LMR54406FDBVR [TI]

LMR544xx SIMPLE SWITCHER® 4-V to 36-V, 0.6-A/1-A Buck Converter in a SOT-23 Package;
LMR54406FDBVR
型号: LMR54406FDBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LMR544xx SIMPLE SWITCHER® 4-V to 36-V, 0.6-A/1-A Buck Converter in a SOT-23 Package

文件: 总27页 (文件大小:1625K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
LMR544xx SIMPLE SWITCHER® 4-V to 36-V, 0.6-A/1-A Buck Converter  
in a SOT-23 Package  
1 Features  
3 Description  
Functional Safety-Capable  
The LMR544xx is  
a
wide-VIN, easy-to-use  
synchronous buck converter capable of driving up to  
1-A and 0.6-A load current. With a wide input range of  
4 V to 36 V, the device is suitable for a wide range of  
industrial applications for power conditioning from an  
unregulated source.  
Documentation available to aid functional safety  
system design  
Configured for rugged industrial applications  
– 4-V to 36-V input voltage range  
– 0.6-A/1-A continuous output current  
– 60-ns minimum switching on time  
– 1.1-MHz fixed switching frequency  
– –40°C to 150°C junction temperature range  
– 98% maximum duty cycle  
– Monotonic start-up with pre-biased output  
– Short circuit protection with hiccup mode  
– Precision enable  
– ±1% tolerance voltage reference  
Small solution size and ease of use  
– Integrated synchronous rectification  
– Internal compensation for ease of use  
– SOT-23 package  
The LMR544xx operates at 1.1-MHz switching  
frequency to support use of relatively small inductors  
for an optimized solution size. It has a PFM version  
to realize high efficiency at light load and a FPWM  
version to achieve constant frequency and small  
output voltage ripple over the full load range. Soft-  
start and compensation circuits are implemented  
internally, which allow the device to be used with  
minimal external components.  
The device has built-in protection features, such as  
cycle-by-cycle current limit, hiccup mode short-circuit  
protection, and thermal shutdown in case of excessive  
power dissipation.  
Pin-to-pin compatible with the LMR14010A,  
LMR50410, and TPS560430  
Various options in pin-to-pin compatible package  
Device Information  
PACKAGE(1)  
BODY SIZE (NOM)  
– PFM and forced PWM (FPWM) options  
PART NUMBER  
LMR54410  
2 Applications  
SOT-23  
2.90 mm × 1.60 mm  
LMR54406  
Major appliances  
PLC, DCS, and PAC  
Smart meters  
General purpose wide VIN power supplies  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
VIN up to 36 V  
CB  
VIN  
CIN  
CBOOT  
L
VOUT  
SW  
FB  
EN  
RFBT  
GND  
COUT  
RFBB  
Simplified Schematic  
Efficiency Versus Output Current; VOUT = 5 V, 1100  
kHz  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. ADVANCE INFORMATION for preproduction products; subject to change  
without notice.  
 
 
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................5  
7.6 Timing Requirements..................................................6  
7.7 System Characteristics............................................... 6  
8 Detailed Description........................................................7  
8.1 Overview.....................................................................7  
8.2 Functional Block Diagram...........................................8  
8.3 Feature Description.....................................................8  
8.4 Device Functional Modes..........................................13  
9 Application and Implementation..................................14  
9.1 Application Information............................................. 14  
9.2 Typical Application.................................................... 14  
10 Power Supply Recommendations..............................19  
11 Layout...........................................................................20  
11.1 Layout Guidelines................................................... 20  
11.2 Layout Example...................................................... 21  
12 Device and Documentation Support..........................22  
12.1 Device Support....................................................... 22  
12.2 Documentation Support.......................................... 22  
12.3 Receiving Notification of Documentation Updates..22  
12.4 Support Resources................................................. 22  
12.5 Trademarks.............................................................22  
12.6 Electrostatic Discharge Caution..............................22  
12.7 Glossary..................................................................22  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 22  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DATE  
REVISION  
NOTES  
October 2021  
*
Advance Information  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMR54410 LMR54406  
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
5 Device Comparison Table  
ORDERABLE PART NUMBER  
LMR54410DBVR  
OUTPUT CURRENT  
FREQUENCY  
1100 kHz  
PFM OR FPWM  
PFM  
OUTPUT  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
1 A  
1 A  
LMR54410FDBVR  
1100 kHz  
FPWM  
LMR54406DBVR  
0.6 A  
0.6 A  
1100 kHz  
PFM  
LMR54406FDBVR  
1100 kHz  
FPWM  
6 Pin Configuration and Functions  
CB  
1
6
SW  
VIN  
GND  
FB  
2
3
5
4
EN  
Figure 6-1. 6-Pin SOT-23 DBV Package (Top View)  
Table 6-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO  
Bootstrap capacitor connection for high-side FET driver. Connect a high quality 100-nF capacitor from  
this pin to the SW pin.  
CB  
1
P
G
A
A
P
P
Power ground pins. Connected to the source of low-side FET internally. Connect to system ground,  
ground side of CIN and COUT. The path to CIN must be as short as possible.  
GND  
FB  
2
3
4
5
6
Feedback input to the converter. Connect a resistor divider to set the output voltage. Never short this  
terminal to ground during operation.  
Precision enable input to the converter. Do not float. High = on, low = off. Can be tied to VIN.  
Precision enable input allows an adjustable UVLO by an external resistor divider.  
EN  
Supply input pin to the internal bias LDO and high-side FET. Connect to the input supply and input  
bypass capacitors CIN. Input bypass capacitors must be directly connected to this pin and GND.  
VIN  
SW  
Switching output of the converter. Internally connected to source of the high-side FET and drain of the  
low-side FET. Connect to the power inductor.  
(1) A = Analog, P = Power, G = Ground  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMR54410 LMR54406  
 
