LMX2572LPRHAT [TI]

采用 FSK 调制的 2GHz 低功耗宽带射频合成器 | RHA | 40 | -40 to 85;
LMX2572LPRHAT
型号: LMX2572LPRHAT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 FSK 调制的 2GHz 低功耗宽带射频合成器 | RHA | 40 | -40 to 85

射频
文件: 总81页 (文件大小:2003K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMX2572LP  
ZHCSIA2 MAY 2018  
具有 FSK 调制功能的 LMX2572LP 2GHz 低功耗宽带射频合成器  
1 特性  
3 说明  
1
输出频率:12.5MHz 2GHz  
低功耗:70mA3.3V 电源供电  
LMX2572LP 是一款低功耗、高性能宽带合成器,可生  
成从 12.5MHz 2GHz 之间的一个频率,而无需使用  
内部倍频器。该 PLL 可提供优异的性能,而 3.3V 单  
电源中的电流消耗仅为 70mA。  
100kHz 偏移和 800MHz 载波的情况下具有  
–124dBc/Hz 的相位噪声  
PLL 品质因数:–232dBc/Hz  
PLL 标称 1/f 噪声:–123.5dBc/Hz  
32 位分数 N 分频器  
对于数字移动无线电 (DMR) 和无线麦克风等 应用  
LMX2572LP 支持 FSK 调制。它支持离散电平 FSK  
和脉冲整形 FSK。离散数字 FSK 调制可通过编程或引  
脚实现。  
用可编程输入乘法器消除整数边界杂散  
跨多个设备实现输出相位同步  
支持斜升和线性调频脉冲函数  
支持 FSK 直接数字调制  
LMX2572LP 允许用户同步多个器件的输出,并可支持  
需要输入和输出之间具有确定延迟的 应用。  
LMX2572LP 提供了一个可精准调节相位的选项,以解  
决电路板上或器件内的延迟不匹配问题。频率斜升发生  
器可在自动斜坡生成选项或手动选项中最多合成 2 段  
斜坡,以实现最大的灵活性。通过快速校准算法,用户  
可在不到 20μs 的时间内改变频率。  
两个可编程输出功率水平差动输出  
较快的 VCO 校准速度:< 20µs  
3V 3.5V 单电源  
2 应用  
测试和测量设备  
LMX2572LP 集成了通过 3.3V 单电源供电的 LDO,无  
需再配备板载低噪声 LDO。  
双线制数字音频广播  
低功耗无线电通信系统  
卫星通信  
器件信息(1)  
器件型号  
LMX2572LP  
封装  
VQFN (40)  
封装尺寸(标称值)  
无线耳机  
6.00mm × 6.00mm  
专有无线连接  
MIMO  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
高速数据转换器计时  
功能方框图  
CPout  
Vtune  
OSCinP  
OSCinM  
Pre-R  
Divider  
Post-R  
Divider  
Charge  
Pump  
RFoutAP  
RFoutAM  
,
x2  
MULT  
CSB  
SCK  
SDI  
N-Divider  
÷2/4/8/256  
Serial Interface  
LDOs  
RFoutBP  
RFoutBM  
Lock Detect or  
Register Readback  
Phase  
Sync  
Ramp Generator  
FSK Generator  
û  
Modulator  
MUXout  
Enable  
SYNC  
CE  
RampClk RampDir SysRefReq  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。 TI 不保证翻译的准确性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNAS764  
 
 
 
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
目录  
7.5 Programming........................................................... 17  
7.6 Register Maps......................................................... 20  
Application and Implementation ........................ 59  
8.1 Application Information............................................ 59  
8.2 Typical Application .................................................. 69  
8.3 Do's and Don'ts....................................................... 70  
Power Supply Recommendations...................... 72  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 7  
6.7 Timing Diagrams....................................................... 8  
6.8 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 12  
7.4 Device Functional Modes........................................ 17  
8
9
10 Layout................................................................... 73  
10.1 Layout Guidelines ................................................. 73  
10.2 Layout Example .................................................... 73  
11 器件和文档支持 ..................................................... 74  
11.1 器件支持................................................................ 74  
11.2 文档支持................................................................ 74  
11.3 接收文档更新通知 ................................................. 74  
11.4 社区资源................................................................ 74  
11.5 ....................................................................... 74  
11.6 静电放电警告......................................................... 74  
11.7 术语表 ................................................................... 74  
12 机械、封装和可订购信息....................................... 74  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
版本  
注释  
2018 5 月  
*
初始发行版  
2
Copyright © 2018, Texas Instruments Incorporated  
 
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
5 Pin Configuration and Functions  
RHA Package  
40-Pin VQFN  
Top View  
CE  
GND  
1
2
3
4
5
6
7
8
9
10  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RampClk  
VrefVCO2  
SysRefReq  
VbiasVCO2  
VccVCO2  
GND  
VbiasVCO  
GND  
SYNC  
DAP  
GND  
VccDIG  
OSCinP  
OSCinM  
VregIN  
CSB  
RFoutAP  
RFoutAM  
VccBUF  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Chip enable. High impedance CMOS input. 1.8-V to 3.3-V logic. Active HIGH powers on the  
device.  
CE  
1
Input  
CPout  
CSB  
12  
24  
Output  
Input  
Charge pump output. Place C1 of loop filter close to this pin.  
SPI latch. High impedance CMOS input. 1.8-V to 3.3-V logic.  
RF ground.  
DAP  
Ground  
2, 4, 25, 31,  
34, 39  
Ground  
VCO ground.  
GND  
6, 14, 40  
Ground  
Ground  
Output  
Input  
Digital ground.  
13  
20  
9
Charge pump ground.  
MUXout  
OSCinM  
OSCinP  
Multiplexed output pin. Configurable between lock detect and register readback.  
Reference input clock (–). High impedance self-biasing pin. Requires AC-coupling.  
Reference input clock (+). High impedance self-biasing pin. Requires AC-coupling.  
8
Input  
Ramp trigger in automatic ramping mode or ramp clock in manual ramping mode. Can also  
be used as FSK I2S clock input. High impedance CMOS input. 1.8-V to 3.3-V logic.  
RampClk  
30  
Input  
Ramp trigger in automatic ramping mode or ramp segment selection in manual ramping  
mode. Can also be used as FSK I2S data input. High impedance CMOS input. 1.8-V to 3.3-V  
logic.  
RampDir  
32  
Input  
RFoutAM  
RFoutAP  
RFoutBM  
RFoutBP  
SCK  
22  
23  
18  
19  
16  
Output  
Output  
Output  
Output  
Input  
Differential output A (–). Low impedance output. Requires AC-coupling.  
Differential output A (+). Low impedance output. Requires AC-coupling.  
Differential output B (–). Low impedance output. Requires AC-coupling.  
Differential output B (+). Low impedance output. Requires AC-coupling.  
SPI clock. High impedance CMOS input. 1.8-V to 3.3-V logic.  
Copyright © 2018, Texas Instruments Incorporated  
3
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
SDI  
17  
Input  
Input  
SPI data. High impedance CMOS input. 1.8-V to 3.3-V logic.  
Phase synchronization trigger. Configurable to accept CMOS input (1.8-V to 3.3-V logic) or  
differential input.  
SYNC  
5
SysRefReq  
28  
33  
Input  
FSK I2S Frame Sync input. High impedance CMOS input. 1.8-V to 3.3-V logic.  
VCO Varactor bias. Connect a 10-µF decoupling capacitor to VCO ground.  
VbiasVARAC  
Bypass  
VCO bias. Connect a 470-nF (X7R) decoupling capacitor to VCO ground as close to this pin  
as possible.  
VbiasVCO  
3
Bypass  
VbiasVCO2  
VccBUF  
27  
21  
11  
7
Bypass  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Bypass  
Bypass  
VCO bias. Connect a 100-nF (X7R) decoupling capacitor to VCO ground.  
Supply for output buffers. Connect a 0.1-µF decoupling capacitor to RF ground.  
Supply for charge pump. Connect a 0.1-µF decoupling capacitor to charge pump ground.  
Digital power supply. Connect a 0.1-µF decoupling capacitor to digital ground.  
Digital power supply. Connect a 1-µF decoupling capacitor to digital ground.  
Supply for VCO. Connect a 1-µF decoupling capacitor to VCO ground.  
Supply for VCO. Connect a 1-µF decoupling capacitor to VCO ground.  
VCO supply reference. Connect a 10-µF decoupling capacitor to VCO ground.  
VCO supply reference. Connect a 10-µF decoupling capacitor to VCO ground.  
VccCP  
VccDIG  
VccMASH  
VccVCO  
VccVCO2  
VrefVCO  
VrefVCO2  
15  
37  
26  
36  
29  
Input reference path regulator output. Connect a 1-µF decoupling capacitor to RF ground as  
close to this pin as possible.  
VregIN  
VregVCO  
Vtune  
10  
38  
35  
Bypass  
Bypass  
Input  
VCO regulator node. Connect a 10-nF decoupling capacitor to VCO ground.  
VCO tuning voltage input. Connect a 1.5-nF or more capacitor to VCO ground. See External  
Loop Filter for details.  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
3.6  
UNIT  
V
VCC  
VIN  
TJ  
Power supply voltage  
IO input voltage  
–0.3  
VCC + 0.3  
150  
V
Junction temperature  
Storage temperature  
°C  
°C  
Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
85  
UNIT  
°C  
TA  
TJ  
Ambient temperature  
Junction temperature  
–40  
125  
°C  
4
Copyright © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
6.4 Thermal Information  
LMX2572LP  
THERMAL METRIC(1)  
RHA (VQFN)  
UNIT  
40 PINS  
25.5  
14.4  
8
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ΨJB  
7.9  
RθJC(bot)  
1.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
3.0 V VCC 3.5 V, –40°C TA 85°C. Typical values are at VCC = 3.3 V, 25°C (unless otherwise noted).  
PARAMETER  
POWER SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VCC  
Supply voltage  
3
3.3  
70  
3.5  
fOSCin = 20 MHz; fPD = 40 MHz(1)  
fOSCin = 100 MHz; fPD = 100 MHz(2)  
ICC  
Supply current  
74.5  
2.5  
mA  
ICCPD  
Power down current  
INPUT SIGNAL PATH  
OSC_2X = 0 (Doubler bypassed)  
OSC_2X = 1 (Doubler enabled)  
Single-ended input buffer  
5
5
250  
125  
3.6  
1
fOSCin  
OSCin input frequency  
MHz  
V
0.3  
0.15  
10  
VOSCin  
OSCin input voltage(3)  
Differential input buffer  
fMULTin  
fMULTout  
PLL  
Multiplier input frequency  
Multiplier output frequency  
40  
MULT 3  
MHz  
60  
150  
Integer channel  
1st and 2nd order modulator  
3rd order modulator  
4th order modulator  
CPG = 1  
0.25  
250  
200  
160  
120  
5
5
5
fPD  
Phase detector frequency(4)  
MHz  
µA  
625  
1250  
1875  
CPG = 2  
ICPout  
Charge pump current  
CPG = 3  
···  
CPG = 15  
6875  
–123.5  
–232  
–232  
PNPLL_1/f  
Normalized PLL 1/f noise(5)  
Normalized PLL noise floor(5)  
Integer channel(6)  
Fractional channel(7)  
dBc/Hz  
MHz  
PNPLL_Flat  
VCO  
fVCO  
VCO frequency  
3200  
6400  
(1) ICP = 2.5 mA; fVCO = 3.2 GHz; fOUT = 400 MHz; POUT = 3 dBm; OSC_2X = 1; MULT = 1; one RF output.  
(2) ICP = 2.5 mA; fVCO = 3.2 GHz; fOUT = 400 MHz; POUT = 3 dBm; OSC_2X = 0; MULT = 1; one RF output.  
(3) See OSCin Configuration for definition of OSCin input voltage.  
(4) For lower VCO frequencies, the N-divider minimum value can limit the phase detector frequency.  
(5) Measured with a clean OSCin signal with a high slew rate using a wide loop bandwidth. The noise metrics model the PLL noise for an  
infinite loop bandwidth as: PLL_Total = 10*log[10(PLL_Flat/10)+10(PLL_Flicker/10)]; PLL_Flat = PN1 Hz + 20*log(N) + 10*log(fPD); PLL_Flicker  
= PN10 kHz - 10*log(Offset/10 kHz) + 20*log(fOUT/1 GHz)  
(6) fOSCin = 200 MHz; fPD = 100 MHz; fVCO = 6 GHz  
(7) fOSCin = 200 MHz; fPD = 100 MHz; fVCO = 6.001 GHz; Fractional denominator = 1000.  
Copyright © 2018, Texas Instruments Incorporated  
5
 
