is  
operating at ODR 13.42 SPS. If the internal CLK or the external CLK of 3.5717 MHz is used, then the  
LMP90080-Q1 will have the frequency response shown in Figure 33 through Figure 37.  
0
1.6775 SPS  
3.355 SPS  
-20  
-40  
-60  
-80  
-100  
-120  
0
12  
24  
36  
48  
60  
72  
84  
96  
108  
120  
FREQUENCY (Hz)  
Figure 33. Digital Filter Response, 1.6775 SPS and 3.355 SPS  
0
-20  
6.71 SPS  
13.42 SPS  
-40  
-60  
-80  
-100  
-120  
0
12  
24  
36  
48  
60  
72  
84  
96  
108  
120  
FREQUENCY (Hz)  
Figure 34. Digital Filter Response, 6.71 SPS and 13.42 SPS  
Copyright © 2013–2014, Texas Instruments Incorporated  
21  
 
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
-60  
13.42 SPS  
-70  
-80  
-90  
-100  
-110  
-120  
45  
47  
49  
51  
53  
55  
57  
59  
61  
63  
65  
FREQUENCY (Hz)  
Figure 35. Digital Filter Response at 13.42 SPS  
0
26.83125 SPS  
53.6625 SPS  
-40  
-80  
-120  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
2000  
FREQUENCY (Hz)  
Figure 36. Digital Filter Response, 26.83125 SPS and 53.6625 SPS  
22  
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
0
107.325 SPS  
214.65 SPS  
-40  
-80  
-120  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
2000  
FREQUENCY (Hz)  
Figure 37. Digital Filter Response 107.325 SPS and 214.65 SPS  
If the internal CLK is not being used and the external CLK is not 3.5717 MHz, then the filter response would be  
the same as the response shown above, but the frequency will change according to the equation:  
fNEW = [(CLKEXT) / 256 ] x (fOLD / 13.952k)  
(11)  
Using the equation above, an example of the filter response for a 3.5717 MHz XTAL versus a 3.6864 MHz XTAL  
can be seen in Figure 38.  
0
Crystal = 3.5717 MHz  
Crystal = 3.6864 MHz  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
40  
45  
50  
55  
60  
65  
70  
FREQUENCY (Hz)  
Figure 38. Digital Filter Response for a 3.5717MHz versus 3.6864 MHz XTAL  
GPIO (D0–D6)  
Pins D0-D6 are general purpose input/output (GPIO) pins that can be used to control external LEDs or switches.  
Only a high or low value can be sourced to or read from each pin.  
Figure 39 shows a flowchart how these GPIOs can be programmed.  
Copyright © 2013–2014, Texas Instruments Incorporated  
23  
 
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
inputs  
outputs  
Pins  
D0 ± D6 =  
Set  
Set  
GPIO_DIRCNx = 0  
GPIO_DIRCNx = 1  
Read the  
GPIO_DAT: Dx bit to  
determine if Dx is  
high or low, where  
0 7 x 7 6.  
Write to GPIO_DAT: Dx bit  
to drive Dx high or low,  
where 0 7 x 7 6.  
Figure 39. GPIO Register Settings  
Calibration  
As seen in Figure 40, there are two types of calibration: background calibration and system calibration. These  
calibrations are further described in the next sections.  
Calibration  
Background  
calibration  
System  
calibration  
Correction  
Estimation  
Offset  
Gain  
Figure 40. Types of Calibration  
Background Calibration  
Background calibration is the process of continuously determining and applying the offset and gain calibration  
coefficients to the output codes to minimize the LMP90080-Q1’s offset and gain errors. Background calibration is  
a feature built into the LMP90080-Q1 and is automatically done by the hardware without interrupting the input  
signal.  
Four differential channels, CH0-CH3, each with its own gain and ODRs, can be calibrated to improve the  
accuracy.  
Types of Background Calibration:  
Figure 40 also shows that there are two types of background calibration:  
1. Type 1: Correction - the process of continuously determining and applying the offset and gain calibration  
coefficients to the output codes to minimize the LMP90080-Q1’s offset and gain errors.  
This method keeps track of changes in the LMP90080-Q1's gain and offset errors due to changes in the  
operating condition such as voltage, temperature, or time.  
2. Type 2: Estimation - the process of determining and continuously applying the last known offset and gain  
calibration coefficients to the output codes to minimize the LMP90080-Q1’s offset and gain errors.  
The last known offset or gain calibration coefficients can come from two sources. The first source is the  
default coefficient which is pre-determined and burnt in the device’s non-volatile memory. The second source  
is from a previous calibration run of Type 1: Correction.  
24  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
The benefits of using type 2 calibration is a higher throughput, lower power consumption, and slightly better  
noise. The exact savings would depend on the number of channels being scanned, and the ODR and gain of  
each channel.  
Using Background Calibration:  
There are four modes of background calibration, which can be programmed using the BGCALCN bits. They are  
as follows:  
1. BgcalMode0: Background Calibration OFF  
2. BgcalMode1: Offset Correction / Gain Estimation  
3. BgcalMode2: Offset Correction / Gain Correction. Follow Figure 41 to set other appropriate registers when  
using this mode.  
4. BgcalMode3: Offset Estimation / Gain Estimation  
Set  
No  
BGCALCN = 10b to  
operate the device in  
BgcalMode2  
Is the channel  
gain 8 16x?  
Yes  
Set CH_SCAN_SEL = 10b to  
operate the device in  
ScanMode2. Set FIRST_CH &  
LAST_CH accordingly.  
Set  
FGA_BGCAL = 1 to  
correct for FGA error  
using the last known  
coefficients.  
No  
Correct FGA  
error?  
Yes  
Set FGA_BGCAL = 0 (default)  
Figure 41. BgcalMode2 Register Settings  
If operating in BgcalMode2, four channels (with the same ODR) are being converted, and FGA_BGCAL = 0  
(default), then the ODR is reduced by:  
1. 0.19% of 1.6775 SPS  
2. 0.39% of 3.355 SPS  
3. 0.78% of 6.71 SPS  
4. 1.54% of 13.42 SPS  
5. 3.03% of 26.83125 SPS  
6. 5.88% of 53.6625 SPS  
7. 11.11% of 107.325 SPS  
8. 20% of 214.65 SPS  
Copyright © 2013–2014, Texas Instruments Incorporated  
25  
 
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
System Calibration  
The LMP90080-Q1 provides some unique features to support easy system offset and system gain calibrations.  
The System Calibration Offset Registers (CHx_SCAL_OFFSET) hold the System Calibration Offset Coefficients  
in 16-bit, two's complement binary format. The System Calibration Gain Registers (CHx_SCAL_GAIN) hold the  
System Calibration Gain Coefficient in 16-bit, 1.15, unsigned, fixed-point binary format. For each channel, the  
System Calibration Offset coefficient is subtracted from the conversion result prior to the division by the System  
Calibration Gain coefficient.  
A data-flow diagram of these coefficients can be seen in Figure 42.  
Uncalibrated  
VIN  
Calibrated  
ADC_DOUT  
±
y
OFFSET  
[CHx_SCAL_  
OFFSET]  
GAIN  
[CHx_SCAL_  
GAIN]  
Figure 42. System Calibration Data-Flow Diagram  
There are four distinct sets of System Calibration Offset and System Calibration Gain Registers for use with  
CH0-CH3. CH4-CH6 reuse the registers of CH0-CH2, respectively.  
The LMP90080-Q1 provides two system calibration modes that automatically fill the Offset and Gain coefficients  
for each channel. These modes are the System Calibration Offset Coefficient Determination mode and the  
System Calibration Gain Coefficient Determination mode. The System Calibration Offset Coefficient  
Determination mode must be entered prior to the System Calibration Gain Coefficient Determination mode, for  
each channel.  
The system zero-scale condition is a system input condition (sensor loading) for which zero (0x0000) system-  
calibrated output code is desired. It may not, however, cause a zero input voltage at the input of the ADC.  
The system reference-scale condition is usually the system full-scale condition in which the system's input (or  
sensor's loading) would be full-scale and the desired system-calibrated output code would be 0x8000 (unsigned  
16-bit binary). However, system full-scale condition need not cause full-scale input voltage at the input of the  
ADC.  
The system reference-scale condition is not restricted to just the system full-scale condition. In fact, it can be any  
arbitrary fraction of full-scale (up to 1.25 times) and the desired system-calibrated output code can be any  
appropriate value (up to 0xA000). The CHx_SCAL_GAIN register must be written with the desired system-  
calibrated output code (default:0x8000) before entering the System Calibration Gain Coefficient Determination  
mode. This helps in in-place system calibration.  
Below are the detailed procedures for using the System Calibration Offset Coefficient Determination and System  
Calibration Gain Coefficient Determination modes.  
System Calibration Offset Coefficient Determination mode  
1. Apply system zero-scale condition to the channel (CH0/CH1/CH2/CH3).  
2. Enter the System Calibration Offset Coefficient Determination mode by programming 0x1 in the SCALCN  
register.  
3. The LMP90080-Q1 starts a fresh conversion at the selected output data rate for the selected channel. At the  
end of the conversion, the CHx_SCAL_OFFSET register is filled-in with the System Calibration Offset  
coefficient.  
4. The System Calibration Offset Coefficient Determination mode is automatically exited.  
5. The computed calibration coefficient is accurate only to the effective resolution of the device and will  
probably contain some noise. The noise factor can be minimized by computing over many times, averaging  
(externally) and putting the resultant value back into the register. Alternatively, select the output data rate to  
be 26.83 sps or 1.67 sps.  
26  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
System Calibration Gain Coefficient Determination mode  
1. Repeat the System Calibration Offset Coefficient Determination to calibrate the System offset for the  
channel.  
2. Apply the system reference-scale condition to the channel CH0/CH1/CH2/CH3.  
3. In the CHx_SCAL_GAIN register, program the expected (desired) system-calibrated output code for this  
condition in 16-bit unsigned format.  
4. Enter the System Calibration Gain Coefficient Determination mode by programming 0x3 in the SCALCN  
register.  
5. The LMP90080-Q1 starts a fresh conversion at the selected output data rate for the channel. At the end of  
the conversion, the CHx_SCAL_GAIN is filled-in (or overwritten) with the System Calibration Gain coefficient.  
6. The System Calibration Gain Coefficient Determination mode is automatically exited.  
7. The computed calibration coefficient is accurate only to the effective resolution of the device and will  
probably contain some noise. The noise factor can be minimized by computing over many times, averaging  
(externally) and putting the resultant value back into the register. Alternatively, select the output data rate to  
be 26.83 sps or 1.67 sps.  
Post-calibration Scaling  
The LMP90080-Q1 allows scaling (multiplication and shifting) for the System Calibrated result. This eases  
downstream processing, if any. Multiplication is done using the System Calibration Scaling Coefficient in the  
CHx_SCAL_SCALING register and shifting is done using the System Calibration Bits Selector in the  
CHx_SCAL_BITS_SELECTOR register.  
The System Calibration Bits Selector value should ideally be the logarithm (to the base 2) of the System  
Calibration Scaling Coefficient value.  
There are four distinct sets of System Calibration Scaling and System Calibration Bits Selector Registers for use  
with CH0-CH3. CH4-CH6 reuse the registers of CH0-CH2, respectively.  
A data-flow diagram of these coefficients can be seen in Figure 43.  
System Calibrated  
Code[15:0]  
Scaled and Calibrated  
ADC_DOUT  
X
[20:0]  
SCALING  
[CHx_SCAL_  
SCALING]  
BITS SELECTOR  
[CHx_SCAL_  
BITS_SELECTOR]  
Figure 43. Post-calibration Scaling Data-Flow Diagram  
Channels Scan Mode  
There are four scan modes. These scan modes are selected using the CH_SCAN: CH_SCAN_SEL bit. The first  
scanned channel is FIRST_CH, and the last scanned channel is LAST_CH; they are both located in the  
CH_SCAN register.  
The CH_SCAN register is double buffered. That is, user inputs are stored in a slave buffer until the start of the  
next conversion during which time they are transferred to the master buffer. Once the slave buffer is written,  
subsequent updates are disregarded until a transfer to the master buffer happens. Hence, it may be appropriate  
to check the CH_SCAN_NRDY bit before programming the CH_SCAN register.  
ScanMode0: Single-Channel Continuous Conversion  
The LMP90080-Q1 continuously converts the selected FIRST_CH.  
Do not operate in this scan mode if gain 16 and the LMP90080-Q1 is running in background calibration modes  
BgcalMode1 or BgcalMode2. If this is the case, then it is more suitable to operate the device in ScanMode2  
instead.  
Copyright © 2013–2014, Texas Instruments Incorporated  
27  
 
