LMR14050 [TI]

具有 40μA IQ 的 SIMPLE SWITCHER®、40V、5A 2.2MHz 降压转换器;
LMR14050
型号: LMR14050
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 40μA IQ 的 SIMPLE SWITCHER®、40V、5A 2.2MHz 降压转换器

转换器
文件: 总34页 (文件大小:1346K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LMR14050  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
LMR14050 SIMPLE SWITCHER® 40V 5A2.2MHz 降压转换器,具有  
40μA IQ  
1 特性  
3 说明  
1
输入电压范围:4V 40V  
5A 持续输出电流  
LMR14050 器件是一款具有集成型高侧 MOSFET 的  
40V5A 降压稳压器。 该器件具有 4V 40V 的宽输  
入电压范围,适用于从工业到汽车各类应用中非稳压电  
源的电源调节。 该稳压器在休眠模式下的静态电流为  
40µA,非常适合电池供电类系统。 并且在关断模式下  
具有 1μA 的超低电流,可进一步延长电池使用寿命。  
该稳压器的可调开关频率范围较宽,这使得效率或外部  
元件尺寸能够得到优化。 内部环路补偿意味着用户不  
用承担设计环路补偿组件的枯燥工作。 并且还能够以  
最大限度减少器件的外部元件数。 精密使能输入简化  
了稳压器控制和系统电源排序。 此外,该器件还内置  
多种保护特性:逐周期电流限制保护、应对功耗过大的  
热感测和热关断保护、以及输出过压保护。  
40µA 超低工作静态电流  
90mΩ 高侧金属氧化物半导体场效应晶体  
(MOSFET)  
最短导通时间:75ns  
电流模式控制  
可调节开关频率范围:200kHz 2.5MHz  
与外部时钟频率同步  
内部补偿方便使用  
支持高占空比运行  
精密使能引脚  
关断电流:1µA  
外部软启动  
器件信息(1)  
热保护、过压保护和短路保护  
8 引脚 HSOIC PowerPAD™ 封装  
器件型号  
封装  
封装尺寸(标称值)  
LMR14050SDDA  
HSOIC-8  
4.89mm x 3.90mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
2 应用范围  
汽车电池稳压  
工业用电源  
电信和数据通信系统  
电池供电系统  
4 简化电路原理图  
VIN up to 40 V  
效率与输出电流间的关系  
CIN  
VIN  
100  
90  
80  
70  
60  
50  
40  
30  
BOOT  
SW  
EN  
CBOOT  
L
VOUT  
RT/SYNC  
RT  
D
RFBT  
COUT  
SS  
RFBB  
FB  
CSS  
GND  
20  
VOUT = 5 V  
VOUT = 3.3 V  
10  
0
VIN = 12 V, gSW = 300 kHz  
0.01  
0.001  
0.1  
1 10  
IOUT (A)  
D001  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SNVSAA6  
 
 
 
 
 
