LMX1204RHAT [TI]

支持 JESD204B/C SYSREF 和相位同步的 12.8GHz 射频缓冲器、乘法器和分频器 | RHA | 40 | -40 to 85;
LMX1204RHAT
型号: LMX1204RHAT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

支持 JESD204B/C SYSREF 和相位同步的 12.8GHz 射频缓冲器、乘法器和分频器 | RHA | 40 | -40 to 85

射频
文件: 总45页 (文件大小:3171K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMX1204  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
LMX1204 低噪声、高JESD 缓冲器/倍频器/分频器  
1 特性  
3 说明  
300MHz 12.8GHz 输出频率  
• 超低噪声  
该器件具有高频功能和极低的抖动特性可在不降低信  
噪比的情况下很好地解决时钟精度、高频数据转换器  
的问题。4 个高频时钟输出中的每一个输出以及具有更  
大分频器范围的附加 LOGICLK 输出都与 SYSREF 输  
出时钟信号配对。JESD 接口的 SYSREF 信号可以在  
内部生成也可以作为输入传入并重新计时为器件时  
钟。对于数据转换器时钟应用务必使时钟的抖动小于  
数据转换器的孔径抖动。在需要对 4 个以上数据转换  
器进行时钟控制的应用中可以使用多个器件开发各种  
级联架构以分配所需的所有高频时钟和 SYSREF 信  
号。凭借其低抖动和低本底噪声该器件可与超低噪声  
参考时钟源相结合是时钟控制型数据转换器的典型解  
决方案尤其是3GHz 以上采样时。  
6GHz 输出的本底噪声-161dBc/Hz  
6GHz 输出、10kHz 偏移时1/f 噪声–  
154dBc/Hz  
30fs 附加抖动下直流fCLK 积分范围)  
4 个具有相SYSREF 输出的高频时钟  
– 支÷1缓冲模式÷234567 和  
8 的共享分频器  
– 支x1滤波器模式x2x3 x4 的基于  
PLL 的共享倍频器  
• 带有相SYSREF 输出LOGICLK 输出  
– 基于单独的分频组  
÷124 预分频器  
封装信息(1)  
÷1旁路2、…、1023 后分频器  
8 个可编程输出功率级别  
• 同步SYSREF 时钟输出  
器件型号  
封装  
封装尺寸  
LMX1204  
VQFN (40)  
6.00mm × 6.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
12.8GHz 508 次延迟步长调整每次小  
2.5ps  
– 发生器和中继器模式  
CAL  
CLKOUT0  
xM  
SYSREFREQ 引脚的窗口化特性以优化计时  
• 针对所有分频和倍频器件的同步功能  
2.5V 工作电压  
SYSREFOUT0  
t0  
t1  
t2  
t3  
CLKIN  
CLKOUT1  
÷2,3,..,8  
SYSREFOUT1  
• –40ºC +85ºC 工作温度  
CLKOUT2  
2 应用  
Pulser  
÷1,2,4  
÷2,3, … , 4095  
SYSREFOUT2  
SYSREFREQ  
RETIME  
SYSREF GENERATOR  
CLKOUT3  
• 通用:  
SYSREFOUT3  
– 数据转换器时钟  
– 时钟分配/倍频/分频  
• 测试设备:  
SCK  
SDI  
÷1,2,4  
÷1,2,3,...1023  
LOGICLKOUT  
Digital  
Control  
CS#  
t4  
LOGISYSREFOUT  
MUXOUT  
RETIME  
示波器  
– 宽带数字转换器  
无线设备测试仪  
• 航空航天与国防:  
方框图  
雷达  
电子战  
导引头前端  
– 军需品  
– 相控阵天线/波束形成  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNAS800  
 
 
 
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
Table of Contents  
7.3 Feature Description...................................................17  
7.4 Device Functional Modes..........................................27  
8 Application and Implementation..................................28  
8.1 Applications Information............................................28  
8.2 Typical Application.................................................... 29  
8.3 Power Supply Recommendations.............................31  
8.4 Layout....................................................................... 31  
9 Device and Documentation Support............................33  
9.1 Device Support......................................................... 33  
9.2 接收文档更新通知..................................................... 33  
9.3 支持资源....................................................................33  
9.4 Trademarks...............................................................33  
9.5 Electrostatic Discharge Caution................................33  
9.6 术语表....................................................................... 33  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Timing Requirements..................................................8  
6.7 Timing Requirements..................................................8  
6.8 Typical Characteristics ...............................................9  
7 Detailed Description......................................................15  
7.1 Overview...................................................................15  
7.2 Functional Block Diagram.........................................16  
Information.................................................................... 33  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (July 2021) to Revision A (August 2022)  
Page  
• 将数据表状态从“预告信息”更改为“生产数据”.............................................................................................1  
• 向数据表中添加了滤波器模式信息......................................................................................................................1  
Added descriptions for POR, multiplier, filter mode, common mode voltage, and other topics in the Detailed  
Description section........................................................................................................................................... 15  
Changed 8-1 ............................................................................................................................................... 28  
Moved the Power Supply Recommendations and Layout sections to the Application and Implementation  
section.............................................................................................................................................................. 31  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMX1204  
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
5 Pin Configuration and Functions  
MUXOUT  
SYSREFREQ_P  
SYSREFREQ_N  
VCC_CLKIN  
GND  
1
2
3
4
5
6
7
8
9
10  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
SYSREFOUT2_P  
SYSREFOUT2_N  
LOGICLKOUT_P  
LOGICLKOUT_N  
GND  
DAP  
CLKIN_P  
CLKIN_N  
SCK  
VCC_LOGICLK  
LOGISYSREFOUT_P  
LOGISYSREFOUT_N  
SYSREFOUT1_N  
SYSREFOUT1_P  
SDI  
CS#  
Not to scale  
5-1. RHA Package 40-Pin VQFN Top View  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMX1204  
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
5-1. Pin Functions  
NAME  
NO.  
TYPE  
DESCRIPTION  
If not using the multiplier, this pin may be left open. If using the multiplier,  
bypass this pin to GND with a 10-nF capacitor for optimal noise performance.  
BIAS01  
20  
BYP  
BYP  
If not using the multiplier, this pin may be left open. If using the multiplier,  
bypass this pin to GND with a 10-µF and 0.1-µF capacitor for optimal noise  
performance.  
BIAS23  
31  
CLKIN_N  
CLKIN_P  
7
6
Differential reference input clock. Internal 50-termination. AC-couple with a  
capacitor appropriate to the input frequency (typically 0.1 µF or smaller). If  
using single-ended, terminate unused side with a series AC-coupling  
capacitor 50-resistor to GND.  
I
CLKOUT0_N  
CLKOUT0_P  
CLKOUT1_N  
CLKOUT1_P  
CLKOUT2_N  
CLKOUT2_P  
CLKOUT3_N  
CLKOUT3_P  
CS#  
15  
14  
19  
Differential clock output pairs. Each pin is an open-collector output with  
internally integrated 50-resistor with programmable output swing. AC  
coupling required.  
18  
O
32  
33  
36  
37  
10  
I
SPI chip select. High impedance CMOS input. Accepts up to 3.3 V.  
Ground these pins.  
DAP  
DAP  
GND  
GND  
5,13,17,26,34,38  
LOGICLKOUT_N  
LOGICLKOUT_P  
LOGISYSREFOUT_N  
LOGISYSREFOUT_P  
MUXOUT  
27  
28  
23  
24  
1
Differential clock output pair. Selectable CML, LVDS, or LVPECL format.  
Programmable common-mode voltage.  
O
O
Differential clock output pair. Selectable CML, LVDS, or LVPECL format.  
Programmable common-mode voltage.  
O
I
Multiplexed pin serial data readback and lock status of the multiplier.  
SPI clock. High impedance CMOS input. Accepts up to 3.3 V.  
SPI data input. High impedance CMOS input. Accepts up to 3.3 V.  
SCK  
8
SDI  
9
I
SYSREFREQ_N  
3
Differential SYSREF request input for JESD204B support. Internal 50-AC  
coupled to internal common-mode voltage or capacitor to GND. Supports AC  
and DC coupling which can directly accept a common mode voltage of 1.2 to  
2 V.  
I
SYSREFREQ_P  
2
SYSREFOUT0_N  
SYSREFOUT0_P  
SYSREFOUT1_N  
SYSREFOUT1_P  
SYSREFOUT2_N  
SYSREFOUT2_P  
SYSREFOUT3_N  
SYSREFOUT3_P  
VCC_CLKIN  
12  
11  
22  
21  
29  
30  
39  
40  
4
Differential SYSREF CML output pairs for JESD204B support. Supports AC  
and DC coupling with programmable common-mode voltage of 0.6 to 2 volts.  
O
Connect to a 2.5-V supply. Recommend a shunt high frequency capacitor  
(typically 0.1 µF or smaller) close to the pin in parallel with larger capacitors  
(typically 1 µF and 10 µF) farther away.  
VCC_LOGICLK  
VCC01  
25  
16  
35  
PWR  
VCC23  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMX1204  
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
GND  
GND  
MAX  
2.75  
UNIT  
V
VDD  
VIN  
VIN  
VIN  
TJ  
Power supply voltage  
DC Input Voltage (SCK, SDI, CSB)  
DC Input Voltage (SYSREFREQ)  
AC Input Voltage (CLKIN)  
Junction temperature  
3.6  
V
VDD + 0.3  
VDD  
V
Vpp  
°C  
°C  
150  
Tstg  
Storage temperature  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Recommended Operating Conditions, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC  
JS-001, all pins(1)  
±2500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.4  
NOM  
MAX  
2.6  
UNIT  
V
VDD  
TA  
Supply voltage  
2.5  
Ambient temperature  
Junction temperature  
85  
°C  
40  
TJ  
125  
°C  
6.4 Thermal Information  
RHA (VQFN)  
THERMAL METRIC(1)  
UNIT  
40 PINS  
24.8  
13.0  
6.9  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ΨJT  
6.9  
ΨJB  
RθJC(bot)  
0.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMX1204  
 