 
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over junction temperature range of –40°C to 150°C (unless otherwise noted)(1)  
MIN  
MAX  
50(3)  
UNIT  
VIN to GND(2)  
–0.3  
–0.3  
–0.3  
–0.3  
–3.5  
–0.3  
–40  
V
V
Input voltage  
EN to GND(2)  
VIN + 0.3  
5.5  
FB to GND  
V
SW to GND(2)  
VIN + 0.3  
44  
V
Output voltage  
SW to GND less than 10-ns transients(2)  
V
CBOOT to SW  
5.5  
V
Junction Temperature TJ  
Storage temperature, Tstg  
150  
°C  
°C  
–65  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) Absolute maximum ratings are rated under typical room temperature conditions. Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the device.  
(3) A maximum of 50 V can be sustained at this pin at room temperature for a duration of ≤ 1 s at a duty cycle of ≤ 0.01%. In short 100-μS  
VIN transient at room temperature.  
7.2 ESD Ratings  
VALUE  
±2500  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range of –40°C to 150°C (unless otherwise noted)  
MIN  
MAX  
UNIT  
VIN to GND  
4
36  
VIN  
28  
V
V
V
A
A
Input voltage  
Output voltage  
Output current  
EN to GND(1)  
0
(2)  
VOUT  
1
LMR54410  
LMR54406  
0
1
0
0.6  
(1) The voltage on this pin must not exceed the voltage on the VIN pin by more than 0.3 V.  
(2) Under no conditions should the output voltage be allowed to fall below 0 V.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMR54410 LMR54406  
 
 
 
 
 
 
 
 
 
 
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
7.4 Thermal Information  
LMR544XX  
THERMAL METRIC(1)  
DBV(SOT-23)  
UNIT  
6 PINS  
173  
116  
31  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
20  
ψJB  
30  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
Limits apply over operating junction temperature (TJ) range of –40°C to +150°C, unless otherwise stated. Minimum and  
Maximum limits are specified through test, design or statistical correlation. Typical values represent the most likely parametric  
norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated, the following conditions apply: VIN  
= 4 V to 36 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGE (VIN PIN)  
Rising threshold  
3.55  
3.25  
3.75  
3.45  
0.3  
4
V
V
V
VIN_UVLO  
Undervoltage lockout thresholds  
Falling threshold  
Hysteresis  
3.65  
Operating quiescent current  
(nonswitching)(1)  
VEN = 3.3 V, VFB = 1.1 V (PFM variant  
only)  
IQ-nonSW  
ISD  
80  
3
120  
10  
µA  
µA  
Shutdown quiescent current;  
measured at the VIN pin  
VEN = 0 V  
ENABLE (EN PIN)  
VEN-VOUT-H Enable input high-level for VOUT  
VEN-VOUT-L Enable input low-level for VOUT  
VEN-VOUT-HYS Enable input hysteresis for VOUT  
ILKG-EN Enable input leakage current  
VOLTAGE REFERENCE (FB PIN)  
VENABLE rising  
VENABLE falling  
Hysteresis  
1.1  
1.23  
1.1  
130  
10  
1.36  
1.22  
V
V
0.95  
mV  
nA  
VEN = 3.3 V  
200  
VFB  
Feedback voltage  
0.78  
0.8  
0.2  
0.82  
V
ILKG-FB  
Feedback leakage current  
FB = 1.2 V  
nA  
SWITCHING FREQUENCY  
FOSC  
Internal oscillator frequency  
0.935  
1.1  
1.265  
MHz  
CURRENT LIMITS AND HICCUP  
ISC  
High-side current limit(2)  
Low-side current limit(2)  
High-side current limit(2)  
Low-side current limit(2)  
Zero cross detector threshold  
LMR54410  
1.6  
1.1  
A
A
A
A
A
ILS-LIMIT  
ISC  
ILS-LIMIT  
IL-ZC  
LMR54410  
LMR54406  
1.3  
LMR54406  
0.9  
PFM variants only  
–0.02  
MOSFETS  
High-side MOSFET ON-  
resistance  
RDS-ON-HS  
TJ = 25, VIN = 12 V  
450  
240  
mΩ  
mΩ  
RDS-ON-LS  
THERMAL SHUTDOWN  
TSD-Rising Thermal shutdown  
TSD-Falling Thermal shutdown  
Low-side MOSFET ON-resistance TJ = 25, VIN = 12 V  
Shutdown threshold  
Recovery threshold  
170  
158  
°C  
°C  
(1) This is the current used by the device open loop. It does not represent the total input current of the system when in regulation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMR54410 LMR54406  
 
 
 