LMR14050  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
目录  
8.1 Overview ................................................................... 8  
8.2 Functional Block Diagram ......................................... 8  
8.3 Feature Description................................................... 9  
Application and Implementation ........................ 15  
9.1 Application Information............................................ 15  
9.2 Typical Application ................................................. 15  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Switching Characteristics.......................................... 5  
7.7 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 8  
9
10 Power Supply Recommendations ..................... 21  
11 Layout................................................................... 21  
11.1 Layout Guidelines ................................................. 21  
11.2 Layout Example .................................................... 22  
12 器件和文档支持 ..................................................... 23  
12.1 ....................................................................... 23  
12.2 静电放电警告......................................................... 23  
12.3 术语表 ................................................................... 23  
13 机械封装和可订购信息 .......................................... 24  
8
5 修订历史记录  
Changes from Original (February 2015) to Revision A  
Page  
已更改 产品预览量产数据.......................................................................................................................................... 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
LMR14050  
www.ti.com.cn  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
6 Pin Configuration and Functions  
HSOIC  
8-Pin  
Top View  
HSOIC PACKAGE  
(TOP VIEW)  
BOOT  
SW  
1
8
VIN  
GND  
SS  
2
3
4
7
6
5
Thermal Pad  
(9)  
EN  
RT/SYNC  
FB  
Pin Functions  
DESCRIPTION  
(1)  
PIN  
TYPE  
NAME  
NO.  
BOOT  
1
O
I
Bootstrap capacitor connection for high-side MOSFET driver. Connect a high quality 0.1 μF  
capacitor from BOOT to SW.  
VIN  
EN  
2
3
Connect to power supply and bypass capacitors CIN. Path from VIN pin to high frequency  
bypass CIN and GND must be as short as possible.  
I
Enable pin, with internal pull-up current source. Pull below 1.2 V to disable. Float or connect  
to VIN to enable. Adjust the input under voltage lockout with two resistors. See the Enable  
and Adjusting Under voltage lockout section.  
RT/SYNC  
4
I
Resistor Timing or External Clock input. An internal amplifier holds this pin at a fixed voltage  
when using an external resistor to ground to set the switching frequency. If the pin is pulled  
above the PLL upper threshold, a mode change occurs and the pin becomes a  
synchronization input. The internal amplifier is disabled and the pin is a high impedance clock  
input to the internal PLL. If clocking edges stop, the internal amplifier is re-enabled and the  
operating mode returns to frequency programming by resistor.  
FB  
5
I
Feedback input pin, connect to the feedback divider to set VOUT. Do not short this pin to  
ground during operation.  
SS  
GND  
SW  
6
7
8
O
G
O
Soft-start control pin. Connect to a capacitor to set soft-start time.  
System ground pin.  
Switching output of the regulator. Internally connected to high-side power MOSFET. Connect  
to power inductor.  
Thermal Pad  
9
G
Major heat dissipation path of the die. Must be connected to ground plane on PCB.  
(1) I = Input, O = Output, G = Ground  
Copyright © 2015, Texas Instruments Incorporated  
3
LMR14050  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
MAX  
44  
UNIT  
VIN, EN to GND  
BOOT to GND  
49  
Input Voltages  
SS to GND  
5
V
FB to GND  
7
RT/SYNC to GND  
BOOT to SW  
3.6  
6.5  
44  
Output Voltages  
V
SW to GND  
-3  
TJ  
Junction temperature  
Storage temperature  
-40  
-65  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
PARAMETER  
DEFINITION  
Human body model (HBM)(1)  
Charged device model (CDM)(2)  
VALUE  
UNIT  
2
Electrostatic  
discharge  
V(ESD)  
kV  
0.5  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4
MAX  
UNIT  
VIN  
40  
28  
VOUT  
0.8  
Buck Regulator  
Control  
BOOT  
45  
V
V
SW  
-1  
0
40  
FB  
5
EN  
0
40  
RT/SYNC  
0
3.3  
3
SS  
0
Switching frequency range at RT mode  
Switching frequency range at SYNC mode  
Operating junction temperature, TJ  
200  
250  
-40  
2500  
2300  
125  
Frequency  
kHz  
°C  
Temperature  
7.4 Thermal Information  
DDA  
8 PINS  
42.5  
9.9  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (top) thermal resistance  
Junction-to-case (bottom) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
ψJB  
25.4  
56.1  
3.8  
°C/W  
RθJC(top)  
RθJC(bot)  
RθJB  
25.5  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
LMR14050  
www.ti.com.cn  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
7.5 Electrical Characteristics  
Limits apply over the recommended operating junction temperature (TJ) range of -40°C to +125°C, unless otherwise stated.  
Minimum and Maximum limits are specified through test, design or statistical correlation. Typical values represent the most  
likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise specified, the following  
conditions apply: VIN = 4.0 V to 40 V  
PARAMETER  
POWER SUPPLY (VIN PIN)  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
VIN  
Operation input voltage  
4
40  
V
V
UVLO  
Under voltage lockout thresholds  
Rising threshold  
3.5  
3.7  
285  
1.0  
40  
3.9  
Hysteresis  
mV  
μA  
μA  
ISHDN  
IQ  
Shutdown supply current  
VEN = 0 V, TA = 25°C, 4.0 V VIN 40 V  
VFB = 1.0 V, TA = 25°C  
3.0  
Operating quiescent current (non-  
switching)  
ENABLE (EN PIN)  
VEN_TH  
EN Threshold Voltage  
EN PIN current  
1.05  
1.20  
-4.6  
-1.0  
-3.6  
1.38  
V
IEN_PIN  
Enable threshold +50 mV  
Enable threshold -50 mV  
μA  
μA  
IEN_HYS  
EN hysteresis current  
EXTERNAL SOFT-START  
ISS  
SS pin current  
TA = 25°C  
3
μA  
VOLTAGE REFERENCE (FB PIN)  
VFB  
Feedback voltage  
TJ = 25°C  
0.744 0.750 0.756  
0.735 0.750 0.765  
V
V
TJ = -40°C to 125°C  
HIGH-SIDE MOSFET  
RDS_ON  
On-resistance  
VIN = 12 V, BOOT to SW = 5.8 V  
VIN = 12 V, TA = 25°C, Open Loop  
90  
180  
9.7  
mΩ  
High-side MOSFET CURRENT LIMIT  
ILIMT  
THERMAL PERFORMANCE  
TSHDN Thermal shutdown threshold  
THYS Hysteresis  
Current limit  
6.2  
7.9  
A
170  
12  
°C  
7.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
400  
1.7  
TYP MAX UNIT  
fSW  
Switching frequency  
RT = 49.9 k, 1% accuracy  
500  
600  
kHz  
VSYNC_HI  
VSYNC_LO  
TSYNC_MIN  
SYNC clock high level threshold  
SYNC clock low level threshold  
Minimum SYNC input pulse width  
V
0.5  
Measured at 500 kHz, VSYNC_HI > 3 V,  
VSYNC_LO < 0.3 V  
30  
ns  
TLOCK_IN  
TON_MIN  
PLL lock in time  
Measured at 500 kHz  
100  
75  
µs  
ns  
Minimum controllable on time  
VIN = 12 V, BOOT to SW = 5.8 V, ILoad  
1 A  
=
DMAX  
Maximum duty cycle  
fSW = 200 kHz  
97  
%
Copyright © 2015, Texas Instruments Incorporated  
5
LMR14050  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
7.7 Typical Characteristics  
Unless otherwise specified the following conditions apply: VIN = 12 V, fSW = 300 kHz, L = 6.5 µH, COUT = 47 µF x 4, TA = 25°C  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 36 V  
VIN = 24 V  
VIN = 12 V  
VIN = 36 V  
VIN = 24 V  
VIN = 12 V  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
IOUT (A)  
IOUT (A)  
D002  
D003  
VOUT = 5 V  
fSW = 500 kHz  
VOUT = 5 V  
fSW = 1 MHz  
Figure 1. Efficiency vs. Load Current  
Figure 2. Efficiency vs. Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 24 V  
VIN = 12 V  
VIN = 5 V  
VIN = 24 V  
VIN = 12 V  
VIN = 5 V  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
IOUT (A)  
IOUT (A)  
D009  
D010  
VOUT = 3.3 V  
fSW = 1 MHz  
VOUT = 3.3 V  
fSW = 2.2 MHz  
Figure 3. Efficiency vs. Load Current  
Figure 4. Efficiency vs. Load Current  
125  
100  
75  
50  
25  
0
0.08  
0.06  
0.04  
0.02  
0
VFB Falling  
VFB Rising  
VIN = 36 V  
VIN = 24 V  
VIN = 12 V  
-0.02  
-0.04  
-0.06  
-0.08  
0.001  
0.01  
0.1  
1
10  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
IOUT (A)  
VFB (V)  
D004  
D005  
VOUT = 5 V  
fSW = 500 kHz  
VOUT = 5 V  
fSW = 500 kHz  
Figure 6. Frequency vs VFB  
Figure 5. Load Regulation  
6
Copyright © 2015, Texas Instruments Incorporated  
LMR14050  
www.ti.com.cn  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
Typical Characteristics (continued)  
Unless otherwise specified the following conditions apply: VIN = 12 V, fSW = 300 kHz, L = 6.5 µH, COUT = 47 µF x 4, TA = 25°C  
6
5
4
3
2
6
5
4
3
2
IOUT = 5 A  
IOUT = 2.5 A  
IOUT = 0.5 A  
IOUT = 5 A  
IOUT = 2.5 A  
IOUT = 0.5 A  
4
4.5  
5
5.5  
6
6.5  
4
4.5  
5
5.5  
6
6.5  
VIN (V)  
VIN (V)  
D011  
D012  
VOUT = 5 V  
fSW = 500 kHz  
VOUT = 5V  
fSW = 1 MHz  
Figure 8. Dropout Curve  
Figure 7. Dropout Curve  
3.6  
3.3  
3
3.6  
3.3  
3
2.7  
2.4  
2.1  
1.8  
1.5  
2.7  
2.4  
2.1  
1.8  
1.5  
IOUT = 5 A  
IOUT = 2.5 A  
IOUT = 0.5 A  
IOUT = 5 A  
IOUT = 2.5 A  
IOUT = 0.5 A  
3.6  
3.8  
4
4.2  
4.4  
4.6  
4.8  
5
3.6  
3.8  
4
4.2  
4.4  
4.6  
4.8  
5
VIN (V)  
VIN (V)  
D013  
D014  
VOUT = 5 V  
fSW = 2.2 MHz  
VOUT = 3.3 V  
fSW = 2.2 MHz  
Figure 10. Dropout Curve  
Figure 9. Dropout Curve  
45  
40  
35  
30  
25  
20  
15  
10  
5
3.75  
3.7  
3.65  
3.6  
IQ  
UVLO_H  
3.55  
3.5  
UVLO_L  
ISHDN  
3.45  
3.4  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
VIN (V)  
Temperature (°C)  
D006  
D007  
IOUT = 0 A  
Figure 11. Shut-down Current and Quiescent Current  
Figure 12. UVLO Threshold  
Copyright © 2015, Texas Instruments Incorporated  
7
LMR14050  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LMR14050 SIMPLE SWITCHER® regulator is an easy to use step-down DC-DC converter that operates  
from 4.0 V to 40 V supply voltage. It integrates a 90 mΩ (typical) high-side MOSFET, and is capable of delivering  
up to 5 A DC load current with exceptional efficiency and thermal performance in a very small solution size. The  
operating current is typically 40 μA under no load condition (not switching). When the device is disabled, the  
supply current is typically 1 μA. An extended family is available in 2 A and 3.5 A load options in pin to pin  
compatible packages.  
The LMR14050 implements constant frequency peak current mode control with Sleep-mode at light load to  
achieve high efficiency. The device is internally compensated, which reduces design time, and requires fewer  
external components. The switching frequency is programmable from 200 kHz to 2.5 MHz by an external resistor  
RT. The LMR14050 is also capable of synchronization to an external clock within the 250 kHz to 2.3 MHz  
frequency range, which allows the device to be optimized to fit small board space at higher frequency, or high  
efficient power conversion at lower frequency.  
Other optional features are included for more comprehensive system requirements, including precision enable,  
adjustable soft-start time, and approximate 97% duty cycle by BOOT capacitor recharge circuit. These features  
provide a flexible and easy to use platform for a wide range of applications. Protection features include over  
temperature shutdown, VOUT over voltage protection (OVP), VIN under-voltage lockout (UVLO), cycle-by-cycle  
current limit, and short-circuit protection with frequency fold-back.  
8.2 Functional Block Diagram  
EN  
VIN  
Thermal  
Shutdown  
UVLO  
Enable  
Comparator  
Shutdown  
Shutdown  
Logic  
Voltage  
Reference  
Enable  
Threshold  
Boot  
Charge  
OV  
Boot  
UVLO  
ERROR  
AMPLIFIER  
PWM  
Comparator  
FB  
BOOT  
PWM  
Control  
Logic  
Comp  
Components  
Shutdown  
Slope  
Compensation  
6
SW  
Frequency  
Shift  
Bootstrap  
Control  
VIN  
Oscillator  
with PLL  
SS  
GND  
RT/SYNC  
8
Copyright © 2015, Texas Instruments Incorporated  
LMR14050  
www.ti.com.cn  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
8.3 Feature Description  
8.3.1 Fixed Frequency Peak Current Mode Control  
The following operation description of the LMR14050 will refer to the Function Block Diagram and to the  
waveforms in Figure 13. LMR14050 output voltage is regulated by turning on the high-side N-MOSFET with  
controlled ON time. During high-side switch ON time, the SW pin voltage swings up to approximately VIN, and the  
inductor current iL increase with linear slope (VIN – VOUT) / L. When high-side switch is off, inductor current  
discharges through freewheel diode with a slope of –VOUT / L. The control parameter of Buck converter is defined  
as Duty Cycle D = tON /TSW, where tON is the high-side switch ON time and TSW is the switching period. The  
regulator control loop maintains a constant output voltage by adjusting the duty cycle D. In an ideal Buck  
converter, where losses are ignored, D is proportional to the output voltage and inversely proportional to the input  
voltage: D = VOUT / VIN.  
VSW  
D = tON/ TSW  
VIN  
tON  
tOFF  
t
0
-VD  
TSW  
iL  
ILPK  
IOUT  
ûiL  
t
0
Figure 13. SW Node and Inductor Current Waveforms in  
Continuous Conduction Mode (CCM)  
The LMR14050 employs fixed frequency peak current mode control. A voltage feedback loop is used to get  
accurate DC voltage regulation by adjusting the peak current command based on voltage offset. The peak  
inductor current is sensed from the high-side switch and compared to the peak current to control the ON time of  
the high-side switch. The voltage feedback loop is internally compensated, which allows for fewer external  
components, makes it easy to design, and provides stable operation with almost any combination of output  
capacitors. The regulator operates with fixed switching frequency at normal load condition. At very light load, the  
LMR14050 will operate in Sleep-mode to maintain high efficiency and the switching frequency will decrease with  
reduced load current.  
8.3.2 Slope Compensation  
The LMR14050 adds a compensating ramp to the MOSFET switch current sense signal. This slope  
compensation prevents sub-harmonic oscillations at duty cycle greater than 50%. The peak current limit of the  
high-side switch is not affected by the slope compensation and remains constant over the full duty cycle range.  
8.3.3 Sleep-mode  
The LMR14050 operates in Sleep-mode at light load currents to improve efficiency by reducing switching and  
gate drive losses. If the output voltage is within regulation and the peak switch current at the end of any  
switching cycle is below the current threshold of 300 mA, the device enters Sleep-mode. The Sleep-mode current  
threshold is the peak switch current level corresponding to a nominal internal COMP voltage of 400 mV.  
When in Sleep-mode, the internal COMP voltage is clamped at 400 mV and the high-side MOSFET is inhibited,  
and the device draws only 40 μA (typical) input quiescent current. Since the device is not switching, the output  
voltage begins to decay. The voltage control loop responds to the falling output voltage by increasing the internal  
COMP voltage. The high-side MOSFET is enabled and switching resumes when the error amplifier lifts internal  
COMP voltage above 400 mV. The output voltage recovers to the regulated value, and internal COMP voltage  
eventually falls below the Sleep-mode threshold at which time the device again enters Sleep-mode.  
Copyright © 2015, Texas Instruments Incorporated  
9
 