 
 
 
 
 
 
 
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
6.5 Electrical Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Current Consumption  
Powered up, all outputs and SYSREF on  
Powered up, all outputs on, all SYSREF off  
Powered up, all outputs and SYSREF off  
Powered down(2)  
1050  
600  
265  
11  
ICC  
Supply Current (1)  
mA  
SYSREF  
fSYSREF  
Δt  
Generator mode  
Repeater mode  
fCLKIN = 12.8 GHz  
SYSREFOUT  
CML  
200  
100  
MHz  
MHz  
ps  
SYSREF output frequency  
SYSREF delay step size  
3
45  
ps  
120  
120  
230  
45  
ps  
tRISE  
tFALL  
VOD  
Rise time (20% to 80%)  
Fall time (20% to 80%)  
Differential output voltage  
LOGISYSREFOUT  
LVDS  
ps  
LVPECL  
ps  
SYSREFOUT  
ps  
CML  
120  
120  
170  
0.85  
0.4  
ps  
LOGISYSREFOUT  
SYSREFOUT  
LVDS  
ps  
LVPECL  
ps  
Vpp  
Vp  
Vp  
Vp  
CML  
LOGISYSREFOUT  
LVDS  
0.4  
LVPECL  
0.8  
CML  
SYSREFOUTx_PW  
R=4  
100 ΩDifferential  
Load  
VSYSREFCM Common mode voltage  
SYSREFOUT  
0.8  
1.3  
V
SYSREFREQ Pins  
VSYSREFIN Voltage input range  
AC differential voltage  
0.8  
1.2  
2
2
Vpp  
V
Differential 100 Termination, DC coupled  
VCM  
Input common mode  
Set externally  
Clock Input  
fIN  
Input frequency  
Input power  
0.3  
0
12.8  
10  
GHz  
dBm  
Single-ended power at CLKIN_P or  
CLKIN_N  
PIN  
Clock Outputs  
fOUT  
fOUT  
fOUT  
fOUT  
Output frequency  
Divide-by-2  
0.15  
0.3  
3.2  
1
6.4  
12.8  
6.4  
Output frequency  
Output frequency  
Output frequency  
Buffer Mode  
GHz  
x1 (filter mode) , x2, x3, x4  
LOGICLK output  
800  
MHz  
Multiplier calibration  
time  
fIN = 3.2 GHz; x2  
fSMCLK = 28 MHz  
tCAL  
Calibration-time  
Output power  
750  
4
μs  
fCLKLOUT= 6 GHz  
OUTx_PWR = 7  
pOUT  
Single-Ended  
dBm  
tRISE  
tFALL  
Rise time (20% to 80%)  
Fall time (20% to 80%)  
fCLKOUT = 300 MHz  
fCLKOUT = 300 MHz  
45  
45  
ps  
ps  
Propagation Delay and Skew  
| tSKEW Magnitude of skew between outputs CLKOUTx to CLKOUTy, not LOGICLK  
|
1
15  
ps  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LMX1204  
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
PARAMETER  
Noise, Jitter, and Spurs  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Buffer Mode  
5
12  
16  
21  
26  
Filter Mode  
x2 Multiplier  
x3 Multiplier  
x4 Multiplier  
Additive Jitter. 12k to  
100 MHz integration  
bandwidth.  
JCKx  
Additive jitter  
fs, rms  
Slew Rate > 8 V/ns,  
fCLK=6 GHz  
Flicker  
1/f flicker noise  
Noise Floor  
Buffer Mode  
-154  
dBc/Hz  
dBc/Hz  
NF  
NF  
Buffer Mode  
Divide-by-2  
-161  
-160.5  
fOUT = 6 GHz; fOffset  
100 MHz  
Multiplier (x1,  
x2,x3,x4)  
NF  
161.5  
NFL  
NFL  
NFL  
CML  
-150.5  
-151.5  
-153.5  
-25  
LOGICLK output, 300  
MHz  
Noise Floor  
LVDS  
dBc/Hz  
LVPECL  
fOUT = 6 GHz (differential), Buffer Mode  
fOUT = 6 GHz (single-ended), Buffer Mode  
fOUT = 6 GHz, single-ended, Divide by 2  
x2 (fSPUR = 3 GHz)  
H2  
Second harmonic  
-13  
dBc  
dBc  
-16  
H1/2  
H1/3  
-40  
fOUT = 6 GHz (single- x3 (fSPUR = 2 GHz)  
50  
Input clock leakage spur  
LOGICLK to CLKOUT  
ended)  
x4 (fSPUR = 1.5  
GHz)  
H1/4  
-54  
dBc  
dBc  
ISPUR  
fSPUR = 300 MHz (differential)  
70  
Digital Interface (SCK, SDI, CS#, MUXOUT)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
SCK, SDI, CS#  
1.4  
0
3.3  
0.4  
IOH = 5 mA  
IOH = 0.1 mA  
IOL = 5 mA  
1.4  
2.2  
Vcc  
Vcc  
0.45  
42  
V
VOH  
High-level output voltage  
VOL  
IIH  
Low-level output voltage  
High-level input current  
Low-level input current  
-42  
uA  
IIL  
25  
25  
(1) Unless Otherwise Stated, fCLKIN=6 GHz, CLK_MUX=Buffer, All clocks on with OUTx_PWR=7, SYSREFREQ_MODE=1  
(2) For powered down mode, if the LOGISYSREFOUT field is set to LVPECL mode AND the LVPECL resistors are placed, this  
powerdown current increases to about 40 mA.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMX1204  
 
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
Timing Requirements  
fSPI  
tCE  
SPI Read/Write Speed  
Clock to enable low time  
Clock to data wait time  
Clock to data hold time  
Clock pulse width high  
Clock pulse width low  
2
20  
MHz  
ns  
tCS  
20  
ns  
tCH  
20  
ns  
tCWH  
tCWL  
tCES  
tEWH  
tCD  
100  
100  
20  
ns  
ns  
Enable to clock setup time  
Enable pulse width high  
Falling clock edge to data wait time  
ns  
50  
ns  
100  
ns  
6.7 Timing Requirements  
SDI  
(Write)  
A5 to A0,  
D15 to D2  
R/W  
A7  
A6  
D1  
D0  
tCS  
tCH  
SCK  
tCE  
tCES  
tCWH  
tCWL  
D15 to  
D2  
MUXOUT  
(Readback)  
D1  
D0  
tCD  
CS#  
tEWH  
6-1. Serial Data Input Timing Diagram  
There are several other considerations for writing on the SPI:  
The R/W bit must be set to 0.  
The data on SDI pin is clocked into a shift register on each rising edge on the SCK pin.  
The CS# must be held low for data to be clocked. Device will ignore clock pulses if CS# is held high.  
Recommended SPI settings for this device are CPOL=0 and CPHA=0.  
When SCK and SDI lines are shared between devices, TI recommends to hold the CS# line high on the  
device that is not to be clocked.  
There are several other considerations for SPI readback:  
The R/W bit must be set to 1.  
The MUXOUT pin will always be low for the address portion of the transaction.  
The data on MUXOUT is clocked out at the falling edge of SCK. In other words, the readback data will be  
available at the MUXOUT pin tCD after the clock falling edge.  
The data portion of the transition on the SDI line is always ignored.  
The MUXOUT pin does not automatically tri-state after a readback transaction completes. When sharing the  
SPI bus readback pin with other devices, set MUXOUT_EN=0 after all readback transactions from device are  
complete to manually tri-state the MUXOUT pin, permitting other devices to control the readback line.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMX1204  
 