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
(2) The current limit values in this table are tested, open loop, in production. They may differ from those found in a closed loop application.  
7.6 Timing Requirements  
Limits apply over operating junction temperature (TJ ) range of –40°C to +150°C, unless otherwise stated. Minimum and  
Maximum limits(1) are specified through test, design or statistical correlation. Typical values represent the most likely  
parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated, the following  
conditions apply: VIN = 4 V- 36 V.  
PARAMETER  
TEST CONDTIONS  
IOUT = 1 A  
IOUT = 1 A  
MIN  
TYP  
MAX  
UNIT  
tON-MIN  
tOFF-MIN  
tON-MAX  
tSS  
Minimum switch on time  
Minimum switch off time  
Maximum switch on time  
Internal soft-start time  
60  
ns  
110  
7.5  
1.8  
ns  
µs  
ms  
(1) MIN and MAX limits are 100% production tested at 25°C. Limits over the operating temperature range verified through correlation  
using  
Statistical Quality Control (SQC) methods. Limits are used to calculate Average Outgoing Quality Level (AOQL).  
7.7 System Characteristics  
The following specifications apply to a typical application circuit with nominal component values. Specifications in the typical  
(TYP) column apply to TJ = 25°C only. Specifications in the minimum (MIN) and maximum (MAX) columns apply to the  
case of typical components over the temperature range of TJ = –40°C to 150°C. These specifications are not ensured by  
production testing.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Operating input voltage range  
4
36  
V
Adjustable output voltage  
regulation(1)  
VOUT  
PFM operation  
–1.5%  
–1.5%  
2.5%  
1.5%  
Adjustable output voltage  
regulation(1)  
VOUT  
FPWM operation  
Input supply current when in  
regulation  
VIN = 12 V, VOUT = 3.3 V, IOUT = 0 A,  
RFBT = 1 MΩ, PFM variant  
ISUPPLY  
DMAX  
VHC  
90  
98%  
µA  
V
Maximum switch duty cycle(2)  
FB pin voltage required to trip short-  
circuit hiccup mode  
0.325  
tD  
Switch voltage dead time  
2
170  
158  
ns  
°C  
°C  
TSD  
TSD  
Thermal shutdown temperature  
Thermal shutdown temperature  
Shutdown temperature  
Recovery temperature  
(1) Deviation in VOUT from nominal output voltage value at VIN = 24 V, IOUT = 0 A to full load  
(2) In dropout the switching frequency drops to increase the effective duty cycle. The lowest frequency is clamped at approximately: FMIN  
= 1 / (tON-MAX + tOFF-MIN). DMAX = tON-MAX / (tON-MAX + tOFF-MIN).  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LMR54410 LMR54406  
 
 
 
 
 
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The LMR544xx converter is an easy-to-use synchronous step-down DC-DC converter operating from a 4-V to  
36-V supply voltage. The LMR54410 is capable of delivering up to 1-A DC load current in a very small solution  
size while the LMR54406 is capable of delivering up to 0.6-A load current. The family has multiple versions  
applicable to various applications. See Section 5 for detailed information.  
The LMR544xx employs fixed-frequency peak-current mode control. The PFM version enters PFM mode at light  
load to achieve high efficiency. A FPWM version is provided to achieve low output voltage ripple, tight output  
voltage regulation, and constant switching frequency at light load. The device is internally compensated, which  
reduces design time and requires few external components.  
Additional features, such as precision enable and internal soft start, provide a flexible and easy-to-use solution  
for a wide range of applications. Protection features include the following:  
Thermal shutdown  
VIN undervoltage lockout  
Cycle-by-cycle current limit  
Hiccup mode short-circuit protection  
This family of devices requires very few external components and has a pinout designed for simple, optimal PCB  
layout.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMR54410 LMR54406  
 
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
8.2 Functional Block Diagram  
EN  
VCC  
Enable  
LDO  
VIN  
CB  
Precision  
Enable  
HSI Sense  
Internal  
SS  
EA  
REF  
RC  
CC  
TSD  
UVLO  
FB  
PWM CONTROL LOGIC  
PFM  
Detector  
SW  
Slope  
Comp  
Ton_min/Toff_min  
Detector  
Freq  
Foldback  
HICCUP  
Detector  
Zero  
Cross  
LSI Sense  
Oscillator  
FB  
GND  
8.3 Feature Description  
8.3.1 Fixed Frequency Peak Current Mode Control  
The following operating description of the LMR544xx refers to Section 8.2 and to the waveforms in Figure  
8-1. The LMR544xx is a step-down synchronous buck converter with integrated high-side (HS) and low-side  
(LS) switches (synchronous rectifier). The LMR544xx supplies a regulated output voltage by turning on the  
high-side and low-side NMOS switches with controlled duty cycle. During high-side switch ON time, the SW  
pin voltage swings up to approximately VIN, and the inductor current, iL, increases with a linear slope of (VIN  
VOUT) / L. When the high-side switch is turned off by the control logic, the low-side switch is turned on after an  
anti-shoot-through dead time. Inductor current discharges through the low-side switch with a slope of –VOUT / L.  
The control parameter of a buck converter is defined as Duty Cycle D = tON / TSW, where tON is the high-side  
switch ON time and TSW is the switching period. The converter control loop maintains a constant output voltage  
by adjusting the duty cycle D. In an ideal buck converter, where losses are ignored, D is proportional to the  
output voltage and inversely proportional to the input voltage: D = VOUT / VIN.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMR54410 LMR54406  
 