LMR14050  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
Feature Description (continued)  
8.3.4 Low Dropout Operation and Bootstrap Voltage (BOOT)  
The LMR14050 provides an integrated bootstrap voltage regulator. A small capacitor between the BOOT and  
SW pins provides the gate drive voltage for the high-side MOSFET. The BOOT capacitor is refreshed when the  
high-side MOSFET is off and the external low side diode conducts. The recommended value of the BOOT  
capacitor is 0.1 μF. A ceramic capacitor with an X7R or X5R grade dielectric with a voltage rating of 16 V or  
higher is recommended for stable performance over temperature and voltage.  
When operating with a low voltage difference from input to output, the high-side MOSFET of the LMR14050 will  
operate at approximate 97% duty cycle. When the high-side MOSFET is continuously on for 5 or 6 switching  
cycles (5 or 6 switching cycles for frequency lower than 1 MHz, and 10 or 11 switching cycles for frequency  
higher than 1MHz) and the voltage from BOOT to SW drops below 3.2 V, the high-side MOSFET is turned off  
and an integrated low side MOSFET pulls SW low to recharge the BOOT capacitor.  
Since the gate drive current sourced from the BOOT capacitor is small, the high-side MOSFET can remain on for  
many switching cycles before the MOSFET is turned off to refresh the capacitor. Thus the effective duty cycle of  
the switching regulator can be high, approaching 97%. The effective duty cycle of the converter during dropout is  
mainly influenced by the voltage drops across the power MOSFET, the inductor resistance, the low side diode  
voltage and the printed circuit board resistance.  
8.3.5 Adjustable Output Voltage  
The internal voltage reference produces a precise 0.75 V (typical) voltage reference over the operating  
temperature. The output voltage is set by a resistor divider from output voltage to the FB pin. It is recommended  
to use 1% tolerance or better and temperature coefficient of 100 ppm or lower divider resistors. Select the low  
side resistor RFBB for the desired divider current and use Equation 1 to calculate high-side RFBT. Larger value  
divider resistors are good for efficiency at light load. However, if the values are too high, the regulator will be  
more susceptible to noise and voltage errors from the FB input current may become noticeable. RFBB in the  
range from 10 kto 100 kis recommended for most applications.  
V
OUT  
R
FBT  
FBB  
FB  
R
Figure 14. Output Voltage Setting  
VOUT  0.75  
RFBT  
 