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
6.8 Typical Characteristics  
If not otherwise, the following conditions can be assumed: Temperature = 25°C, Vcc = 2.5 V, OUTx_PWR=5, CLKIN driven  
differentially with 8 dBm at each pin. Signal source used was SMA100B with ultra-low noise option B711.  
-110  
-150  
Source  
Input Power = -6 dBm  
Input Power = 0 dBm  
Input Power = +6 dBm  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
-155  
-160  
-165  
-170  
Source+Device  
Calculated Device Noise  
Modeled Device Noise  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
-168  
-170  
0
2000  
4000  
6000  
8000  
10000 12000  
1x103  
1x104  
1x105  
1x106  
1x107  
1x108  
Output Frequency (MHz)  
Offset (Hz)  
Stated input power is applied at each pin.  
Noise Floor = 161 dBc/Hz, 1/f Noise = 154 dBc/Hz @ 10  
.
.
kHz, Integrates to 28 fs jitter from 100 Hz to 6 GHz offset  
6-2. Buffer Phase Noise Plot at 6 GHz Output  
6-3. Noise Floor in Buffer Mode  
-110  
-150  
-151  
-152  
-153  
-154  
-155  
-156  
-157  
-158  
-159  
-160  
-161  
-162  
-163  
-164  
-165  
-166  
-167  
-168  
-169  
-170  
Source (12 GHz)  
Input Power = -6 dBm  
Input Power = 0 dBm  
Input Power = 6 dBm  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
-155  
-160  
-165  
-170  
Source (Scaled to 6 GHz)  
Source+DUT (Includes Div2)  
Device (Raw)  
Device (Modeled)  
1x102  
1x103  
1x104  
1x105  
1x106  
1x107  
1x108  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500  
Offset (Hz)  
Output Frequency (MHz)  
Stated input power is applied at each pin.  
Noise Floor = 160.5 dBc/Hz, 1/f Noise = 154 dBc/Hz @  
.
.
10 kHz, Integrates to 30 fs jitter from 100 Hz to 6 GHz offset  
6-4. Divide by 2 Phase Noise Plot at 6 GHz Output  
6-5. Noise Floor with Divide by 2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMX1204  
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
6.8 Typical Characteristics (continued)  
If not otherwise, the following conditions can be assumed: Temperature = 25°C, Vcc = 2.5 V, OUTx_PWR=5, CLKIN driven  
differentially with 8 dBm at each pin. Signal source used was SMA100B with ultra-low noise option B711.  
-110  
-150  
x1 Multiplier  
fOUT = 3200 MHz  
-115  
-120  
-125  
-130  
-135  
-140  
-145  
-150  
-155  
-160  
-165  
-170  
x2 Multiplier  
x3 Multiplier  
x4 Multiplier  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
-168  
-170  
fOUT = 4200 MHz  
fOUT = 5200 MHz  
fOUT = 6400 MHz  
-10 -8 -6 -4 -2  
0
2
4
6
8
10 12 14 16  
1x102  
1x103  
1x104  
1x105  
Offset (Hz)  
1x106  
1x107  
1x108  
Clock Input Power level (dBm)  
6-6. Multiplier Phase Noise Plot at 6 GHz Output  
备注  
Input power in graph is differential.  
6-7. Noise Floor in Multiply x2 Mode  
-150  
-150  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
-168  
-170  
TA =- 40C  
TA = 25C  
TA = 85C  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
-168  
-170  
TA = -40C  
TA = 25C  
TA = 85C  
3200 3600 4000 4400 4800 5200 5600 6000 6400  
0
2000  
4000  
6000  
8000  
10000 12000  
Output Frequency (MHz)  
Output Frequency (MHz)  
6-9. Noise Floor in x2 Multiplier Mode  
6-8. Noise Floor in Buffer Mode  
-150  
-151  
-152  
-153  
-154  
-155  
-156  
-157  
-158  
-159  
-160  
-161  
-162  
-163  
-164  
-165  
-166  
-167  
-168  
-169  
-170  
-150  
-152  
-154  
-156  
-158  
-160  
-162  
-164  
-166  
-168  
-170  
Divide by 2  
Divide by 3  
Divide by 4  
Divide by 5  
Divide by 6  
Divide by 7  
Divide by 8  
TA= -40C  
TA= 25C  
TA= 85C  
0
1000  
2000  
3000  
4000  
5000  
6000  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500  
Output Frequency (MHz)  
Output Frequency (MHz)  
6-10. Noise Floor in Divide by 2 Mode  
6-11. Noise Floor in Divider Mode  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMX1204  
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
6.8 Typical Characteristics (continued)  
If not otherwise, the following conditions can be assumed: Temperature = 25°C, Vcc = 2.5 V, OUTx_PWR=5, CLKIN driven  
differentially with 8 dBm at each pin. Signal source used was SMA100B with ultra-low noise option B711.  
8
7
8
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
OUTx_PWR = 1  
OUTx_PWR = 2  
OUTx_PWR = 3  
OUTx_PWR = 4  
OUTx_PWR = 5  
OUTx_PWR = 6  
OUTx_PWR = 7  
TA = -40C  
TA = 25C  
TA = 85C  
0
2000  
4000  
6000  
8000  
10000 12000  
0
2000  
4000  
6000  
8000  
10000 12000  
Frequency (MHz)  
Output Frequency (MHz)  
Applies to all modes except divider mode with odd divide  
(which will have slightly lower power).  
CLKOUTx_PWR = 7  
.
6-12. Single-Ended Output Power  
6-13. Single-Ended Output Power  
0.8  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
CLKOUT_P  
CLKOUT_N  
CLKOUT_P  
CLKOUT_N  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
0
200  
400  
600  
800  
1000  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Time (ps)  
Time (ps)  
备注  
备注  
CLKOUTx_PWR=7  
CLKOUTx_PWR=7  
6-14. CLKOUT Waveform at 1 GHz  
6-15. CLKOUT Waveform at 3 GHz  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
Divide=2  
Divide=3  
Divide=4  
Divide=5  
Divide=6  
Divide=7  
Divide=8  
Differential, TA=-40C  
Differential, TA=25C  
Differential, TA=85C  
Single-Ended, TA=-40C  
Single-Ended, TA=25C  
Single-Ended, TA=85C  
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
0
2000  
4000  
6000  
8000  
10000  
12000  
Input Frequency (MHz)  
Frequency (MHz)  
6-17. Second Harmonic in Divide Mode (Single-Ended)  
6-16. Second Harmonic in Buffer Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMX1204  
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
6.8 Typical Characteristics (continued)  
If not otherwise, the following conditions can be assumed: Temperature = 25°C, Vcc = 2.5 V, OUTx_PWR=5, CLKIN driven  
differentially with 8 dBm at each pin. Signal source used was SMA100B with ultra-low noise option B711.  
-5  
-5  
TA=-40C  
TA=25C  
-10  
-10  
TA=85C  
-15  
-15  
-20  
-20  
-25  
-25  
-30  
-30  
-35  
-35  
-40  
-45  
-50  
-55  
-40  
-45  
-50  
-55  
TA=-40C  
TA=25C  
TA=85C  
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500  
3200 3600 4000 4400 4800 5200 5600 6000 6400  
Output Frequency (MHz)  
Output Frequency (MHz)  
6-18. Second Harmonic in Divide by 2 Mode (Single-Ended)  
6-19. Second Harmonic in Multiply X2 Mode (Differential)  
-40  
-40  
-42  
-44  
-46  
-48  
-50  
-52  
-54  
-56  
-58  
-60  
-62  
-64  
-66  
-68  
MULT = x2  
MULT = x3  
MULT = x4  
-42  
-44  
-46  
-48  
-50  
-52  
-54  
-56  
-58  
-60  
-62  
-64  
-66  
-68  
-70  
-72  
-74  
-76  
-78  
-80  
TA=-40C, Differential  
TA=25C, Differential  
TA=85C, Differential  
TA=-40C, Single-ended  
TA=25C, Single-ended  
TA=85C, Single-ended  
-70  
-72  
-74  
-76  
-78  
-80  
3200  
3600  
4000  
4400  
4800  
5200  
5600  
6000  
6400  
3200  
3600  
4000  
4400  
4800  
5200  
5600  
6000  
6400  
Output Frequency (MHz)  
Output Frequency (MHz)  
6-21. Multiplier 1/2 Sub-Harmonic in X2 Mode  
备注  
Output is differential.  
6-20. Multiplier Sub-Harmonics (Harmonic Frequency =  
Output Frequency / M )  
-40  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
Differential, TA=-40C  
Differential, TA=25C  
Differential, TA=85C  
Single-ended, TA=-40C  
Single-ended, TA=25C  
Single-ended, TA=85C  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
Differential, MULT=x2  
Differential, MULT=x3  
Differential, MULT=x4  
Single-ended, MULT=x2  
Single-ended, MULT=x3  
Single-ended, MULT=x4  
3200  
3600  
4000  
4400  
4800  
5200  
5600  
6000  
6400  
3200  
3600  
4000  
4400  
4800  
5200  
5600  
6000  
6400  
Output Frequency (MHz)  
Output Frequency (MHz)  
6-22. Multiplier Intermodulation Spur (MULT=2)  
6-23. Multiplier Intermodulation (M+1)/M Spur  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LMX1204  
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
6.8 Typical Characteristics (continued)  
If not otherwise, the following conditions can be assumed: Temperature = 25°C, Vcc = 2.5 V, OUTx_PWR=5, CLKIN driven  
differentially with 8 dBm at each pin. Signal source used was SMA100B with ultra-low noise option B711.  
800  
775  
750  
725  
700  
675  
650  
625  
600  
575  
550  
525  
500  
475  
450  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
Measurement  
Trend Line = 0.06*Temperature + 123.5 ps  
Trend Line  
Slow (Part 1)  
Slow Corner (Part 2)  
Slow Corner (Part 3)  
Nominal Corner (Part 1)  
Nominal Corner (Part 2)  
Nominal Corner (Part 3)  
Fast Corner (Part 1)  
Fast Corner (Part 2)  
Fast Corner (Part 3)  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
150  
-55  
-35  
-15  
5
25  
45  
65  
85  
105  
Junction Temperature (C)  
Temperature (C)  
Measured in power-down mode to make Junction  
Over 30 devices and 3 corner lots, propagation delay was  
Temperature = Ambient temperature.  
.
found to vary 1.1 ps over process and 7 ps overall when the  
temperature was held at a constant 25°C.  
6-24. Temperature Sensor Readback  
6-25. Propagation Delay  
3.5  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
CLKOUT0 to CLKOUT1  
CLKOUT0 to CLKOUT2  
CLKOUT0 to CLKOUT3  
CLKOUT2 to CLKOUT3  
3
2.5  
2
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
0.5  
0
-0.5  
-1  
-2.5  
-3  
-3.5  
-4  
-4.5  
-5  
Fast Corner, TA=-40C  
-1.5  
-2  
Fast Corner, TA=25C  
Fast Corner, TA=85C  
Nominal Corner, TA=-40C  
Nominal Corner, TA=25C  
Nominal Corner, TA=85C  
Fast Corner, TA=-40C  
-2.5  
-3  
Fast Corner, TA=25C  
Fast Corner, TA=85C  
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
8000  
0
1000  
2000  
3000  
4000  
5000  
6000  
7000  
8000  
Output Frequency (MHz)  
Output Frequency (MHz)  
Main source of skew variation is frequency and measurement  
error. Other observed sources of variation include about 3 ps  
over process corners and 1.5 ps over temperature.  
.
.
.
6-27. Output to Output Skew Variation for CLKOUT0 to  
6-26. Output to Output Skew  
CLKout3  
200  
0
5
4.5  
4
TA=-40C  
TA=25C  
TA=85C  
-200  
-400  
-600  
-800  
-1000  
-1200  
-1400  
-1600  
3.5  
3
2.5  
2
1.5  
1
TA=-40C  
0.5  
TA=25C  
TA=85C  
0
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
550  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
550  
SYSREF Phase Shift Code  
SYSREF Phase Shift Code  
6-28. SYSREF Delay vs. Temperature and Code (Fout = 10  
6-29. SYSREF Delta Delay vs. Temperature and Code  
GHz)  
(Fout=10 GHz)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMX1204  
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
6.8 Typical Characteristics (continued)  
If not otherwise, the following conditions can be assumed: Temperature = 25°C, Vcc = 2.5 V, OUTx_PWR=5, CLKIN driven  
differentially with 8 dBm at each pin. Signal source used was SMA100B with ultra-low noise option B711.  
0
-2  
-4  
-6  
-8  
180  
160  
140  
120  
100  
80  
CLKIN_P  
CLKIN_N  
CLKIN_P  
CLKIN_N  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
-24  
-26  
-28  
-30  
-32  
-34  
-36  
-38  
-40  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
0
2000  
4000  
6000  
8000  
10000  
12000  
0
2000  
4000  
6000  
8000  
10000  
12000  
Frequency (MHz)  
Frequency (MHz)  
6-30. CLKIN S11 Magnitude  
6-31. CLKIN S11 Phase  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMX1204  
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
7 Detailed Description  
7.1 Overview  
The LMX1204 has four main clock outputs and another LOGICLK output. The main clock outputs are all the  
same frequency. This frequency can be the same, divided, or multiplied relative to the input clock. Each of these  
clock outputs has programmable power level. The LOGICLK output frequency is independent and typically lower  
frequency than the other four main clocks and has programmable output format (CML, LVDS, LVPECL) and  
power level.  
The SYSREF can be generated by either repeating the input from the SYSREFREQ pins, or internally  
generated. There is an internal SYSREF windowing feature that allows the internal timing of the device to be  
adjusted to optimize setup/hold times of the SYSREFREQ input with respect to the CLKIN input. This feature  
assumes that the delay between the SYSREF edge and the next rising clock edge is consistent. Each of the five  
outputs has a corresponding SYSREF output that has individual delays and programmable common mode. For  
the LOGISYSREF output, the output format is programmable as CML, LVDS, or LVPECL.  
7.1.1 Range of Dividers and Multiplier  
There are dividers that allow the main and LOGICLK outputs to be a divided value of the input clock. The main  
clock outputs also have a multiplier. In addition to this, dividers are used for SYSREF generation in generator  
mode as well as generation of the delay block.  
7-1. Range of Dividers and Multiplier  
CATEGORY  
RANGE  
COMMENTS  
Buffer  
Divider  
Main Clocks  
LOGICLK  
Odd divides (except 1) do not have 50% duty cycle  
x1 Multiplier and Filter mode are the same thing.  
2, 3, 4, 8  
1,2, 3, 4  
Multiplier  
PreDivide  
1, 2, 4  
TotalDivide = PreDivide × Divide  
Odd divides (except 1) do not have 50% duty cycle  
Divide  
Divide  
1, 2, 3, 1023  
1,2, 4  
PreDivide  
Pre-divides clock for phase interpolator.  
TotalDivide = PreDivide×Divide  
Odd divides do not have 50% duty cycle  
Divide for  
frequency  
generation  
Divide  
2, 3, 4,4095  
SYSREF  
Divide for  
delay  
Divide  
2, 4, 8, 16  
This divide is set according to the input frequency.  
generation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMX1204  
 