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
VSW  
VIN  
D = tON/ TSW  
tON  
tOFF  
t
0
TSW  
iL  
ILPK  
IOUT  
∆iL  
t
0
Figure 8-1. SW Node and Inductor Current Waveforms in Continuous Conduction Mode (CCM)  
The LMR544xx employs fixed-frequency peak-current mode control. A voltage feedback loop is used to get  
accurate DC voltage regulation by adjusting the peak-current command based on voltage offset. The peak  
inductor current is sensed from the high-side switch and compared to the peak current threshold to control the  
ON time of the high-side switch. The voltage feedback loop is internally compensated, which allows for fewer  
external components, making designing easy and providing stable operation when using a variety of output  
capacitors. The converter operates with fixed switching frequency at normal load conditions. During light-load  
condition, the LMR544xx operates in PFM mode to maintain high efficiency (PFM version) or in FPWM mode for  
low output voltage ripple, tight output voltage regulation, and constant switching frequency (FPWM version).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMR54410 LMR54406  
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
8.3.2 Adjustable Output Voltage  
A precision 0.8-V reference voltage (VREF) is used to maintain a tightly regulated output voltage over the entire  
operating temperature range. The output voltage is set by a resistor divider from VOUT to the FB pin. It is  
recommended to use 1% tolerance resistors with a low temperature coefficient for the FB divider. Select the  
bottom-side resistor, RFBB, for the desired divider current and use Equation 1 to calculate the top-side resistor,  
RFBT. The recommended range for RFBT is 10 kΩ to 100 kΩ. A lower RFBT value can be used if pre-loading  
is desired to reduce the VOUT offset in PFM operation. Lower RFBT values reduce efficiency at very light load.  
Less static current goes through a larger RFBT value and can be more desirable when light-load efficiency is  
critical. However, RFBT values larger than 1 MΩ are not recommended because they make the feedback path  
more susceptible to noise. Larger RFBT values require a more carefully designed feedback path trace from the  
feedback resistors to the feedback pin of the device. The tolerance and temperature variation of the resistor  
divider network affect the output voltage regulation.  
VOUT  
RFBT  
FB  
RFBB  
Figure 8-2. Output Voltage Setting  
VOUT - VREF  
RFBT  
=
× RFBB  
VREF  
(1)  
8.3.3 Enable  
The voltage on the EN pin controls the ON/OFF operation of the LMR544xx. A voltage of less than 0.95 V shuts  
down the device, while a voltage of greater than 1.36 V is required to start the converter. The EN pin is an input  
and cannot be left open or floating. The simplest way to enable the operation of the LMR544xx is to connect EN  
to VIN. This allows self-start-up of the LMR544xx when VIN is within the operating range.  
Many applications benefit from the employment of an enable divider, RENT and RENB (Figure 8-3) to establish  
a precision system UVLO level for the converter. A system UVLO can be used for supplies operating from  
utility power as well as battery power. It can be used for sequencing, ensuring reliable operation, or supplying  
protection, such as a battery discharge level. An external logic signal can also be used to drive the EN input for  
system sequencing and protection.  
Note  
The EN pin voltage must not to be greater than VIN + 0.3 V. It is not recommended to apply EN  
voltage when VIN is 0 V.  
VIN  
RENT  
EN  
RENB  
Figure 8-3. System UVLO by Enable Divider  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMR54410 LMR54406  
 
 
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
8.3.4 Minimum ON Time, Minimum OFF Time, and Frequency Foldback  
The minimum ON time (TON_MIN) is the shortest duration of time that the high-side switch can be turned on.  
TON_MIN is typically 60 ns for the LMR544xx. The minimum OFF time (TOFF_MIN) is the shortest duration of time  
that the high-side switch can be off. TOFF_MIN is typically 110 ns. In CCM operation, TON_MIN and TOFF_MIN limit  
the voltage conversion range without switching frequency foldback.  
The minimum duty cycle without frequency foldback allowed is:  
DMIN = TON_MIN × fSW  
(2)  
(3)  
The maximum duty cycle without frequency foldback allowed is:  
DMAX = 1 - TOFF_MIN × fSW  
Given a required output voltage, the maximum VIN without frequency foldback can be found by:  
VOUT  
VIN_MAX  
=
fSW × TON_MIN  
(4)  
(5)  
The minimum VIN without frequency foldback can be calculated by:  
VOUT  
VIN_MIN  
=
1- fSW × TOFF_MIN  
In the LMR544xx, a frequency foldback scheme is employed once the TON_MIN or TOFF_MIN is triggered, which  
can extend the maximum duty cycle or lower the minimum duty cycle.  
The on time decreases while VIN voltage increases. Once the on time decreases to TON_MIN, the switching  
frequency starts to decrease while VIN continues to go up, which lowers the duty cycle further to keep VOUT in  
regulation according to Equation 2.  
The frequency foldback scheme also works once larger duty cycle is needed under a low VIN condition. The  
frequency decreases once the device hits its TOFF_MIN, which extends the maximum duty cycle according to  
Equation 3. In such condition, the frequency can be as low as approximately 133 kHz. A wide range of frequency  
foldback allows for the LMR544xx output voltage to stay in regulation with a much lower supply voltage VIN,  
which leads to a lower effective dropout.  
With frequency foldback while maintaining a regulated output voltage, VIN_MAX is raised and VIN_MIN is lowered  
by decreased fSW  
.
8.3.5 Bootstrap Voltage  
The LMR544xx provides an integrated bootstrap voltage converter. A small capacitor between the CB and SW  
pins provides the gate drive voltage for the high-side MOSFET. The bootstrap capacitor is refreshed when the  
high-side MOSFET is off and the low-side switch is on. The recommended value of the bootstrap capacitor  
is 0.1 µF. A ceramic capacitor with an X7R or X5R grade dielectric with a voltage rating of 16 V or higher is  
recommended for stable performance over temperature and voltage.  
8.3.6 Overcurrent and Short Circuit Protection  
The LMR544xx incorporates both peak and valley inductor current limit to provide protection to the device from  
overloads and short circuits and limit the maximum output current. Valley current limit prevents inductor current  
runaway during short circuits on the output, while both peak and valley limits work together to limit the maximum  
output current of the converter. Cycle-by-cycle current limit is used for overloads, while hiccup mode is used for  
sustained short circuits.  
High-side MOSFET overcurrent protection is implemented by the nature of the peak current mode control. The  
high-side switch current is sensed when the high-side is turned on after a set blanking time. The high-side switch  
current is compared to the output of the Error Amplifier (EA) minus slope compensation every switching cycle.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMR54410 LMR54406  
 