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
ScanMode1: Multiple-Channels Single Scan  
The LMP90080-Q1 converts one or more channels starting from FIRST_CH to LAST_CH, and then enters the  
stand-by state.  
ScanMode2: Multiple-Channels Continuous Scan  
The LMP90080-Q1 continuously converts one or more channels starting from FIRST_CH to LAST_CH, and then  
it repeats this process.  
ScanMode3: Multiple-Channels Continuous Scan with Burnout Currents  
This mode is the same as ScanMode2 except that the burnout current is provided in a serially scanned fashion  
(injected in a channel after it has undergone a conversion). Thus it avoids burnout current injection from  
interfering with the conversion result for the channel.  
The sensor diagnostic burnout currents are available for all four scan modes. The burnout current is further gated  
by the BURNOUT_EN bit for each channel. ScanMode3 is the only mode that scans multiple channels while  
injecting burnout currents without interfering with the signal. This is described in details in Burnout Currents.  
Sensor Interface  
The LMP90080-Q1 contains two excitation currents (IB1 & IB2) for sourcing external sensors, and two burnout  
currents for sensor diagnostics. They are described in the next sections.  
IB1 & IB2 - Excitation Currents  
IB1 and IB2 can be used for providing currents to external sensors, such as RTDs or bridge sensors. 100µA to  
1000µA, in steps of 100µA, can be sourced by programming the ADC_AUXCN: RTD_CUR_SEL bits.  
Refer to 3–Wire RTD to see how IB1 and IB2 can be used to source a 3-wire RTD.  
Burnout Currents  
As shown in Figure 44, the LMP90080-Q1 contains two internal 10 µA burnout current sources, one sourcing  
current from VA to VINP, and the other sinking current from VINN to ground. These currents are used for sensor  
diagnostics and can be enabled for each channel using the CHx_INPUTCN: BURNOUT_EN bit.  
28  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
Burnout  
Current = 10 PA  
VIN0  
VIN1  
VIN2  
VIN3  
VINP  
VINN  
VIN4  
VIN5  
VIN6/VREFP2  
VIN7/VREFN2  
Burnout  
Current = 10 PA  
* VIN3, VIN4, VIN5 are only available for LMP90080 and LMP90079  
Figure 44. Burnout Currents  
Burnout Current Injection:  
Burnout currents are injected differently depending on the channel scan mode selected.  
When BURNOUT_EN = 1 and the device is operating in ScanMode0, 1, or 2, the burnout currents are injected  
into all the channels for which the BURNOUT_EN bit is selected. This will cause problems and hence in this  
mode, more than one channel should not have its BURNOUT_EN bit selected. Also, the burnout current will  
interfere with the signal and introduce a fixed error depending on the particular external sensor.  
When BURNOUT_EN = 1 and the device is operating in ScanMode3, burnout currents are injected into the last  
sampled channel on a cyclical basis (Figure 45). In this mode, burnout currents injection is truly done in the  
background without affecting the accuracy of the on-going conversion. Operating in this mode is recommended.  
Copyright © 2013–2014, Texas Instruments Incorporated  
29  
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
Burnout Currents  
BURNOUT_EN  
CH0 is being sampled  
CH0  
CH0  
CH1  
CH1  
CH2  
CH3  
BURNOUT_EN  
CH2  
CH3  
CH1 is being sampled  
BURNOUT_EN  
CH0  
CH0  
CH1  
CH1  
CH2  
CH2  
CH3  
CH2 is being sampled  
CH3 is being sampled  
BURNOUT_EN  
CH3  
Figure 45. Burnout Currents Injection for ScanMode3  
Sensor Diagnostic Flags  
Burnout currents can be used to verify that an external sensor is still operational before attempting to make  
measurements on that channel. A non-operational sensor means that there is a possibility the connection  
between the sensor and the LMP90080-Q1 is open circuited, short circuited, shorted to VA or GND, overloaded,  
or the reference may be absent. The sensor diagnostic flags diagram can be seen in Figure 46.  
RAILS_FLAG  
Generator  
RAILS_FLAG  
OFLO_FLAGS  
Overflow detection  
Filter  
VINP  
VINN  
ADC_DOUT  
Modulator  
FGA  
BUFF  
RAILS_FLAG  
Generator  
RAILS_FLAG  
SENDIAG_THLDH  
and SENDIAG_THLDL  
SHORT_THLD_  
FLAG  
Figure 46. Sensor Diagnostic Flags Diagram  
The sensor diagnostic flags are located in the SENDIAG_FLAGS register and are described in further details  
below.  
30  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
SHORT_THLD_FLAG:  
The short circuit threshold flag is used to report a short-circuit condition. It is set when the output voltage (VOUT  
)
is within the absolute Vthreshold. Vthreshold can be programmed using the 8-bit SENDIAG_THLDH register.  
For example, assume VREF = 5V, gain = 1, SENDIAG_THLD = 0xDA (218d). In this case, Vthreshold can be  
calculated as:  
Vthreshold = [(SENDIAG_THLD)(2)(VREF)] / [(Gain)(216)]  
Vthreshold = [(218)(2)(5V)] / [(1)(216)]  
Vthreshold = 33.3 mV  
(12)  
(13)  
(14)  
When (-33.3mV) VOUT (33.3mV), then SHORT_THLD_FLAG = 1; otherwise, SHORT_THLD_FLAG = 0.  
RAILS_FLAG:  
The rails flag is used to detect if one of the sampled channels is within 50mV of the rails potential (VA or VSS).  
This can be further investigated to detect an open-circuit or short-circuit condition. If the sampled channel is near  
a rail, then RAILS_FLAG = 1; otherwise, RAILS_FLAG = 0.  
POR_AFT_LST_RD:  
If POR_AFT_LST_READ = 1, then there was a power-on reset since the last time the SENDIAG_FLAGS register  
was read. This flag's status is cleared when this bit is read, unless this bit is set again on account of another  
power-on-reset event in the intervening period.  
OFLO_FLAGS:  
OFLO_FLAGS is used to indicate whether the modulator is over-ranged or under-ranged. The following  
conditions are possible:  
1. OFLO_FLAGS = 0x0: Normal Operation  
2. OFLO_FLAGS = 0x1: The differential input is more than (±VREF/Gain) but is not more than ±(1.3*VREF/Gain)  
to cause a modulator over-range.  
3. OFLO_FLAGS = 0x2: The modulator was over-ranged towards +VREF/Gain.  
4. OFLO_FLAGS = 0x3: The modulator was over-ranged towards VREF/Gain.  
The condition of OFLO_FLAGS = 10b or 11b can be used in conjunction with the RAILS_FLAG to determine the  
fault condition.  
SAMPLED_CH:  
These three bits show the channel number for which the ADC_DOUT and SENDIAG_FLAGS are available. This  
does not necessarily indicate the current channel under conversion because the conversion frame and  
computation of results from the channels are pipelined. That is, while the conversion is going on for a particular  
channel, the results for the previous conversion (of the same or a different channel) are available.  
Serial Digital Interface  
A synchronous 4-wire serial peripheral interface (SPI) provides access to the internal registers of LMP90080-Q1  
via CSB, SCLK, SDI, SDO/DRDYB.  
Register Address (ADDR)  
All registers are memory-mapped. A register address (ADDR) is composed of an upper register address (URA)  
and lower register address (LRA) as shown in Table 3. For example, ADDR 0x3A has URA=0x3 and LRA=0xA.  
Table 3. ADDR Map  
Bit  
[6:4]  
[3:0]  
Name  
URA  
LRA  
Copyright © 2013–2014, Texas Instruments Incorporated  
31  
 