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
3.0 V VCC 3.5 V, –40°C TA 85°C. Typical values are at VCC = 3.3 V, 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
–106  
–129  
–149  
–153.5  
–105.5  
–129  
–149.5  
–152.5  
–104.5  
–129  
–149  
–153  
–103  
–128  
–148.5  
–154  
–102.5  
–127  
–147.5  
–154  
–102  
–126.5  
–147  
–153  
39  
MAX  
UNIT  
10 kHz  
100 kHz  
1 MHz  
fOUT = 425 MHz  
(fVCO = 3.4 GHz)  
10 MHz  
10 kHz  
100 kHz  
1 MHz  
fOUT = 487.5 MHz  
(fVCO = 3.9 GHz)  
10 MHz  
10 kHz  
100 kHz  
1 MHz  
fOUT = 550 MHz  
(fVCO = 4.4 GHz)  
10 MHz  
10 kHz  
100 kHz  
1 MHz  
PNVCO  
Open loop VCO phase noise  
dBc/Hz  
fOUT = 612.5 MHz  
(fVCO = 4.9 GHz)  
10 MHz  
10 kHz  
100 kHz  
1 MHz  
fOUT = 675 MHz  
(fVCO = 5.4 GHz)  
10 MHz  
10 kHz  
100 kHz  
1 MHz  
fOUT = 737.5 MHz  
(fVCO = 5.9 GHz)  
10 MHz  
fVCO = 3.4 GHz  
fVCO = 3.9 GHz  
fVCO = 4.4 GHz  
fVCO = 4.9 GHz  
fVCO = 5.4 GHz  
fVCO = 5.9 GHz  
44  
55  
KVCO  
VCO gain  
MHz/V  
60  
69  
62  
No assist  
130  
fOSCin = fPD = 100 MHz; Switch  
between 3.2 GHz and 6.4 GHz  
VCO frequency  
tVCOcal  
VCO calibration-time(8)  
Partial assist  
50  
µs  
°C  
Full assist  
5
|ΔTCL  
|
Allowable temperature drift(9) VCO not being re-calibrated, –40°C TA 85°C  
125  
RF OUTPUT  
fOUT  
RF output frequency  
12.5  
2000  
MHz  
dBm  
POUT  
Single-ended output power  
fOUT = 2 GHz  
5
33.5  
43  
fOUT = 800 MHz  
fOUT = 400 MHz  
fOUT = 800 MHz  
fOUT = 400 GHz  
fOUT = 2 GHz  
H2OUT  
Second harmonic  
OUTx_PWR  
= 15  
dBc  
ps  
–10.5  
10  
H3OUT  
Third harmonic  
|tskewCH|  
Channel to channel skew  
14  
(8) See VCO Calibration for details.  
(9) Not tested in production. Ensured by characterization. Allowable temperature drift refers to programming the device at an initial  
temperature and allowing this temperature to drift WITHOUT reprogramming the device, and still have the device stay at lock. This  
change could be up or down in temperature and the specification does not apply to temperatures that go outside the recommended  
operating temperatures of the device.  
6
Copyright © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
Electrical Characteristics (continued)  
3.0 V VCC 3.5 V, –40°C TA 85°C. Typical values are at VCC = 3.3 V, 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PHASE SYNCHRONIZATION  
Category 3  
5
5
100  
200  
OSCin input frequency with  
SYNC  
fOSCinSYNC  
|tskewSYNC|  
MHz  
ns  
Categories 1 and 2  
After phase synchronization;  
fOSCinSYNC = fOUT = 100 MHz  
OSCin to RFout skew  
2
DIGITAL INTERFACE  
VIH  
VIL  
IIH  
High-level input voltage  
1.4  
VCC  
0.4  
25  
V
µA  
V
Low-level input voltage  
High-level input current  
Low-level input current  
High-level output voltage  
Low-level output voltage  
–25  
–25  
IIL  
25  
VOH  
VOL  
Load current = –5 mA  
Load current = 5 mA  
VCC – 0.5  
MUXout pin  
0.5  
6.6 Timing Requirements  
3.0 V VCC 3.5 V, –40°C TA 85°C. Typical values are at VCC = 3.3 V, 25°C (unless otherwise noted).  
MIN  
NOM  
MAX  
UNIT  
SERIAL INTERFACE WRITE TIMING  
fSCK  
tES  
SCK frequency  
1 / (tCWL+tCWH  
)
75  
MHz  
ns  
SCK to CSB low time  
SDI to SCK setup time  
SDI to SCK hold time  
SCK pulse width high  
SCK pulse width low  
CSB to SCK setup time  
CSB pulse width high  
5
2
2
5
5
5
2
tCS  
ns  
tCH  
ns  
tCWH  
tCWL  
tCES  
tEWH  
1  
ns  
ns  
ns  
ns  
SERIAL INTERFACE READ TIMING  
fSCK  
tES  
SCK frequency  
1 / (tCWL+tCWH  
)
50  
MHz  
ns  
SCK to CSB low time  
SDI to SCK setup time  
SDI to SCK hold time  
SCK pulse width high  
SCK pulse width low  
CSB to SCK setup time  
CSB pulse width high  
10  
10  
10  
10  
10  
10  
10  
tCS  
ns  
tCH  
ns  
tCWH  
tCWL  
tCES  
tEWH  
1  
ns  
ns  
ns  
ns  
SYNC TIMING  
tCS Pin to OSCin setup time  
tCH Pin to OSCin hold time  
2.5  
2
ns  
ns  
2  
版权 © 2018, Texas Instruments Incorporated  
7
 
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
6.7 Timing Diagrams  
MSB  
(R/W)  
Address  
(7-bit)  
LSB  
(D0)  
SDI  
SCK  
(D15 œ D1)  
tCS  
tCH  
1st  
2nd  
3rd œ 7th  
8th  
9th œ 23rd  
24th  
tCE  
tCES  
tCWH  
tEWH  
tCWL  
Read back register value  
16-bit  
MUXout  
CSB  
1. Serial Interface Timing Diagram  
SYNC  
OSCin  
tCS  
tCH  
2. SYNC Timing Diagram  
8
版权 © 2018, Texas Instruments Incorporated  
 
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
6.8 Typical Characteristics  
At TA = 25°C, unless otherwise noted  
-60  
-80  
-60  
-80  
425 MHz  
487.5 MHz  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
1
1
1
2 3 45 710 20 50 100200  
1000  
10000 50000  
1
1
1
2 3 45 710 20 50 100200  
1000  
10000 50000  
Offset (kHz)  
Offset (kHz)  
D033  
D034  
3. Open-Loop VCO Phase Noise at 425 MHz  
4. Open-Loop VCO Phase Noise at 487.5 MHz  
-60  
-80  
-60  
-80  
550 MHz  
612.5 MHz  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
2 3 45 710 20 50 100200  
1000  
10000 50000  
2 3 45 710 20 50 100200  
1000  
10000 50000  
Offset (kHz)  
Offset (kHz)  
D035  
D036  
5. Open-Loop VCO Phase Noise at 550 MHz  
6. Open-Loop VCO Phase Noise at 612.5 MHz  
-60  
-80  
-60  
-80  
675 MHz  
737.5 MHz  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
2 3 45 710 20 50 100200  
1000  
10000 50000  
2 3 45 710 20 50 100200  
1000  
10000 50000  
Offset (kHz)  
Offset (kHz)  
D037  
D038  
7. Open-Loop VCO Phase Noise at 675 MHz  
8. Open-Loop VCO Phase Noise at 737.5 MHz  
版权 © 2018, Texas Instruments Incorporated  
9
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
Typical Characteristics (接下页)  
At TA = 25°C, unless otherwise noted  
-100  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
425 MHz  
487.5 MHz  
-110  
-120  
-130  
-140  
-150  
-160  
1
1
1
2 3 5 710 20 50 100  
1000  
10000  
100000  
1
1
1
2 3 5 710 20 50 100  
1000  
10000  
100000  
Offset (kHz)  
Offset (kHz)  
D039  
D040  
9. Wide Band Phase Noise at 425 MHz  
10. Wide Band Phase Noise at 487.5 MHz  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
550 MHz  
612.5 MHz  
2 3 5 710 20 50 100  
1000  
10000  
100000  
2 3 5 710 20 50 100  
1000  
10000  
100000  
Offset (kHz)  
Offset (kHz)  
D041  
D042  
11. Wide Band Phase Noise at 550 MHz  
12. Wide Band Phase Noise at 612.5 MHz  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
675 MHz  
737.5 MHz  
2 3 5 710 20 50 100  
1000  
10000  
100000  
2 3 5 710 20 50 100  
1000  
10000  
100000  
Offset (kHz)  
Offset (kHz)  
D043  
D044  
13. Wide Band Phase Noise at 675 MHz  
14. Wide Band Phase Noise at 737.5 MHz  
10  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
Typical Characteristics (接下页)  
At TA = 25°C, unless otherwise noted  
1800  
1800  
1600  
1400  
1200  
1000  
800  
VCO frequency jump from 6400 MHz to 3200 MHz  
1600  
1400  
1200  
1000  
800  
VCO frequency jump from 3200 MHz to 6400 MHz  
600  
-20  
600  
-20  
0
20  
40  
60  
80 100 120 140 160 180  
0
20  
40  
60  
80 100 120 140 160 180  
Time (µs)  
Time (µs)  
D045  
D046  
15. VCO Calibration Time  
16. VCO Calibration Time  
10  
8
9
6
6
3
4
0
2
OUTx_PWR  
-3  
-6  
-9  
-12  
5
12  
18  
0
fOUT  
-2  
-4  
-6  
250 MHz  
500 MHz  
1000 MHz  
2000 MHz  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
2
4
6
8
10  
12  
14  
16  
18  
fOUT (MHz)  
OUTx_PWR  
D047  
D048  
17. Output Power vs Frequency  
18. Configurable Output Power  
487.5032  
487.5026  
487.5019  
487.5013  
487.5006  
487.5  
425.085  
425.068  
425.051  
425.034  
425.017  
425  
487.4994  
487.4987  
487.4981  
487.4974  
487.4968  
424.983  
424.966  
424.949  
424.932  
424.915  
-250 -200 -150 -100 -50  
0
50 100 150 200 250  
-500  
-300  
-100  
100  
300  
500  
Time (µs)  
Time (µs)  
D007  
D008  
19. 4-Level GFSK Modulation  
20. Discrete-Level FSK Modulation  
版权 © 2018, Texas Instruments Incorporated  
11  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMX2572LP is a low-power, high-performance, wideband frequency synthesizer with integrated VCO and  
output divider. The VCO operates from 3.2 to 6.4 GHz, and this can be combined with the output divider to  
produce any frequency in the range of 12.5 MHz to 2 GHz. Within the input path, there are two dividers and a  
multiplier for flexible frequency planning. The multiplier can also move the frequencies away from the integer  
boundary to allow spur reduction.  
The PLL is a fractional-N PLL with a programmable delta-sigma modulator up to 4th order. The fractional  
denominator is a programmable 32-bit long that can supply fine frequency steps easily below the 1-Hz resolution.  
The denominator can also be used to do exact fractions like 1/3, 7/1000, and many others.  
For applications where deterministic or adjustable phase is desired, the SYNC pin can be used to get the phase  
relationship between the OSCin and RFout pins deterministic. Once this is done, the phase can be adjusted in  
very fine steps of the VCO period divided by the fractional denominator.  
The ultra-fast VCO calibration is ideal for applications where the frequency must be swept or abruptly changed.  
The frequency can be manually programmed, or the device can be set up to do ramps and chirps.  
The FSK generator can support FSK generation in discrete 2-, 4-, or 8-level FSK. It can also support an arbitrary  
level FSK.  
The LMX2572LP device requires only a single 3.3-V power supply and uses very low current. The internal power  
supplies are provided by integrated LDOs, eliminating the need for high performance external LDOs.  
Digital logic interface is compatible with 1.8-V input. The user can program the device through the serial  
interface. The device can be powered down through register programming or by toggling the Chip Enable (CE)  
pin.  
7.2 Functional Block Diagram  
CPout  
Vtune  
OSCinP  
OSCinM  
Pre-R  
Divider  
Post-R  
Divider  
Charge  
Pump  
RFoutAP  
RFoutAM  
,
x2  
MULT  
CSB  
SCK  
SDI  
N-Divider  
÷2/4/8/256  
Serial Interface  
LDOs  
RFoutBP  
RFoutBM  
Lock Detect or  
Register Readback  
Phase  
Sync  
Ramp Generator  
FSK Generator  
û  
Modulator  
MUXout  
Enable  
SYNC  
CE  
RampClk RampDir SysRefReq  
7.3 Feature Description  
7.3.1 Reference Oscillator Input  
The OSCin pins are used as a frequency reference input to the device. The input is high impedance and requires  
AC-coupling capacitors at the pin. The OSCin pins can be driven single-ended with a CMOS clock, XO, or single-  
ended differential clock. Differential clock input is also supported, which makes the device easier to interface with  
high-performance system clock devices such as TI’s LMK series clock devices. As the OSCin signal is used as a  
clock for the VCO calibration, a proper reference signal must be applied at the OSCin pin at the time of  
programming FCAL_EN.  
7.3.2 Reference Path  
The reference path consists of an OSCin doubler (OSC_2X), Pre-R divider (PLL_R_PRE), Multiplier (MULT), and  
a Post-R divider (PLL_R).  
12  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
Feature Description (接下页)  
Phase  
Frequency  
Detector  
Pre-R  
Divider  
Post-R  
Divider  
OSCin  
Doubler  
Multiplier  
21. Reference Path  
The Doubler allows one to double the input reference frequency up to 250 MHz. The Doubler adds minimal noise  
and is useful for raising the phase detector frequency for better phase noise. The Doubler can also be used to  
avoid spurs. The Doubler uses both the rising and falling edges of the input signal, so the input signal must have  
50% duty cycle if the Doubler is enabled. Note that the Multiplier cannot be used if the Doubler is engaged.  
The Pre-R divider can help reduce input frequency so that the Multiplier can be used and the maximum 200-MHz  
input frequency limitation of the Post-R divider can be met.  
The Multiplier multiplies the frequency up under the allowable multiplications of 3, 4, 5, 6, and 7. In combination  
with the Pre-R and Post-R dividers, the Multiplier offers the flexibility to shift the phase detector frequency away  
from frequencies that may create integer boundary spurs with the VCO and the output frequencies. Be aware  
that unlike the Doubler, the Multiplier degrades the PLL figure of merit. This degradation would only matter,  
however, for a very clean reference oscillator input and if the loop bandwidth was wide. The user should not use  
the Doubler while using the Multiplier. The Multiplier is bypassed if its value is set to 1.  
The Post-R divider can be used to further divide down the frequency to the phase detector frequency. When it is  
used (PLL_R > 1), the input frequency to this divider is limited to 200 MHz.  
Use 公式 1 to calculate the phase detector frequency, fPD  
.
fPD = fOSCin × OSC_2X × MULT / (PLL_R_PRE × PLL_R)  
(1)  
1 summarizes the usage boundaries of these functional blocks in the reference path.  
1. Reference Path Boundaries  
INPUT  
FREQUENCY  
(MHz)  
OUTPUT  
FREQUENCY  
(MHz)  
PARAMETER  
VALUE  
NOTES  
MIN  
MAX  
MIN  
MAX  
OSCin  
Doubler  
N/A  
5
250  
When OSC_2X = 1, Multiplier cannot be used at the same  
time.  
0 (Bypassed), 1 (x2)  
5
5
125  
200  
40  
10  
0.25  
60  
250  
200  
150  
200  
Pre-R divider  
Multiplier  
1 (Bypassed), 2, 3, …, 254, 255  
1 (Bypassed), 3, 4, 5, 6, 7  
1 (Bypass), 2, 3, …, 254, 255  
Keep it equals 1 unless when necessary.  
When the output frequency is greater than 100MHz, set  
MULT_HI = 1.  
10  
5
Post-R divider  
200  
0.25  
7.3.3 PLL Phase Detector and Charge Pump  
The phase detector compares the outputs of the Post-R divider and N divider and generates a correction current  
corresponding to the phase error until the two signals are aligned in phase. This charge-pump current is software  
programmable to many different levels, allowing modification of the closed-loop bandwidth of the PLL.  
2. Charge Pump Gain  
CGP  
0
1
2
3
4 or 8  
5 or 9  
6 or 10  
7 or 11  
12  
13  
14  
15  
UNIT  
Gain  
Tri-state  
625  
1250  
1875  
2500  
3125  
3750  
4375  
5000  
5625  
6250  
6875  
µA  
版权 © 2018, Texas Instruments Incorporated  
13  
 