 
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
See Section 8.2 for more details. The peak current of high-side switch is limited by a clamped maximum peak  
current threshold Isc (see Section 7.5), which is constant.  
The current going through the low-side MOSFET is also sensed and monitored. When the low-side switch turns  
on, the inductor current begins to ramp down. The low-side switch is not turned OFF at the end of a switching  
cycle if its current is above the low-side current limit, ILS_LIMIT (see Section 7.5). The low-side switch is kept ON  
so that inductor current keeps ramping down until the inductor current ramps below ILS_LIMIT. Then, the low-side  
switch is turned OFF and the high-side switch is turned on after a dead time. After ILS_LIMIT is achieved, peak  
and valley current limit controls the maximum current delivered and it can be calculated using Equation 6.  
ILS_LIMIT +ISC  
IOUT  
=
max  
2
(6)  
If the feedback voltage is lower than 40% of the VREF, the current of the low-side switch triggers ILS_LIMIT for  
256 consecutive cycles and hiccup current protection mode is activated. In hiccup mode, the converter shuts  
down and keeps off for a period of hiccup, THICCUP (135 ms typical) before the LMR544x tries to start again. If  
overcurrent or a short-circuit fault condition still exist, hiccup repeats until the fault condition is removed. Hiccup  
mode reduces power dissipation under severe overcurrent conditions, preventing overheating and potential  
damage to the device.  
For the FPWM version, the inductor current is allowed to go negative. When this current exceeds the low-side  
negative current limit, ILS_NEG, the low-side switch is turned off and high-side switch is turned on immediately.  
This is used to protect the low-side switch from excessive negative current.  
8.3.7 Soft Start  
The integrated soft-start circuit prevents input inrush current impacting the LMR544xx and the input power  
supply. Soft start is achieved by slowly ramping up the internal reference voltage when the device is first enabled  
or powered up. The typical soft-start time is 1.8 ms.  
The LMR544xx also employs overcurrent protection blanking time, TOCP_BLK (33 ms typical), at the beginning  
of power up. Without this feature, in applications with a large amount of output capacitors and high VOUT, the  
inrush current is large enough to trigger the current-limit protection, which can cause a false start as the device  
enters into hiccup mode. This results in a continuous recycling of soft start without raising up to the programmed  
output voltage. The LMR544xx is able to charge the output capacitor to the programmed VOUT by controlling the  
average inductor current during the start-up sequence in the blanking time, TOCP_BLK  
.
8.3.8 Thermal Shutdown  
The LMR544xx provides an internal thermal shutdown to protect the device when the junction temperature  
exceeds 170°C. Both high-side and low-side FETs stop switching in thermal shutdown. Once the die  
temperature falls below 158°C, the device reinitiates the power-up sequence controlled by the internal soft-start  
circuitry.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LMR54410 LMR54406  
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
8.4 Device Functional Modes  
8.4.1 Shutdown Mode  
The EN pin provides electrical ON/OFF control for the LMR544xx. When VEN is below 0.95 V, the device is  
in shutdown mode. The LMR544xx also employs VIN undervoltage lockout protection (UVLO). If VIN voltage is  
below its UVLO threshold of 3.25 V, the converter is turned off.  
8.4.2 Active Mode  
The LMR544xx is in active mode when both VEN and VIN are above their respective operating threshold. The  
simplest way to enable the LMR544xx is to connect the EN pin to VIN pin. This allows self-start-up when the  
input voltage is in the operating range of 4.0 V to 36 V. See Section 8.3.3 for details on setting these operating  
levels.  
In active mode, depending on the load current, the LMR544xx is in one of four modes:  
1. Continuous conduction mode (CCM) with fixed switching frequency when load current is greater than half of  
the peak-to-peak inductor current ripple (for both PFM and FPWM versions)  
2. Discontinuous conduction mode (DCM) with fixed switching frequency when load current is less than half of  
the peak-to-peak inductor current ripple(only for PFM version)  
3. Pulse frequency modulation mode (PFM) when switching frequency is decreased at very light load (only for  
PFM version)  
4. Forced pulse width modulation mode (FPWM) with fixed switching frequency even at light load (only for  
FPWM version)  
8.4.3 CCM Mode  
Continuous conduction mode (CCM) operation is employed in the LMR544xx when the load current is greater  
than half of the peak-to-peak inductor current. In CCM operation, the frequency of operation is fixed, output  
voltage ripple is at a minimum in this mode and the maximum output current of 1 A or 0.6 A can be supplied by  
the LMR54410 or LMR54406, respectively.  
8.4.4 Light Load Operation (PFM Version)  
For PFM version, when the load current is lower than half of the peak-to-peak inductor current in CCM, the  
LMR544xx operates in discontinuous conduction mode (DCM), also known as diode emulation mode (DEM). In  
DCM operation, the low-side switch is turned off when the inductor current drops to ILS_ZC (20 mA typical) to  
improve efficiency. Both switching losses and conduction losses are reduced in DCM, compared to forced PWM  
operation at light load.  
During light load operation, pulse frequency modulation (PFM) mode is activated to maintain high efficiency  
operation. When either the minimum high-side switch ON time tON_MIN or the minimum peak inductor current  
IPEAK_MIN (300 mA typical) is reached, the switching frequency decreases to maintain regulation. In PFM mode,  
switching frequency is decreased by the control loop to maintain output voltage regulation when load current  
reduces. Switching loss is further reduced in PFM operation due to a significant drop in effective switching  
frequency.  
8.4.5 Light-Load Operation (FPWM Version)  
For FPWM version, LMR544xx is locked in PWM mode at full load range. This operation is maintained, even  
in no-load condition, by allowing the inductor current to reverse its normal direction. This mode trades off  
reduced light load efficiency for low output voltage ripple, tight output voltage regulation, and constant switching  
frequency.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMR54410 LMR54406  
 