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
Register Read/Write Protocol  
Figure 47 shows the protocol how to write to or read from a register.  
Transaction 1 sets up the upper register address (URA) where the user wants to start the register-write or  
register-read.  
Transaction 2 sets the lower register address (LRA) and includes the Data Byte(s), which contains the incoming  
data from the master or outgoing data from the LMP90080-Q1.  
Examples of register-reads or register-writes can be found in Register Read/Write Examples.  
Transaction 1 ± URA Setup ± necessary only when the previous URA is different than the desired URA.  
Upper Address Byte (UAB)  
Instruction Byte 1 (INST1)  
[7:0]  
[7:3]  
[2:0]  
Upper Register  
Address (URA)  
0x0  
RA/WAB  
R/WB = Read/Write Address  
0x10: Write Address  
0x90: Read Address  
Transaction 2 ± Data Access  
Instruction Byte 2 (INST2)  
Data Byte (s)  
7
[6:5]  
4
[3:0]  
[N:0]  
Lower Register  
Address (LRA)  
R/WB  
SZ  
0
Data Byte (s)  
R/WB = Read/Write Data  
0: Write Data  
1: Read Data  
SZ = Size  
0x0: 1 byte  
0x1: 2 bytes  
0x2: 3 bytes  
0x3: Streaming ± 3+ bytes until CSB is de-asserted  
Figure 47. Register Read/Write Protocol  
Streaming  
When writing/reading 3+ bytes, the user must operate the device in Normal Streaming mode or Controlled  
Streaming mode. In the Normal Streaming mode, which is the default mode, data runs continuously starting from  
ADDR until CSB deasserts. This mode is especially useful when programming all the configuration registers in a  
single transaction. See Normal Streaming Example for an example of the Normal Streaming mode.  
In the Controlled Streaming mode, data runs continuously starting from ADDR until the data has run through all  
(STRM_RANGE + 1) registers. For example, if the starting ADDR is 0x1C, STRM_RANGE = 5, then data will be  
written to or read from the following ADDRs: 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21. Once the data reaches ADDR  
0x21, LMP90080-Q1 will wrap back to ADDR 0x1C and repeat this process until CSB deasserts. See Controlled  
Streaming Example for an example of the Controlled Streaming mode.  
If streaming reaches ADDR 0x7F, then it will wrap back to ADDR 0x00. Furthermore, reading back the Upper  
Register Address after streaming will report the Upper Register Address at the start of streaming, not the Upper  
Register Address at the end of streaming.  
To stream, write 0x3 to INST2’s SZ bits as seen in Figure 47. To select the stream type, program the  
SPI_STREAMCN: STRM_TYPE bit. The STRM_RANGE can also be programmed in the same register.  
32  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
CSB - Chip Select Bar  
An SPI transaction begins when the master asserts (active low) CSB and ends when the master deasserts  
(active high) CSB. Each transaction might be separated by a subsequent one with a CSB deassertion, but this is  
optional. Once CSB is asserted, it must not pulse (deassert and assert again) during a (desired) transaction.  
CSB can be grounded in systems where the LMP90080-Q1 is the only SPI slave. This frees the software from  
handling the CSB. Care has to be taken to avoid any false edge on SCLK, and while operating in this mode, the  
streaming transaction should not be used because exiting from this mode can only be done through a CSB  
deassertion.  
SPI Reset  
SPI Reset resets the SPI-Protocol State Machine by monitoring the SDI for at least 73 consecutive 1's at each  
SCLK rising edge. After an SPI Reset, SDI is monitored for a possible Write Instruction at each SCLK rising  
edge.  
SPI Reset will reset the Upper Address Register (URA) to 0, but the register contents are not reset.  
By default, SPI reset is disabled, but it can be enabled by writing 0x01 to SPI Reset Register (ADDR 0x02).  
DRDYB - Data Ready Bar  
DRDYB is a signal generated by the LMP90080-Q1 that indicates a fresh conversion data is available in the  
ADC_DOUT registers.  
DRDYB is automatically asserted every (1/ODR) second as seen in Figure 48. Before the next assertion, DRDYB  
will pulse for tDRDYB second. The value for tDRDYB can be found in Timing Diagrams.  
1/ODR  
DRDYB:  
t
DRDYB  
. . .  
SDO:  
Figure 48. DRDYB Behavior  
If ADC_DOUT is being read while a new ADC_DOUT becomes available, then the ADC_DOUT that is being  
read is still valid (Figure 49). DRDYB will still be deasserted every 1/ODR second, but a consecutive read on the  
ADC_DOUT register will fetch the newly converted data available.  
1/ODR  
1/ODR  
ADC  
Data 1  
ADC  
Data 2  
D6 = drdyb  
Valid  
Valid  
ADC_DOUT  
(ADC Data 2)  
ADC_DOUT  
(ADC Data 1)  
LSB  
MSB  
LSB  
MSB  
SDO  
Figure 49. DRDYB Behavior for an Incomplete ADC_DOUT Reading  
DRDYB can also be accessed via registers using the DT_AVAIL_B bit. This bit indicates when fresh conversion  
data is available in the ADC_DOUT registers. If new conversion data is available, then DT_AVAIL_B = 0;  
otherwise, DT_AVAIL_B = 1.  
A complete reading for DT_AVAIL_B occurs when the MSB of ADC_DOUTH is read out. This bit cannot be reset  
even if REG_AND_CNV_RST = 0xC3.  
Copyright © 2013–2014, Texas Instruments Incorporated  
33  
 
 
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
DrdybCase1: Combining SDO/DRDYB with SDO_DRDYB_DRIVER = 0x00  
uC  
LMP900xx  
SCLK  
CSB  
SDI  
SCLK  
CSB  
MOSI  
MISO  
INT  
SDO/  
DRDYB  
Figure 50. DrdybCase1 Connection Diagram  
As shown in Figure 50, the drdyb signal and SDO can be multiplexed on the same pin as their functions are  
mostly complementary. In fact, this is the default mode for the SDO/DRDYB pin.  
Figure 51 shows a timing protocol for DrdybCase1. In this case, start by asserting CSB first to monitor a drdyb  
assertion. When the drdyb signal asserts, begin writing the Instruction Bytes (INST1, UAB, INST2) to read from  
or write to registers. Note that INST1 and UAB are omitted from the figure below because this transaction is only  
required if a new UAB needs to be implemented.  
While the CSB is asserted, DRDYB is driving the SDO/DRDYB pin unless the device is reading data, in which  
case, SDO will be driving the pin. If CSB is deasserted, then the SDO/DRDYB pin is High-Z.  
CSB  
t
t
CL  
1/f  
SCLK  
CH  
4
1
2
3
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
n
SCLK  
SDI  
INST2  
MSB  
LSB  
DRDYB is driving the pin  
SDO is driving the pin  
Data Byte (s)  
MSB  
LSB  
SDO/  
...  
DRDYB  
Figure 51. Timing Protocol for DrdybCase1  
34  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
 
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
DrdybCase2: Combining SDO/DRDYB with SDO_DRDYB_DRIVER = 0x03  
SDO/DRDYB can be made independent of CSB by setting SDO_DRDYB_DRIVER = 0x03 in the SPI Handshake  
Control register. In this case, DRDYB will drive the pin unless the device is reading data, independent of the  
state of CSB. SDO will drive the pin when CSB is asserted and the device is reading data.  
With this scheme, one can use SDO/DRDYB as a true interrupt source, independent of the state of CSB. But this  
scheme can only be used when the LMP90080-Q1 is the only device connected to the master's SPI bus because  
the SDO/DRDYB pin will be DRDYB even when CSB is deasserted.  
The timing protocol for this case can be seen in Figure 52. When drdyb asserts, assert CSB to start the SPI  
transaction and begin writing the Instruction Bytes (INST1, UAB, INST2) to read from or write to registers.  
CSB  
t
t
1/f  
SCLK  
CH  
CL  
1
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
n
SCLK  
SDI  
INST2  
MSB  
LSB  
DRDYB is driving the pin  
SDO is driving the pin  
Data Byte (s)  
SDO/  
DRDYB  
MSB  
LSB  
...  
Figure 52. Timing Protocol for DrdybCase2  
DrdybCase3: Routing DRDYB to D6  
LMP900xx  
uC  
SCLK  
CSB  
SCLK  
CSB  
SDI  
MOSI  
MISO  
SDO  
D6 = DRDYB  
Interrupt  
Figure 53. DrdybCase3 Connection Diagram  
The drdyb signal can be routed to pin D6 by setting SPI_DRDYB_D6 high and SDO_DRDYB_DRIVER to 0x4.  
This is the behavior for DrdybCase3 as shown in Figure 53.  
The timing protocol for this case can be seen in Figure 54. Since DRDYB is separated from SDO, it can be  
monitored using the interrupt or polling method. If polled, the drdyb signal needs to be polled faster than tDRDYB to  
detect a drdyb assertion. When drdyb asserts, assert CSB to start the SPI transaction and begin writing the  
Instruction Bytes (INST1, UAB, INST2) to read from or write to registers.  
Copyright © 2013–2014, Texas Instruments Incorporated  
35  
 
 
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
CSB  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
n
SCLK  
INST2  
MSB  
LSB  
SDI  
Drdyb = D6  
...  
Data Byte (s)  
High-Z  
SDO  
MSB  
LSB  
Figure 54. Timing Protocol for DrdybCase3  
Data Only Read Transaction  
In a data only read transaction, one can directly access the data byte(s) as soon as the CSB is asserted without  
having to send any instruction byte. This is useful as it brings down the latency as well as the overhead  
associated with the instruction byte (as well as the Upper Address Byte, if any).  
In order to use the data only transaction, the device must be placed in the data first mode. The following table  
lists transaction formats for placing the device in and out of the data first mode and reading the mode status.  
Table 4. Data First Mode Transactions  
Bit[7]  
Bits[6:5]  
Bit[4]  
Bits[3:0]  
1010  
Data Bytes  
None  
Enable Data First Mode Instruction  
Disable Data First Mode Instruction  
Read Mode Status Transaction  
1
1
1
11  
11  
00  
1
1
1
1011  
None  
1111  
One  
Note that while being in the data first mode, once the data bytes in the data only read transaction are sent out,  
the device is ready to start on any normal (non-data-only) transaction including the Disable Data First Mode  
Instruction. The current status of the data first mode (enabled/disabled status) can be read back using the Read  
Mode Status Transaction. This transaction consists of the Read Mode Status Instruction followed by a single  
data byte (driven by the device). The data first mode status is available on bit [1] of this data byte.  
The data only read transaction allows reading up to eight consecutive registers, starting from any start address.  
Usually, the start address will be the address of the most significant byte of conversion data, but it could just as  
well be any other address. The start address and number of bytes to be read during the data only read  
transaction can be programmed using the DATA_ONLY_1 AND DATA_ONLY_2 registers respectively.  
The upper register address is unaffected by a data only read transaction. That is, it retains its setting even after  
encountering a data only transaction. The data only transaction uses its own address (including the upper  
address) from the DATA_ONLY_1 register. When in the data first mode, the SCLK must stop high before  
entering the Data Only Read Transaction; this transaction should be completed before the next scheduled  
DRDYB deassertion.  
36  
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
Cyclic Redundancy Check (CRC)  
CRC can be used to ensure integrity of data read from LMP90080-Q1. To enable CRC, set EN_CRC high. Once  
CRC is enabled, the CRC value is calculated and stored in SPI_CRC_DAT so that the master device can  
periodically read for data comparison. The CRC is automatically reset when CSB or DRDYB is deasserted.  
The CRC polynomial is x8 + x5 + x4 + 1. The reset value of the SPI_CRC_DAT register is zero, and the final  
value is ones-complemented before it is sent out. Note that CRC computation only includes the bits sent out on  
SDO and does not include the bits of the SPI_CRC_DAT itself; thus it is okay to read SPI_CRC_DAT repeatedly.  
The drdyb signal normally deasserts (active high) every 1/ODR second. However, this behavior can be changed  
so that drdyb deassertion can occur after SPI_CRC_DAT is read, but not later than normal DRDYB deassertion  
which occurs at every 1/ODR seconds. This is done by setting bit DRDYB_AFT_CRC high.  
The timing protocol for CRC can be found in Figure 55.  
1/ODR  
1/ODR  
Sampling CH0  
Sampling CH1  
D6 = drdyb  
Reading  
SPI_CRC_DAT  
Reading  
ADC_DOUT of CH1  
Reading  
SPI_CRC_DAT  
Reading  
ADC_DOUT of CH0  
MSB  
MSB  
MSB  
LSB  
LSB  
LSB  
LSB  
MSB  
SDO  
Figure 55. Timing Protocol for Reading SPI_CRC_DAT  
If SPI_CRC_DAT read extends beyond the normal DRDYB deassertion at every 1/ODR seconds, then  
CRC_RST has to be set in the SPI Data Ready Bar Control Register. This is done to avoid a CRC reset at the  
DRDYB deassertion.Timing protocol for reading CRC with CRC_RST set is shown in Figure 56.  
1/ODR  
CH0  
1/ODR  
CH1  
D6 = drdyb  
Reading  
SPI_CRC_DAT  
Reading  
ADC_DOUT of CH1  
Reading  
SPI_CRC_DAT  
Reading  
ADC_DOUT of CH0  
MSB  
LSB  
LSB  
MSB  
LSB  
MSB  
LSB  
MSB  
SDO  
Figure 56. Timing Protocol for Reading SPI_CRC_DAT beyond normal DRDYB deassertion at every  
1/ODR seconds  
Follow the steps below to enable CRC:  
1. Set SPI_CRC_CN = 1 (register 0x13, bit 4) to enable CRC.  
2. Set DRDYB_AFT_CRC = 1 (register 0x13, bit 2) to dessert the DRDYB after CRC.  
3. Compute the CRC externally, which should include ADC_DOUTH and ADC_DOUTL.  
4. Collect the data and verify the reported CRC matches with the computed CRC (step above).  
Copyright © 2013–2014, Texas Instruments Incorporated  
37  
 