RFBB  
0.75  
(1)  
8.3.6 Enable and Adjustable Under-voltage Lockout  
The LMR14050 is enabled when the VIN pin voltage rises above 3.7 V (typical) and the EN pin voltage exceeds  
the enable threshold of 1.2 V (typical). The LMR14050 is disabled when the VIN pin voltage falls below 3.52 V  
(typical) or when the EN pin voltage is below 1.2 V. The EN pin has an internal pull-up current source (typically  
IEN = 1 μA) that enables operation of the LMR14050 when the EN pin is floating.  
Many applications will benefit from the employment of an enable divider RENT and RENB in Figure 13 to establish  
a precision system UVLO level for the stage. System UVLO can be used for supplies operating from utility power  
as well as battery power. It can be used for sequencing, ensuring reliable operation, or supply protection, such  
as a battery. An external logic signal can also be used to drive EN input for system sequencing and protection.  
When EN terminal voltage exceeds 1.2 V, an additional hysteresis current (typically IHYS = 3.6 μA) is sourced out  
of EN terminal. When the EN terminal is pulled below 1.2 V, IHYS current is removed. This additional current  
facilitates adjustable input voltage UVLO hysteresis. Use Equation 2 and Equation 3  
Equation 3 to calculate RENT and RENB for desired UVLO hysteresis voltage.  
10  
Copyright © 2015, Texas Instruments Incorporated  
 
LMR14050  
www.ti.com.cn  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
Feature Description (continued)  
I
I
EN  
EN_HYS  
VIN  
EN  
V
IN  
R
R
ENT  
V
EN  
ENB  
Figure 15. System UVLO By Enable Dividers  
VSTART  VSTOP  
RENT  
 
IHYS  
(2)  
(3)  
VEN  
VSTART  VEN  
RENB  
 
 IEN  
RENT  
where VSTART is the desired voltage threshold to enable LMR14050, VSTOP is the desired voltage threshold to  
disable device.  
8.3.7 External Soft-start  
The LMR14050 has soft-start pin for programmable output ramp up time. The soft-start feature is used to prevent  
inrush current impacting the LMR14050 and its load when power is first applied. The soft-start time can be  
programed by connecting an external capacitor CSS from SS pin to GND. An internal current source (typically ISS  
= 3 μA) charges CSS and generates a ramp from 0V to VREF. The soft-start time can be calculated by Equation 4:  
CSS(nF)u VREF(V)  
tSS(ms)   
ISS(PA)  
(4)  
The internal soft-start resets while device is disabled or in thermal shutdown.  
8.3.8 Switching Frequency and Synchronization (RT/SYNC)  
The switching frequency of the LMR14050 can be programmed by the resistor RT from the RT/SYNC pin and  
GND pin. The RT/SYNC pin can’t be left floating or shorted to ground. To determine the timing resistance for a  
given switching frequency, use Equation 5 or the curve in Figure 16. Table 1 gives typical RT values for a given  
fSW  
.
RT(k:)   32537u ¦SW ꢀN+]ꢁ1.045  
(5)  
Copyright © 2015, Texas Instruments Incorporated  
11  
 