 
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
7.3.4 PLL N Divider and Fractional Circuitry  
The N divider includes fractional compensation and can achieve any fractional denominator (PLL_DEN) from 1 to  
(232 – 1). The integer portion of N (PLL_N) is the whole part of the N divider value, and the fractional portion,  
Nfrac = PLL_NUM / PLL_DEN, is the remaining fraction. PLL_N, PLL_NUM and PLL_DEN are software  
programmable. The higher the denominator, the finer the resolution step of the output. For example, even when  
using fPD = 200 MHz, the output can increment in steps of 200 MHz / (232 – 1) = 0.0466 Hz. 公式 2 shows the  
relationship between the phase detector and VCO frequencies. Note that in SYNC mode, there is an extra divider  
that is not shown in 公式 2.  
fVCO = fPD × [PLL_N + (PLL_NUM / PLL_DEN)]  
(2)  
The multi-stage noise-shaping (MASH) sigma-delta modulator that controls the fractional division is also  
programmable from integer mode to fourth order. All of these settings work for integer channel where PLL_NUM  
= 0. To make the fractional spurs consistent, the modulator is reset any time that the R0 register is programmed.  
The N divider has minimum value restrictions based on the modulator order. Furthermore, the PFD_DLY_SEL bit  
must be programmed in accordance to 3.  
3. Minimum N Divider Restrictions  
MASH ORDER  
SECOND ORDER  
VCO  
FREQUENCY  
(GHz)  
INTEGER  
FIRST ORDER  
PFD_DLY_SEL  
THIRD ORDER  
PFD_DLY_SEL  
FOURTH ORDER  
N
PFD_DLY_SEL  
N
N
PFD_DLY_SEL  
N
N
PFD_DLY_SEL  
fVCO < 4  
20  
24  
24  
0
1
1
25  
29  
29  
1
2
2
26  
30  
30  
1
2
2
32  
32  
36  
2
2
3
44  
44  
48  
4
4
5
4 fVCO < 4.9  
4.9 fVCO 6.4  
7.3.5 Voltage-Controlled Oscillator  
The LMX2572LP includes a fully integrated VCO. The VCO generates a frequency which varies with the tuning  
voltage from the loop filter. The entire VCO frequency range, 3.2 to 6.4 GHz, covers an octave that allows the  
channel divider to take care of frequencies below the lower bound.  
To reduce the VCO tuning gain, thus improving the VCO phase noise performance, the VCO frequency range is  
divided into 6 different frequency bands. This creates the need for frequency calibration to determine the correct  
frequency band given in a desired output frequency. The VCO is also calibrated for amplitude to optimize phase  
noise. These calibration routines are activated any time that the R0 register is programmed with the FCAL_EN bit  
equals one. It is important that a valid OSCin signal must present before VCO calibration begins. This device will  
support a full sweep of the valid temperature range of 125°C (–40°C to 85°C) without having to re-calibrate the  
VCO. This is important for continuous operation of the synthesizer under the most extreme temperature variation.  
7.3.6 Channel Divider  
To go below the VCO lower bound of 3.2 GHz, the channel divider can be used. The channel divider consists of  
several segments, and the total division value is equal to the multiplication of them. Therefore, not all values are  
valid.  
RFoutA  
VCO  
÷2,4,8,16,  
32,64,128,  
256  
RFoutB  
22. Channel Divider  
7.3.7 Output Buffer  
The output buffers are differential push-pull type buffers, thus no external pullup to VCC is required. The output  
impedance of the buffer is very small, and as such, the buffer can be AC-coupled to drive a 50-Ω load. Output  
power of the buffer can be programed to various levels. The buffer can be disabled while still keeping the PLL in  
lock.  
14  
版权 © 2018, Texas Instruments Incorporated  
 
 
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
7.3.8 Lock Detect  
The MUXout pin can be configured to output a signal that gives an indication for the PLL being locked. If the  
MUXout pin is configured as a lock detect output (MUXOUT_LD_SEL = 1), the MUXout pin output is a logic  
HIGH voltage when the device is locked. When the device is unlocked, the MUXout pin output is a logic LOW  
voltage.  
There are options to select the definition of PLL being locked. If LD_TYPE = 0, lock detect asserts a HIGH output  
after the VCO has finished calibration and the LD_DLY timeout counter is finished. If LD_TYPE = 1, in addition to  
the VCO calibration and counter check, lock detect will assert a HIGH output if the VCO tuning voltage is also  
within an acceptable limits.  
7.3.9 Register Readback  
The MUXout pin can also be configured to read back useful information from the device. Common uses for  
readback are:  
Read back registers to ensure that they have been programmed to the correct value. LMX2572LP allows any  
of its registers to be read back.  
Read back the lock detect status to determine if the PLL is in lock.  
Read back VCO calibration information so that it can be used to improve the lock time.  
7.3.10 Powerdown  
The user can use the CE pin or the POWERDOWN bit to power the LMX2572LP up or down. All registers are  
preserved in memory while the device is powered down.  
The wake-up time for the device to come out of the powered state is adjustable. See Power-Up, Wake-Up Time  
for details.  
7.3.11 Phase Synchronization  
The SYNC pin allows the user to synchronize the LMX2572LP such that the delay from the rising edge of th  
OSCin signal to the RF output signal is deterministic. Phase synchronization is especially useful if there are  
multiple LMX2572LP devices in a system and it is desirable to have all the RF outputs aligned in phase.  
fOUT  
1
2
fOSCin  
Device 1  
fOUT1  
fOUT  
SYNC  
fOSCin  
Device 2  
fOUT2  
SYNC  
t1  
t2  
23. Phase Synchronization  
Initially, the devices are locked to the input but are not synchronized. The user sends a synchronization pulse  
that is re-clocked to the next rising edge of the OSCin pulse. After a given time, t1, the devices are synchronized.  
This time is dominated by the sum of the VCO calibration time, the analog settling time of the PLL loop, and the  
MASH_RST_COUNT, if used in fractional mode. After synchronization, both devices will have a deterministic  
delay of t2, related to OSCin.  
7.3.12 Phase Adjustment  
The LMX2572LP can use the sigma-delta modulator to adjust the output signal phase with respect to the input  
reference. The phase shift every time you write the value of MASH_SEED is 公式 3:  
Phase shift in degree = 360° × (MASH_SEED / PLL_DEN) × (P / CHDIV)  
where  
P = 2 when VCO_PHASE_SYNC_EN = 1, else P = 1  
(3)  
15  
版权 © 2018, Texas Instruments Incorporated  
 
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
For example, if  
MASH_SEED = 800  
PLL_DEN = 1000  
CHDIV = 32  
VCO_PHASE_SYNC_EN = 0  
Phase shift = 360° × (800 / 1000) × (1 / 32) = 9°. If we write 800 to MASH_SEED 40 times, then we will shift the  
phase by 360°.  
There are a couple of restrictions when using phase adjustment:  
Phase adjustment does not work with MASH_ORDER equals 0 (Integer mode) or 1 (First order).  
Phase adjustment is possible with integer channels (PLL_NUM = 0) as long as MASH_ORDER is greater  
than 1.  
PLL_DEN must be greater than PLL_NUM + MASH_SEED.  
7.3.13 Ramping Function  
The LMX2572LP supports the ability to make frequency ramping waveforms using manual mode or automatic  
mode.  
In manual ramping mode, the user defines a step and uses the RampClk and RampDir pins to create the ramp.  
The output frequency jumps from one frequency to another frequency on each ramp.  
In automatic ramping mode, the user sets up the ramp with up to two linear segments in advance and the device  
automatically creates this ramp. The output waveform is a continuous frequency sweep between the start and  
end frequencies. If the frequency ramping range is small (approximately 10 MHz), no VCO calibration break is  
necessary in the middle of the ramp.  
When using ramp, the following must be set accordingly:  
Phase detector frequency must be between fOSCin / 2CAL_CLK_DIV and 125 MHz.  
OUT_FORCE = 1 to force the RF outputs not to be automatically muted during VCO calibration.  
LD_DLY = 0 to avoid interfering with VCO calibration.  
PLL_DEN = 232 – 1. The actual denominator value being used in ramping mode is 224.  
Time  
Time  
Manual Ramping Mode  
Automatic Ramping Mode  
24. Ramping Modes  
7.3.14 FSK Modulation  
Direct digital FSK modulation is supported in LMX2572LP. FSK modulation is achieved by changing the output  
frequency by changing the N divider value. The LMX2572LP supports three different types of FSK operation.  
1. FSK SPI mode. This mode supports discrete 2-, 4- and 8-level FSK modulation. There are eight dedicated  
registers used to pre-store the desired FSK frequency deviations. Program FSK_SPI_DEV_SEL to select  
one of the FSK deviations at a time.  
2. FSK SPI FAST mode. In this mode, instead of selecting one of the pre-stored FSK deviations, change the  
FSK deviation directly by writing to FSK_SPI_FAST_DEV. As a result, this mode supports arbitrary-level  
FSK, which is useful to construct pulse-shaping or analog-FM modulation.  
3. FSK I2S mode. This mode is similar to the FSK SPI FAST mode, but the programming format is an I2S  
format on dedicated pins instead of SPI. The benefit of using I2S is that this interface could be shared and  
synchronous to other digital audio interfaces. In this mode, only the 16 bits of the DATA field are required to  
program. The data is transmitted on the high or low side of the frame sync (programmable in register R114,  
16  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
FSK_I2S_FS_POL). The unused side of the frame sync needs to be at least one clock cycle. In other words,  
17 (16 + 1) CLK cycles are required at a minimum for one I2S frame. Maximum I2S clock rate is 75 MHz.  
Timing diagram is shown in 26 while the timing specification is same as SPI write timing as shown in the  
Timing Requirements section.  
Time  
25. FSK Modulation  
I2S DATA  
(RampDir)  
MSB  
LSB  
MSB  
tCS  
tCH  
I2S CLK  
(RampClk)  
tCES  
tCWH  
tCE  
tEWH  
tCWL  
I2S FS  
Frame (n)th  
Frame (n+1)th  
(SysRefReq)  
26. FSK I2S Timing Diagram  
7.4 Device Functional Modes  
4 lists the device functional modes of the LMX2572LP.  
4. Device Functional Modes  
MODE  
DESCRIPTION  
Normal operation mode The device is used as a high frequency signal source without any addition features.  
FSK mode  
SYNC mode  
Ramping mode  
Generates discrete-level FSK or arbitrary-level pulse-shaped FSK modulation.  
This mode is used to ensure deterministic phase between OSCin and RFout.  
Automatic frequency sweeping without the need of continuous SPI programming.  
7.5 Programming  
The LMX2572LP is programmed using several 24-bit shift registers. The shift register consists of a data field, an  
address field, and a R/W bit. The MSB is the R/W bit. 0 means register write while 1 means register read. The  
following seven bits, ADDR[6:0], form the address field which is used to decode the internal register address.  
The remaining 16 bits form the data field DATA[15:0]. Serial data is shifted MSB first into the shift register. See  
1 for timing diagram details.  
To write registers:  
The R/W bit must be set to 0.  
The data on SDI pin is clocked into the shift register upon the rising edge of the clocks on SCK pin. On the  
rising edge of the 24th clock cycle, the data is transferred from the data field into the selected register bank.  
The CSB pin may be held high after programming, which causes the LMX2572LP to ignore clock pulses.  
If the SCK and SDI lines are toggled while the VCO is in lock, as is sometimes the case when these lines are  
shared between devices, the phase noise may be degraded during the time of this programming.  
版权 © 2018, Texas Instruments Incorporated  
17  
 
 
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
Programming (接下页)  
To read back registers:  
The R/W bit must be set to 1.  
The data field contents on the SDI line are ignored.  
The read back data on MUXout pin is clocked out starting from the falling edge of the 8th clock cycle.  
7.5.1 Recommended Initial Power-On Programming  
7.5.1.1 Programming Sequence  
When the device is first powered up, it must be initialized, and the ordering of this programming is important. The  
sequence is listed below. After this sequence is completed, the device should be running and locked to the  
proper frequency.  
1. Apply power to the device and ensure all the supply pins are at the proper levels.  
2. If CE is low, pull it high.  
3. Wait 500 µs for the internal LDOs to become stable.  
4. Ensure that a valid reference clock is applied to the OSCin pins.  
5. Program register R0 with RESET = 1. This will ensure all the registers are reset to their default values. This  
bit is self-clearing.  
6. Program in sequence registers R125, R124, R123, ..., R1 and then R0.  
7.5.1.2 Programming Register  
There are altogether 126 programmable registers. However, not every register is required to be programmed at  
initial power-on.  
For example, most of the registers have fixed field value which is also equal to their silicon default value. After  
programming R0 with RESET = 1, these register fields have returned to their silicon default values. As such, it is  
not necessary to program these registers again. Similarly, for those registers having configurable fields, if the  
desired field values are equal to the silicon default values, again it is not necessary to program these registers  
again after programming R0 with RESET = 1.  
In 5, Depends means it is up to the user's decision of whether programming the register or not based upon  
the application need.  
5. Suggested Register Programming  
REGISTER  
PROGRAM  
Yes  
REGISTER  
PROGRAM  
No  
REGISTER  
PROGRAM  
Yes  
REGISTER  
PROGRAM  
No  
REGISTER  
84  
PROGRAM  
Depends  
Depends  
Depends  
No  
REGISTER  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
PROGRAM  
Depends  
Depends  
No  
0
1
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
Depends  
No  
No  
Yes  
No  
85  
2
No  
Depends  
Depends  
No  
No  
86  
3
No  
No  
No  
87  
No  
4
No  
No  
No  
88  
No  
No  
5
Depends  
Depends  
Depends  
Depends  
Depends  
Depends  
Depends  
Depends  
No  
No  
No  
No  
89  
No  
No  
6
No  
No  
Depends  
Depends  
Yes  
90  
No  
No  
7
No  
No  
91  
No  
No  
8
Yes  
Yes  
No  
No  
92  
No  
No  
9
No  
No  
93  
No  
Depends  
Depends  
Depends  
Depends  
Depends  
Depends  
Depends  
Depends  
Depends  
Depends  
Depends  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
Yes  
No  
94  
No  
No  
No  
No  
95  
No  
No  
No  
Depends  
No  
96  
Depends  
Depends  
Depends  
Depends  
Depends  
Depends  
Depends  
Depends  
Depends  
No  
No  
97  
Depends  
No  
No  
No  
98  
Yes  
Yes  
Yes  
Yes  
Depends  
Yes  
Yes  
99  
Depends  
Depends  
No  
Depends  
Depends  
Depends  
No  
Depends  
Depends  
Depends  
Depends  
100  
101  
102  
103  
Depends  
18  
版权 © 2018, Texas Instruments Incorporated  
 
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
Programming (接下页)  
5. Suggested Register Programming (接下页)  
REGISTER  
PROGRAM  
REGISTER  
PROGRAM  
REGISTER  
PROGRAM  
REGISTER  
PROGRAM  
REGISTER  
PROGRAM  
REGISTER  
125  
PROGRAM  
20  
Depends  
41  
Depends  
62  
Depends  
83  
Depends  
104  
Depends  
No  
7.5.2 Recommended Sequence for Changing Frequencies  
The recommended sequence for changing frequencies in different scenarios is as follows:  
1. If the N divider is changing, program the relevant registers and then program R0 with FCAL_EN = 1.  
2. In FSK and Ramp mode, the fractional numerator is changing; program the relevant registers only.  
7.5.3 Double Buffering  
Some register fields support double buffering. That is, the change to these fields would not be effective  
immediately. To latch the new values into the device requires programming R0 again with FCAL_EN = 1. The  
following register fields support double buffering, see 69 for details.  
MASH order (MASH_ORDER)  
Fractional numerator (PLL_NUM)  
N divider (PLL_N)  
Doubler (OSC_2X); Pre-R divider (PLL_R_PRE); Multiplier (MULT); Post-R divider (PLL_R)  
For example,  
1. Program PLL_R and PLL_N to new values. If double buffering for these fields is enabled, the PLL will remain  
unchanged.  
2. Program R0 with FCAL_EN = 1. The PLL will calibrate and lock using the new PLL_R and PLL_N values.  
7.5.4 Block Programming  
In a register write sequence, instead of sending 24 bits (one W/R bit, seven address bits, and 16 data bits) of  
payload for each register (with Block Programming), only the first register write requires the W/R bit and the  
address bits. The succeeding registers require sending only the 16-bit of data. However, the succeeding  
registers must be in descending order. For example, if the first register is R20, then all 24 bits of payload must be  
sent for R20. The next register must be R19, but only the 16-bit data is required. The programming sequence is  
as follows:  
1. Pull CSB pin LOW.  
2. Write 0x14aaaa for R20.  
3. Write 0xbbbb for R19, followed by 0xcccc for R18, and so on.  
4. After the last register write is completed, pull CSB pin HIGH to finish Block Programming.  
Since there is no CSB pulse between each register, the 16-bit of data field of each register can be sent  
immediately after the previous one.  
MSB  
(R/W)  
Address  
(7-bit)  
Data  
(R20)  
Data  
(R19)  
Data  
(R18)  
SDI  
SCK  
CSB  
1st  
2ndœ8th  
9thœ24th  
25thœ40th  
41thœ56th  
27. Block Programming Timing Example  
Block Programming applies to both register write and read.  
版权 © 2018, Texas Instruments Incorporated  
19  
 