 
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The LMR544xx is a step-down DC-to-DC converter. The LMR54410 is typically used to convert a higher input  
voltage to a lower output DC voltage with a maximum output current of 1 A. The LMR54406 is typically used  
to convert a higher input voltage to a lower output DC voltage with a maximum output current of 0.6 A. The  
following design procedure can be used to select components for the LMR544xx.  
9.2 Typical Application  
The LMR54410 only requires a few external components to convert from a wide voltage range supply to a fixed  
output voltage. Figure 9-1 shows a basic schematic.  
Figure 9-1. Application Circuit  
The external components have to fulfill the needs of the application and the stability criteria of the control loop of  
the device. Table 9-1 can be used to simplify the output filter component selection.  
Table 9-1. L and COUT Typical Values  
fSW (kHz)  
VOUT (V)  
L (µH)  
COUT (µF) (1)  
RFBT (kΩ)  
69.8  
RFBB (kΩ)  
3.3  
5
10  
22 µF / 10 V  
22.1  
1100  
15  
33  
22 µF / 10 V  
118  
22.1  
22.1  
12  
22 µF / 25 V + 10 µF / 25 V  
309  
(1) A ceramic capacitor is used in this table.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMR54410 LMR54406  
 
 
 
 
 
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
9.2.1 Design Requirements  
The detailed design procedure is described based on a design example. For this design example, use the  
parameters listed in Table 9-2 as the input parameters.  
Table 9-2. Design Example Parameters  
PARAMETER  
VALUE  
Input voltage, VIN  
5 V typical, range from 6 V to 36 V  
Output voltage, VOUT  
5 V ±3%  
1 A  
Maximum output current, IOUT_MAX  
Output overshoot/undershoot (0 A to 1 A)  
Output voltage ripple  
5%  
0.5%  
Operating frequency  
1100 kHz  
9.2.2 Detailed Design Procedure  
9.2.2.1 Output Voltage Set-Point  
The output voltage of the LMR54410 device is externally adjustable using a resistor divider network. The divider  
network is comprised of a top feedback resistor RFBT and bottom feedback resistor RFBB. Equation 7 is used to  
determine the output voltage of the converter:  
VOUT - VREF  
RFBT  
=
× RFBB  
VREF  
(7)  
Choose the value of RFBB to be 22.1 kΩ. With the desired output voltage set to 5 V and the VREF = 0.8 V, the  
RFBT value can then be calculated using Equation 7. The formula yields to a value 116 kΩ, a standard value of  
118 kΩ is selected.  
9.2.2.2 Switching Frequency  
The higher switching frequency allows for lower value inductors and smaller output capacitors, which results  
in smaller solution size and lower component cost. However, higher switching frequency brings more switching  
loss, making the solution less efficient and produce more heat. The switching frequency is also limited by the  
minimum on time of the integrated power switch, the input voltage, the output voltage, and the frequency shift  
limitation as mentioned in Section 8.3.4. For this example, a switching frequency of 1100 kHz is selected.  
9.2.2.3 Inductor Selection  
The most critical parameters for the inductor are the inductance, saturation current, and the RMS current. The  
inductance is based on the desired peak-to-peak ripple current ΔiL. Since the ripple current increases with  
the input voltage, the maximum input voltage is always used to calculate the minimum inductance LMIN. Use  
Equation 9 to calculate the minimum value of the output inductor. KIND is a coefficient that represents the amount  
of inductor ripple current relative to the maximum output current of the device. A reasonable value of KIND must  
be 20% to 60% of maximum IOUT supported by converter. During an instantaneous overcurrent operation event,  
the RMS and peak inductor current can be high. The inductor saturation current must be higher than peak  
current limit level.  
VOUT  
×
V
- VOUT  
IN_MAX  
(
)
ûiL =  
VIN_MAX × L × fSW  
(8)  
(9)  
VIN_MAX - VOUT  
VOUT  
LMIN  
=
×
IOUT × K IND  
VIN_MAX × fSW  
In general, it is preferable to choose lower inductance in switching power supplies, because it usually  
corresponds to faster transient response, smaller DCR, and reduced size for more compact designs. Too low  
of an inductance can generate too large of an inductor current ripple such that overcurrent protection at the  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMR54410 LMR54406  
 
 
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
full load can be falsely triggered. It also generates more inductor core loss since the current ripple is larger.  
Larger inductor current ripple also implies larger output voltage ripple with the same output capacitors. With peak  
current mode control, it is recommended to have adequate amount of inductor ripple current. A larger inductor  
ripple current improves the comparator signal-to-noise ratio.  
For this design example, choose KIND = 0.4. The minimum inductor value is calculated to be 15.36 µH. Choose  
the nearest standard 15-µH ferrite inductor with a capability of 1.5-A RMS current and 2.5-A saturation current.  
9.2.2.4 Output Capacitor Selection  
The device is designed to be used with a wide variety of LC filters. It is generally desired to minimize the output  
capacitance to keep cost and size down. The output capacitor or capacitors, COUT, must be chosen with care  
since it directly affects the steady state output voltage ripple, loop stability, and output voltage overshoot and  
undershoot during load current transient. The output voltage ripple is essentially composed of two parts. One  
part is caused by the inductor ripple current flowing through the Equivalent Series Resistance (ESR) of the  
output capacitors:  
ûVOUT_ESR = ûiL × ESR = KIND ×IOUT × ESR  
(10)  
The other part is caused by the inductor current ripple charging and discharging the output capacitors:  
ûiL  
KIND ×IOUT  
ûVOUT_C  
=
=
8×fSW × COUT 8×fSW × COUT  
(11)  
The two components of the voltage ripple are not in-phase, therefore, the actual peak-to-peak ripple is less than  
the sum of the two peaks.  
Output capacitance is usually limited by transient performance specifications if the system requires tight voltage  
regulation with presence of large current steps and fast slew rates. When a large load step occurs, output  
capacitors provide the required charge before the inductor current can slew to an appropriate level. The control  
loop of the converter usually requires eight or more clock cycles to regulate the inductor current equal to the  
new load level during this time. The output capacitance must be large enough to supply the current difference  
for eight clock cycles to maintain the output voltage within the specified range. Equation 12 shows the minimum  
output capacitance needed for a specified VOUT overshoot and undershoot.  
8 × IOH -IOL  
(
)
1
2
COUT  
>
×
fSW × ûVOUT_SHOOT  
(12)  
where  
KIND = Ripple ratio of the inductor current (ΔiL / IOUT  
IOL = Low level output current during load transient  
IOH = High level output current during load transient  
)
VOUT_SHOOT = Target output voltage overshoot or undershoot  
For this design example, the target output ripple is 30 mV. Assuming ΔVOUT_ESR = ΔVOUT_C = 30 mV, choose  
KIND = 0.4. Equation 10 yields ESR no larger than 75 mΩ and Equation 11 yields COUT no smaller than 2.38  
µF. For the target overshoot and undershoot limitation of this design, ΔVOUT_SHOOT = 8% × VOUT = 400 mV. The  
COUT can be calculated to be no less than 14.3 µF by Equation 12. In summary, the most stringent criteria for  
the output capacitor is 14.3 µF. Considering derating, one 22-µF, 10-V, X7R ceramic capacitor with 10-mΩ ESR  
is used.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LMR54410 LMR54406  
 