 
 
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
Power Management  
The device can be placed in Active, Power-Down, or Stand-By state.  
In Power-Down, the ADC is not converting data, contents of the registers are unaffected, and there is a drastic  
power reduction. In Stand-By, the ADC is not converting data, but the power is only slightly reduced so that the  
device can quickly transition into the active state if desired.  
These states can be selected using the PWRCN register. When written, PWRCN brings the device into the  
Active, Power-Down, or Stand-By state. When read, PWRCN indicates the state of the device.  
The read value would confirm the write value after a small latency (approximately 15 µs with the internal CLK). It  
may be appropriate to wait for this latency to confirm the state change. Requests not adhering to this latency  
requirement may be rejected.  
It is not possible to make a direct transition from the power-down state to the stand-by state. This state diagram  
is shown below.  
PWRCN  
= 01b  
PWRCN  
= 11b  
Active  
PWRCN  
= 00b  
PWRCN  
= 00b  
Stand-by  
Power-down  
Figure 57. Active, Power-Down, Stand-by State Diagram  
Reset and Restart  
Writing 0xC3 to the REG_AND_CNV_RST field will reset the conversion and most of the programmable registers  
to their default values. The only registers that will not be reset are the System Calibration Registers  
(CHx_SCAL_OFFSET, CHx_SCAL_GAIN) and the DT_AVAIL_B bit.  
If it is desirable to reset the System Calibration Coefficient Registers, then set RESET_SYSCAL = 1 before  
writing 0xC3 to REG_AND_CNV_RST. If the device is operating in the “System Calibration Offset/Gain  
Coefficient Determination” mode (SCALCN register), then write REG_AND_CNV_RST = 0xC3 twice to get out of  
this mode.  
After a register reset, any on-going conversions will be aborted and restarted. If the device is in the power-down  
state, then a register reset will bring it out of the power-down state.  
To restart a conversion, write 1 to the RESTART bit. This bit can be used to synchronize the conversion to an  
external event.  
After a restart conversion, the first sample is not valid. To restart with a valid first sample, issue a stand-by  
command followed by an active command.  
38  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
APPLICATIONS INFORMATION  
Quick Start  
This section shows step-by-step instructions to configure the LMP90080-Q1 to perform a simple DC reading from  
CH0.  
1. Apply VA = VIO = VREFP1 = 5V, and ground VREFN1  
2. Apply VINP = ¾VREF and VINN = ¼VREF for CH0. Thus, set CH0 = VIN = VINP - VINN = ½VREF (CH0_INPUTCN  
register)  
3. Set gain = 1 (CH0_CONFIG: GAIN_SEL = 0x0)  
4. Exclude the buffer from the signal path (CH0_CONFIG: BUF_EN = 1)  
5. Set the background to BgcalMode2 (BGCALCN = 0x2)  
6. Select VREF1 (CH0_INPUTCN: VREF_SEL = 0)  
7. To use the internal CLK, set CLK_EXT_DET = 1 and CLK_SEL = 0.  
8. Follow the register read/write protocol (Figure 47) to capture ADC_DOUT from CH0.  
Connecting the Supplies  
VA and VIO  
Any ADC architecture is sensitive to spikes on the analog voltage, VA, digital input/output voltage, VIO, and  
ground pins. These spikes may originate from switching power supplies, digital logic, high power devices, and  
other sources. To diminish these spikes, the LMP90080-Q1’s VA and VIO pins should be clean and well  
bypassed. A 0.1 µF ceramic bypass capacitor and a 1 µF tantalum capacitor should be used to bypass the  
LMP90080-Q1 supplies, with the 0.1 µF capacitor placed as close to the LMP90080-Q1 as possible.  
Since the LMP90080-Q1 has both external VA and VIO pins, the user has two options on how to connect these  
pins. The first option is to tie VA and VIO together and power them with the same power supply. This is the most  
cost effective way of powering the LMP90080-Q1 but is also the least ideal because noise from VIO can couple  
into VA and negatively affect performance. The second option involves powering VA and VIO with separate power  
supplies. These supply voltages can have the same amplitude or they can be different.  
VREF  
Operation with VREF below VA is also possible with slightly diminished performance. As VREF is reduced, the  
range of acceptable analog input voltages is also reduced. Reducing the value of VREF also reduces the size of  
the LSB. When the LSB size goes below the noise floor of the LMP90080-Q1, the noise will span an increasing  
number of codes and performance will degrade. For optimal performance, VREF should be the same as VA and  
sourced with a clean source that is bypassed with a ceramic capacitor value of 0.1 µF and a tantalum capacitor  
of 10 µF.  
LMP90080-Q1 also allows ratiometric connection for noise immunity reasons. A ratiometric connection is when  
the ADC’s VREFP and VREFN are used to excite the input device’s (i.e. a bridge sensor) voltage references. This  
type of connection severely attenuates any VREF ripple seen the ADC output, and is thus strongly recommended.  
ADC_DOUT Calculation  
The output code of the LMP90080-Q1 can be calculated as:  
§
¨
©
·
¸
¹
(VINP - VINN) x GAIN  
VREFP - VREFN  
15  
(
)
x 2  
ADC_DOUT  
±
=
Output Code  
(15)  
ADC_DOUT is in 16bit two's complement binary format. The largest positive value is 0x7FFF (or 32767 in  
decimal), while the largest negative value is 0x8000 (or 32768 in decimal). In case of an over range the value is  
automatically clamped to one of these two values.  
Figure 58 shows the theoretical output code, ADC_DOUT, vs. analog input voltage, VIN, using the equation  
above.  
Copyright © 2013–2014, Texas Instruments Incorporated  
39  
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
ADC_DOUT  
0x7FFF or 32767d  
|
|
1d  
(-VREF+1  
LSB)  
VIN  
0xFFFF or -65535d  
(VREF-1LSB)  
0x8000 or -32768d  
Figure 58. ADC_DOUT vs. VIN of a 16-Bit Resolution (VREF = 5.5V, Gain = 1).  
Register Read/Write Examples  
Writing to Register Examples  
Using the register read/write protocol shown in Figure 47, the following example shows how to write three data  
bytes starting at register address (ADDR) 0x1F. After the last byte has been written to ADDR 0x21, deassert  
CSB to end the register-write.  
Transaction 1 ± URA Setup ± necessary only when the previous URA is different than the desired URA.  
Instruction Byte 1 (INST1)  
[7:0]  
Upper Address Byte (UAB)  
[7:3]  
[2:0]  
0x1  
0x0  
0x10  
R/WB = Read/Write Address  
0x10: Write Address  
0x90: Read Address  
Transaction 2 ± Data Access  
Data Bytes  
[23:0]  
Instruction Byte 2 (INST2)  
[3:0]  
7
0
[6:5]  
4
st  
nd  
The 1 Data Byte will be written to ADDR 0x1F, the 2 Data Byte will  
rd  
0x2  
0
0xF  
be written to ADDR 0x20, and the 3 Data Byte will be written to ADR  
0x21. After this process, deassert CSB.  
R/WB = Read/Write Data  
0: Write Data  
SZ = Size  
0x0: 1 byte  
1: Read Data  
0x1: 2 bytes  
0x2: 3 bytes  
0x3: Streaming ± 3+ bytes until CSB is de-asserted  
Figure 59. Register-Write Example 1  
40  
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
The next example shows how to write one data byte to ADDR 0x12. Since the URA for this example is the same  
as the last example, transaction 1 can be omitted.  
Transaction 2 ± Data Access  
Instruction Byte 2 (INST2)  
Data Byte (s)  
7
0
[6:5]  
4
[3:0]  
[7:0]  
0x00  
0
0x2  
One Data Byte will be written to ADDR 0x12. After this process, deassert CSB.  
R/WB = Read/Write Data  
0: Write Data  
1: Read Data  
SZ = Size  
0x0: 1 byte  
0x1: 2 bytes  
0x2: 3 bytes  
0x3: Streaming ± 3+ bytes until CSB is de-asserted  
Figure 60. Register-Write Example 2  
Reading from Register Example  
The following example shows how to read two bytes. The first byte will be read from starting ADDR 0x24, and  
the second byte will be read from ADDR 0x25.  
Transaction 1 ± URA Setup ± necessary only when the previous URA is different than the desired URA.  
Upper Address Byte (UAB)  
Instruction Byte 1 (INST1)  
[7:0]  
[7:3]  
[2:0]  
0x0  
0x2  
0x10  
R/WB = Read/Write Address  
0x10: Write Address  
0x90: Read Address  
Transaction 2 ± Data Access  
Instruction Byte 2 (INST2)  
Data Bytes  
7
1
[6:5]  
4
[3:0]  
[15:0]  
2 Data Bytes will be read from ADDR 0x24 and ADDR 0x25.  
After this process, deassert CSB.  
0x1  
0
0x4  
R/WB = Read/Write Data  
0: Write Data  
1: Read Data  
SZ = Size  
0x0: 1 byte  
0x1: 2 bytes  
0x2: 3 bytes  
0x3: Streaming ± 3+ bytes until CSB is de-asserted  
Figure 61. Register-Read Example  
Copyright © 2013–2014, Texas Instruments Incorporated  
41  
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
Streaming Examples  
www.ti.com.cn  
Normal Streaming Example  
This example shows how to write six data bytes starting at ADDR 0x28 using the Normal Streaming mode.  
Because the default STRM_TYPE is the Normal Streaming mode, setting up the SPI_STREAMCN register can  
be omitted.  
Transaction 1 ± URA Setup ± necessary only when the previous URA is different than the desired URA.  
Upper Address Byte (UAB)  
Instruction Byte 1 (INST1)  
[7:0]  
[7:3]  
[2:0]  
0x0  
0x2  
0x10  
R/WB = Read/Write Address  
0x10: Write Address  
0x90: Read Address  
Transaction 2 ± Data Access  
Instruction Byte 2 (INST2)  
Data Bytes  
7
0
[6:5]  
4
[3:0]  
[47:0]  
st  
nd  
The 1 Data Byte will be written to ADDR 0x28, the 2 Data Byte will be  
th  
0x3  
0
0x8  
written to ADDR 0x29, etc. The last and 6 Data Byte will be written to  
ADDR 0x2D. After this process, deassert CSB.  
R/WB = Read/Write Data  
0: Write Data  
1: Read Data  
SZ = Size  
0x0: 1 byte  
0x1: 2 bytes  
0x2: 3 bytes  
0x3: Streaming ± 3+ bytes until CSB is de-asserted  
Figure 62. Normal Streaming Example  
Controlled Streaming Example  
This example shows how to read the 16-bit conversion data (ADC_DOUT) four times using the Controlled  
Streaming mode. The ADC_DOUT registers consist of ADC_DOUTH at ADDR 0x1A and ADC_DOUTL at ADDR  
0x1B.  
The first step (Figure 63) sets up the SPI_STREAMCN register. This step enters the Controlled Streaming mode  
by setting STRM_TYPE high in ADDR 0x03. Since two registers (ADDR 0x1A - 0x1B) need to be read, the  
STRM_RANGE is 1.  
42  
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
Transaction 1 ± URA Setup ± necessary only when the previous URA is different than the desired URA.  
Upper Address Byte (UAB)  
Instruction Byte 1 (INST1)  
[7:0]  
[7:3]  
[2:0]  
0x0  
0x0  
0x10  
R/WB = Read/Write Address  
0x10: Write Address  
0x90: Read Address  
Transaction 2 ± Data Access  
Instruction Byte 2 (INST2)  
Data Byte (s)  
7
0
[6:5]  
4
[3:0]  
[7:0]  
0x0  
0
0x3  
1000_0001b  
R/WB = Read/Write Data  
0: Write Data  
1: Read Data  
SZ = Size  
0x0: 1 byte  
0x1: 2 bytes  
0x2: 3 bytes  
0x3: Streaming ± 3+ bytes until CSB is de-asserted  
Figure 63. Setting up SPI_STREAMCN  
The next step shows how to perform the Controlled Streaming mode so that the master device will read  
ADC_DOUT from ADDR 0x1A and 0x1B, then wrap back to ADDR 0x1A, and repeat this process for four times.  
After this process, deassert CSB to end the Controlled Streaming mode.  
Transaction 1 ± URA Setup ± necessary only when the previous URA is different than the desired URA.  
Upper Address Byte (UAB)  
Instruction Byte 1 (INST1)  
[7:0]  
[7:3]  
[2:0]  
0x0  
0x1  
0x10  
R/WB = Read/Write Address  
0x10: Write Address  
0x90: Read Address  
Transaction 2 ± Data Access  
Instruction Byte 2 (INST2)  
Data Byte (s)  
7
1
[6:5]  
4
[3:0]  
[63:0]  
Read ADC_DOUTH and ADC_DOUTL four times. After this process,  
deassert CSB.  
0x3  
0
0xA  
R/WB = Read/Write Data  
0: Write Data  
1: Read Data  
SZ = Size  
0x0: 1 byte  
0x1: 2 bytes  
0x2: 3 bytes  
0x3: Streaming ± 3+ bytes until CSB is de-asserted  
Figure 64. Controlled Streaming Example  
Copyright © 2013–2014, Texas Instruments Incorporated  
43  
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
Example Applications  
3–Wire RTD  
www.ti.com.cn  
3V  
VA  
3V  
+
+
0.1 PF  
1 PF  
0.1 PF  
1 PF  
VIO  
SCLK  
CSB  
SDO  
IB1 =  
1 mA  
IB1  
SDI  
drdyb = D6  
VIN0  
RLINE1  
LMP90080  
RTD  
PT-100  
RCOMP  
= 0:  
D5  
IB2 =  
1 mA  
Microcontroller  
VIN1  
IB2  
RLINE2  
RLINE3  
12 pF  
VIN6/VREFP2  
XOUT  
RREF  
XIN/CLK  
VIN7/VREFN2  
12 pF  
Figure 65. Topology #1: 3-wire RTD Using 2 Current Sources  
Figure 65 shows the first topology for a 3-wire resistive temperature detector (RTD) application. Topology #1  
uses two excitation current sources, IB1 and IB2, to create a differential voltage across VIN0 and VIN1. As a  
result of using both IB1 and IB2, only one channel (VIN0-VIN1) needs to be measured. As shown in Equation 16,  
the equation for this channel is IB1 x (RTD – RCOMP) assuming that RLINE1 = RLINE2.  
VIN0 = IB1 (RLINE1 + RTD) + (IB1 + IB2) (RLINE3 + RREF)  
VIN1 = IB2 (RLINE2 + RCOMP) + (IB1 + IB2) (RLINE3 + RREF)  
If RLINE1 = RLINE2, then:  
VIN = (VIN0 - VIN1) = IB1 (RTD - RCOMP)  
VIN Equation for Topology #1  
(16)  
The PT-100 changes linearly from 100 Ohm at 0°C to 146.07 Ohm at 120°C. If desired, choose a suitable  
compensating resistor (RCOMP) so that VIN can be virtually 0V at any desirable temperature. For example, if  
RCOMP = 100 Ohm, then at 0°C, VIN = 0V and thus a higher gain can be used.  
The advantage of this circuit is its ratiometric configuration, where VREF = (IB1 + IB2) x (RREF). Equation 17  
shows that a ratiometric configuration eliminates IB1 and IB2 from the output equation, thus increasing the  
overall performance.  
(
)
VIN Gain  
n
(
)
2
ADC_DOUT  
ADC_DOUT  
ADC_DOUT  
=
=
=
2VREF  
(
)
Gain]  
RTD - RCOMP  
[IB1  
n
(
)
2
)
(
)
2 IB1+IB2 RREF  
(
>
)
Gain  
RTD - RCOMP  
@
n
(
2
( )  
2 2  
RREF  
ADC_DOUT Showing IB1 & IB2 Elimination  
(17)  
44  
Copyright © 2013–2014, Texas Instruments Incorporated  
 