 
LMR14050  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
Feature Description (continued)  
140  
120  
100  
80  
60  
40  
20  
0
0
500  
1000  
1500  
2000  
2500  
Frequency (kHz)  
D008  
Figure 16. RT vs Frequency Curve  
Table 1. Typical Frequency Setting RT Resistance  
fSW (kHz)  
RT (k)  
127  
200  
350  
71.5  
49.9  
32.4  
23.7  
15.8  
11.5  
10.5  
500  
750  
1000  
1500  
2000  
2200  
The LMR14050 switching action can also be synchronized to an external clock from 250 kHz to 2.3 MHz.  
Connect a square wave to the RT/SYNC pin through either circuit network shown in Figure 17. Internal oscillator  
is synchronized by the falling edge of external clock. The recommendations for the external clock include: high  
level no lower than 1.7 V, low level no higher than 0.5 V and have a pulse width greater than 30 ns. When using  
a low impedance signal source, the frequency setting resistor RT is connected in parallel with an AC coupling  
capacitor CCOUP to a termination resistor RTERM (e.g., 50 Ω). The two resistors in series provide the default  
frequency setting resistance when the signal source is turned off. A 10 pF ceramic capacitor can be used for  
CCOUP. Figure 18, Figure 19 and Figure 20 show the device synchronized to an external system clock.  
C
COUP  
PLL  
RT/SYNC  
PLL  
RT/SYNC  
R
T
Lo-Z  
Clock  
Source  
Hi-Z  
Clock  
Source  
R
T
R
TERM  
Figure 17. Synchronizing to an External Clock  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
 
LMR14050  
www.ti.com.cn  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
SYNC (2 V/DIV)  
SYNC (2 V/DIV)  
SW (5 V/DIV)  
SW (5 V/DIV)  
iL (2 A/DIV)  
iL (500 mA/DIV)  
Time (4 µs/DIV)  
Time (4 µs/DIV)  
Figure 18. Synchronizing in CCM  
Figure 19. Synchronizing in DCM  
SYNC (2 V/DIV)  
SW (5 V/DIV)  
iL (500 mA/DIV)  
Time (4 µs/DIV)  
Figure 20. Synchronizing in Sleep-mode Mode  
Equation 6 calculates the maximum switching frequency limitation set by the minimum controllable on time and  
the input to output step down ratio. Setting the switching frequency above this value will cause the regulator to  
skip switching pulses to achieve the low duty cycle required at maximum input voltage.  
§
·
IOUT uRIND  VOUT  VD  
V IOUT uRDS_ON  VD  
IN_MAX  
1
¦
 
u
¨
¨
©
¸
¸
¹
SW(max)  
tON  
(6)  
where  
IOUT = Output current  
RIND = Inductor series resistance  
VIN_MAX = Maximum input voltage  
VOUT = Output voltage  
VD = Diode voltage drop  
RDS_ON = High-side MOSFET switch on resistance  
tON = Minimum on time  
8.3.9 Over Current and Short Circuit Protection  
The LMR14050 is protected from over current condition by cycle-by-cycle current limiting on the peak current of  
the high-side MOSFET. High-side MOSFET over-current protection is implemented by the nature of the Peak  
Current Mode control. The high-side switch current is compared to the output of the Error Amplifier (EA) minus  
slope compensation every switching cycle. Please refer to Functional Block Diagram for more details. The peak  
current of high-side switch is limited by a clamped maximum peak current threshold which is constant. So the  
peak current limit of the high-side switch is not affected by the slope compensation and remains constant over  
the full duty cycle range.  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
LMR14050  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
The LMR14050 also implements a frequency fold-back to protect the converter in severe over-current or short  
conditions. The oscillator frequency is divided by 2, 4, and 8 as the FB pin voltage decrease to 75%, 50%, 25%  
of VREF. The frequency fold-back increases the off time by increasing the period of the switching cycle, so that it  
provides more time for the inductor current to ramp down and leads to a lower average inductor current. Lower  
frequency also means lower switching loss. Frequency fold-back reduces power dissipation and prevents  
overheating and potential damage to the device.  
8.3.10 Overvoltage Protection  
The LMR14050 employs an output overvoltage protection (OVP) circuit to minimize voltage overshoot when  
recovering from output fault conditions or strong unload transients in designs with low output capacitance. The  
OVP feature minimizes output overshoot by turning off high-side switch immediately when FB voltage reaches to  
the rising OVP threshold which is nominally 109% of the internal voltage reference VREF. When the FB voltage  
drops below the falling OVP threshold which is nominally 107% of VREF, the high-side MOSFET resumes normal  
operation.  
8.3.11 Thermal Shutdown  
The LMR14050 provides an internal thermal shutdown to protect the device when the junction temperature  
exceeds 170°C (typical). The high-side MOSFET stops switching when thermal shundown activates. Once the  
die temperature falls below 158°C (typical), the device reinitiates the power up sequence controlled by the  
internal soft-start circuitry.  
14  
Copyright © 2015, Texas Instruments Incorporated  
LMR14050  
www.ti.com.cn  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LMR14050 is a step down DC-to-DC regulator. It is typically used to convert a higher DC voltage to a lower  
DC voltage with a maximum output current of 5 A. The following design procedure can be used to select  
components for the LMR14050. This section presents a simplified discussion of the design process.  
9.2 Typical Application  
The LMR14050 only requires a few external components to convert from wide voltage range supply to a fixed  
output voltage. A schematic of 5 V/5 A application circuit is shown in Figure 21. The external components have  
to fulfill the needs of the application, but also the stability criteria of the device’s control loop.  
7 V to 36 V  
CBOOT  
VIN  
CIN  
BOOT  
L
5 V / 5 A  
EN  
SW  
COUT  
D
RFBT  
RT/SYNC  
FB  
RFBB  
SS  
RT  
GND  
CSS  
Figure 21. Application Circuit, 5V Output  
9.2.1 Design Requirements  
This example details the design of a high frequency switching regulator using ceramic output capacitors. A few  
parameters must be known in order to start the design process. These parameters are typically determined at the  
system level:  
Input Voltage, VIN  
Output Voltage, VOUT  
7 V to 36 V, Typical 12 V  
5.0 V  
5 A  
Maximum Output Current IO_MAX  
Transient Response 0.5 A to 5 A  
Output Voltage Ripple  
Input Voltage Ripple  
5%  
50 mV  
400 mV  
300 kHz  
5 ms  
Switching Frequency fSW  
Soft-start time  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
LMR14050  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9.2.2.1 Output Voltage Set-Point  
The output voltage of LMR14050 is externally adjustable using a resistor divider network. The divider network is  
comprised of top feedback resistor RFBT and bottom feedback resistor RFBB. Equation 7 is used to determine the  
output voltage:  
VOUT  0.75  
RFBT  
 