 
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
9.2.2.5 Input Capacitor Selection  
The LMR54410 device requires a high frequency input decoupling capacitor or capacitor. The typical  
recommended value for the high frequency decoupling capacitor is 2.2 µF or higher. A high-quality ceramic  
type X5R or X7R with sufficiency voltage rating is recommended. The voltage rating must be greater than  
the maximum input voltage. To compensate the derating of ceramic capacitors, a voltage rating of twice the  
maximum input voltage is recommended. For this design, one 2.2-µF, X7R dielectric capacitor rated for 50 V is  
used for the input decoupling capacitor. The equivalent series resistance (ESR) is approximately 10 mΩ, and the  
current rating is 1 A. Include a capacitor with a value of 0.1 µF for high-frequency filtering and place it as close  
as possible to the device pins.  
9.2.2.6 Bootstrap Capacitor  
Every LMR54410 design requires a bootstrap capacitor, CBOOT. The recommended bootstrap capacitor is 0.1  
µF and rated at 16 V or higher. The bootstrap capacitor is located between the SW pin and the CB pin.  
The bootstrap capacitor must be a high-quality ceramic type with X7R or X5R grade dielectric for temperature  
stability.  
9.2.2.7 Undervoltage Lockout Set-Point  
The system undervoltage lockout (UVLO) is adjusted using the external voltage divider network of RENT and  
RENB. The UVLO has two thresholds, one for power up when the input voltage is rising and one for power down  
or brown outs when the input voltage is falling. Equation 13 can be used to determine the VIN UVLO level.  
RENT + RENB  
VIN_RISING = VENH  
×
RENB  
(13)  
The EN rising threshold (VENH) for LMR54410 is set to be 1.23 V (typical). Choose a value of 200 kΩ for RENB to  
minimize input current from the supply. If the desired VIN UVLO level is at 6.0 V, then the value of RENT can be  
calculated using Equation 14:  
÷
VIN_RISING  
RENT  
=
-1 × R  
«
÷
ENB  
VENH  
(14)  
The above equation yields a value of 775.6 kΩ, a standard value of 768 kΩ is selected. The resulting falling  
UVLO threshold, equal to 5.3 V, can be calculated by Equation 15 where EN hysteresis voltage, VEN_HYS, is 0.13  
V (typical).  
RENT + RENB  
VIN_FALLING = V  
(
- VEN_HYS ×  
)
ENH  
RENB  
(15)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMR54410 LMR54406  
 