 
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
7.2 Functional Block Diagram  
CLK_MULT_CAL  
CLKOUT0  
CLK_MULT  
CLKIN  
xM  
SYSREFOUT0  
 
SYSREFOUT0_DELAY_I  
SYSREFOUT0_DELAY_Q  
SYSREFOUT0_DELAY_PHASE  
SYSREFOUT0_DELAY_SCALE  
SYSREF  
Windowing  
and Capture  
CLKOUT1  
CLK_DIV  
SYSREFREQ  
VCC_CLKIN  
÷2,3,..,8  
SYSREFOUT1  
 
SYSREFOUT1_DELAY_I  
SYSREFOUT1_DELAY_Q  
SYSREFOUT1_DELAY_PHASE  
SYSREFOUT1_DELAY_SCALE  
VCC01  
VCC23  
SYSREF_DELAY_DIV  
CLKOUT2  
VBIAS01  
VBIAS23  
÷2,4,8,16  
GND (x6)  
!  
SYSREFOUT2  
SYSREF_PULSE_COUNT  
SYSREFOUT2_DELAY_I  
SYSREFOUT2_DELAY_Q  
SYSREFOUT2_DELAY_PHASE  
SYSREFOUT2_DELAY_SCALE  
Pulser  
SCK  
SDI  
÷1,2,4  
÷2,3,..4095  
Digital  
Control  
CLKOUT3  
CS#  
MUXOUT  
"  
SYSREFOUT3  
SYSREFOUT3_DELAY_I  
SYSREFOUT3_DELAY_Q  
SYSREFOUT3_DELAY_PHASE  
SYSREFOUT3_DELAY_SCALE  
÷1,2,4  
÷1,2,3,...1023  
LOGICLKOUT  
LOGICLK_DIV_PRE  
LOGICLK_DIV  
LOGICLK_DIV_BYP  
#  
LOGISYSREFOUT  
LOGISYSREFOUT_DELAY_I  
LOGISYSREFOUT_DELAY_Q  
LOGISYSREFOUT_DELAY_PHASE  
LOGISYSREFOUT_DELAY_SCALE  
7-1. Functional Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LMX1204  
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
7.3 Feature Description  
7.3.1 Power On Reset  
When the device is powered up, the power on reset (POR) resets all registers to a default state as well as resets  
all state machines and dividers. For the power on reset state, all SYSREF outputs are disabled and all the  
dividers are bypassed; the device performs as a 4-output buffer. One should wait 100 µs after the power supply  
rails before programming other registers to ensure that this RESET is finished. If the power on reset happens  
when there is no device clock present, it will function properly, however, the current will change once an input  
clock is presented.  
It is also possible and generally good practice to do a software power on reset by writing RESET=1 in the SPI  
bus. The RESET bit will self-clear once any other register is written to. The SPI bus can be used to override  
these states to the desired settings.  
Although the device does have an automatic power on reset, it can be impacted by different ramp rates on the  
different supply pins, especially in the presence of a strong input clock signal.. It is therefore recommended to do  
a software reset after POR. This can be done by programming RESET=1. The reset bit can be cleared by  
programming any other register or setting RESET back to zero. Even at maximum allowed SPI bus speed, the  
software reset event always completes before the subsequent SPI write.  
7.3.2 Temperature Sensor  
The junction temperature can be read back for purposes such as characterization or to make adjustments based  
on temperature. Such adjustments might include adjusting CLKOUTx_PWR to make the output power more  
stable or using external or digital delays to compensate for changes in propagation delay over temperature.  
The junction temperature is typically higher than the ambient temperature due to power dissipation from the  
outputs and other functions on the device. 方程式 1 shows the relationship between the code read back and the  
junction temperature.  
Temperature = 0.65 × Code 351  
(1)  
方程式 1 is based on a best-fit line created from three devices from slow, nominal, and fast corner lots (9 parts  
total),. The worst-case variation of the actual temperature from the temperature predicted by the best-fit line was  
13°C, which works out to 20 codes.  
7.3.3 Clock Outputs  
This device has four main output clocks which share a common frequency. This does not include the additional  
lower frequency LOGICLK output.  
7.3.3.1 Clock Output Buffers  
The output buffers have a format that is open collector with an integrated pullup resistor, similar to CML.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMX1204  
 