 
 
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
3V  
VA  
3V  
+
+
0.1 PF  
2.2 PF  
1 PF  
0.1 PF  
VIO  
SCLK  
IB1 =  
1 mA  
CSB  
SDO/DRDYB  
SDI  
IB1  
RLINE1  
VIN0  
VIN1  
Microcontroller  
RTD  
PT-100  
LMP90080  
D2  
RLINE2  
RLINE3  
VIN6/VREFP2  
VIN7/VREFN2  
RREF  
XIN/CLK  
51:  
Figure 66. Topology #2: 3-wire RTD Using 1 Current Source  
Figure 66 shows the second topology for a 3-wire RTD application. Topology #2 shows the same connection as  
topology #1, but without IB2. Although this topology eliminates a current source, it requires two channel  
measurements as shown in Equation 18.  
VIN0 = IB1 (RLINE1 + RTD + RLINE3 + RREF)  
VIN1 = IB1 (RLINE3 + RREF)  
VIN6 = IB1 (RREF)  
CH0 = VIN0 - VIN1 = IB1 (RLINE1 + RTD)  
CH1 = VIN1 - VIN6 = IB1 (RLINE3)  
Assume RLINE1 = RLINE3, thus:  
CH0 - CH1 = IB1 (RTD)  
VIN Equation for Topology #2  
(18)  
Copyright © 2013–2014, Texas Instruments Incorporated  
45  
 