 
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
9.2.3 Application Curves  
Unless otherwise specified the following conditions apply: VIN = 12 V, VOUT = 5 V, fSW = 1100 kHz, L = 15 µH,  
COUT = 22 µF, TA = 25°C.  
VEN [2V/div]  
VIN [5V/div]  
VOUT [2V/div]  
VOUT [2V/div]  
IL [1A/div]  
IOUT = 1 A  
IL [1A/div]  
IOUT = 1 A  
Time [2ms/div]  
Time [200us/div]  
Time [100ms/div]  
Time [2ms/div]  
Time [800us/div]  
Time [100ms/div]  
Figure 9-2. Start-Up by VIN  
Figure 9-3. Start-Up by EN  
VIN [10V/div]  
VOUT(AC) [100mV/div]  
VOUT(AC) [50mV/div]  
IL [500mA/div]  
IOUT [500mA/div]  
VIN = 12 to 24 V, 0.1 V / s  
IOUT = 0.5 to 1 A, 80mA / s  
Figure 9-4. Load Transient  
Figure 9-5. Line Transient  
VOUT [2V/div]  
VOUT [2V/div]  
IL [1A/div]  
IL [1A/div]  
IOUT = 0 mA to short  
IOUT = short to 0 mA  
Figure 9-6. Short Protection  
Figure 9-7. Short Recovery  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMR54410 LMR54406  
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
10 Power Supply Recommendations  
The LMR544xx is designed to operate from an input voltage supply range between 4.0 V and 36 V. This input  
supply must be well-regulated and able to withstand maximum input current and maintain a stable voltage. The  
resistance of the input supply rail must be low enough that an input current transient does not cause a high  
enough drop at the LMR544xx supply voltage that can cause a false UVLO fault triggering and system reset.  
If the input supply is located more than a few inches from the LMR544xx additional bulk capacitance can be  
required in addition to the ceramic bypass capacitors. The amount of bulk capacitance is not critical, but a 10-µF  
or 22-µF electrolytic capacitor is a typical choice.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMR54410 LMR54406  
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
Layout is a critical portion of good power supply design. The following guidelines will help users design a PCB  
with the best power conversion performance, thermal performance, and minimized generation of unwanted EMI.  
1. The input bypass capacitor CIN must be placed as close as possible to the VIN and GND pins. Grounding for  
both the input and output capacitors should consist of localized top side planes that connect to the GND pin.  
2. Minimize trace length to the FB pin net. Both feedback resistors, RFBT and RFBB, must be located close to  
the FB pin. If VOUT accuracy at the load is important, make sure VOUT sense is made at the load. Route VOUT  
sense path away from noisy nodes and preferably through a layer on the other side of a shielded layer.  
3. Use ground plane in one of the middle layers as noise shielding and heat dissipation path if possible.  
4. Make VIN, VOUT, and ground bus connections as wide as possible. This reduces any voltage drops on the  
input or output paths of the converter and maximizes efficiency.  
5. Provide adequate device heat-sinking. GND, VIN, and SW pins provide the main heat dissipation path, make  
the GND, VIN, and SW plane area as large as possible. Use an array of heat-sinking vias to connect the top  
side ground plane to the ground plane on the bottom PCB layer. If the PCB has multiple copper layers, these  
thermal vias can also be connected to inner layer heat-spreading ground planes. Ensure enough copper  
area is used for heat-sinking to keep the junction temperature below 125°C.  
11.1.1 Compact Layout for EMI Reduction  
Radiated EMI is generated by the high di/dt components in pulsing currents in switching converters. The larger  
area covered by the path of a pulsing current, the more EMI is generated. High frequency ceramic bypass  
capacitors at the input side provide primary path for the high di/dt components of the pulsing current. Placing  
a ceramic bypass capacitor or capacitors as close as possible to the VIN and GND pins is the key to EMI  
reduction.  
The SW pin connecting to the inductor must be as short as possible, and just wide enough to carry the load  
current without excessive heating. Short, thick traces or copper pours (shapes) must be used for high current  
conduction path to minimize parasitic resistance. The output capacitors must be placed close to the VOUT end of  
the inductor and closely grounded to GND pin.  
11.1.2 Feedback Resistors  
To reduce noise sensitivity of the output voltage feedback path, it is important to place the resistor divider  
close to the FB pin, rather than close to the load. The FB pin is the input to the error amplifier, so it is a high  
impedance node and very sensitive to noise. Placing the resistor divider closer to the FB pin reduces the trace  
length of FB signal and reduces noise coupling. The output node is a low impedance node, so the trace from  
VOUT to the resistor divider can be long if short path is not available.  
If voltage accuracy at the load is important, make sure voltage sense is made at the load. Doing so corrects  
for voltage drops along the traces and provides the best output accuracy. The voltage sense trace from the  
load to the feedback resistor divider must be routed away from the SW node path and the inductor to avoid  
contaminating the feedback signal with switch noise, while also minimizing the trace length. This is most  
important when high value resistors are used to set the output voltage. It is recommended to route the voltage  
sense trace and place the resistor divider on a different layer than the inductor and SW node path, such that  
there is a ground plane in between the feedback trace and inductor/SW node polygon. This provides further  
shielding for the voltage feedback path from EMI noises.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LMR54410 LMR54406  
 
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
11.2 Layout Example  
Notes:  
1. BOOT capacitor should be  
close to CB and SW pins.  
VOUT  
2. SW area should be small.  
3. Output voltage set resistors  
should be close to FB pin.  
Output Bypass  
Capacitor  
Output  
Inductor  
BOOT  
Capacitor  
4. Input bypass capacitor  
should be close to VIN and GND  
pins.  
5. Use ground plane to keep a  
low GND impedance.  
GND  
SW  
CB  
GND  
FB  
VIN  
EN  
VIN  
Input Bypass  
Capacitor  
Output Voltage  
Set Resistors  
GND  
VIA (Connect to GND Plane)  
Figure 11-1. Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMR54410 LMR54406  
 
LMR54410, LMR54406  
SLUSEG8 – OCTOBER 2021  
www.ti.com  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, AN-1149 Layout Guidelines for Switching Power Supplies  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMR54410 LMR54406  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PLMR54410DBVR  
ACTIVE  
SOT-23  
DBV  
6
3000  
TBD  
Call TI  
Call TI  
-40 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

LMR54410

LMR544xx SIMPLE SWITCHER® 4-V to 36-V, 0.6-A/1-A Buck Converter in a SOT-23 Package
TI

LMR54410DBVR

LMR544xx SIMPLE SWITCHER® 4-V to 36-V, 0.6-A/1-A Buck Converter in a SOT-23 Package
TI

LMR54410FDBVR

LMR544xx SIMPLE SWITCHER® 4-V to 36-V, 0.6-A/1-A Buck Converter in a SOT-23 Package
TI

LMR54450-Q1

汽车级 5.5V 至 36V 输入、5A、500kHz 降压转换器
TI

LMR544XX

LMR544xx SIMPLE SWITCHER® 4-V to 36-V, 0.6-A/1-A Buck Converter in a SOT-23 Package
TI

LMR56C

T-1 3/4 (5mm) SOLID STATE LAMP
SUNLED

LMR56D

T-1 3/4 (5mm) SOLID STATE LAMP
SUNLED

LMR56W

T-1 3/4 (5mm) SOLID STATE LAMP
SUNLED

LMR61428

LMR61428 SIMPLE SWITCHER® 14Vout, 2.85A Step-Up Voltage Regulator in MSOP
TI

LMR61428XMM-NOPB

LMR61428 SIMPLE SWITCHER® 14Vout, 2.85A Step-Up Voltage Regulator in MSOP
TI

LMR61428XMM/NOPB

LMR61428 SIMPLE SWITCHER® 14Vout, 2.85A Step-Up Voltage Regulator in VSSOP
TI

LMR61428XMMX-NOPB

LMR61428 SIMPLE SWITCHER® 14Vout, 2.85A Step-Up Voltage Regulator in MSOP
TI