 
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
7.6 Register Maps  
DATA[15:0]  
8
REG.  
POR  
15  
14  
13  
12  
11  
10  
9
7
6
5
4
3
2
1
0
VCO_PHASE_  
SYNC_EN  
MUXOUT_  
LD_SEL  
POWER  
DOWN  
R0  
RAMP_EN  
1
0
ADD_HOLD  
0
OUT_MUTE  
FCAL_HPFD_ADJ  
FCAL_LPFD_ADJ  
1
FCAL_EN  
RESET  
00221Ch  
R1  
R2  
R3  
R4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
CAL_CLK_DIV  
010808h  
020500h  
030782h  
040A43h  
0
0
0
0
1
1
0
0
1
IPBUF_  
TYPE  
IPBUF_  
TERM  
R5  
R6  
R7  
0
0
1
0
0
0
0
0
0
0
0
0
1
0
1
1
0
0
0
0
1
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0530C8h  
06C802h  
0700B2h  
LDO_DLY  
0
OUT_  
FORCE  
0
0
0
0
0
VCO_  
DACISET_  
FORCE  
VCO_  
CAPCTRL_  
FORCE  
R8  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
082000h  
R9  
0
0
1
0
0
0
0
0
0
0
0
MULT_HI  
0
0
1
0
0
0
0
0
0
0
1
OSC_2X  
0
0
0
1
0
1
0
1
0
1
1
1
0
0
0
0
0
0
0
0
090004h  
0A10F8h  
0BB018h  
0C5001h  
0D4000h  
0E1840h  
0F060Eh  
100080h  
110096h  
120064h  
1327B7h  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
0
0
1
1
0
0
0
0
0
0
1
1
1
0
1
0
0
0
0
0
MULT  
PLL_R  
PLL_R_PRE  
0
0
1
0
0
0
0
0
0
0
1
0
0
0
1
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
0
CPG  
0
VCO_DACISET  
VCO_DACISET_STRT  
0
1
0
0
1
1
1
0
0
0
1
0
0
0
0
0
VCO_CAPCTRL  
VCO_SEL_  
FORCE  
R20  
0
1
VCO_SEL  
0
0
0
1
143048h  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
1
0
0
1
0
1
0
0
1
1
0
0
1
0
1
0
1
1
0
0
0
0
1
1
0
0
0
0
0
1
0
1
0
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
0
1
1
1
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
1
0
0
0
0
1
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
1
0
1
1
0
1
1
0
1
0
1
0
0
0
1
0
0
0
0
1
0
1
0
0
0
0
1
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
1
1
150409h  
160001h  
17007Ch  
18071Ah  
190624h  
1A0808h  
1B0002h  
1C0488h  
1D18C6h  
1E18C6h  
1FC3E6h  
2005BFh  
211E01h  
220010h  
0
0
1
0
0
1
0
0
1
1
1
0
PLL_N[18:16]  
20  
Copyright © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
Register Maps (continued)  
DATA[15:0]  
REG.  
POR  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R35  
R36  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
230004h  
240028h  
PLL_N  
MASH_  
SEED_EN  
R37  
0
PFD_DLY_SEL  
0
0
0
0
0
1
0
1
250205h  
R38  
R39  
R40  
R41  
R42  
R43  
PLL_DEN[31:16]  
PLL_DEN[15:0]  
26FFFFh  
27FFFFh  
280000h  
290000h  
2A0000h  
2B0000h  
MASH_SEED[31:16]  
MASH_SEED[15:0]  
PLL_NUM[31:16]  
PLL_NUM[15:0]  
OUTB_  
PD  
OUTA_  
PD  
MASH_  
RESET_N  
R44  
0
0
OUTA_PWR  
0
0
MASH_ORDER  
2C08A2h  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
OUTB_PWR  
2DC608h  
2E07F0h  
2F0300h  
3003E0h  
314180h  
320080h  
330080h  
340420h  
350000h  
360000h  
370000h  
380000h  
390000h  
1
1
0
1
0
0
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
INPIN_  
IGNORE  
INPIN_  
HYST  
R58  
INPIN_LVL  
INPIN_FMT  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3A8001h  
R59  
R60  
R61  
0
0
0
0
0
0
0
0
0
0
0
LD_TYPE  
3B0001h  
3C03E8h  
3D00A8h  
LD_DLY  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
DBLBUF_  
EN_5  
DBLBUF_  
EN_4  
DBLBUF_ DBLBUF_  
DBLBUF_  
EN_1  
DBLBUF_  
EN_0  
R62  
0
3E00AFh  
EN_3  
EN_2  
R63  
R64  
R65  
R66  
R67  
R68  
R69  
R70  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3F0000h  
401388h  
410000h  
4201F4h  
430000h  
4403E8h  
450000h  
46C350h  
MASH_RST_COUNT[31:16]  
MASH_RST_COUNT[15:0]  
Copyright © 2018, Texas Instruments Incorporated  
21  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
Register Maps (continued)  
DATA[15:0]  
REG.  
POR  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
0
0
0
8
0
0
0
0
7
1
0
0
0
6
0
0
0
0
5
0
0
1
0
0
0
0
4
0
0
1
0
0
0
0
3
0
0
1
0
0
1
0
2
0
0
1
0
0
1
0
1
0
0
1
0
0
0
0
0
1
1
1
0
0
0
0
R71  
R72  
R73  
R74  
R75  
R76  
R77  
470080h  
480001h  
49003Fh  
4A0000h  
4B0800h  
4C000Ch  
4D0000h  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
CHDIV  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RAMP_  
THRESH[32]  
QUICK_  
RECAL_EN  
R78  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VCO_CAPCTRL_STRT  
1
4E0064h  
R79  
R80  
RAMP_THRESH[31:16]  
RAMP_THRESH[15:0]  
4F0000h  
500000h  
RAMP_LIMIT_  
HIGH[32]  
R81  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
510000h  
R82  
R83  
RAMP_LIMIT_HIGH[31:16]  
RAMP_LIMIT_HIGH[15:0]  
520000h  
530000h  
RAMP_LIMIT_  
LOW[32]  
R84  
0
0
540000h  
R85  
R86  
R87  
R88  
R89  
R90  
R91  
R92  
R93  
R94  
R95  
RAMP_LIMIT_LOW[31:16]  
RAMP_LIMIT_LOW[15:0]  
550000h  
560000h  
570000h  
580000h  
590000h  
5A0000h  
5B0000h  
5C0000h  
5D0000h  
5E0000h  
5F0000h  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RAMP_  
BURST_EN  
R96  
RAMP_BURST_COUNT  
RAMP_TRIGB  
0
0
600000h  
R97  
R98  
RAMP0_RST  
0
0
0
0
0
0
0
RAMP_TRIGA  
0
0
RAMP_BURST_TRIG  
RAMP0_DLY  
610000h  
620000h  
630000h  
640000h  
RAMP0_INC[29:16]  
0
R99  
RAMP0_INC[15:0]  
RAMP0_LEN  
R100  
RAMP1_  
DLY  
RAMP1_  
RST  
RAMP0_  
NEXT  
R101  
0
0
0
0
0
0
0
0
0
0
RAMP0_NEXT_TRIG  
650000h  
R102  
R103  
R104  
RAMP1_INC[29:16]  
RAMP1_INC[15:0]  
RAMP1_LEN  
660000h  
670000h  
680000h  
RAMP_  
MANUAL  
RAMP1_  
NEXT  
R105  
RAMP_DLY_CNT  
0
RAMP1_NEXT_TRIG  
694440h  
22  
Copyright © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
Register Maps (continued)  
DATA[15:0]  
8
REG.  
POR  
15  
14  
13  
12  
11  
10  
9
7
6
5
4
3
2
1
0
RAMP_  
TRIG_CAL  
R106  
0
0
0
0
0
0
0
0
0
0
0
0
RAMP_SCALE_COUNT  
6A0007h  
R107  
R108  
R109  
R110  
R111  
R112  
R113  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6B0000h  
6C0000h  
6D0000h  
6E0000h  
6F0000h  
700000h  
710000h  
0
0
rb_LD_VTUNE  
rb_VCO_SEL  
0
0
0
0
0
0
rb_VCO_CAPCTRL  
rb_VCO_DACISET  
0
0
0
0
0
0
0
0
0
0
FSK_I2S_ FSK_I2S_  
FS_POL  
R114  
0
0
1
0
1
0
1
0
1
0
FSK_EN  
0
0
0
FSK_SPI_LEVEL  
FSK_DEV_SCALE  
FSK_SPI_DEV_SEL  
FSK_MODE_SEL  
0
727800h  
CLK_POL  
R115  
R116  
R117  
R118  
R119  
R120  
R121  
R122  
R123  
R124  
R125  
0
0
730000h  
740000h  
750000h  
760000h  
770000h  
780000h  
790000h  
7A0000h  
7B0000h  
7C0000h  
7D0820h  
FSK_DEV0  
FSK_DEV1  
FSK_DEV2  
FSK_DEV3  
FSK_DEV4  
FSK_DEV5  
FSK_DEV6  
FSK_DEV7  
FSK_SPI_FAST_DEV  
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
Copyright © 2018, Texas Instruments Incorporated  
23  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
6 lists the access codes for the LMX2572 registers.  
6. Access Type Codes  
ACCESS TYPE CODE  
Read Type  
DESCRIPTION  
R
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset  
7.6.1 Register R0 (offset = 00h) [reset = 221Ch]  
28. Register R0  
15  
14  
13  
1
12  
0
11  
10  
0
9
8
7
6
5
4
1
3
2
1
0
RAMP_E VCO_PH  
ADD_HO  
LD  
OUT_MU  
TE  
FCAL_HPFD_ADJ  
FCAL_LPFD_ADJ  
FCAL_E MUXOU  
N
RESET  
POWER  
DOWN  
N
ASE_SY  
NC_EN  
T_LD_S  
EL  
R/W-0h  
R/W-0h  
R/W-2h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-0h  
7. Register R0 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h  
15  
RAMP_EN  
Enables frequency ramping. The action of programming register R0 with RAMP_EN =  
1 starts the ramping. Be aware that this is in the same register as FCAL_EN, so  
toggling this bit also can active the ramping if RAMP_EN = 1. RAMP_EN applies to  
both automatic and manual ramping modes.  
0: Normal operation  
1: Starts frequency ramping  
14  
VCO_PHASE_SYNC_EN R/W 0h  
Enables phase sync mode. In this state, part of the channel divider is put in the  
feedback path to ensure deterministic phase. The action of toggling this bit from 0 to 1  
also sends an asynchronous SYNC pulse.  
0: Normal operation  
1: Phase sync mode  
13 - 12  
11  
R/W 2h  
Program 2h to this field.  
ADD_HOLD  
R/W 0h  
Freeze the register address in Block Programming. See Block Programming for  
details.  
10  
9
R/W 0h  
R/W 1h  
Program 0h to this field.  
OUT_MUTE  
Mutes RF outputs (RFoutA and RFoutB) when the VCO is calibrating.  
0: Disabled  
1: Muted  
8 - 7  
FCAL_HPFD_ADJ  
R/W 0h  
Set this field in accordance to the phase detector frequency for optimal VCO  
calibration.  
0: fPD 37.5 MHz  
1: 37.5 MHz < fPD 75 MHz  
2: 75 MHz < fPD 100 MHz  
3: fPD > 100 MHz  
6 - 5  
FCAL_LPFD_ADJ  
R/W 0h  
Set this field in accordance to the phase detector frequency for optimal VCO  
calibration.  
0: fPD 10 MHz  
1: 10 MHz > fPD 5 MHz  
2: 5 MHz > fPD 2.5 MHz  
3: fPD < 2.5 MHz  
4
3
R/W 1h  
R/W 1h  
Program 1h to this field.  
FCAL_EN  
Enables and activates VCO frequency calibration. Writing register R0 with this bit set  
to a 1 enables and triggers the VCO frequency calibration. Writing 0 to this field is  
prohibited.  
0: Invalid  
1: Enabled  
24  
版权 © 2018, Texas Instruments Incorporated  
 