 
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
Thermocouple and IC Analog Temperature  
5V  
VA  
2.7V  
VIO  
+
+
0.1 PF  
1 PF  
1 PF  
0.1 PF  
Thermocouple  
Tcold  
SCLK  
VIN4  
Thot  
CSB  
SDO  
10 nF  
+
VREFP1  
TC [ VIN4 ± VIN3]  
-
2.2 PF  
2k  
SDI  
VIN3  
2k  
D6 = DRDYB  
10 nF  
LMP90080  
Microcontroller  
5V  
LM94022  
IC Temp  
Sensor  
Tcold  
VIN5  
+
+
1 PF  
0.1 PF  
LM [ VIN5]  
-
VIN7  
XOUT  
5V  
VREFP1  
LM4140-4.1  
+
0.1 PF  
1 PF  
0.1 PF  
XIN/CLK  
GND  
Figure 67. Thermocouple with CJC  
The LMP90080-Q1 is also ideal for thermocouple temperature applications. Thermocouples have several  
advantages that make them popular in many industrial and medical applications. Compare to RTDs, thermistors,  
and IC sensors, thermocouples are the most rugged, least expensive, and can operate over the largest  
temperature range.  
A thermocouple is a sensor whose junction generates a differential voltage, VIN, that is relative to the  
temperature difference (Thot – Tcold). Thot is also known as the measuring junction or “hot” junction, which is  
placed at the measured environment. Tcold is also known as the reference or “cold” junction, which is placed at  
the measuring system environment.  
Because a thermocouple can only measure a temperature difference, it does not have the ability to measure  
absolute temperature. To determine the absolute temperature of the measured environment (Thot), a technique  
known as cold junction compensation (CJC) must be used.  
In a CJC technique, the “cold” junction temperature, Tcold, is sensed by using an IC temperature sensor, such as  
the LM94022. The temperature sensor should be placed within close proximity of the reference junction and  
should have an isothermal connection to the board to minimize any potential temperature gradients.  
Once Tcold is obtained, use a standard thermocouple look-up-table to find its equivalent voltage. Next, measure  
the differential thermocouple voltage and add the equivalent cold junction voltage. Lastly, convert the resulting  
voltage to temperature using a standard thermocouple look-up-table.  
For example, assume Tcold = 20°C. The equivalent voltage from a type K thermocouple look-up-table is 0.798  
mV. Next, add the measured differential thermocouple voltage to the Tcold equivalent voltage. For example, if the  
thermocouple voltage is 4.096 mV, the total would be 0.798 mV + 4.096 mV = 4.894 mV. Referring to the type K  
thermocouple table gives a temperature of 119.37°C for 4.894 mV.  
46  
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
Registers  
1. If written to, RESERVED bits must be written to only 0 unless otherwise indicated.  
2. Read back value of RESERVED bits and registers is unspecified and should be discarded.  
3. Recommended values must be programmed and forbidden values must not be programmed where they are  
indicated in order to avoid unexpected results.  
4. If written to, registers indicated as Reserved must have the indicated default value as shown below. Any  
other value can cause unexpected results.  
Table 5. Register Map  
Register Name  
Reset Control  
ADDR (URA & LRA)  
0x00  
Type  
WO  
Default  
-
RESETCN  
SPI_HANDSHAKECN  
SPI_RESET  
SPI_STREAMCN  
Reserved  
SPI Handshake Control  
SPI Reset Control  
SPI Stream Control  
-
0x01  
R/W  
R/W  
R/W  
-
0x00  
0x00  
0x00  
0x00  
0x00  
0x1A  
0x02  
-
0x02  
0x03  
0x04 - 0x07  
0x08  
PWRCN  
Power Mode Control and Status  
Data Only Read Control 1  
Data Only Read Control 2  
ADC Restart Conversion  
-
RO & WO  
R/W  
R/W  
WO  
DATA_ONLY_1  
DATA_ONLY_2  
ADC_RESTART  
Reserved  
0x09  
0x0A  
0x0B  
0x0C - 0x0D  
0x0E  
-
0x00  
0x00  
-
GPIO_DIRCN  
GPIO_DAT  
GPIO Direction Control  
GPIO Data  
R/W  
RO & WO  
R/W  
R/W  
R/W  
R/W  
R/W  
-
0x0F  
BGCALCN  
Background Calibration Control  
SPI Data Ready Bar Control  
ADC Auxiliary Control  
CRC Control  
0x10  
0x00  
0x03  
0x00  
0x02  
0x00  
0x0000  
0x00  
-
SPI_DRDYBCN  
ADC_AUXCN  
SPI_CRC_CN  
SENDIAG_THLD  
Reserved  
0x11  
0x12  
0x13  
Sensor Diagnostic Threshold  
-
0x14  
0x15-0x16  
0x17  
SCALCN  
System Calibration Control  
ADC Data Available  
Sensor Diagnostic Flags  
Conversion Data 1 and 0  
-
R/W  
RO  
ADC_DONE  
SENDIAG_FLAGS  
ADC_DOUT  
Reserved  
0x18  
0x19  
RO  
-
0x1A - 0x1B  
0x1C  
RO  
-
-
-
SPI_CRC_DAT  
CRC Data  
0x1D  
RO & WO  
-
CHANNEL CONFIGURATION REGISTERS  
CH_STS  
Channel Status  
0x1E  
0x1F  
0x20  
0x21  
0X22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
RO  
0x00  
0x30  
0x01  
0x70  
0x13  
0x70  
0x25  
0x70  
0x37  
0x70  
0x01  
0x70  
0x13  
0x70  
0x25  
CH_SCAN  
Channel Scan Mode  
CH0 Input Control  
CH0 Configuration  
CH1 Input Control  
CH1 Configuration  
CH2 Input Control  
CH2 Configuration  
CH3 Input Control  
CH3 Configuration  
CH4 Input Control  
CH4 Configuration  
CH5 Input Control  
CH5 Configuration  
CH6 Input Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
CH0_INPUTCN  
CH0_CONFIG  
CH1_INPUTCN  
CH1_CONFIG  
CH2_INPUTCN  
CH2_CONFIG  
CH3_INPUTCN  
CH3_CONFIG  
CH4_INPUTCN  
CH4_CONFIG  
CH5_INPUTCN  
CH5_CONFIG  
CH6_INPUTCN  
Copyright © 2013–2014, Texas Instruments Incorporated  
47  
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
Table 5. Register Map (continued)  
Register Name  
ADDR (URA & LRA)  
Type  
R/W  
-
Default  
0x70  
CH6_CONFIG  
Reserved  
CH6 Configuration  
-
0x2D  
0x2E - 0x2F  
0x00  
SYSTEM CALIBRATION REGISTERS  
CH0_SCAL_OFFSET  
Reserved  
CH0 System Calibration Offset Coefficients  
0x30 - 0x31  
0x32  
R/W  
-
0x0000  
0x00  
-
CH0_SCAL_GAIN  
Reserved  
CH0 System Calibration Gain Coefficients  
0x33 - 0x34  
0x35  
R/W  
-
0x8000  
0x00  
-
CH0_SCAL_SCALING  
CH0 System Calibration Scaling Coefficients  
0x36  
R/W  
0x01  
CH0_SCAL_BITS_  
SELECTOR  
CH0 System Calibration Bit Selector  
0x37  
R/W  
0x00  
CH1_SCAL_OFFSET  
Reserved  
CH1 System Calibration Offset Coefficients  
0x38 - 0x39  
0x3A  
R/W  
-
0x0000  
0x00  
-
CH1_SCAL_GAIN  
Reserved  
CH1 System Calibration Gain Coefficient  
0x3B - 0x3C  
0x3D  
R/W  
-
0x8000  
0x00  
-
CH1_SCAL_SCALING  
CH1 System Calibration Scaling Coefficients  
0x3E  
R/W  
0x01  
CH1_SCAL_BITS_SELECT  
OR  
CH1 System Calibration Bit Selector  
0x3F  
0x40 - 0x41  
0x42  
R/W  
R/W  
-
0x00  
0x0000  
0x00  
CH2_SCAL_OFFSET  
Reserved  
CH2 System Calibration Offset Coefficients  
-
CH2_SCAL_GAIN  
Reserved  
CH2 System Calibration Gain Coefficient  
0x43 - 0x44  
0x45  
R/W  
-
0x8000  
0x00  
-
CH2_SCAL_SCALING  
CH2 System Calibration Scaling Coefficients  
0x46  
R/W  
0x01  
CH2_SCAL_BITS_  
SELECTOR  
CH2 System Calibration Bit Selector  
0x47  
R/W  
0x00  
CH3_SCAL_OFFSET  
Reserved  
CH3 System Calibration Offset Coefficients  
0x48 - 0x49  
0x4A  
R/W  
-
0x0000  
0x00  
-
CH3_SCAL_GAIN  
Reserved  
CH3 System Calibration Gain Coefficient  
0x4B - 0x4C  
0x4D  
R/W  
-
0x8000  
0x00  
-
CH3_SCAL_SCALING  
CH3 System Calibration Scaling Coefficients  
0x4E  
R/W  
0x01  
CH3_SCAL_BITS_  
SELECTOR  
CH3 System Calibration Bit Selector  
-
0x4F  
R/W  
-
0x00  
0x00  
Reserved  
0x50 - 0x7F  
Power and Reset Registers  
Table 6. RESETCN  
Reset Control (Address 0x00)  
Bit Bit Symbol  
Bit Description  
Register and Conversion Reset0xC3: Register and conversion reset  
Others: Neglected  
[7:0] REG_AND_CNV_ RST  
Table 7. SPI_RESET  
SPI Reset Control (Address 0x02)  
Bit Description  
Bit Bit Symbol  
SPI Reset Enable  
[0] SPI_ RST  
0x0 (default): SPI Reset Disabled  
0x1: SPI Reset Enabled(1)  
(1) Once written, the contents of this register are sticky. That is, the content of this register cannot be changed with subsequent write.  
However, a Register reset clears the register as well as the sticky status.  
48  
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
Table 8. PWRCN  
Power Mode Control and Status (Address 0x08)  
Bit Bit Symbol  
Bit Description  
[7:2] Reserved  
-
Power Control  
Write Only – power down mode control  
0x0: Active Mode  
0x1: Power-down Mode  
0x3: Stand-by Mode  
[1:0] PWRCN  
Read Only – the present mode is:  
0x0 (default): Active Mode  
0x1: Power-down Mode  
0x3: Stand-by Mode  
ADC Registers  
Table 9. ADC_RESTART  
ADC Restart Conversion (Address 0x0B)  
Bit Bit Symbol  
Bit Description  
[7:1] Reserved  
-
Restart conversion  
0
RESTART  
1: Restart conversion.  
Table 10. ADC_AUXCN  
ADC Auxiliary Control (Address 0x12)  
Bit Bit Symbol  
Bit Description  
7
Reserved  
-
The System Calibration registers (CHx_SCAL_OFFSET and CHx_SCAL_GAIN) are:  
0 (default): preserved even when "REG_AND_CNV_ RST" = 0xC3.  
1: reset by setting "REG_AND_CNV_ RST" = 0xC3.  
6
RESET_SYSCAL  
External clock detection  
5
4
CLK_EXT_DET  
CLK_SEL  
0 (default): "External Clock Detection" is operational  
1: "External-Clock Detection" is bypassed  
Clock select – only valid if CLK_EXT_DET = 1  
0 (default): Selects internal clock  
1: Selects external clock  
Selects RTD Current as follows:  
0x0 (default): 0 µA  
0x1: 100 µA  
0x2: 200 µA  
0x3: 300 µA  
0x4: 400 µA  
[3:0] RTD_CUR_SEL  
0x5: 500 µA  
0x6: 600 µA  
0x7: 700 µA  
0x8: 800 µA  
0x9: 900 µA  
0xA: 1000 µA  
Copyright © 2013–2014, Texas Instruments Incorporated  
49  
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
Table 11. ADC_DONE  
ADC Data Available (Address 0x18)  
Bit Bit Symbol  
Bit Description  
Data Available – indicates if new conversion data is available  
0x00 0xFE: Available  
[7:0] DT_AVAIL_B  
0xFF: Not available  
Table 12. ADC_DOUT(1)  
16-bit Conversion Data (two’s complement) (Address 0x1A - 0x1B)  
Address  
0x1A  
Name  
Register Description  
ADC Conversion Data [15:8]  
ADC Conversion Data [7:0]  
Reserved  
ADC_DOUTH  
ADC_DOUTL  
Reserved  
0x1B  
0x1C  
(1) Repeat reads of these registers are allowed as long as such reads are spaced apart by at least 72 µs.  
Channel Configuration Registers  
Table 13. CH_STS  
Channel Status (Address 0x1E)  
Bit Bit Symbol  
Bit Description  
[7:2] Reserved  
-
Channel Scan Not Ready – indicates if it is okay to program CH_SCAN  
0: Update not pending, CH_SCAN register is okay to program  
1: Update pending, CH_SCAN register is not ready to be programmed  
1
0
CH_SCAN_NRDY  
Invalid or Repeated Read Status  
INV_OR_RPT_RD_STS  
0: ADC_DOUT just read was valid and hitherto unread  
1: ADC_DOUT just read was either invalid (not ready) or there was a repeated read.  
Table 14. CH_SCAN(1)  
Channel Scan Mode (Address 0x1F)  
Bit Description  
Bit Bit Symbol  
Channel Scan Select  
0x0 (default): ScanMode0: Single-Channel Continuous Conversion  
0x1: ScanMode1: One or more channels Single Scan  
0x2: ScanMode2: One or more channels Continuous Scan  
0x3: ScanMode3: One or more channels Continuous Scan with Burnout Currents  
[7:6] CH_SCAN_SEL  
Last channel for conversion  
0x0: CH0  
0x1: CH1  
0x2: CH2  
[5:3] LAST_CH  
0x3: CH3  
0x4: CH4  
0x5: CH5  
0x6 (default): CH6(2)  
(1) While writing to the CH_SCAN register, if 0x7 is written to FIRST_CH or LAST_CH the write to the entire CH_SCAN register is ignored.  
(2) LAST_CH cannot be smaller than FIRST_CH. For example, if LAST_CH = CH5, then FIRST_CH cannot be CH6. If 0x7 is written it is  
ignored.  
50  
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
Table 14. CH_SCAN(1) (continued)  
Channel Scan Mode (Address 0x1F)  
Bit Bit Symbol  
Bit Description  
Starting channel for conversion  
0x0 (default): CH0  
0x1: CH1  
0x2: CH2  
[2:0] FIRST_CH  
0x3: CH3  
0x4: CH4  
0x5: CH5  
0x6: CH6(3)  
(3) FIRST_CH cannot be greater than LAST_CH. For example, if FIRST_CH = CH1, then LAST_CH cannot be CH0. If 0x7 is written it is  
ignored.  
Table 15. CHx_INPUTCN  
Channel Input Control  
Register Address (hex): CH0: 0x20, CH1: 0X22, CH2: 0x24, CH3: 0x26, CH4: 0x28, CH5: 0x2A, CH6: 0x2C  
Bit  
Bit Symbol  
Bit Description  
Enable sensor diagnostic  
7
BURNOUT_EN  
0 (default): Disable Sensor Diagnostics current injection for this Channel  
1: Enable Sensor Diagnostics current injection for this Channel  
Select the reference  
6
VREF_SEL  
0 (Default): Select VREFP1 and VREFN1  
1: Select VREFP2 and VREFN2  
Positive input select  
0x0: VIN0  
0x1: VIN1  
0x2: VIN2  
[5:3] VINP  
0x3: VIN3  
0x4: VIN4  
0x5: VIN5  
0x6: VIN6  
0x7: VIN7(1)  
Negative input select  
0x0: VIN0  
0x1: VIN1  
0x2: VIN2  
[2:0] VINN  
0x3: VIN3  
0x4: VIN4  
0x5: VIN5  
0x6: VIN6  
0x7: VIN7(1)  
(1) To see the default values for each channel, refer to the table below.  
Copyright © 2013–2014, Texas Instruments Incorporated  
51  
 