RFBB  
0.75  
(7)  
Choose the value of RFBT to be 100 k. With the desired output voltage set to 5 V and the VFB = 0.75 V, the RFBB  
value can then be calculated using Equation 7. The formula yields to a value 17.65 k. Choose the closest  
available value of 17.8 kfor RFBB  
.
9.2.2.2 Switching Frequency  
For desired frequency, use Equation 8 to calculate the required value for RT.  
RT(k:)   32537u ¦SW ꢀN+]ꢁ1.045  
(8)  
For 300 kHz, the calculated RT is 83.9 kand standard value 84.5 kcan be used to set the switching  
frequency at 300 kHz.  
9.2.2.3 Output Inductor Selection  
The most critical parameters for the inductor are the inductance, saturation current and the RMS current. The  
inductance is based on the desired peak-to-peak ripple current ΔiL. Since the ripple current increases with the  
input voltage, the maximum input voltage is always used to calculate the minimum inductance LMIN. Use  
Equation 10 to calculate the minimum value of the output inductor. KIND is a coefficient that represents the  
amount of inductor ripple current relative to the maximum output current. A reasonable value of KIND should be  
20%-40%. During an instantaneous short or over current operation event, the RMS and peak inductor current  
can be high. The inductor current rating should be higher than current limit.  
VOUT u(V  
 VOUT  
)
IN_MAX  
'iL   
VIN_MAX uL u ¦SW  
(9)  
V
 VOUT  
VOUT  
IN_MAX  
LMIN  
 
u
IOUT uKIND  
VIN_MAX u ¦SW  
(10)  
In general, it is preferable to choose lower inductance in switching power supplies, because it usually  
corresponds to faster transient response, smaller DCR, and reduced size for more compact designs. But too low  
of an inductance can generate too large of an inductor current ripple such that over current protection at the full  
load could be falsely trigged. It also generates more conduction loss since the RMS current is slightly higher.  
Larger inductor current ripple also implies larger output voltage ripple with same output capacitors. With peak  
current mode control, it is not recommended to have too small of an inductor current ripple. A larger peak current  
ripple improves the comparator signal to noise ratio.  
For this design example, choose KIND = 0.4, the minimum inductor value is calculated to be 7.17 µH, and a  
nearest standard value is chosen: 8.2 µH. A standard 8.2 μH ferrite inductor with a capability of 7 A RMS current  
and 10A saturation current can be used.  
9.2.2.4 Output Capacitor Selection  
The output capacitor(s), COUT, should be chosen with care since it directly affects the steady state output voltage  
ripple, loop stability and the voltage over/undershoot during load current transients.  
The output ripple is essentially composed of two parts. One is caused by the inductor current ripple going  
through the Equivalent Series Resistance (ESR) of the output capacitors:  
'VOUT_ESR   'iL uESR   KIND uIOUT uESR  
(11)  
The other is caused by the inductor current ripple charging and discharging the output capacitors:  
'iL  
KIND uIOUT  
8u ¦SW uCOUT 8u ¦SW uCOUT  
'VOUT_C  
 
 
(12)  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
 
 
LMR14050  
www.ti.com.cn  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
The two components in the voltage ripple are not in phase, so the actual peak-to-peak ripple is smaller than the  
sum of two peaks.  
Output capacitance is usually limited by transient performance specifications if the system requires tight voltage  
regulation with presence of large current steps and fast slew rate. When a fast large load increase happens,  
output capacitors provide the required charge before the inductor current can slew up to the appropriate level.  
The regulator’s control loop usually needs three or more clock cycles to respond to the output voltage droop. The  
output capacitance must be large enough to supply the current difference for three clock cycles to maintain the  
output voltage within the specified range. Equation 13 shows the minimum output capacitance needed for  
specified output undershoot. When a sudden large load decrease happens, the output capacitors absorb energy  
stored in the inductor. The catch diode can’t sink current so the energy stored in the inductor results in an output  
voltage overshoot. Equation 14 calculates the minimum capacitance required to keep the voltage overshoot  
within a specified range.  
3u(IOH IOL  
)
COUT  
!
¦
u 9US  
SW  
(13)  
(14)  
IO2 H IO2 L  
(VOUT VOS )2 VO2UT  
COUT  
!
uL  
where  
KIND = Ripple ratio of the inductor ripple current (ΔiL / IOUT  
IOL = Low level output current during load transient  
IOH = High level output current during load transient  
VUS = Target output voltage undershoot  
)
VOS = Target output voltage overshoot  
For this design example, the target output ripple is 50 mV. Presuppose ΔVOUT_ESR = ΔVOUT_C = 50 mV, and  
chose KIND = 0.4. Equation 11 yields ESR no larger than 25 mand Equation 12 yields COUT no smaller than  
16.7 μF. For the target over/undershoot range of this design, VUS = VOS = 5% × VOUT = 250 mV. The COUT can  
be calculated to be no smaller than 180 μF and 79.2 μF by Equation 13 and Equation 14 respectively. In  
summary, the most stringent criteria for the output capacitor is 180 μF. Four 47 μF, 16 V, X7R ceramic  
capacitors with 5 mESR are used in parallel .  
9.2.2.5 Schottky Diode Selection  
The breakdown voltage rating of the diode is preferred to be 25% higher than the maximum input voltage. The  
current rating for the diode should be equal to the maximum output current for best reliability in most  
applications. In cases where the input voltage is much greater than the output voltage the average diode current  
is lower. In this case it is possible to use a diode with a lower average current rating, approximately (1-D) × IOUT  
however the peak current rating should be higher than the maximum load current. A 6 A to 7 A rated diode is a  
good starting point.  
9.2.2.6 Input Capacitor Selection  
The LMR14050 device requires high frequency input decoupling capacitor(s) and a bulk input capacitor,  
depending on the application. The typical recommended value for the high frequency decoupling capacitor is 4.7  
μF to 10 μF. A high-quality ceramic capacitor type X5R or X7R with sufficiency voltage rating is recommended.  
To compensate the derating of ceramic capacitors, a voltage rating of twice the maximum input voltage is  
recommended. Additionally, some bulk capacitance can be required, especially if the LMR14050 circuit is not  
located within approximately 5 cm from the input voltage source. This capacitor is used to provide damping to the  
voltage spike due to the lead inductance of the cable or the trace. For this design, two 2.2 μF, X7R ceramic  
capacitors rated for 100 V are used. A 0.1 μF for high-frequency filtering and place it as close as possible to the  
device pins.  
9.2.2.7 Bootstrap Capacitor Selection  
Every LMR14050 design requires a bootstrap capacitor (CBOOT). The recommended capacitor is 0.1 μF and rated  
16 V or higher. The bootstrap capacitor is located between the SW pin and the BOOT pin. The bootstrap  
capacitor must be a high-quality ceramic type with an X7R or X5R grade dielectric for temperature stability.  
Copyright © 2015, Texas Instruments Incorporated  
17  
 