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
7. Register R0 Field Descriptions (接下页)  
Bit  
Field  
Type Reset Description  
2
MUXOUT_LD_SEL  
R/W 1h  
R/W 0h  
R/W 0h  
Selects the functionality of the MUXout pin.  
0: Register readback  
1: Lock detect  
1
0
RESET  
Resets all registers to silicon default values. This bit is self-clearing.  
0: Normal operation  
1: Reset  
POWERDOWN  
Powers down the device.  
0: Normal operation  
1: Power down  
7.6.2 Register R1 (offset = 01h) [reset = 0808h]  
29. Register R1  
15  
0
14  
0
13  
0
12  
0
11  
1
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
1
2
1
0
CAL_CLK_DIV  
R/W-0h  
R/W-101h  
8. Register R1 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 3  
2 - 0  
R/W 101h  
R/W 0h  
Program 101h to this field.  
CAL_CLK_DIV  
Divides down the state machine clock during VCO calibration. Maximum state  
machine clock frequency is 200 MHz.  
State machine clock frequency = fOSCin / (2CAL_CLK_DIV).  
0: fOSCin 200 MHz  
1: 200 MHz < fOSCin 250 MHz  
All other values are not used.  
7.6.3 Register R2 (offset = 02h) [reset = 0500h]  
30. Register R2  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
1
9
0
8
1
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-500h  
9. Register R2 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 500h Program 500h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.4 Register R3 (offset = 03h) [reset = 0782h]  
31. Register R3  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
1
9
1
8
1
7
1
6
0
5
0
4
0
3
0
2
0
1
1
0
0
R/W-782h  
10. Register R3 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 782h Program 782h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
版权 © 2018, Texas Instruments Incorporated  
25  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
7.6.5 Register R4 (offset = 04h) [reset = 0A43h]  
32. Register R4  
15  
0
14  
0
13  
0
12  
0
11  
1
10  
0
9
1
8
0
7
0
6
1
5
0
4
0
3
0
2
0
1
1
0
1
R/W-A43h  
11. Register R4 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0  
R/W A43h Program A43h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
7.6.6 Register R5 (offset = 05h) [reset = 30C8h]  
33. Register R5  
15  
0
14  
0
13  
1
12  
11  
10  
0
9
0
8
0
7
1
6
1
5
0
4
0
3
1
2
0
1
0
0
0
IPBUF_T IPBUF_T  
YPE  
ERM  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-C8h  
12. Register R5 Field Descriptions  
Bit  
15 - 13  
12  
Field  
Type Reset Description  
R/W 1h  
Program 1h to this field.  
IPBUF_TYPE  
IPBUF_TERM  
R/W 1h  
Selects OSCin input type.  
0: Differential input  
1: Single-ended input  
11  
R/W 0h  
Enables internal 50-Ω terminations on both OSCin and OSCin* pins. This function is  
valid even if OSCin input is configured as single-ended input.  
0: Normal operation  
1: OSCin and OSCin* pins are internally 50-Ω terminated  
10 - 0  
R/W C8h  
Program C8h to this field.  
7.6.7 Register R6 (offset = 06h) [reset = C802h]  
34. Register R6  
15  
14  
13  
12  
11  
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
1
0
0
LDO_DLY  
R/W-19h  
R/W-2h  
13. Register R6 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 11 LDO_DLY  
R/W 19h  
LDO start up delay. Delay duration is a function of state machine clock. See Power-  
Up, Wake-Up Time for details.  
10 - 0  
R/W 2h  
Program 2h to this field.  
7.6.8 Register R7 (offset = 07h) [reset = 00B2h]  
35. Register R7  
15  
0
14  
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
1
6
0
5
1
4
1
3
0
2
0
1
1
0
0
OUT_FO  
RCE  
R/W-0h  
R/W-0h  
R/W-B2h  
26  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
14. Register R7 Field Descriptions  
Bit  
15  
14  
Field  
Type Reset Description  
R/W 0h  
R/W 0h  
Program 0h to this field.  
OUT_FORCE  
Forces the RF outputs not to be automatically muted during VCO calibration. This bit  
should be enabled during frequency ramping.  
0: Mute setting depends on OUT_MUTE  
1: No mute during VCO calibration  
13 - 0  
R/W B2h  
Program B2h to this field.  
7.6.9 Register R8 (offset = 08h) [reset = 2000h]  
36. Register R8  
15  
0
14  
13  
1
12  
0
11  
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
VCO_DA  
CISET_F  
ORCE  
VCO_CA  
PCTRL_  
FORCE  
R/W-0h  
R/W-0h  
R/W-2h  
R/W-0h  
R/W-0h  
15. Register R8 Field Descriptions  
Bit  
15  
14  
Field  
Type Reset Description  
R/W 0h Program 0h to this field.  
VCO_DACISET_FORCE R/W 0h  
Forces VCO_DACISET value. Useful for fully-assisted VCO calibration and debugging  
purposes.  
0: Normal operation  
1: Use VCO_DACISET value instead of the value obtained from VCO calibration  
13 - 12  
11  
R/W 2h  
Program 2h to this field.  
VCO_CAPCTRL_FORCE R/W 0h  
Forces VCO_CAPCTRL value. Useful for fully-assisted VCO calibration and  
debugging purposes.  
0: Normal operation  
1: Use VCO_CAPCTRL value instead of the value obtained from VCO calibration  
10 - 0  
R/W 0h  
Program 0h to this field.  
7.6.10 Register R9 (offset = 09h) [reset = 0004h]  
37. Register R9  
15  
0
14  
13  
0
12  
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
1
1
0
0
0
MULT_H  
I
OSC_2X  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-4h  
16. Register R9 Field Descriptions  
Bit  
15  
14  
Field  
Type Reset Description  
R/W 0h  
R/W 0h  
Program 0h to this field.  
MULT_HI  
Sets this bit to 1 if the output frequency of the Multiplier is greater than 100 MHz.  
0: Multiplier output 100 MHz  
1: Multiplier output > 100 MHz  
13  
12  
R/W 0h  
R/W 0h  
Program 0h to this field.  
OSC_2X  
Enables reference path Doubler.  
0: Disabled  
1: Enabled  
11 - 0  
R/W 4h  
Program 4h to this field.  
版权 © 2018, Texas Instruments Incorporated  
27  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
7.6.11 Register R10 (offset = 0Ah) [reset = 10F8h]  
38. Register R10  
15  
0
14  
0
13  
0
12  
1
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
0
1
0
0
0
MULT  
R/W-1h  
R/W-1h  
R/W-78h  
17. Register R10 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 12  
R/W 1h  
R/W 1h  
Program 1h to this field.  
11 - 7 MULT  
Reference path frequency Multiplier. Input frequency to the Multiplier: 10 to 40 MHz.  
Multiplier output frequency: 60 to 150 MHz.  
0: Not used  
1: Bypassed  
2: Not recommended. Use OSC_2X instead of MULT  
3: 3X  
·····  
7: 7X  
8 - 31: Not recommended  
6 - 0  
R/W 78h  
Program 78h to this field.  
7.6.12 Register R11 (offset = 0Bh) [reset = B018h]  
39. Register R11  
15  
1
14  
0
13  
1
12  
1
11  
10  
9
8
7
6
5
4
3
1
2
0
1
0
0
0
PLL_R  
R/W-Bh  
R/W-1h  
R/W-8h  
18. Register R11 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 12  
R/W Bh  
R/W 1h  
R/W 8h  
Program Bh to this field.  
11 - 4 PLL_R  
3 - 0  
Reference path Post-R divider. It is the divider after the frequency Multiplier.  
Program 8h to this field.  
7.6.13 Register R12 (offset = 0Ch) [reset = 5001h]  
40. Register R12  
15  
0
14  
1
13  
0
12  
1
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_R_PRE  
R/W-1h  
R/W-5h  
19. Register R12 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 12  
R/W 5h  
R/W 1h  
Program 5h to this field.  
Reference path Pre-R divider. It is the divider before the frequency Multiplier.  
11 - 0 PLL_R_PRE  
7.6.14 Register R13 (offset = 0Dh) [reset = 4000h]  
41. Register R13  
15  
0
14  
1
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-4000h  
28  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
20. Register R13 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0  
R/W 4000h Program 4000h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
7.6.15 Register R14 (offset = 0Eh) [reset = 1840h]  
42. Register R14  
15  
0
14  
0
13  
0
12  
1
11  
1
10  
0
9
0
8
0
7
0
6
5
4
3
2
0
1
0
0
0
CPG  
R/W-30h  
R/W-8h  
R/W-0h  
21. Register R14 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 7  
6 - 3  
R/W 30h  
R/W 8h  
Program 30h to this field.  
CPG  
Effective charge pump gain. This is the sum of the up and down currents. Each  
increment represents 625 µA.  
0: Tri-state  
1: 625 µA  
2: 1250 µA  
3: 1875 µA  
·····  
15: 6875 µA  
2 - 0  
R/W 0h  
Program 0h to this field.  
7.6.16 Register R15 (offset = 0Fh) [reset = 060Eh]  
43. Register R15  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
1
9
1
8
0
7
0
6
0
5
0
4
0
3
1
2
1
1
1
0
0
R/W-60Eh  
22. Register R15 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0  
R/W 60Eh Program 60Eh to this field.  
After programming R0 with RESET = 1, no need to program this register.  
7.6.17 Register R16 (offset = 10h) [reset = 0080h]  
44. Register R16  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
7
6
5
4
3
2
1
0
VCO_DACISET  
R/W-80h  
R/W-0h  
23. Register R16 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 9  
8 - 0  
R/W 0h  
Program 0h to this field.  
Programmable current setting for the VCO that is applied when  
VCO_DACISET_FORCE = 1. Useful for fully-assisted VCO calibration.  
VCO_DACISET  
R/W 80h  
版权 © 2018, Texas Instruments Incorporated  
29  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
7.6.18 Register R17 (offset = 11h) [reset = 0096h]  
45. Register R17  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
7
6
5
4
3
2
1
0
VCO_DACISET_STRT  
R/W-96h  
R/W-0h  
24. Register R17 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 9  
8 - 0  
R/W 0h  
Program 0h to this field.  
Starting calibration value for VCO_DACISET.  
VCO_DACISET_STRT  
R/W 96h  
7.6.19 Register R18 (offset = 12h) [reset = 0064h]  
46. Register R18  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
1
5
1
4
0
3
0
2
1
1
0
0
0
R/W-64h  
25. Register R18 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 64h Program 64h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.20 Register R19 (offset = 13h) [reset = 27B7h]  
47. Register R19  
15  
0
14  
0
13  
1
12  
0
11  
0
10  
1
9
1
8
1
7
6
5
4
3
2
1
0
VCO_CAPCTRL  
R/W-B7h  
R/W-27h  
26. Register R19 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 8  
7 - 0  
R/W 27h  
R/W B7h  
Program 27h to this field.  
VCO_CAPCTRL  
Programmable band within VCO core that applies when VCO_CAPCTRL_FORCE = 1.  
Valid values are 183 to 0, where the higher number is a lower frequency.  
7.6.21 Register R20 (offset = 14h) [reset = 3048h]  
48. Register R20  
15  
0
14  
1
13  
12  
11  
10  
9
0
8
0
7
0
6
1
5
0
4
0
3
1
2
0
1
0
0
0
VCO_SEL  
VCO_SE  
L_FORC  
E
R/W-0h  
R/W-6h  
R/W-0h  
R/W-48h  
27. Register R20 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 14  
R/W 0h  
R/W 6h  
Program 1h to this field.  
13 - 11 VCO_SEL  
User specified start VCO for calibration. This sets the VCO that is used when  
VCO_SEL_STRT_EN = 1 or VCO_SEL_FORCE = 1.  
1: VCO1  
2: VCO2  
·····  
6: VCO6  
All other values are not used.  
30  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
27. Register R20 Field Descriptions (接下页)  
Bit  
Field  
Type Reset Description  
10  
VCO_SEL_FORCE  
R/W 0h  
Forces the VCO to use the core specified by VCO_SEL.  
0: Disabled  
1: Enabled  
9 - 0  
R/W 48h  
Program 48h to this field.  
7.6.22 Register R21 (offset = 15h) [reset = 0409h]  
49. Register R21  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
1
9
0
8
0
7
0
6
0
5
0
4
0
3
1
2
0
1
0
0
1
R/W-409h  
28. Register R21 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 409h Program 409h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.23 Register R22 (offset = 16h) [reset = 0001h]  
50. Register R22  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
1
R/W-1h  
29. Register R22 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 1h Program 1h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.24 Register R23 (offset = 17h) [reset = 007Ch]  
51. Register R23  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
1
5
1
4
1
3
1
2
1
1
0
0
0
R/W-7Ch  
30. Register R23 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 7Ch Program 7Ch to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.25 Register R24 (offset = 18h) [reset = 071Ah]  
52. Register R24  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
1
9
1
8
1
7
0
6
0
5
0
4
1
3
1
2
0
1
1
0
0
R/W-71Ah  
版权 © 2018, Texas Instruments Incorporated  
31  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
31. Register R24 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0  
R/W 71Ah Program 71Ah to this field.  
After programming R0 with RESET = 1, no need to program this register.  
7.6.26 Register R25 (offset = 19h) [reset = 0624h]  
53. Register R25  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
1
9
1
8
0
7
0
6
0
5
1
4
0
3
0
2
1
1
0
0
0
R/W-624h  
32. Register R25 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 624h Program 624h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.27 Register R26 (offset = 1Ah) [reset = 0808h]  
54. Register R26  
15  
0
14  
0
13  
0
12  
0
11  
1
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
1
2
0
1
0
0
0
R/W-808h  
33. Register R26 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 808h Program 808h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.28 Register R27 (offset = 1Bh) [reset = 0002h]  
55. Register R27  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
1
0
0
R/W-2h  
34. Register R27 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 2h Program 2h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.29 Register R28 (offset = 1Ch) [reset = 0488h]  
56. Register R28  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
1
9
0
8
0
7
1
6
0
5
0
4
0
3
1
2
0
1
0
0
0
R/W-488h  
35. Register R28 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 488h Program 488h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
32  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
7.6.30 Register R29 (offset = 1Dh) [reset = 18C6h]  
57. Register R29  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-18C6h  
36. Register R29 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0  
R/W 18C6h Program 0h to this field.  
7.6.31 Register R30 (offset = 1Eh) [reset = 18C6h]  
58. Register R30  
15  
0
14  
0
13  
0
12  
0
11  
1
10  
1
9
0
8
0
7
1
6
0
5
1
4
0
3
0
2
1
1
1
0
0
R/W-18C6h  
37. Register R30 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0  
R/W 18C6h Program CA6h to this field.  
7.6.32 Register R31 (offset = 1Fh) [reset = C3E6h]  
59. Register R31  
15  
1
14  
1
13  
0
12  
0
11  
0
10  
0
9
1
8
1
7
1
6
1
5
1
4
0
3
0
2
1
1
1
0
0
R/W-C3E6h  
38. Register R31 Field Descriptions  
Bit  
Field  
Type Reset  
R/W C3E6h Program C3E6h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
Description  
15 - 0  
7.6.33 Register R32 (offset = 20h) [reset = 05BFh]  
60. Register R32  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
1
9
0
8
1
7
1
6
0
5
1
4
1
3
1
2
1
1
1
0
1
R/W-5BFh  
39. Register R32 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0  
R/W 5BFh Program 5BFh to this field.  
After programming R0 with RESET = 1, no need to program this register.  
7.6.34 Register R33 (offset = 21h) [reset = 1E01h]  
61. Register R33  
15  
0
14  
0
13  
0
12  
1
11  
1
10  
1
9
1
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
1
R/W-1E01h  
版权 © 2018, Texas Instruments Incorporated  
33  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
40. Register R33 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0  
R/W 1E01h Program 1E01h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
7.6.35 Register R34 (offset = 22h) [reset = 0010h]  
62. Register R34  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
1
3
0
2
1
0
PLL_N[18:16]  
R/W-0h  
R/W-2h  
41. Register R34 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 3  
2 - 0  
R/W 2h  
R/W 0h  
Program 2h to this field.  
Upper 3 bits of N-divider.  
PLL_N[18:16]  
7.6.36 Register R35 (offset = 23h) [reset = 0004h]  
63. Register R35  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
1
1
0
0
0
R/W-4h  
42. Register R35 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 4h Program 4h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.37 Register R36 (offset = 24h) [reset = 0028h]  
64. Register R36  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_N  
R/W-28h  
43. Register R36 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 28h Lower 16 bits of N-divider.  
15 - 0 PLL_N  
7.6.38 Register R37 (offset = 25h) [reset = 0205h]  
65. Register R37  
15  
14  
0
13  
12  
11  
10  
9
8
7
0
6
0
5
0
4
0
3
0
2
1
1
0
0
1
MASH_S  
EED_EN  
PFD_DLY_SEL  
R/W-0h  
R/W-0h  
R/W-2h  
R/W-5h  
34  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
44. Register R37 Field Descriptions  
Bit  
Field  
Type Reset Description  
15  
MASH_SEED_EN  
R/W 0h  
Enables the MASH_SEED value to be used. This can be used for programmable  
phase stepping or fractional spur optimization.  
0: Disabled  
1: Enabled  
14  
R/W 0h  
R/W 2h  
Program 0h to this field.  
13 - 8 PFD_DLY_SEL  
PFD_DLY_SEL must be adjusted in accordance to the N-divider value. See 3 for  
details.  
7 - 0  
R/W 5h  
Program 5h to this field.  
7.6.39 Register R38 (offset = 26h) [reset = FFFFh]  
66. Register R38  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
4
4
3
3
3
2
2
2
1
1
1
0
0
0
PLL_DEN[31:16]  
R/W-FFFFh  
45. Register R38 Field Descriptions  
Bit  
Field  
Type Reset  
Description  
15 - 0 PLL_DEN[31:16]  
R/W FFFFh Upper 16 bits of fractional denominator (DEN).  
7.6.40 Register R39 (offset = 27h) [reset = FFFFh]  
67. Register R39  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
PLL_DEN[15:0]  
R/W-FFFFh  
46. Register R39 Field Descriptions  
Bit  
Field  
Type Reset  
Description  
15 - 0 PLL_DEN[15:0]  
R/W FFFFh Lower 16 bits of fractional denominator (DEN).  
7.6.41 Register R40 (offset = 28h) [reset = 0000h]  
68. Register R40  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
MASH_SEED[31:16]  
R/W-0h  
47. Register R40 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0 MASH_SEED[31:16]  
R/W 0h  
Upper 16 bits of MASH_SEED. MASH_SEED sets the initial state of the fractional  
engine. Useful for producing a phase shift and fractional spur optimization.  
7.6.42 Register R41 (offset = 29h) [reset = 0000h]  
69. Register R41  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MASH_SEED[15:0]  
R/W-0h  
版权 © 2018, Texas Instruments Incorporated  
35  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
48. Register R41 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0 MASH_SEED[15:0]  
R/W 0h  
Lower 16 bits of MASH_SEED. MASH_SEED sets the initial state of the fractional  
engine. Useful for producing a phase shift and fractional spur optimization.  
7.6.43 Register R42 (offset = 2Ah) [reset = 0000h]  
70. Register R42  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
2
2
1
0
0
0
PLL_NUM[31:16]  
R/W-0h  
49. Register R42 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Upper 16 bits of fractional numerator (NUM).  
15 - 0 PLL_NUM[31:16]  
7.6.44 Register R43 (offset = 2Bh) [reset = 0000h]  
71. Register R43  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
1
PLL_NUM[15:0]  
R/W-0h  
50. Register R43 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Lower 16 bits of fractional numerator (NUM).  
15 - 0 PLL_NUM[15:0]  
7.6.45 Register R44 (offset = 2Ch) [reset = 08A2h]  
72. Register R44  
15  
0
14  
0
13  
12  
11  
10  
9
8
7
6
5
4
0
3
0
1
OUTA_PWR  
OUTB_P OUTA_P MASH_R  
MASH_ORDER  
D
D
ESET_N  
R/W-0h  
R/W-08h  
R/W-1h  
R/W-0h  
R/W-1h  
R/W-0h  
R/W-2h  
51. Register R44 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 14  
R/W 0h  
Program 0h to this field.  
13 - 8 OUTA_PWR  
R/W 08h  
Adjusts RFoutA output power. Higher numbers give more output power. Values  
greater than 18 are prohibited.  
7
6
OUTB_PD  
R/W 1h  
R/W 0h  
R/W 1h  
R/W 0h  
Powers down RF output B.  
0: Normal operation  
1: Power down  
OUTA_PD  
Powers down RF output A.  
0: Normal operation  
1: Power down  
5
MASH_RESET_N  
Resets MASH.  
0: Reset  
1: Normal operation  
4 - 3  
Program 0h to this field.  
36  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
51. Register R44 Field Descriptions (接下页)  
Bit  
Field  
Type Reset Description  
2 - 0  
MASH_ORDER  
R/W 2h  
Sets the MASH order.  
0: Integer mode  
1: First order modulator  
2: Second order modulator  
3: Third order modulator  
4: Fourth order modulator  
5 - 7: Not used  
7.6.46 Register R45 (offset = 2Dh) [reset = C608h]  
73. Register R45  
15  
1
14  
1
13  
0
12  
0
11  
0
10  
1
9
1
8
0
7
0
6
0
5
4
3
2
1
0
OUTB_PWR  
R/W-08h  
R/W-318h  
52. Register R45 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 6  
5 - 0  
R/W 318h  
R/W 08h  
Program 318h to this field.  
OUTB_PWR  
Adjusts RFoutB output power. Higher numbers give more output power. Values  
greater than 18 are prohibited.  
7.6.47 Register R46 (offset = 2Eh) [reset = 07F0h]  
74. Register R46  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
1
9
1
8
1
7
1
6
1
5
1
4
1
3
0
2
0
1
0
0
0
R/W-7F0h  
53. Register R46 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0  
R/W 7F0h Program 7F0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
7.6.48 Register R47 (offset = 2Fh) [reset = 0300h]  
75. Register R47  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
1
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-300h  
54. Register R47 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 300h Program 300h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.49 Register R48 (offset = 30h) [reset = 03E0h]  
76. Register R48  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
1
7
1
6
1
5
1
4
0
3
0
2
0
1
0
0
0
R/W-3E0h  
版权 © 2018, Texas Instruments Incorporated  
37  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
55. Register R48 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0  
R/W 3E0h Program 3E0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
7.6.50 Register R49 (offset = 31h) [reset = 4180h]  
77. Register R49  
15  
0
14  
1
13  
0
12  
0
11  
0
10  
0
9
0
8
1
7
1
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-4180h  
56. Register R49 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0  
R/W 4180h Program 4180h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
7.6.51 Register R50 (offset = 32h) [reset = 0080h]  
78. Register R50  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
1
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-80h  
57. Register R50 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 80h Program 80h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.52 Register R51 (offset = 33h) [reset = 0080h]  
79. Register R51  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
1
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-80h  
58. Register R51 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 80h Program 80h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.53 Register R52 (offset = 34h) [reset = 0420h]  
80. Register R52  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
1
9
0
8
0
7
0
6
0
5
1
4
0
3
0
2
0
1
0
0
1
R/W-420h  
59. Register R52 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 420h Program 421h to this field.  
15 - 0  
38  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
7.6.54 Register R53 (offset = 35h) [reset = 0000h]  
81. Register R53  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
60. Register R53 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Program 0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.55 Register R54 (offset = 36h) [reset = 0000h]  
82. Register R54  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
61. Register R54 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Program 0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.56 Register R55 (offset = 37h) [reset = 0000h]  
83. Register R55  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
62. Register R55 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Program 0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.57 Register R56 (offset = 38h) [reset = 0000h]  
84. Register R56  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
63. Register R56 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Program 0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.58 Register R57 (offset = 39h) [reset = 0000h]  
85. Register R57  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
1
4
0
3
0
2
0
1
0
0
0
R/W-0h  
版权 © 2018, Texas Instruments Incorporated  
39  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
64. Register R57 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0  
R/W 0h  
Program 20h to this field.  
7.6.59 Register R58 (offset = 3Ah) [reset = 8001h]  
86. Register R58  
15  
14  
13  
12  
11  
10  
9
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
1
INPIN_I  
GNORE  
INPIN_H  
YST  
INPIN_LVL  
INPIN_FMT  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-1h  
65. Register R58 Field Descriptions  
Bit  
Field  
Type Reset Description  
15  
INPIN_IGNORE  
R/W 1h  
Ignore SYNC and SysRefReq pins when VCO_PHASE_SYNC = 0. This bit should be  
set to 1 unless VCO_PHASE_SYNC = 1.  
14  
INPIN_HYST  
R/W 0h  
Enables high hysteresis for LVDS input to SysRefReq and SYNC pin.  
0: Disabled  
1: Enabled  
13 - 12 INPIN_LVL  
11 - 9 INPIN_FMT  
R/W 0h  
R/W 0h  
Sets bias level for LVDS input to SysRefReq and SYNC pin.  
0: Vin / 4  
1: Vin  
2: Vin / 2  
3: Invalid  
Defines the input format of SysRefReq and SYNC pin.  
0: SYNC = SysRefReq = CMOS  
1: SYNC = LVDS; SysRefReq = CMOS  
2: SYNC = CMOS; SysRefReq = LVDS  
3: SYNC = SysRefReq = LVDS  
4: SYNC = SysRefReq = CMOS  
5: SYNC = LVDS (filtered); SysRefReq = CMOS  
6: SYNC = CMOS; SysRefReq = LVDS (filtered)  
7: SYNC = SysRefReq = LVDS (filtered)  
8 - 0  
R/W 1h  
Program 1h to this field.  
7.6.60 Register R59 (offset = 3Bh) [reset = 0001h]  
87. Register R59  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
LD_TYP  
E
R/W-0h  
R/W-1h  
66. Register R59 Field Descriptions  
Bit  
15 - 1  
0
Field  
Type Reset Description  
R/W 0h  
R/W 1h  
Program 0h to this field.  
Defines lock detect type.  
LD_TYPE  
0: VCOCal. Lock detect asserts a HIGH output after the VCO has finished calibration  
and the LD_DLY timeout counter is finished.  
1: Vtune and VCOCal. Lock detect asserts a HIGH output when VCOCal lock detect  
would assert a HIGH signal and the tuning voltage to the VCO is within acceptable  
limits.  
40  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
7.6.61 Register R60 (offset = 3Ch) [reset = 03E8h]  
88. Register R60  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LD_DLY  
R/W-3E8h  
67. Register R60 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0 LD_DLY  
R/W 3E8h For the VCOCal lock detect, this is the delay in ¼ fPD cycles that is added after the  
calibration is finished before the VCOCal lock detect is asserted HIGH.  
7.6.62 Register R61 (offset = 3Dh) [reset = 00A8h]  
89. Register R61  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
1
6
0
5
1
4
0
3
1
2
0
1
0
0
0
R/W-A8h  
68. Register R61 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W A8h Program A8h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.63 Register R62 (offset = 3Eh) [reset = 00AFh]  
90. Register R62  
15  
14  
13  
12  
11  
10  
9
0
8
0
7
1
6
0
5
1
4
0
3
1
2
1
1
1
0
1
DBLBUF DBLBUF DBLBUF DBLBUF DBLBUF DBLBUF  
_EN_5  
_EN_4  
_EN_3  
_EN_2  
_EN_1  
_EN_0  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-AFh  
69. Register R62 Field Descriptions  
Bit  
Field  
Type Reset Description  
15  
DBLBUF_EN_5  
DBLBUF_EN_4  
DBLBUF_EN_3  
DBLBUF_EN_2  
R/W 0h  
R/W 0h  
R/W 0h  
R/W 0h  
Enables double buffering for the MASH order.  
0: Disabled  
1: Enabled  
14  
13  
12  
Enables double buffering for fractional numerator NUM.  
0: Disabled  
1: Enabled  
Enables double buffering for the integer portion of the N-divider.  
0: Disabled  
1: Enabled  
Enables double buffering for the Pre-R and Post-R dividers in the reference path.  
Effective only if DBL_BUF_EN_3 = 1.  
0: Disabled  
1: Enabled  
11  
10  
DBLBUF_EN_1  
DBLBUF_EN_0  
R/W 0h  
R/W 0h  
R/W AFh  
Enables double buffering for the Multiplier in the reference path. Effective only if  
DBL_BUF_EN_3 = 1.  
0: Disabled  
1: Enabled  
Enables double buffering for the Doubler in the reference path. Effective only if  
DBL_BUF_EN_3 = 1.  
0: Disabled  
1: Enabled  
9 - 0  
Program AFh to this field.  
版权 © 2018, Texas Instruments Incorporated  
41  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
7.6.64 Register R63 (offset = 3Fh) [reset = 0000h]  
91. Register R63  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
70. Register R63 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Program 0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.65 Register R64 (offset = 40h) [reset = 1388h]  
92. Register R64  
15  
0
14  
0
13  
0
12  
1
11  
0
10  
0
9
1
8
1
7
1
6
0
5
0
4
0
3
1
2
0
1
0
0
0
R/W-1388h  
71. Register R64 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0  
R/W 1388h Program 1388h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
7.6.66 Register R65 (offset = 41h) [reset = 0000h]  
93. Register R65  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
72. Register R65 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Program 0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.67 Register R66 (offset = 42h) [reset = 01F4h]  
94. Register R66  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
1
7
1
6
1
5
1
4
1
3
0
2
1
1
0
0
0
R/W-1F4h  
73. Register R66 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0  
R/W 1F4h Program 1F4h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
7.6.68 Register R67 (offset = 43h) [reset = 0000h]  
95. Register R67  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
42  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
74. Register R67 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0  
R/W 0h  
Program 0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
7.6.69 Register R68 (offset = 44h) [reset = 03E8h]  
96. Register R68  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
1
8
1
7
1
6
1
5
1
4
0
3
1
2
0
1
0
0
0
R/W-3E8h  
75. Register R68 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0  
R/W 3E8h Program 3E8h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
7.6.70 Register R69 (offset = 45h) [reset = 0000h]  
97. Register R69  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MASH_RST_COUNT[31:16]  
R/W-0h  
76. Register R69 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0 MASH_RST_COUNT  
[31:16]  
R/W 0h Upper 16 bits of MASH_RST_COUNT. This register is used to add a delay when  
using phase SYNC. The delay should be set at least four times the PLL lock time. This  
delay is expressed in state machine clock periods. One of these periods is equal to  
2CAL_CLK_DIV / fOSCin  
.
7.6.71 Register R70 (offset = 46h) [reset = C350h]  
98. Register R70  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MASH_RST_COUNT[15:0]  
R/W-C350h  
77. Register R70 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0 MASH_RST_COUNT  
[15:0]  
R/W C350h Lower 16 bits of MASH_RST_COUNT.  
7.6.72 Register R71 (offset = 47h) [reset = 0080h]  
99. Register R71  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
1
6
0
5
0
4
0
3
0
2
0
1
0
0
1
R/W-80h  
78. Register R71 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 80h Program 81h to this field.  
15 - 0  
版权 © 2018, Texas Instruments Incorporated  
43  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
7.6.73 Register R72 (offset = 48h) [reset = 0001h]  
100. Register R72  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
1
R/W-1h  
79. Register R72 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 1h Program 1h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.74 Register R73 (offset = 49h) [reset = 003Fh]  
101. Register R73  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
1
4
1
3
1
2
1
1
1
0
1
R/W-3Fh  
80. Register R73 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 3Fh Program 3Fh to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.75 Register R74 (offset = 4Ah) [reset = 0000h]  
102. Register R74  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
81. Register R74 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Program 0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.76 Register R75 (offset = 4Bh) [reset = 0800h]  
103. Register R75  
15  
0
14  
0
13  
0
12  
0
11  
1
10  
9
8
7
6
5
0
4
0
3
0
2
0
1
0
0
0
CHDIV  
R/W-0h  
R/W-1h  
R/W-0h  
82. Register R75 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 11  
R/W 1h  
R/W 0h  
Program 1h to this field.  
10 - 6 CHDIV  
Channel divider.  
0: Divide by 2  
1: Divide by 4  
3: Divide by 8  
5: Divide by 16  
7: Divide by 32  
9: Divide by 64  
12: Divide by 128  
14: Divide by 256  
All other values are not used.  
44  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
82. Register R75 Field Descriptions (接下页)  
Bit  
Field  
Type Reset Description  
5 - 0  
R/W 0h  
Program 0h to this field.  
7.6.77 Register R76 (offset = 4Ch) [reset = 000Ch]  
104. Register R76  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
1
2
1
1
0
0
0
R/W-Ch  
83. Register R76 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W Ch Program Ch to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.78 Register R77 (offset = 4Dh) [reset = 0000h]  
105. Register R77  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
84. Register R77 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Program 0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.79 Register R78 (offset = 4Eh) [reset = 0064h]  
106. Register R78  
15  
0
14  
0
13  
0
12  
0
11  
10  
0
9
8
7
6
5
4
3
2
1
0
1
RAMP_T  
HRESH[  
32]  
QUICK_  
RECAL_  
EN  
VCO_CAPCTRL_STRT  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-32h  
R/W-0h  
85. Register R78 Field Descriptions  
Bit  
15 - 12  
11  
Field  
Type Reset Description  
R/W 0h  
R/W 0h  
Program 0h to this field.  
The 33rd bit of RAMP_THRESH.  
RAMP_THRESH[32]  
RAMP_THRESH sets how much the ramp can change the VCO frequency before a  
VCO calibration is required. If the frequency is chosen to be Δf, then RAMP_THRESH  
= (Δf / fPD) × 224  
.
10  
9
R/W 0h  
R/W 0h  
Program 0h to this field.  
QUICK_RECAL_EN  
This sets the initial VCO starting calibration values. Especially useful if the frequency  
change is smaller, say < 50 MHz or so.  
0: Calibration starts with VCO_SEL, VCO_CAPCTRL_START,  
VCO_DACISET_START  
1: Calibration starts with the current value  
8 - 1  
0
VCO_CAPCTRL_STRT  
R/W 32h  
R/W 0h  
This sets the starting VCO_CAPCTRL value that is used for VCO frequency  
calibration. Smaller values yield a higher frequency band within a VCO core. Valid  
number range is 0 to 183.  
Program 1h to this field.  
版权 © 2018, Texas Instruments Incorporated  
45  
 