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
VCC  
50  
CLKOUTx  
CLKOUTx_PWR  
7-2. CLKOUT Output Buffer  
The output buffers can be enabled with CLKOUTx_EN bits. In addition to this, their output power can be  
individually set with the CLKOUTx_PWR field. However, these fields only control the output buffer, not the  
internal channel path that drives this buffer, the SYSREF generator, or the SYSREF output. To power down the  
entire path, disable the CHx_EN bit.  
7-2. Clock Output Power  
INTERNAL CHANNEL  
CHx_EN  
CLKOUTx_EN  
CLKOUTx_PWR  
OUTPUT BUFFER  
PATH  
0
Powered Down  
Don't Care  
0
Don't Care  
Powered Down  
Powered Down  
Minimum  
Don't Care  
0
1
1
Powered Up  
1
...  
7
Maximum  
7.3.3.2 Clock MUX  
The four main clocks must be the same frequency, but this frequency can be bypassed, multiplied, or divided.  
This is determined by the CLK_MUX word.  
7-3. Clock MUX  
CLK_MUX  
OPTION  
VALUES SUPPORTED  
÷1 (bypass)  
0
1
2
Buffer Mode  
Divider Mode  
Multiplier Mode  
÷2, 3, 4, 5, 6, 7, and 8  
x1 (filter mode), x2, x3, x4  
7.3.3.3 Clock Divider  
Setting the CLK_MUX to Divided allows a divide value of 2, 3, 4, 5, 6, 7, and 8. This is set by the CLK_DIV word.  
When using the clock divider, any change to the input frequency requires the CLK_DIV_RST bit to be toggled  
from 1 to 0.  
7-4. Clock Divider  
CLK_DIV  
DIVIDE  
DUTY CYCLE  
0
1
2
Reserved  
n/a  
2
3
50%  
33%  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMX1204  
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
7-4. Clock Divider (continued)  
CLK_DIV  
DIVIDE  
DUTY CYCLE  
50%  
3
4
5
6
7
4
5
6
7
8
40%  
50%  
43%  
50%  
7.3.3.4 Clock Multiplier and Filter Modes  
General Information about the Clock Multiplier  
The clock multiplier is can be used to multiply up the input clock frequency by a factor of x1, x2, x3, or x4. The  
multiply value is set by the CLK_MULT field. As the multiplier is PLL-based and includes an integrated VCO, it  
has a state machine clock, requires calibration, has a lock detect feature, and can be used as a tunable filter.  
Note that if the multiplier is not being used, there is no need for the state machine clock or the lock detect  
feature.  
State Machine Clock for the Clock Multiplier  
The state machine clock frequency ,fSMCLK, is derived by dividing down the input clock frequency by a  
programmed divider value. The state machine clock is also necessary for the multiplier calibration and lock  
detect. If there are concerns about the state machine clock creating spurs, then it can be shut off provided that  
the multiplier calibration is not running and the lock detect feature is not being used.  
Calibration for the Clock Multiplier  
For optimal phase noise, the VCO in the multiplier divides up the frequency range into many different bands and  
cores and has optimized amplitude settings for each one of these. For this reason, upon initial use, or whenever  
the frequency is changed, a calibration routine needs to be run in order to determine the correct core, frequency  
band, and amplitude setting. Calibration is performed by programming the R0 register with a valid input signal.  
Increasing the speed of the state machine clock speeds up the multiplier calibration time. To ensure reliable  
multiplier calibration, the state machine clock frequency needs to be at least twice the SPI write speed, but no  
more than 30 MHz. Whenever the CLK_MUX mode is changed or the multiplier is calibrated for the first time, the  
calibration time will be substantially longer, on the order of 5 ms.  
Using the x1 Clock Multiplier as a Filter  
As the multiplier is PLL based, it acts as a programmable filter that attenuates noise, spurs, harmonics, and sub-  
harmonics that are outside the PLL loop bandwidth (about 10 MHz). In some situations, one may want to filter  
the clock without multiplying this up. Filter mode (x1 multiplier) allows one to use the clock multiplier as a tunable  
filter with 10 MHz bandwidth that has lower additive noise than the higher multiply values. In this filter mode,  
spurs of lower offsets tend to get amplified by the multiplier, so it is typically most effective for spurs that are 100  
MHz or farther offset from the carrier where the multiplier PLL loop filter is able to roll these spurs off. Note that  
filter mode is different than buffer mode in that it filters the input frequency, but adds more close in phase noise.  
Lock Detect for the Clock Multiplier  
The lock detect status of the multiplier can be read back through the rb_LD field or from the MUXOUT pin. The  
state machine clock must be running for the lock detect to work properly. Lock detect is not supported in x1  
(filter) mode.  
7.3.3.4.1 State Machine Clock  
If not using the clock multiplier, the state machine clock should be disabled by setting SMCLK_EN=0 to minimize  
crosstalk and spurs. However, when using the clock multiplier, the state machine clock is required to run the  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMX1204  
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
calibration engine when the frequency is changed and also used to have the lock detect continuously monitor if  
the PLL-based clock multiplier is in lock. The state machine clock must be less than 30 MHz. Consult the register  
map document for more details.  
7.3.4 LOGICLK Output  
The LOGICLK output can be used to drive devices using lower frequency clocks, such as FPGAs. It has  
programmable output format and a corresponding SYSREF output.  
7.3.4.1 LOGICLK Output Format  
The LOGICLK output format can be programmed to LVDS, LVPECL, and CML modes. Depending on the format,  
the common mode may be programmable or external components may be required (see 7-5).  
7-5. LOGICLK Formats and Properties  
EXTERNAL COMPONENTS  
LOGICLKOUT_FMT  
FORMAT  
OUTPUT LEVEL  
COMMON MODE  
REQUIRED  
Programmable through  
LOGICLKOUT_VCM  
0
1
LVDS  
None  
Fixed  
Fixed  
LVPECL  
Emitter Resistors  
Not programmable  
Pullup Resistors  
Programmable through  
LOGICLKOUT_PWR  
2
3
CML  
Not programmable  
50 to VCC  
Invalid  
7.3.4.2 LOGICLK_DIV_PRE and LOGICLK_DIV Dividers  
The LOGICLK_DIV_PRE divider and LOGICLK_DIV dividers are used for the LOGICLK output. The  
LOGICLK_DIV_PRE divider is necessary to divide the frequency down to ensure that the input to the  
LOGICLK_DIV divider is 3.2 GHz or less. When LOGICLK_DIV is not even and not bypassed, the duty cycle will  
not be 50%. Both the LOGICLK dividers are synchronized by the SYNC feature, which allows synchronization  
across multiple devices.  
7-6. Minimum N-Divider Restrictions  
fCLKIN (MHz)  
LOGICLK_DIV_PRE  
LOGICLK_DIV  
TOTAL DIVIDE RANGE  
[1, 2, ...1023]  
[2, 4, ... 2046]  
[4, 8, 4092]  
÷1,2,4  
f
CLKIN 3.2 GHz  
÷1,2 ,3 ,1023  
[4, ... 2046]  
[4, 8, 4092]  
÷2,4  
÷4  
3.2 GHz < fCLKIN6.4 GHz  
÷1, 2 ,3 ,1023  
1, 2, 3 ,1023  
fCLKIN > 6.4 GHz  
[8, 4092]  
7.3.5 SYSREF  
SYSREF allows a low frequency JESD204B/C compliant signal to be produced that is reclocked to a main or  
LOGICLK output. The delays between the CLKOUT and SYSREF outputs are adjustable with software. The  
SYSREF output can be configured as a generator using the internal SYSREF divider, or as a repeater  
duplicating the signal on the SYSREFREQ pins. The SYSREF generator for both the main clocks and the  
LOGICLK output are the same.  
7.3.5.1 SYSREF Output Buffers  
7.3.5.1.1 SYSREF Output Buffers for Main Clocks (SYSREFOUT)  
The SYSREF outputs within the clock output channels have the same output buffer structure as the clock output  
buffer, with the addition of circuitry to adjust the common-mode voltage. The SYSREF outputs are CML outputs  
with a common-mode voltage that can be adjusted with the SYSREFOUTx_VCM field, and the output level that  
can be programmed with the SYSREFOUTx_PWR field. This is to allow DC coupling. Note that the CLKOUT  
outputs do not have adjustable common-mode voltage and must be AC coupled; this is for optimal noise  
performance.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LMX1204  
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
VCC  
SYSREFOUTx_VCM  
Bias Adjust  
50  
SYSREFOUTx  
SYSREFOUTx_PWR  
7-3. SYSREF Output Buffer  
The common-mode voltage and output power are interrelated and can be simulated assuming a 100-Ω  
differential load and no DC path to ground. The common mode voltage and output are interrelated as shown in  
7-7. Realize that for reasons of long-term reliability reasons it is required that VCM - VOD/2 0.5 V.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMX1204  
LMX1204  
www.ti.com.cn  
VCM  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
7-7. Single-Ended Voltage (VOD) and Common Mode Voltage (VCM  
)
Check:  
SYSREFOUT_PWR  
SYSREFOUT_VCM  
VOD  
VCM - VOL/2 0.5 V. ?  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0.22  
0.22  
0.22  
0.22  
0.22  
0.23  
0.23  
0.23  
0.27  
0.27  
0.27  
0.27  
0.28  
0.28  
0.28  
0.29  
0.32  
0.32  
0.32  
0.33  
0.33  
0.33  
0.34  
0.34  
0.36  
0.37  
0.37  
0.38  
0.38  
0.38  
0.39  
0.39  
0.40  
0.41  
0.42  
0.42  
0.43  
0.44  
0.44  
0.45  
1.22  
1.34  
1.48  
1.63  
1.77  
1.91  
2.06  
2.20  
0.94  
1.08  
1.25  
1.44  
1.61  
1.78  
1.96  
2.13  
0.70  
0.83  
1.03  
1.25  
1.45  
1.64  
1.86  
2.06  
0.55  
0.66  
0.82  
1.07  
1.30  
1.52  
1.77  
2.00  
0.44  
0.53  
0.68  
0.89  
1.15  
1.39  
1.67  
1.93  
0
1
2
3
4
Valid State  
Invalid State  
Valid State  
Invalid State  
Valid State  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMX1204  
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
7-7. Single-Ended Voltage (VOD) and Common Mode Voltage (VCM) (continued)  
Check:  
VCM - VOL/2 0.5 V. ?  
SYSREFOUT_PWR  
SYSREFOUT_VCM  
VOD  
VCM  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0.41  
0.44  
0.46  
0.47  
0.48  
0.49  
0.49  
0.50  
0.42  
0.45  
0.50  
0.52  
0.53  
0.54  
0.54  
0.55  
0.42  
0.46  
0.51  
0.56  
0.57  
0.58  
0.60  
0.61  
0.40  
0.45  
0.57  
0.76  
1.00  
1.27  
1.58  
1.87  
0.38  
0.42  
0.49  
0.66  
0.86  
1.15  
1.49  
1.81  
0.36  
0.40  
0.45  
0.58  
0.77  
1.03  
1.40  
1.75  
Invalid State  
Valid State  
5
6
7
Invalid State  
Valid State  
Invalid State  
Valid State  
7.3.5.1.2 SYSREF Output Buffer for LOGICLK  
The LOGISYSREFOUT output supports the three formats of LVDS, LVPECL, and CML. The  
LOGISYSREFOUT_EN enables the output buffer and LOGISYSREF_FMT sets the format. LVDS mode allows  
programmable common mode, LVPECL and CML require external components, and CML allows programmable  
output power (see 7-8).  
7-8. LOGISYSREFOUT Output Buffer Configuration  
EXTERNAL  
TERMINIATION  
REQUIRED  
LOGISYSREFOUT_E  
N
LOGISYSREF  
FORMAT  
OUTPUT COMMON  
MODE  
LOGISYSREF_FMT  
OUTPUT POWER  
0
Powered Down  
None  
Programmable with  
LOGISYSREF_VCM  
0
1
LVDS  
Fixed  
Fixed  
LVPECL  
Emitter Resistors  
Fixed  
LOGISYSREF_VCM  
has no impact, but  
this changes with  
1
Pullup resistors  
Controlled by  
LOGISYSREF_PWR  
2
3
CML  
50 to VCC  
LOGISYSREF_PWR.  
Reserved  
7.3.5.2 SYSREF Frequency and Delay Generation  
The SYSREF circuitry can produce an output signal that is synchronized to fCLKIN. This output can be a single  
pulse, series of pulses, or a continuous stream of pulses. In generator mode, the SYSREF_DIV_PRE and  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMX1204  
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
SYSREF_DIV values are used to divide the CLKIN frequency to a lower frequency that is reclocked to the  
output. In repeater mode, this signal is instead input at the SYSREFREQ pins. For each of the outputs, there is  
an independent delay control.  
7-9. SYSREF Modes  
SYSREF_MODE  
DESCRIPTION  
Generator Mode (Continuous)  
Internal generator creates a continuous stream of SYSREF pulses. The SYSREFREQ pins or the  
SYSREFREQ_SPI field can be used to gate the SYSREF divider from the channels for improved noise  
isolation without disrupting the synchronization of the SYSREF dividers. The SYSREFREQ pins or the  
SYSREFREQ_SPI field must be high for a SYSREF output to come out.  
0
Generator Mode (Pulser)  
Internal generator generates a burst of 1 - 16 pulses that is set by SYSREF_PULSE_COUNT that occurs after  
1
2
a rising edge on the SYSREFREQ pins  
Repeater Mode  
SYSREFREQ pins are reclocked to clock outputs and then delayed in accordance to the  
SYSREF_DELAY_BYPASS field before being sent to the SYSREFOUT outputs.  
SYSREFOUTx_DELAY_I  
SYSREFOUTx_DELAY_Q  
SYSREFOUTx_PHASE  
SYSREFOUTx_SCALE  
SYSREF_DELAY_DIV  
fINTERPOLATOR  
Programmable  
Delay  
Re-clocking  
Circuit  
÷2,4,8,16  
CLKIN_P  
CLKIN_N  
SYSREFOUTx_P  
SYSREFOUTx_N  
SYSREF_DIV_PRE  
÷1, 2, 4  
SYSREF_DIV  
÷2, … 4095  
SysRef Pulse Generator  
SYSREF_PULSE_COUNT  
SYSREFREQ_P  
SYSREFREQ_N  
SYSREF_DELAY_BYPASS  
SYSREF_MODE  
7-4. SYSREF Generator Diagram  
For the frequency of the SYSREF output in generator mode, the SYSREF_DIV_PRE divider is necessary to  
ensure that the input of the SYSREF_DIV divider is not more than 3.2 GHz.  
7-10. SYSREF_DIV_PRE Setup  
fCLKIN  
SYSREF_DIV_PRE  
÷1, 2, or 4  
÷2 or 4  
TOTAL SYSREF DIVIDE RANGE  
÷2,3,4,...16380  
3.2 GHz or Less  
3.2 GHz < fCLKIN 6.4 GHz  
fCLKIN > 6.4 GHz  
÷4,6,8, 16380  
÷4  
÷8,12,16, 16380  
For the delay, the input clock frequency is divided by SYSREF_DELAY_DIV to generate fINTERPOLATOR. This has  
a restricted range as shown in 7-11. Note also that when SYSREF_DELAY_BYPASS=0 or 2 (delaygen  
engaged for generator mode), and SYSREF_MODE = 0 or 1 (a generator mode) the SYSREF output frequency  
must be a multiple of the phase interpolator frequency.  
fINTERPOLATOR % fSYSREF = 0.  
7-11. SYSREF Delay Setup  
fCLKIN  
SYSREF_DELAY_DIV  
SYSREFx_DELAY_SCALE  
fINTERPOLATOR  
0.4 to 0.8 GHz  
0.4 to 0.8 GHz  
0.4 to 0.8 GHz  
0.4 to 0.8 GHz  
0.2 to 0.4 GHz  
16  
8
0
0
0
0
1
6.4 GHz < fCLKIN 12.8GHz  
3.2 GHz < fCLKIN 6.4 GHz  
1.6 GHz < fCLKIN 3.2 GHz  
0.8 GHz < fCLKIN 1.6 GHz  
0.4 GHz < fCLKIN 0.8 GHz  
4
2
2
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LMX1204  
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
7-11. SYSREF Delay Setup (continued)  
fCLKIN  
0.3 GHz < fCLKIN 0.4 GHz  
SYSREF_DELAY_DIV  
SYSREFx_DELAY_SCALE  
fINTERPOLATOR  
2
2
0.15 to 0.2 GHz  
The maximum delay is equal to the phase interpolator period and there are 4x127 = 508 different delay steps.  
Use 方程2 to calculate the size of each step.  
DelayStepSize = 1/( fINTERPOLATOR × 508) = SYSREF_DELAY_DIV/( fCLKIN × 508)  
(2)  
(3)  
Use 方程3 to calculate the total delay.  
TotalDelay=DelayStepSize × StepNumber  
7-12 shows the number of steps for each delay.  
7-12. Calculation of StepNumber  
SYSREFx_DELAY_PHASE  
STEPNUMBER  
3
2
0
1
127 - SYSREFx_DELAY_I  
254 - SYSREFx_DELAY_Q  
381 - SYSREFx_DELAY_I  
508 - SYSREFx_DELAY_Q  
The SYSREF_DELAY_BYPASS field selects between the delay generator output and the repeater mode bypass  
signal. When SYSREF_MODE is set to continuous or pulser mode, TI recommends to set  
SYSREF_DELAY_BYPASS to generator mode. If SYSREF_MODE is set to repeater mode, TI recommends to  
set SYSREF_DELAY_BYPASS to bypass mode.  
7.3.5.3 SYSREFREQ pins and SYSREFREQ_SPI Field  
The SYSREFREQ pins are multipurpose and can be used for SYNC, SYSREF requests, and SYSREF  
Windowing. These pins can be DC or AC coupled and have dual 50-Ω, single-ended termination with  
programmable common-mode support.  
In addition to these pins, the SYSREFREQ_SPI field can be set to 1 to emulate the same effect as forcing these  
pins high, simplifying hardware in some cases.  
7.3.5.3.1 SYSREFREQ Pins Common-Mode Voltage  
The SYSREFREQ_P and SYSREFREQ_N pins can be driven either AC or DC coupled. When driven AC  
coupled, the common-mode voltage can be adjusted with the SRREQ_VCM bit.  
7-13. SYSREFREQ Pin Common-Mode Voltage  
SRREQ_VCM  
COMMON-MODE VOLTAGE  
0
1
2
3
1.3 V AC-coupled  
1.1 V AC-coupled  
1.5 V AC-coupled  
No Bias (DC Coupled)  
7.3.5.3.2 SYSREFREQ Pin Windowing Feature  
The SYSREF windowing can be used to internally calibrate the timing between the SYSREFREQ and CLKIN  
pins in order to optimize setup and hold timing and trim out any mismatches between SYSREFREQ and CLKIN  
paths. This feature requires that the timing from the SYSREFREQ rising edge to the CLKIN rising edge is  
consistent. The timing from the SYSREFREQ rising edge to the CLKIN rising edges can be tracked with the  
rb_CLKPOS field. Once the timing to the rising edge of the CLKIN pin is found, then the SYSREFREQ rising  
edge can be internally adjusted with the SYSREFREQ_DELAY_STEP and SYSREF_DELAY_STEPSIZE fields  
to optimize setup/hold times.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LMX1204  
 