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
Table 16. Default VINx for CH0-CH6  
VINP  
VIN0  
VIN2  
VIN4  
VIN6  
VIN0  
VIN2  
VIN4  
VINN  
VIN1  
VIN3  
VIN5  
VIN7  
VIN1  
VIN3  
VIN5  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
Table 17. CHx_CONFIG  
Channel Configuration  
Register Address (hex): CH0: 0x21, CH1: 0x23, CH2: 0x25, CH3: 0x27, CH4: 0x29, CH5: 0x2B, CH6: 0x2D  
Bit Bit Symbol  
Reserved  
Bit Description  
7
-
ODR Select  
0x0: 13.42 / 8 = 1.6775 SPS  
0x1: 13.42 / 4 = 3.355 SPS  
0x2: 13.42 / 2 = 6.71 SPS  
0x3: 13.42 SPS  
[6:4] ODR_SEL  
0x4: 214.65 / 8 = 26.83125 SPS  
0x5: 214.65 / 4 = 53.6625 SPS  
0x6: 214.65 / 2 = 107.325 SPS  
0x7(default): 214.65 SPS  
Gain Select  
0x0 (default): 1 (FGA OFF)  
0x1: 2 (FGA OFF)  
0x2: 4 (FGA OFF)  
[3:1] GAIN_SEL  
0x3: 8 (FGA OFF)  
0x4: 16 (FGA ON)  
0x5: 32 (FGA ON)  
0x6: 64 (FGA ON)  
0x7: 128 (FGA ON)  
Enable/Disable the buffer  
0 (default): Include the buffer in the signal path  
1: Exclude the buffer from the signal path(1)  
0
BUF_EN  
(1) When gain 16, the buffer is automatically included in the signal path irrespective of this bit.  
Calibration Registers  
Table 18. BGCALCN  
Background Calibration Control (Address 0x10)  
Bit Bit Symbol  
Bit Description  
[7:2] Reserved  
-
Background calibration control – selects scheme for continuous background calibration.  
0x0 (default): BgcalMode0: Background Calibration OFF  
0x1: BgcalMode1: Offset Correction / Gain Estimation  
[1:0] BGCALN  
0x2: BgcalMode2: Offset Correction / Gain Correction  
0x3: BgcalMode3: Offset Estimation / Gain Estimation  
52  
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
Table 19. SCALCN  
System Calibration Control (Address 0x17)  
Bit Bit Symbol  
Bit Description  
[7:2] Reserved  
-
System Calibration Control  
When written, set SCALCN to:  
0x0 (default): Normal Mode  
0x1: “System Calibration Offset Coefficient Determination” mode  
0x2: “System Calibration Gain Coefficient Determination” mode  
0x3: Reserved  
[1:0] SCALCN  
When read, this bit indicates the system calibration mode is in:  
0x0: Normal Mode  
0x1: "System Calibration Offset Coefficient Determination" mode  
0x2: "System Calibration Gain Coefficient Determination" mode  
0x3: Reserved(1)  
(1) When read, this bit will indicate the current System Calibration status. Since this coefficient determination mode will only take 1  
conversion cycle, reading this register will only return 0x00, unless this register is read within 1 conversion window.  
Table 20. CHx_SCAL_OFFSET  
CH0-CH3 System Calibration Offset Registers (Two's-Complement)  
ADDR  
Name  
Description  
CH0  
0x30  
0x31  
0x32  
CH1  
0x38  
0x39  
CH2  
0x40  
0x41  
CH3  
0x48  
0x49  
CHx_SCAL_OFFSETH  
CHx_SCAL_OFFSETM  
System Calibration Offset Coefficient Data [15:8]  
System Calibration Offset Coefficient Data [7:0]  
-
0x3A 0x42  
0x4A Reserved  
Table 21. CHx_SCAL_GAIN  
CH0-CH3 System Calibration Gain Registers (Fixed Point 1.23 Format)  
ADDR  
Name  
Description  
CH0  
0x33  
0x34  
0x35  
CH1  
CH2  
CH3  
0x3B 0x43  
0x3C 0x44  
0x3D 0x45  
0x4B CHx_SCAL_GAINH  
0x4C CHx_SCAL_GAINL  
0x4D Reserved  
System Calibration Gain Coefficient Data [15:8]  
System Calibration Gain Coefficient Data [7:0]  
-
Table 22. CHx_SCAL_SCALING  
CH0-CH3 System Calibration Scaling Coefficient Registers  
ADDR  
Name  
Description  
CH0  
CH1  
CH2  
CH3  
0x36  
0x3E 0x46  
0x4E CHx_SCAL_SCALING  
System Calibration Scaling Coefficient Data [5:0]  
Table 23. CHx_SCAL_BITS_SELECTOR  
CH0-CH3 System Calibration Bit Selector Registers  
ADDR  
Name  
Description  
CH0  
CH1  
CH2  
CH3  
0x37  
0x3F  
0x47  
0x4F  
CHx_SCAL_BITS_SELECTOR  
System Calibration Bit Selection Data [2:0]  
Copyright © 2013–2014, Texas Instruments Incorporated  
53  
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
Sensor Diagnostic Registers  
Table 24. SENDIAG_THLD  
Sensor Diagnostic Threshold (Address 0x14)  
Register Description  
Address  
Name  
0x14  
SENDIAG_THLD  
Sensor Diagnostic threshold  
Table 25. SENDIAG_FLAGS  
Sensor Diagnostic Flags (Address 0x19)  
Bit Bit Symbol  
Bit Description  
Short Circuit Threshold Flag = 1 when the absolute value of VOUT is within the absolute threshold  
voltage set by the SENDIAG_THLD register.  
7
6
5
SHORT_THLD_ FLAG  
RAILS_FLAG  
Rails Flag = 1 when at least one of the inputs is near rail (VA or GND).  
Power-on-reset after last read = 1 when there was a power-on-reset event since the last time the  
SENDIAG_FLAGS register was read.  
POR_AFT_LST_RD  
Overflow flags  
0x0: Normal operation  
0x1: The modulator was not overranged, but ADC_DOUT got clamped to 0x7f_ffff (positive  
fullscale) or 0x80_0000 (negative full scale)  
[4:3] OFLO_FLAGS  
0x2: The modulator was over-ranged (VIN > 1.2*VREF/GAIN)  
0x3: The modulator was over-ranged (VIN < -1.2*VREF/GAIN)  
Channel Number – the sampled channel for ADC_DOUT and SENDIAG_FLAGS.  
[2:0] SAMPLED_CH  
SPI Registers  
Table 26. SPI_HANDSHAKECN  
SPI Handshake Control (Address 0x01)  
Bit Bit Symbol  
Bit Description  
[7:4] Reserved  
-
SDO/DRDYB Driver – sets who is driving the SDO/DRYB pin  
Whenever CSB is  
Asserted and the Device  
is Not Reading  
ADC_DOUT  
Whenever CSB is  
Asserted and the Device  
is Reading ADC_DOUT  
CSB is Deasserted  
[3:1] SDO_DRDYB_ DRIVER  
0x0 (default)  
0x3  
SDO is driving  
SDO is driving  
SDO is driving  
Forbidden  
DRDYB is driving  
DRDYB is driving  
High-Z  
High-Z  
DRDYB is driving  
High-Z  
0x4  
Others  
Switch-off trigger - refers to the switching of the output drive from the slave to the master.  
0 (default): SDO will be high-Z after the last (16th, 24th, 32nd, etc) rising edge of SCLK. This  
option allows time for the slave to transfer control back to the master at the end of the frame.  
0
SW_OFF_TRG  
1: SDO’s high-Z is postponed to the subsequent falling edge following the last (16th, 24th, 32nd,  
etc) rising edge of SCLK. This option provides additional hold time for the last bit, DB0, in non-  
streaming read transfers.  
Table 27. SPI_STREAMCN  
SPI Streaming Control (Address 0x03)  
Bit Description  
Bit Bit Symbol  
Stream type  
7
STRM_TYPE  
0 (default): Normal Streaming mode  
1: Controlled Streaming mode  
Stream range – selects Range for Controlled Streaming mode  
[6:0] STRM_ RANGE  
Default: 0x00  
54  
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
Table 28. DATA_ONLY_1  
Data Only Read Control 1 (Address 0x09)  
Bit Bit Symbol  
Bit Description  
7
Reserved  
-
Start address for the Data Only Read Transaction  
[6:0] DATA_ONLY_ADR  
Default: 0x1A  
Please refer to the description of DT_ONLY_SZ in Table 29 register.  
Table 29. DATA_ONLY_2  
Data Only Read Control 2 (Address 0x0A)  
Bit Bit Symbol  
Bit Description  
[7:3] Reserved  
-
[2:0]  
Number of bytes to be read out in Data Only mode. A value of 0x0 means read one byte and 0x7  
means read 8 bytes.  
DATA_ONLY_SZ  
Default: 0x2  
Table 30. SPI_DRDYBCN  
SPI Data Ready Bar Control (Address 0x11)  
Bit Description  
Bit Bit Symbol  
Enable DRDYB on D6  
0 (default): D6 is a GPIO  
1: D6 = drdyb signal  
-
7
6
SPI_DRDYB_D6  
Reserved  
CRC Reset  
5
4
CRC_RST  
Reserved  
0 (default): Enable CRC reset on DRDYB deassertion  
1: Disbale CRC reset on DRDYB deassertion  
-
Gain background calibration  
0 (default): Correct FGA gain error. This is useful only if the device is operating in BgcalMode2  
and ScanMode2 or ScanMode3.  
3
FGA_BGCAL  
1: Correct FGA gain error using the last known coefficients.  
[2:0] Reserved  
Default - 0x3 (do not change this value)  
Table 31. SPI_CRC_CN  
CRC Control (Address 0x13)  
Bit Bit Symbol  
Bit Description  
[7:5] Reserved  
-
Enable CRC  
4
3
2
EN_CRC  
0 (default): Disable CRC  
1: Enable CRC  
Reserved  
Default - 0x0 (do not change this value)  
DRDYB After CRC  
DRDYB_AFT_CRC  
0 (default): DRDYB is deasserted (active high) after ADC_DOUTL is read.  
1: DRDYB is deasserted after SPI_CRC_DAT (which follows ADC_DOUTL), is read.  
[1:0] Reserved  
-
Copyright © 2013–2014, Texas Instruments Incorporated  
55  
 