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
7.6.80 Register R79 (offset = 4Fh) [reset = 0000h]  
107. Register R79  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RAMP_THRESH[31:16]  
R/W-0h  
86. Register R79 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Upper 16 bits of RAMP_THRESH. See 85 for description.  
15 - 0 RAMP_THRESH[31:16]  
7.6.81 Register R80 (offset = 50h) [reset = 0000h]  
108. Register R80  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RAMP_THRESH[15:0]  
R/W-0h  
87. Register R80 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Lower 16 bits of RAMP_THRESH. See 85 for description.  
15 - 0 RAMP_THRESH[15:0]  
7.6.82 Register R81 (offset = 51h) [reset = 0000h]  
109. Register R81  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
RAMP_L  
IMIT_HI  
GH[32]  
R/W-0h  
R/W-0h  
88. Register R81 Field Descriptions  
Bit  
15 - 1  
0
Field  
Type Reset Description  
R/W 0h  
R/W 0h  
Program 0h to this field.  
The 33rd bit of RAMP_LIMIT_HIGH.  
RAMP_LIMIT_HIGH[32]  
RAMP_LIMIT_HIGH sets a maximum frequency that the ramp cannot exceed so that  
the VCO does not get set beyond a valid frequency range.  
Suppose fHIGH is this frequency and fVCO is the starting VCO frequency, then:  
fHIGH fVCO  
;
RAMP_LIMIT_HIGH = 224 × (fHIGH – fVCO) / fPD  
7.6.83 Register R82 (offset = 52h) [reset = 0000h]  
110. Register R82  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RAMP_LIMIT_HIGH[31:16]  
R/W-0h  
89. Register R82 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Upper 16 bits of RAMP_LIMIT_HIGH. See 88 for description.  
15 - 0 RAMP_LIMIT_HIGH  
[31:16]  
46  
版权 © 2018, Texas Instruments Incorporated  
 