 
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
tSYSREFREQ_DELAY_STEPSIZE  
CLKIN  
10001100000000000000000110000001  
rb_CLKPOS[0:31] (bit order reversed LSB rst, MSB last)  
t
tO  
set  
SYSREFREQ  
Pin Input  
SYSREFREQ_DELAY  
_STEP=13  
Adjusted  
SYSREFREQ  
7-5. SYSREFREQ Internal Timing Adjustment  
General Procedure  
While programming the windowing feature for the first time, SYSREFREQ needs to be low.  
Set CLKPOS_CAPTURE_EN=1  
Set SYSREFREQ_DELAY_STEPSIZE according to 7-14. If the input frequency is at the boundary of two  
possible settings, it is recommended to choose the lowest one for optimal temperature stability.  
Program SYSREFREQ_CLR=1 and then SYSREFREQ_CLR=0  
Send a rising edge to the SYSREFREQ pin(s)  
Read back position with rb_CLKPOS field to determine timing from the SYSREFREQ rising edge to the next  
CLKIN rising edge. The number of 0's between the LSB '1' bit and the first series of '11' can be multiplied by  
the delay determined by SYSREFREQ_DELAY_STEPSIZE to determine the approximate timing to the first  
rising clock edge.  
Program SYSREFREQ_DELAY_STEP field in delay steps to maximize margin between left and right rising  
edges of CLKIN  
7-14. SYSREFREQ_DELAY_STEPSIZE  
RECOMMENDED  
SYSREFREQ_DELAY_STEPSIZE  
INPUT FREQUENCY  
DELAY (ps)  
0
1
2
3
28  
15  
11  
8
1.4GHz < fCLKIN 2.7 GHz  
2.4 GHz < fCLKIN 4.7 GHz  
3.1 GHz < fCLKIN 5.7 GHz  
f
CLKIN 4.5 GHz  
For glitch-free output  
Keep the same state for the SYSREFREQ pin when switching from request mode to windowing mode and  
back to request mode. For example, if the SYSREFREQ pin is high (or low) when windowing mode starts,  
make sure the pin state is high (or low) again after windowing mode ends before programing  
CLKPOS_CAPTURE_EN.  
The SYSREFREQ pin must be set low when switching from or to SYNC mode.  
Other pointers with SYSREF windowing  
The SYSREFREQ pins need to be held high for a minimum time of 3/fCLKIN + 1.6 ns and only after this time  
rb_CLKPOS field is valid.  
If the user infers multiple valid SYSREFREQ_DELAY_STEP values from rb_CLKPOS registers to avoid  
setup-hold violations, choosing the lowest valid SYSREFREQ_DELAY_STEP is recommended to minimize  
variation over temperature.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LMX1204  
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
If using SYNC feature  
Only one SYSREFREQ pin rising edge is permitted per 75 input clock cycles  
SYSREFREQ has to stay high for >6 clock cycles  
7.3.5.4 SYNC Feature  
The SYNC feature allows the user to synchronize the CLK_DIV, LOGICLK_DIV, LOGICLK_DIV_PRE,  
SYSREF_DIV, SYSREF_DIV_PRE, and SYSREF_DELAY_DIV dividers so that the phase offset can be made  
consistent between power cycles. This allows multiple devices to be synchronized. This synchronization dividers  
can only be done through the SYSREFREQ pin, not the software.  
7.4 Device Functional Modes  
7-15 shows the different modes for the device. The CLK_MUX field allows the user to configure the device as  
a buffer, divider, or multiplier. The SYSREF can also be enabled as well for applications that need this feature.  
7-15. Device Configurations  
CLK_MUX  
CLK_MULT  
SYSREF_EN  
FUNCTIONAL MODE  
Buffer  
0
1
0
1
0
1
0
1
1
x
Buffer w/SYSREF  
Divider  
2
3
x
1
Divider w/SYSREF  
Filter  
Filter w/SYSREF  
Multiplier  
2,3,4  
Multiplier w/SYSREF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LMX1204  
 