 
LMR14050  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
9.2.2.8 Soft-start Capacitor Selection  
Use Equation 15 in order to calculate the soft-start capacitor value:  
tSS(ms)uISS(PA)  
CSS(nF)   
VREF(V)  
(15)  
where  
CSS = Soft-start capacitor value  
ISS = Soft-start charging current (3 μA)  
tSS = Desired soft-start time  
For the desired soft-start time of 5 ms and soft-start charging current of 3.0 μA, Equation 15 yields a soft-start  
capacitor value of 20 nF, a standard 22 nF ceramic capacitor is used.  
18  
Copyright © 2015, Texas Instruments Incorporated  
 
LMR14050  
www.ti.com.cn  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
9.2.3 Application Curves  
Unless otherwise specified the following conditions apply: VIN = 12 V, fSW = 300 kHz, L = 6.5 µH, COUT = 47 µF x 4, TA = 25°C  
VIN (5 V/DIV)  
VIN (5 V/DIV)  
EN (1 V/DIV)  
VOUT (1 V/DIV)  
VOUT (1 V/DIV)  
iL (2 A/DIV)  
Time (2 ms/DIV)  
Time (2 ms/DIV)  
VIN = 12 V  
VOUT = 5 V  
IOUT = 2 A  
IOUT = 0 A  
IOUT = 5 A  
VIN = 12 V  
VOUT = 5 V  
IOUT = 2 A  
Figure 22. Start-up By EN  
Figure 23. Start-up By VIN  
SW (5 V/DIV)  
SW (5 V/DIV)  
iL (500 mA/DIV)  
iL (500 mA/DIV)  
VOUT(ac) (10 mV/DIV)  
VOUT(ac) (10 mV/DIV)  
Time (2 ms/DIV)  
Time (4 µs/DIV)  
VIN = 12 V  
VOUT = 5 V  
VIN = 12 V  
VOUT = 5 V  
IOUT = 100 mA  
Figure 24. Sleep-mode  
Figure 25. DCM Mode  
SW (5 V/DIV)  
IOUT (2 A/DIV)  
iL (2 A/DIV)  
VOUT(ac) (200 mV/DIV)  
VOUT(ac) (10 mV/DIV)  
Time (4 µs/DIV)  
Time (100 µs/DIV)  
VIN = 12 V  
VOUT = 5 V  
IOUT: 10% 100%  
Slew rate = 100  
of 5 A  
mA/μs  
Figure 26. CCM Mode  
Figure 27. Load Transient  
Copyright © 2015, Texas Instruments Incorporated  
19  
LMR14050  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
Unless otherwise specified the following conditions apply: VIN = 12 V, fSW = 300 kHz, L = 6.5 µH, COUT = 47 µF x 4, TA = 25°C  
VOUT (2 V/DIV)  
VOUT (2 V/DIV)  
iL (2 A/DIV)  
iL (2 A/DIV)  
Time (100 µs/DIV)  
Time (1.6 ms/DIV)  
VIN = 12 V  
VOUT = 5 V  
VIN = 12 V  
VOUT = 5 V  
Figure 28. Output Short  
Figure 29. Output Short Recovery  
20  
Copyright © 2015, Texas Instruments Incorporated  
LMR14050  
www.ti.com.cn  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
10 Power Supply Recommendations  
The LMR14050 is designed to operate from an input voltage supply range between 4 V and 40 V. This input  
supply should be able to withstand the maximum input current and maintain a stable voltage. The resistance of  
the input supply rail should be low enough that an input current transient does not cause a high enough drop at  
the LMR14050 supply voltage that can cause a false UVLO fault triggering and system reset. If the input supply  
is located more than a few inches from the LMR14050, additional bulk capacitance may be required in addition to  
the ceramic input capacitors. The amount of bulk capacitance is not critical, but a 47 μF or 100 μF electrolytic  
capacitor is a typical choice .  
11 Layout  
11.1 Layout Guidelines  
Layout is a critical portion of good power supply design. The following guidelines will help users design a PCB  
with the best power conversion performance, thermal performance, and minimized generation of unwanted EMI.  
1. The feedback network, resistor RFBT and RFBB, should be kept close to the FB pin. VOUT sense path away  
from noisy nodes and preferably through a layer on the other side of a shielding layer .  
2. The input bypass capacitor CIN must be placed as close as possible to the VIN pin and ground. Grounding  
for both the input and output capacitors should consist of localized top side planes that connect to the GND  
pin and PAD .  
3. The inductor L should be placed close to the SW pin to reduce magnetic and electrostatic noise.  
4. The output capacitor, COUT should be placed close to the junction of L and the diode D. The L, D, and COUT  
trace should be as short as possible to reduce conducted and radiated noise and increase overall efficiency.  
5. The ground connection for the diode, CIN, and COUT should be as small as possible and tied to the system  
ground plane in only one spot (preferably at the COUT ground point) to minimize conducted noise in the  
system ground plane  
6. For more detail on switching power supply layout considerations see Application Note AN-1149  
版权 © 2015, Texas Instruments Incorporated  
21  
LMR14050  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
11.2 Layout Example  
Output Bypass  
Capacitor  
Output  
Inductor  
Rectifier Diode  
BOOT  
Capacitor  
Input Bypass  
Capacitor  
BOOT  
VIN  
SW  
GND  
SS  
Soft-Start  
Capacitor  
EN  
RT/SYNC  
FB  
UVLO Adjust  
Resistor  
Output Voltage  
Set Resistor  
Thermal VIA  
Signal VIA  
Frequency  
Set Resistor  
Figure 30. Layout  
22  
版权 © 2015, Texas Instruments Incorporated  
LMR14050  
www.ti.com.cn  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
12 器件和文档支持  
12.1 商标  
PowerPAD is a trademark of Texas Instruments.  
SIMPLE SWITCHER is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.3 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
版权 © 2015, Texas Instruments Incorporated  
23  
LMR14050  
ZHCSDH4A FEBRUARY 2015REVISED MARCH 2015  
www.ti.com.cn  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMR14050SDDA  
LMR14050SDDAR  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
DDA  
DDA  
8
8
75  
RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
DB5SP  
DB5SP  
Samples  
Samples  
2500 RoHS & Green NIPDAU | NIPDAUAG Level-2-260C-1 YEAR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Mar-2023  
OTHER QUALIFIED VERSIONS OF LMR14050 :  
Automotive : LMR14050-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LMR14050SDDA  
LMR14050SDDA  
DDA  
DDA  
HSOIC  
HSOIC  
8
8
75  
75  
507  
517  
8
3940  
635  
4.32  
4.25  
7.87  
Pack Materials-Page 1  
PACKAGE OUTLINE  
DDA0008B  
PowerPADTM SOIC - 1.7 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.2  
5.8  
TYP  
SEATING PLANE  
A
PIN 1 ID  
AREA  
0.1 C  
6X 1.27  
8
1
2X  
5.0  
4.8  
3.81  
NOTE 3  
4
5
0.51  
8X  
0.31  
4.0  
3.8  
1.7 MAX  
B
0.25  
C A B  
NOTE 4  
0.25  
0.10  
TYP  
SEE DETAIL A  
5
4
EXPOSED  
THERMAL PAD  
0.25  
3.4  
2.8  
9
GAGE PLANE  
0.15  
0.00  
0 - 8  
1.27  
0.40  
1
8
DETAIL A  
TYPICAL  
2.71  
2.11  
4214849/A 08/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MS-012.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDA0008B  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
(2.95)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(2.71)  
SOLDER MASK  
OPENING  
SEE DETAILS  
8X (1.55)  
1
8
8X (0.6)  
(3.4)  
SOLDER MASK  
OPENING  
TYP  
9
SYMM  
(1.3)  
(4.9)  
NOTE 9  
6X (1.27)  
5
4
(R0.05) TYP  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.4)  
(
0.2) TYP  
VIA  
(1.3) TYP  
LAND PATTERN EXAMPLE  
SCALE:10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-8  
4214849/A 08/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDA0008B  
PowerPADTM SOIC - 1.7 mm max height  
PLASTIC SMALL OUTLINE  
(2.71)  
BASED ON  
0.125 THICK  
STENCIL  
8X (1.55)  
(R0.05) TYP  
8
1
8X (0.6)  
(3.4)  
BASED ON  
0.125 THICK  
STENCIL  
SYMM  
9
6X (1.27)  
5
4
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.4)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.03 X 3.80  
2.71 X 3.40 (SHOWN)  
2.47 X 3.10  
0.125  
0.150  
0.175  
2.29 X 2.87  
4214849/A 08/2016  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LMR14050-Q1