LMP90080-Q1  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
www.ti.com.cn  
Table 32. SPI_CRC_DAT  
CRC Data (Address 0x1D)  
Bit Bit Symbol  
Bit Description  
CRC Data  
When written, this register reset CRC:  
Any Value: Reset CRC  
[7:0] CRC_DAT  
When read, this register indicates the CRC data.  
GPIO Registers  
Table 33. GPIO_DIRCN  
GPIO Direction (Address 0x0E)  
Bit Bit Symbol  
Bit Description  
7
Reserved  
-
GPIO direction control – these bits are used to control the direction of each General Purpose  
Input/Outputs (GPIO) pins D0 - D6.  
0 (default): Dx is an Input  
x
GPIO_DIRCNx  
1: Dx is an Output  
where 0 x 6  
For example, writing a 1 to bit 6 means D6 is an Output.(1)  
(1) If D6 is used for DRDYB, then it cannot be used for GPIO.  
Table 34. GPIO_DAT  
GPIO Data (Address 0x0F)  
Bit Description  
Bit Bit Symbol  
7
Reserved  
-
Write Only - when GPIO_DIRCNx = 0  
0: Dx is LO  
1: Dx is HI  
Read Only - when GPIO_DIRCNx = 1  
0: Dx driven LO  
1: Dx driven HI  
where 0 x 6  
x
Dx  
For example, writing a 0 to bit 4 means D4 is LO.  
It is okay to Read the GPIOs that are configured as outputs and write to GPIOs that are configured  
as inputs. Reading the GPIOs that are outputs would return the current value on those GPIOs, and  
writing to the GPIOs that are inputs are neglected.  
56  
Copyright © 2013–2014, Texas Instruments Incorporated  
LMP90080-Q1  
www.ti.com.cn  
ZHCSC22A MAY 2013REVISED JANUARY 2014  
REVISION HISTORY  
Changes from Revision (May 2013) to Revision A  
Page  
Deleted CH_STS and ADC_DOUTM from the sentence: Compute the CRC externally... ................................................ 37  
Added sentence to the end of the RESET and RESTART section .................................................................................... 38  
Copyright © 2013–2014, Texas Instruments Incorporated  
57  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMP90080QMH/NOPB  
LMP90080QMHE/NOPB  
LMP90080QMHX/NOPB  
ACTIVE  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
28  
28  
28  
48  
RoHS & Green  
RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 150  
-40 to 150  
-40 to 150  
LMP90080Q  
MH  
ACTIVE  
ACTIVE  
PWP  
250  
SN  
SN  
LMP90080Q  
MH  
PWP  
2500 RoHS & Green  
LMP90080Q  
MH  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMP90080QMHE/NOPB HTSSOP PWP  
LMP90080QMHX/NOPB HTSSOP PWP  
28  
28  
250  
178.0  
330.0  
16.4  
16.4  
6.8  
6.8  
10.2  
10.2  
1.6  
1.6  
8.0  
8.0  
16.0  
16.0  
Q1  
Q1  
2500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMP90080QMHE/NOPB  
LMP90080QMHX/NOPB  
HTSSOP  
HTSSOP  
PWP  
PWP  
28  
28  
250  
208.0  
356.0  
191.0  
356.0  
35.0  
35.0  
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
PWP HTSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LMP90080QMH/NOPB  
28  
48  
495  
8
2514.6  
4.06  
Pack Materials-Page 3  
PACKAGE OUTLINE  
PWP0028A  
PowerPADTM - 1.1 mm max height  
S
C
A
L
E
1
.
8
0
0
PLASTIC SMALL OUTLINE  
C
6.6  
6.2  
TYP  
SEATING PLANE  
A
PIN 1 ID  
AREA  
0.1 C  
26X 0.65  
28  
1
9.8  
9.6  
NOTE 3  
2X  
8.45  
14  
B
15  
0.30  
0.19  
28X  
1.1 MAX  
4.5  
4.3  
0.1  
C A  
B
NOTE 4  
0.20  
0.09  
TYP  
SEE DETAIL A  
3.15  
2.75  
0.25  
GAGE PLANE  
5.65  
5.25  
0.10  
0.02  
THERMAL  
PAD  
0 - 8  
0.7  
0.5  
DETAIL A  
(1)  
TYPICAL  
4214870/A 10/2014  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MO-153, variation AET.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0028A  
PowerPADTM - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
(3)  
SOLDER  
MASK  
OPENING  
SOLDER MASK  
DEFINED PAD  
28X (1.5)  
28X (1.3)  
28X (0.45)  
28X (0.45)  
1
28  
26X  
(0.65)  
SYMM  
(5.5)  
(9.7)  
SOLDER  
MASK  
OPENING  
(1.3) TYP  
14  
15  
(
0.2) TYP  
(1.3)  
SEE DETAILS  
(0.65) TYP  
(0.9) TYP  
(6.1)  
VIA  
SYMM  
METAL COVERED  
BY SOLDER MASK  
HV / ISOLATION OPTION  
0.9 CLEARANCE CREEPAGE  
OTHER DIMENSIONS IDENTICAL TO IPC-7351  
(5.8)  
IPC-7351 NOMINAL  
0.65 CLEARANCE CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214870/A 10/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0028A  
PowerPADTM - 1.1 mm max height  
PLASTIC SMALL OUTLINE  
(3)  
BASED ON  
0.127 THICK  
STENCIL  
METAL COVERED  
BY SOLDER MASK  
28X (1.5)  
28X (1.3)  
28X (0.45)  
1
28  
26X (0.65)  
28X (0.45)  
(5.5)  
SYMM  
BASED ON  
0.127 THICK  
STENCIL  
14  
15  
SEE TABLE FOR  
DIFFERENT OPENINGS  
SYMM  
(6.1)  
FOR OTHER STENCIL  
THICKNESSES  
(5.8)  
HV / ISOLATION OPTION  
0.9 CLEARANCE CREEPAGE  
OTHER DIMENSIONS IDENTICAL TO IPC-7351  
IPC-7351 NOMINAL  
0.65 CLEARANCE CREEPAGE  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE AREA  
SCALE:6X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.55 X 6.37  
3.0 X 5.5 (SHOWN)  
2.88 X 5.16  
0.127  
0.152  
0.178  
2.66 X 4.77  
4214870/A 10/2014  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LMP90080QMHE/NOPB

具有真正连续后台校准的汽车类多通道低功耗 16 位传感器 AFE | PWP | 28 | -40 to 150
TI

LMP90080QMHX/NOPB

具有真正连续后台校准的汽车类多通道低功耗 16 位传感器 AFE | PWP | 28 | -40 to 150
TI

LMP90097

Sensor AFE System: Multi-Channel, Low Power 24-Bit
NSC

LMP90097

Sensor AFE System: Multi-Channel, Low Power 24-Bit Sensor AFE with True Continuous Background Calibration
TI

LMP90097MH/NOPB

Sensor AFE System: Multi-Channel, Low Power 24-Bit
NSC

LMP90097MH/NOPB

LMP90100/LMP90099/LMP90098/LMP90097 Sensor AFE System: Multi-Channel, Low Power 24-Bit Sensor AFE with True Continuous Background Calibration
TI

LMP90097MHE/NOPB

Sensor AFE System: Multi-Channel, Low Power 24-Bit
NSC

LMP90097MHE/NOPB

LMP90100/LMP90099/LMP90098/LMP90097 Sensor AFE System: Multi-Channel, Low Power 24-Bit Sensor AFE with True Continuous Background Calibration
TI

LMP90097MHX/NOPB

Sensor AFE System: Multi-Channel, Low Power 24-Bit
NSC

LMP90097MHX/NOPB

LMP90100/LMP90099/LMP90098/LMP90097 Sensor AFE System: Multi-Channel, Low Power 24-Bit Sensor AFE with True Continuous Background Calibration
TI

LMP90098

Sensor AFE System: Multi-Channel, Low Power 24-Bit
NSC

LMP90098

Sensor AFE System: Multi-Channel, Low Power 24-Bit Sensor AFE with True Continuous Background Calibration
TI