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Applications Information  
8.1.1 Current Consumption  
The current consumption varies as a function of the setup condition. By adding up all the block currents shown in  
8-1, a reasonable estimate of the current for any setup condition can be obtained.  
8-1. Current Consumption per Block  
BLOCK  
Device Core  
Core  
CONDITION (s)  
CURRENT (mA)  
CLK_MUX = Buffer Mode  
CLK_MUX = Divide Mode  
294  
260  
SMCLK_EN=0  
SMCLK_EN=1  
540  
CLK_MUX = Multiply Mode  
560  
SYSREF_EN=1  
80  
Generator Mode (SYSREF_MODE=0,1)  
Repeater Mode (SYSREF_MODE=2)  
53  
Delay Generator  
SYSREF  
SYNC  
40  
SYSREF_MODE=0,1  
113  
Windowing Circuitry  
Windowing  
Windowing Circuitry  
SYSREF Pulser  
(CLKPOS_CAPTURE_EN=1)  
SYSREF_MODE=2  
0
SYSREF_MODE=1  
SYSREF_EN=0  
7
25  
CLKOUT  
(Per active clock  
Core  
Delay Not Used  
Delay Used  
30  
40  
SYSREF_EN = 1  
channel)  
Output Buffer  
Core  
CHx_EN = CLKOUTx_EN=1  
4+6*CLKOUTx_PWR  
74 +  
SYSREFOUT_EN = CHx_EN = 1  
SYSREFOUT_EN = CHx_EN = 1  
SYSREFOUTx_PWR*5  
SYSREFOUT  
(SYSREFOUTx_PWR and SYSREFOUTx_VCM can  
interact which would make the output buffer current lower  
than the formula predicts in some cases)  
2*SYSREFOUTx_PWR +  
2*SYSREFOUTx_VCM  
Output Buffer  
SYSREF_EN=0  
SYSREF_EN=1  
49  
Core  
59  
LOGIC_EN=1  
LOGICLKOUT_EN=1  
LOGICLKOUT  
16+1*LOGICLKOUT_PWR  
CML(RP=50)  
Output Buffer  
Core  
LVDS  
12  
LVPECL  
30  
SYSREF_EN=0  
SYSREF_EN=1  
CML(RP=50)  
LVDS  
0
LOGIC_EN=1  
LOGISYSREFOUT_EN=1  
55  
LOGISYSREFOUT  
16+1*LOGICLKOUT_PWR  
LOGIC_EN=1  
LOGISYSREFOUT_EN=1  
Output Buffer  
12  
30  
LVPECL  
If all the output clocks, LOGICLK, multiplier, and multiplier are all enabled, it is possible for this device to  
consume a significant amount of current. In order to mitigate this, It is recommended to turn off the SYSREF  
output buffers when not actively sending SYSREF pulses to conserve current.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LMX1204  
 
 
 
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
8.1.2 Treatment of Unused Pins  
In many cases, not all pins will be needed. 8-2 gives recommendation on handling of these unused pins.  
8-2. Treatment of Unused or Partially Used Pins  
PIN(S)  
TREATMENT  
These pins must always be connected to the supply. If the block that this powers (as implied by the pin  
name) is not used, then the bypassing can be minimized or eliminated.  
All Vcc Pins  
If driving single-ended, the complimentary input should have a AC-coupling capacitor and 50 to ground. If  
using continuous SYSREF Generator mode, these pins can be either used to turn the output buffers on and  
off or they can be left floating. If left floating, use SRREQ_SPI to control the output gating. If not using  
SYSREF at all, pins can be left open.  
SYSREFREQ  
CLKIN Complementary Input  
BIAS01 and BIAS23  
If driving single-ended, the complementary input should have a AC-coupling capacitor and 50 to ground.  
These pins can be left open if multiplier is not used.  
CLKOUT  
SYSREFOUT  
These pins can be left open if not used.  
LOGICLKOUT  
LOGISYSREFOUT  
8.2 Typical Application  
For this application, the additive noise impact of using the LMX1204 as a x2 multiplier is exported when added to  
the LMX2820 3-GHz output clock. This particular setup used a single-ended clock to drive the LMX1204 for the  
sake of simplicity of hooking up two EVMs together, but driving it differentially is generally recommended.  
0.01  
F
RFOUTAP  
RFOUTAN  
CLKIN_P  
CLKIN_N  
3 GHz  
0.1  
0.01  
50  
F
100 MHz  
+10  
dBm  
Limiter  
OSCIN  
F
0.1  
F
0.1 F  
LMX2820  
LMX1204  
50  
Wenzel  
0.01  
0.01  
F
Oscillator  
To Phase  
Noise Analyzer  
CLKOUT0_P  
CLKOUT0_N  
CPOUT  
VTUNE  
6 GHz  
18.2  
OSCIN#  
0.1  
F
50  
F
68 nF  
68.1  
470 pF  
50  
2.2 nF  
Bandwidth = 439 kHz  
8-1. Typical Application Schematic  
8.2.1 Design Requirements  
8-3 shows the design parameters for this example.  
If not all outputs or SYSREF are used, TI recommends to compress the layout to minimize trace lengths,  
especially that of the input trace.  
8-3. Design Parameters  
PARAMETER  
VALUE  
100 MHz  
3 GHz  
3 GHz  
6 GHz  
x2  
LMX2820 Input Frequency  
LMX2820 Output Frequency  
LMX1204 Input Clock Frequency  
LMX1204 Output Clock Frequency  
Multiplier Value  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LMX1204  
 