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
7.6.84 Register R83 (offset = 53h) [reset = 0000h]  
111. Register R83  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RAMP_LIMIT_HIGH[15:0]  
R/W-0h  
90. Register R83 Field Descriptions  
Bit  
Field  
Type Reset Description  
Lower 16 bits of RAMP_LIMIT_HIGH. See 88 for description.  
15 - 0 RAMP_LIMIT_HIGH[15:0] R/W 0h  
7.6.85 Register R84 (offset = 54h) [reset = 0000h]  
112. Register R84  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
RAMP_L  
IMIT_LO  
W[32]  
R/W-0h  
R/W-0h  
91. Register R84 Field Descriptions  
Bit  
15 - 1  
0
Field  
Type Reset Description  
R/W 0h  
R/W 0h  
Program 0h to this field.  
The 33rd bit of RAMP_LIMIT_LOW.  
RAMP_LIMIT_LOW[32]  
RAMP_LIMIT_LOW sets a minimum frequency that the ramp cannot exceed so that  
the VCO does not get set beyond a valid frequency range.  
Suppose fLOW is this frequency and fVCO is the starting VCO frequency, then:  
f
LOW fVCO  
;
RAMP_LIMIT_LOW = 233 – 224 × (fVCO – fLOW) / fPD  
7.6.86 Register R85 (offset = 55h) [reset = 0000h]  
113. Register R85  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RAMP_LIMIT_LOW[31:16]  
R/W-0h  
92. Register R85 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Upper 16 bits of RAMP_LIMIT_LOW. See 91 for description.  
15 - 0 RAMP_LIMIT_LOW  
[31:16]  
7.6.87 Register R86 (offset = 56h) [reset = 0000h]  
114. Register R86  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RAMP_LIMIT_LOW[15:0]  
R/W-0h  
93. Register R86 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0 RAMP_LIMIT_LOW[15:0] R/W 0h  
Lower 16 bits of RAMP_LIMIT_LOW. See 91 for description.  
版权 © 2018, Texas Instruments Incorporated  
47  
 
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
7.6.88 Register R87 (offset = 57h) [reset = 0000h]  
115. Register R87  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
94. Register R87 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Program 0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.89 Register R88 (offset = 58h) [reset = 0000h]  
116. Register R88  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
95. Register R88 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Program 0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.90 Register R89 (offset = 59h) [reset = 0000h]  
117. Register R89  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
96. Register R89 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Program 0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.91 Register R90 (offset = 5Ah) [reset = 0000h]  
118. Register R90  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
97. Register R90 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Program 0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.92 Register R91 (offset = 5Bh) [reset = 0000h]  
119. Register R91  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
48  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
98. Register R91 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0  
R/W 0h  
Program 0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
7.6.93 Register R92 (offset = 5Ch) [reset = 0000h]  
120. Register R92  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
99. Register R92 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Program 0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.94 Register R93 (offset = 5Dh) [reset = 0000h]  
121. Register R93  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
100. Register R93 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Program 0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.95 Register R94 (offset = 5Eh) [reset = 0000h]  
122. Register R94  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
101. Register R94 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Program 0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
7.6.96 Register R95 (offset = 5Fh) [reset = 0000h]  
123. Register R95  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R/W-0h  
102. Register R95 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Program 0h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
版权 © 2018, Texas Instruments Incorporated  
49  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
7.6.97 Register R96 (offset = 60h) [reset = 0000h]  
124. Register R96  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
RAMP_B  
URST_E  
N
RAMP_BURST_COUNT  
R/W-0h  
R/W-0h  
R/W-0h  
103. Register R96 Field Descriptions  
Bit  
Field  
Type Reset Description  
15  
RAMP_BURST_EN  
R/W 0h  
This enables ramp burst mode. In this mode, a number of ramps equal to  
RAMP_BURST_COUNT is sent out whenever RAMP_EN is set to 1. This is intended  
to produce a finite pattern of ramps, instead of a continuous pattern.  
0: Disabled  
1: Enabled  
14 - 2 RAMP_BURST_COUNT  
1 - 0  
R/W 0h  
R/W 0h  
When RAMP_BURST_EN = 1, this sets the number of ramps that is sent out.  
Program 0h to this field.  
7.6.98 Register R97 (offset = 61h) [reset = 0000h]  
125. Register R97  
15  
14  
0
13  
0
12  
0
11  
0
10  
9
8
7
6
5
4
3
2
0
1
0
RAMP0_  
RST  
RAMP_TRIGB  
RAMP_TRIGA  
RAMP_BURST_TRI  
G
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
104. Register R97 Field Descriptions  
Bit  
Field  
Type Reset Description  
15  
RAMP0_RST  
R/W 0h  
Resets RAMP0 at start of ramp to eliminate round-off errors. Applies to automatic  
ramping mode only.  
0: Disabled  
1: Reset  
14 - 11  
R/W 0h  
R/W 0h  
Program 0h to this field.  
10 - 7 RAMP_TRIGB  
Definition of ramp trigger B.  
0: Disabled  
1: RampClk pin rising edge  
2: RampDir pin rising edge  
4: Always triggered  
9: RampClk pin falling edge  
10: RampDir pin falling edge  
All other values are not used.  
6 - 3  
2
RAMP_TRIGA  
R/W 0h  
R/W 0h  
R/W 0h  
Definition of ramp trigger A. Options are same as RAMP_TRIGB.  
Program 0h to this field.  
1 - 0  
RAMP_BURST_TRIG  
Sets what triggers the next ramp in burst mode.  
0: Ramp transition  
1: Trigger A  
2: Trigger B  
3: Not used  
7.6.99 Register R98 (offset = 62h) [reset = 0000h]  
126. Register R98  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
RAMP0_INC[29:16]  
RAMP0_  
DLY  
R/W-0h  
R/W-0h  
R/W-0h  
50  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
105. Register R98 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 2 RAMP0_INC[29:16]  
R/W 0h  
Upper 14 bits of RAMP0_INC.  
RAMP0_INC sets the 2's compliment of the number added to the fractional numerator  
on every ramp cycle.  
1
R/W 0h  
R/W 0h  
Program 0h to this field.  
0
RAMP0_DLY  
When enabled, increases RAMP0 length by basing the ramp clock on two phase  
detector cycles instead of one.  
0: Ramp clock = 1 fPD cycle  
1: Ramp clock = 2 fPD cycles  
7.6.100 Register R99 (offset = 63h) [reset = 0000h]  
127. Register R99  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
1
1
0
0
0
RAMP0_INC[15:0]  
R/W-0h  
106. Register R99 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Lower 16 bits of RAMP0_INC. See 105 for description.  
15 - 0 RAMP0_INC[15:0]  
7.6.101 Register R100 (offset = 64h) [reset = 0000h]  
128. Register R100  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
RAMP0_LEN  
R/W-0h  
107. Register R100 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Length of the ramp in phase detector cycles.  
15 - 0 RAMP0_LEN  
7.6.102 Register R101 (offset = 65h) [reset = 0000h]  
129. Register R101  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
5
4
3
0
2
0
RAMP1_ RAMP1_ RAMP0_  
DLY  
RAMP0_NEXT_TRI  
G
RST  
NEXT  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
108. Register R101 Field Descriptions  
Bit  
15 - 7  
6
Field  
Type Reset Description  
R/W 0h  
R/W 0h  
Program 0h to this field.  
RAMP1_DLY  
RAMP1_RST  
RAMP0_NEXT  
When enabled, increases RAMP1 length by basing the ramp clock on two phase  
detector cycles instead of one.  
0: Ramp clock = 1 fPD cycle  
1: Ramp clock = 2 fPD cycles  
5
4
R/W 0h  
R/W 0h  
Resets RAMP1 at start of ramp to eliminate round-off errors. Applies to automatic  
ramping mode only.  
0: Disabled  
1: Reset  
Defines what ramp comes after RAMP0.  
0: RAMP0  
1: RAMP1  
版权 © 2018, Texas Instruments Incorporated  
51  
 
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
108. Register R101 Field Descriptions (接下页)  
Bit  
Field  
Type Reset Description  
3 - 2  
1 - 0  
R/W 0h  
R/W 0h  
Program 0h to this field.  
RAMP0_NEXT_TRIG  
Defines what triggers the next ramp.  
0: RAMP0_LEN timeout counter  
1: Trigger A  
2: Trigger B  
3: Not used  
7.6.103 Register R102 (offset = 66h) [reset = 0000h]  
130. Register R102  
15  
0
14  
0
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RAMP1_INC[29:16]  
R/W-0h  
R/W-0h  
109. Register R102 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 14  
R/W 0h  
R/W 0h  
Program 0h to this field.  
13 - 0 RAMP1_INC[29:16]  
Upper 14 bits of RAMP1_INC.  
RAMP1_INC sets the 2's compliment of the number added to the fractional numerator  
on every ramp cycle.  
7.6.104 Register R103 (offset = 67h) [reset = 0000h]  
131. Register R103  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
1
1
0
0
0
RAMP1_INC[15:0]  
R/W-0h  
110. Register R103 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Lower 16 bits of RAMP1_INC. See 109 for description.  
15 - 0 RAMP1_INC[15:0]  
7.6.105 Register R104 (offset = 68h) [reset = 0000h]  
132. Register R104  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
RAMP1_LEN  
R/W-0h  
111. Register R104 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Length of the ramp in phase detector cycles.  
15 - 0 RAMP1_LEN  
7.6.106 Register R105 (offset = 69h) [reset = 4440h]  
133. Register R105  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
0
2
0
RAMP_DLY_CNT  
RAMP_  
MANUAL  
RAMP1_  
NEXT  
RAMP1_NEXT_TRI  
G
R/W-111h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
52  
版权 © 2018, Texas Instruments Incorporated  
 