具有 40uA IQ 的 SIMPLE SWITCHER® 汽车类 40V、5A 2.2MHz 降压转换器
TI

LMR14050-Q1_V01

LMR14050-Q1 SIMPLE SWITCHER® 40 V, 5 A Step-Down Converter with 40 μA IQ
TI

LMR14050QDPRRQ1

具有 40uA IQ 的 SIMPLE SWITCHER® 汽车类 40V、5A 2.2MHz 降压转换器 | DPR | 10 | -40 to 125
TI

LMR14050QDPRTQ1

具有 40uA IQ 的 SIMPLE SWITCHER® 汽车类 40V、5A 2.2MHz 降压转换器 | DPR | 10 | -40 to 125
TI

LMR14050SDDA

具有 40μA IQ 的 SIMPLE SWITCHER®、40V、5A 2.2MHz 降压转换器 | DDA | 8 | -40 to 125
TI

LMR14050SDDAR

具有 40μA IQ 的 SIMPLE SWITCHER®、40V、5A 2.2MHz 降压转换器 | DDA | 8 | -40 to 125
TI

LMR14050SQDDAQ1

LMR14050-Q1 SIMPLE SWITCHER® 40 V, 5 A Step-Down Converter with 40 μA IQ
TI

LMR14050SQDDARQ1

具有 40uA IQ 的 SIMPLE SWITCHER® 汽车类 40V、5A 2.2MHz 降压转换器 | DDA | 8 | -40 to 125
TI

LMR14050SQDPRRQ1

具有 40uA IQ 的 SIMPLE SWITCHER® 汽车类 40V、5A 2.2MHz 降压转换器 | DPR | 10 | -40 to 125
TI

LMR14050SQDPRTQ1

具有 40uA IQ 的 SIMPLE SWITCHER® 汽车类 40V、5A 2.2MHz 降压转换器 | DPR | 10 | -40 to 125
TI

LMR14050SSQDDAQ1

具有 40uA IQ 的 SIMPLE SWITCHER® 汽车类 40V、5A 2.2MHz 降压转换器 | DDA | 8 | -40 to 125
TI

LMR14050SSQDDARQ1

具有 40uA IQ 的 SIMPLE SWITCHER® 汽车类 40V、5A 2.2MHz 降压转换器 | DDA | 8 | -40 to 125
TI