 
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
8.2.2 Detailed Design Procedure  
In this example, a 3-GHz input clock is being multiplied up to a 6-GHz input clock. The external components do  
not change that much based on internal configuration. The TICS Pro software is very useful in calculating the  
necessary register values and configuring the device.  
8-2. LMX1204 TICS Pro Setup  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LMX1204  
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
8.2.3 Application Curve  
In 8-3, the total plot is the sum of the noise of the LMX1204 multiplier noise and the LMX2820 3-GHz output  
(scaled to 6 GHz by adding 6 dB). Note that the LMX1204 does increase the phase noise in the 1-MHz to 20-  
MHz range, but beyond 20 MHz, the input multiplier actually filters the output noise floor.  
-80  
LMX2820 Noise Scaled to 6 GHz  
LMX1204 Multiplier Noise  
LMX2820 + LMX1204  
-100  
-120  
-140  
-160  
1x102  
1x103  
1x104  
1x105  
1x106  
1x107  
1x108  
Offset (Hz)  
8-3. Multiplier Output Frequency  
8.3 Power Supply Recommendations  
This devices uses a 2.5-V supply for the whole device. A direct connection to a switching power supply will likely  
result in unwanted spurs at the output. Bypassing can be done individually at all the power pins. TI recommends  
placing smaller capacitors with higher frequency of minimum impedance on the same layer as the device, as  
close to the pins as possible. Since the frequencies of nearly all signals in the device are 100 MHz or greater,  
larger value bypass capacitors with low frequency of minimum impedance are only used for internal LDO  
stability, and their distance to the device (and the loop inductance of the bypass path) can be larger. The supply  
pins for the clocks and the LOGICLK should be isolated with a small resistor or ferrite bead if both are being  
used simultaneously. See the Pin Configuration and Functions section for additional recommendations for each  
pin.  
备注  
This device has minimal PSRR due to the low operating voltage and internal filtering by LDOs;  
it is important that this device is connected to a low noise supply that does not have excessive  
spurious noise.  
8.4 Layout  
8.4.1 Layout Guidelines  
If using an output single-ended, terminate the complementary side so that the impedance as seen looking out  
from this is similar to side that is used.  
GND pins on the outer perimeter of the package may be routed on the package back to the DAP.  
Minimize the length of the CLKIN trace for optimal phase noise. Poor matching may degrade the noise floor.  
Ensure the DAP on device is well-grounded with many vias.  
Use a low loss dielectric material, such as Rogers 4350B, for optimal output power.  
Be aware that if all the outputs and SYSREF are operating, the current consumption may be high enough to  
exceed the recommended internal junction temperature of 125°C; a heat sink may be necessary.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LMX1204  
 
 
 
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
8.4.2 Layout Example  
AC coupling capacitors  
required on all CLKOUT  
outputs, but can be  
placed far away  
Power supply circuitry  
can be placed farther  
away from the chip  
LMX1204  
Di eren al Output  
Rou ng  
Large and small shunt  
capacitors. Large  
capacitor is not always  
necessary. Smaller  
capacitor needs to be  
as close to the chip as  
possible for high  
frequency noise.  
8-4. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LMX1204  
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
9 Device and Documentation Support  
9.1 Device Support  
TI offers an extensive line of development tools and software to simulate the device performance and program  
the device.  
9-1. Development Tools and Software  
TOOL  
TYPE  
DESCRIPTION  
Simulates phase noise in all modes and filter  
transfer function in multiplier mode.  
PLLatinumSim  
Software  
Programs the device with a user-friendly GUI  
with interactive feedback and hex register  
export.  
TICS Pro  
Software  
Register Map Description  
Document  
Detailed description of all registers.  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
PLLatinumand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LMX1204  
 
 
 
 
 
 
 
 
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
PACKAGE OUTLINE  
RHA0040C  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
0.5  
0.3  
PIN 1 INDEX AREA  
6.1  
5.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
4.7 0.1  
2X 4.5  
(0.2) TYP  
11  
20  
36X 0.5  
10  
21  
EXPOSED  
THERMAL PAD  
2X  
41  
SYMM  
4.5  
SEE TERMINAL  
DETAIL  
1
30  
0.3  
0.2  
40X  
40  
PIN 1 ID  
(OPTIONAL)  
31  
0.1  
0.05  
C A B  
SYMM  
0.5  
0.3  
40X  
4219053/A 09/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LMX1204  
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
EXAMPLE BOARD LAYOUT  
RHA0040C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.7)  
SYMM  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
4X  
(1.35)  
(
0.2) TYP  
VIA  
(0.75)  
TYP  
41  
(5.8)  
SYMM  
4X  
(1.5)  
36X (0.5)  
10  
21  
(R0.05)  
TYP  
11  
(0.75) TYP  
20  
4X (1.5)  
(5.8)  
4X (1.35)  
LAND PATTERN EXAMPLE  
SCALE:12X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219053/A 09/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LMX1204  
LMX1204  
www.ti.com.cn  
ZHCSOF2A JULY 2021 REVISED AUGUST 2022  
EXAMPLE STENCIL DESIGN  
RHA0040C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.5) TYP  
9X ( 1.3)  
(R0.05) TYP  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
41  
(1.5)  
TYP  
SYMM  
(5.8)  
36X (0.5)  
10  
21  
METAL  
TYP  
11  
20  
SYMM  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 41:  
69% PRINTED SOLDER COVERAGE BY AREA  
SCALE:15X  
4219053/A 09/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: LMX1204  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMX1204RHAR  
LMX1204RHAT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RHA  
RHA  
40  
40  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
LMX1204  
LMX1204  
Samples  
Samples  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Dec-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Sep-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMX1204RHAR  
LMX1204RHAT  
VQFN  
VQFN  
RHA  
RHA  
40  
40  
2500  
250  
330.0  
180.0  
16.4  
16.4  
6.3  
6.3  
6.3  
6.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Sep-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMX1204RHAR  
LMX1204RHAT  
VQFN  
VQFN  
RHA  
RHA  
40  
40  
2500  
250  
367.0  
210.0  
367.0  
185.0  
38.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHA 40  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225870/A  
www.ti.com  
PACKAGE OUTLINE  
RHA0040C  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
0.5  
0.3  
PIN 1 INDEX AREA  
6.1  
5.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
4.7 0.1  
2X 4.5  
(0.2) TYP  
11  
20  
36X 0.5  
10  
21  
EXPOSED  
THERMAL PAD  
2X  
41  
SYMM  
4.5  
SEE TERMINAL  
DETAIL  
1
30  
0.3  
0.2  
40X  
40  
31  
PIN 1 ID  
(OPTIONAL)  
0.1  
0.05  
C A B  
SYMM  
0.5  
0.3  
40X  
4219053/B 03/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHA0040C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.7)  
SYMM  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
4X  
(1.35)  
(
0.2) TYP  
VIA  
(0.75)  
TYP  
41  
(5.8)  
SYMM  
4X  
(1.5)  
36X (0.5)  
10  
21  
(R0.05)  
TYP  
11  
(0.75) TYP  
20  
4X (1.5)  
(5.8)  
4X (1.35)  
LAND PATTERN EXAMPLE  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219053/B 03/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHA0040C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.5) TYP  
9X ( 1.3)  
(R0.05) TYP  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
41  
(1.5)  
TYP  
SYMM  
(5.8)  
36X (0.5)  
10  
21  
METAL  
TYP  
11  
20  
SYMM  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 41:  
69% PRINTED SOLDER COVERAGE BY AREA  
SCALE:15X  
4219053/B 03/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LMX123

Analog IC
ETC

LMX123MH

Analog IC
ETC

LMX124

Analog IC
ETC

LMX125MH

Analog IC
ETC

LMX149

Analog IC
ETC

LMX1501

PLLatinumTM 1.1 GHz Frequency Synthesizer for RF Personal Communications
NSC

LMX15010AM

1.1 GHz Frequency Synthesizer for RF Personal Communications(367.82 k)
NSC

LMX1501A

PLLatinumTM 1.1 GHz Frequency Synthesizer for RF Personal Communications
NSC

LMX1501AM

PLLatinumTM 1.1 GHz Frequency Synthesizer for RF Personal Communications
NSC

LMX1501AMX

PLLatinumTM 1.1 GHz Frequency Synthesizer for RF Personal Communications
NSC

LMX1501MDA

暂无描述
NSC

LMX1511

PLLatinumTM 1.1 GHz Frequency Synthesizer for RF Personal Communications
NSC