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
112. Register R105 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 6 RAMP_DLY_CNT  
R/W 111h  
For ramping mode, RAMP_DLY_CNT and RAMP_SCALE_COUNT determine the  
minimum necessary time taken for VCO calibration during the ramp.  
Min. VCOCal time = (1 / fsmc) / (RAMP_DLY_CNT × 2RAMP_SCALE_COUNT), where fsmc  
fOSCin / 2CAL_CLK_DIV  
=
.
5
4
RAMP_MANUAL  
RAMP1_NEXT  
R/W 0h  
R/W 0h  
Selects the ramping mode.  
0: Automatic ramping mode  
1: Manual (Pin) ramping mode  
Defines what ramp comes after RAMP1.  
0: RAMP0  
1: RAMP1  
3 - 2  
1 - 0  
R/W 0h  
R/W 0h  
Program 0h to this field.  
RAMP1_NEXT_TRIG  
Defines what triggers the next ramp.  
0: RAMP1_LEN timeout counter  
1: Trigger A  
2: Trigger B  
3: Not used  
7.6.107 Register R106 (offset = 6Ah) [reset = 0007h]  
134. Register R106  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
3
0
2
1
0
RAMP_T  
RIG_CA  
L
RAMP_SCALE_COUNT  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-7h  
113. Register R106 Field Descriptions  
Bit  
15 - 5  
4
Field  
Type Reset Description  
R/W 0h  
R/W 0h  
Program 0h to this field.  
RAMP_TRIG_CAL  
Enabling this bit causes VCO calibration to occur in automatic ramping mode at the  
beginning of each ramp.  
0: Disabled  
1: Enabled  
3
R/W 0h  
R/W 7h  
Program 0h to this field.  
2 - 0  
RAMP_SCALE_COUNT  
For ramping mode, RAMP_DLY_CNT and RAMP_SCALE_COUNT determine the  
minimum necessary time taken for VCO calibration during the ramp.  
Min. VCOCal time = (1 / fsmc) / (RAMP_DLY_CNT × 2RAMP_SCALE_COUNT), where fsmc  
=
fOSCin / 2CAL_CLK_DIV  
.
7.6.108 Register R107 (offset = 6Bh) [reset = 0000h]  
135. Register R107  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R-0h  
114. Register R107 Field Descriptions  
Bit  
Field  
Type Reset Description  
R 0h Not used. (Read back only)  
15 - 0  
版权 © 2018, Texas Instruments Incorporated  
53  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
7.6.109 Register R108 (offset = 6Ch) [reset = 0000h]  
136. Register R108  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R-0h  
115. Register R108 Field Descriptions  
Bit  
Field  
Type Reset Description  
R 0h Not used. (Read back only)  
15 - 0  
7.6.110 Register R109 (offset = 6Dh) [reset = 0000h]  
137. Register R109  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R-0h  
116. Register R109 Field Descriptions  
Bit  
Field  
Type Reset Description  
R 0h Not used. (Read back only)  
15 - 0  
7.6.111 Register R110 (offset = 6Eh) [reset = 0000h]  
138. Register R110  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
9
8
0
7
6
5
4
0
3
0
2
0
1
0
0
0
rb_LD_VTUNE  
rb_VCO_SEL  
R-0h  
117. Register R110 Field Descriptions  
Bit  
Field  
Type Reset Description  
10 - 9 rb_LD_VTUNE  
R
0h  
Readback of Vtune lock detect.  
0: Unlocked  
1: Unlocked  
2: Locked  
3: Invalid  
7 - 5  
rb_VCO_SEL  
R
0h  
Reads back the actual VCO that the calibration has selected.  
1: VCO1  
2: VCO2  
·····  
6: VCO6  
All other values are not used.  
7.6.112 Register R111 (offset = 6Fh) [reset = 0000h]  
139. Register R111  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
6
5
4
3
2
1
0
rb_VCO_CAPCTRL  
R-0h  
118. Register R111 Field Descriptions  
Bit  
Field  
Type Reset Description  
R 0h Reads back the actual CAPCTRL value that the VCO calibration has chosen.  
7 - 0  
rb_VCO_CAPCTRL  
54  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
7.6.113 Register R112 (offset = 70h) [reset = 0000h]  
140. Register R112  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
7
6
5
4
3
2
1
0
rb_VCO_DACISET  
R-0h  
119. Register R112 Field Descriptions  
Bit  
Field  
Type Reset Description  
R 0h Reads back the actual DACISET value that the VCO calibration has chosen.  
8 - 0  
rb_VCO_DACISET  
7.6.114 Register R113 (offset = 71h) [reset = 0000h]  
141. Register R113  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
R-0h  
120. Register R113 Field Descriptions  
Bit  
Field  
Type Reset Description  
R 0h Not used. (Read back only)  
15 - 0  
7.6.115 Register R114 (offset = 72h) [reset = 7800h]  
142. Register R114  
15  
0
14  
1
13  
1
12  
1
11  
1
10  
9
0
8
7
6
5
4
3
2
1
0
FSK_EN  
FSK_I2S FSK_I2S  
_FS_PO _CLK_P  
FSK_SPI_LEVEL  
FSK_SPI_DEV_SEL  
FSK_MODE_SEL  
L
OL  
R/W-Fh  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
121. Register R114 Field Descriptions  
Bit  
15 - 11  
10  
Field  
Type Reset Description  
R/W Fh  
R/W 0h  
Program Fh to this field.  
FSK_EN  
Enables all FSK modes.  
0: Disabled  
1: Enabled  
9
8
R/W 0h  
R/W 0h  
Program 0h to this filed.  
FSK_I2S_FS_POL  
Sets the polarity of the I2S Frame Sync input in FSK I2S mode.  
0: Active HIGH  
1: Active LOW  
7
FSK_I2S_CLK_POL  
FSK_SPI_LEVEL  
R/W 0h  
R/W 0h  
Sets the polarity of the I2S CLK input in FSK I2S mode.  
0: Rising edge  
1: Falling edge  
6 - 5  
Defines the desired FSK level in FSK SPI mode. When this bit is zero, FSK operation  
in this mode is disabled even if FSK_EN = 1.  
0: Disabled  
1: 2FSK  
2: 4FSK  
3: 8FSK  
4 - 2  
FSK_SPI_DEV_SEL  
R/W 0h  
In FSK SPI mode, these bits select one of the FSK deviations as defined in registers  
R116 - R123.  
0: FSK_DEV0  
1: FSK_DEV1  
·····  
7: FSK_DEV7  
版权 © 2018, Texas Instruments Incorporated  
55  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
121. Register R114 Field Descriptions (接下页)  
Bit  
Field  
Type Reset Description  
1 - 0  
FSK_MODE_SEL  
R/W 0h  
Defines FSK mode.  
0: Not used  
1: FSK I2S  
2: FSK SPI  
3: FSK SPI FAST  
7.6.116 Register R115 (offset = 73h) [reset = 0000h]  
143. Register R115  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
6
5
4
3
2
0
1
0
0
0
FSK_DEV_SCALE  
R/W-0h  
R/W-0h  
R/W-0h  
122. Register R115 Field Descriptions  
Bit  
15 - 8  
7 - 3  
2 - 0  
Field  
Type Reset Description  
R/W 0h  
R/W 0h  
R/W 0h  
Program 0h to this field.  
The FSK deviation will be scaled by 2FSK_DEV_SCALE  
FSK_DEV_SCALE  
.
Program 0h to this field.  
7.6.117 Register R116 (offset = 74h) [reset = 0000h]  
144. Register R116  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
2
2
1
1
1
0
0
0
FSK_DEV0  
R/W-0h  
123. Register R116 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Defines the desired frequency deviation in FSK SPI mode.  
15 - 0 FSK_DEV0  
7.6.118 Register R117 (offset = 75h) [reset = 0000h]  
145. Register R117  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
FSK_DEV1  
R/W-0h  
124. Register R117 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Defines the desired frequency deviation in FSK SPI mode.  
15 - 0 FSK_DEV1  
7.6.119 Register R118 (offset = 76h) [reset = 0000h]  
146. Register R118  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
FSK_DEV2  
R/W-0h  
56  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
125. Register R118 Field Descriptions  
Bit  
Field  
Type Reset Description  
15 - 0 FSK_DEV2  
R/W 0h  
Defines the desired frequency deviation in FSK SPI mode.  
7.6.120 Register R119 (offset = 77h) [reset = 0000h]  
147. Register R119  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
2
2
2
1
1
1
1
0
0
0
0
FSK_DEV3  
R/W-0h  
126. Register R119 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Defines the desired frequency deviation in FSK SPI mode.  
15 - 0 FSK_DEV3  
7.6.121 Register R120 (offset = 78h) [reset = 0000h]  
148. Register R120  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
FSK_DEV4  
R/W-0h  
127. Register R120 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Defines the desired frequency deviation in FSK SPI mode.  
15 - 0 FSK_DEV4  
7.6.122 Register R121 (offset = 79h) [reset = 0000h]  
149. Register R121  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
FSK_DEV5  
R/W-0h  
128. Register R121 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Defines the desired frequency deviation in FSK SPI mode.  
15 - 0 FSK_DEV5  
7.6.123 Register R122 (offset = 7Ah) [reset = 0000h]  
150. Register R122  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
FSK_DEV6  
R/W-0h  
129. Register R122 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Defines the desired frequency deviation in FSK SPI mode.  
15 - 0 FSK_DEV6  
版权 © 2018, Texas Instruments Incorporated  
57  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
7.6.124 Register R123 (offset = 7Bh) [reset = 0000h]  
151. Register R123  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
FSK_DEV7  
R/W-0h  
130. Register R123 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Defines the desired frequency deviation in FSK SPI mode.  
15 - 0 FSK_DEV7  
7.6.125 Register R124 (offset = 7Ch) [reset = 0000h]  
152. Register R124  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
FSK_SPI_FAST_DEV  
R/W-0h  
131. Register R124 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 0h Defines the desired frequency deviation in FSK SPI FAST mode.  
15 - 0 FSK_SPI_FAST_DEV  
7.6.126 Register R125 (offset = 7Dh) [reset = 0820h]  
153. Register R125  
15  
0
14  
0
13  
0
12  
0
11  
1
10  
0
9
0
8
0
7
0
6
0
5
1
4
0
3
0
2
0
1
0
0
0
R/W-0820h  
132. Register R125 Field Descriptions  
Bit  
Field  
Type Reset Description  
R/W 820h Program 820h to this field.  
After programming R0 with RESET = 1, no need to program this register.  
15 - 0  
58  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 OSCin Configuration  
OSCin supports single-ended and differential clock. Register R5 defines OSCin configuration.  
133. OSCin Configuration  
OSCin TYPE  
SINGLE-ENDED CLOCK  
DIFFERENTIAL CLOCK  
VT  
VT  
OSCin  
Configuration Diagram  
OSCin  
OSCin*  
OSCin*  
50Ω  
50Ω  
IPBUF_TYPE = 0  
IPBUF_TERM = 1  
Register Setting  
IPBUF_TYPE = 1  
Single-ended and differential input clock definitions are shown in 154.  
VOSCin  
VOSCin  
VOSCin  
CMOS  
Sine wave  
Differential  
154. Input Clock Definition  
8.1.2 OSCin Slew Rate  
The slew rate of the OSCin signal can have an impact on the spurs and phase noise of the LMX2572LP if it is  
too low. In general, the best performance is for a high slew rate but a lower amplitude signal, such as LVDS.  
8.1.3 VCO Gain  
The VCO gain varies between the six VCO cores and is the lowest at the lowest end of the band and highest at  
the highest end of each band. The typical VCO gain over each VCO core is listed in 134.  
134. VCO Gain  
VCO CORE  
VCO1  
fMin (MHz)  
3200  
fMax (MHz)  
3650  
KVCOMin (MHz/V)  
KVCOMax (MHz/V)  
32  
35  
47  
50  
61  
57  
47  
54  
64  
73  
82  
79  
VCO2  
3650  
4200  
VCO3  
4200  
4650  
VCO4  
4650  
5200  
VCO5  
5200  
5750  
VCO6  
5750  
6400  
版权 © 2018, Texas Instruments Incorporated  
59  
 
 
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
For an arbitrary VCO frequency, the VCO gain can be estimated as 公式 4:  
KVCO = KVCOMin + (KVCOMax – KVCOMin) × (fVCO – fMin) / (fMax – fMin  
)
(4)  
8.1.4 VCO Calibration  
The purpose of VCO calibration is to find out: (1) the correct VCO core, (2) the best band within the core, and (3)  
the best VCO amplitude setting. The LMX2572LP allows the user to assist the VCO calibration. In general, there  
are three kinds of assistance.  
8.1.4.1 Partial Assist  
Upon every frequency change, before the FCAL_EN bit is checked, the user provides a good estimate of the  
initial starting point for the VCO core (VCO_SEL), band (VCO_CAPCTRL_STRT), and amplitude  
(VCO_DACISET_STRT). To do the partial assist for the VCO calibration, follow this procedure:  
1. Pick a VCO core that includes the desired VCO frequency. If at the boundary of two cores, choose based on  
phase noise or performance.  
2. Use 公式 5 to find the approximate band:  
VCO_CAPCTRL_STRT = Round[CMin – (fVCO – fMin) × (CMin – CMax) / (fMax – fMin)]  
(5)  
(6)  
3. Use 公式 6 to find the approximate amplitude setting.  
VCO_DACISET_STRT = Round[AMin – (fVCO – fMin) × (AMin – AMax) / (fMax – fMin)]  
135. VCO Core Parametric  
VCO CORE  
VCO1  
fMin (MHz)  
3200  
fMax (MHz)  
3650  
CMin  
131  
143  
135  
136  
133  
151  
CMax  
19  
AMin  
138  
162  
126  
195  
190  
256  
AMax  
137  
142  
114  
172  
163  
204  
VCO2  
3650  
4200  
25  
VCO3  
4200  
4650  
34  
VCO4  
4650  
5200  
25  
VCO5  
5200  
5750  
20  
VCO6  
5750  
6400  
27  
8.1.4.2 Close Frequency Assist  
Upon initialization of the device, the user enables the QUICK_RECAL_EN bit. The next VCO calibration will use  
the current VCO core, band, and amplitude settings as the initial starting point. This approach is useful if the  
frequency change is small, say 50 MHz or so.  
8.1.4.3 Full Assist  
The user forces the VCO core (VCO_SEL), band (VCO_CAPCTRL), and amplitude (VCO_DACISET) and  
manually sets the value. No VCO calibration will be performed. To force the set values, set VCO_SEL_FORCE,  
VCO_CAPCTRL_FORCE, and VCO_DACISET_FORCE equal 1. First do a VCO calibration and then read back  
the values to obtain the set values.  
8.1.5 Output Buffer Control  
8.1.5.1 Output Power  
The OUTA_PWR and OUTB_PWR registers can be used to control the output power of the output buffers.  
Values greater than 18 are prohibited.  
60  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
10  
8
9
6
6
3
4
0
2
OUTx_PWR  
-3  
-6  
-9  
-12  
5
12  
18  
0
fOUT  
-2  
-4  
-6  
250 MHz  
500 MHz  
1000 MHz  
2000 MHz  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
2
4
6
8
10  
12  
14  
16  
18  
fOUT (MHz)  
OUTx_PWR  
D047  
D048  
155. Output Power vs Frequency  
156. Output Power vs Power Control Bits  
8.1.5.2 Power-Up Response  
Use the OUTx_PD bits to power up or power down the output buffers. The RF output will vanish immediately  
when the buffer is powered down. However, it takes some tiny amount of time for it to power up.  
157. Buffer Power Up at 400-MHz Output  
8.1.5.3 Unused Output Pin  
Each output buffer has two differential pair pins. The buffer can be used as a single differential output or two  
single-ended outputs. If only one single-ended output is necessary, the unused pin cannot be left open. The pin  
should be terminated properly as shown in 158.  
System device  
RFout  
158. Unused Output Buffer Differential Pin  
8.1.6 Application for SYNC  
The requirements for SYNC depend on certain setup conditions. In cases where the SYNC is not timing critical,  
the setup can be done through software by toggling the VCO_PHASE_SYNC_EN bit from 0 to 1. When the  
SYNC is timing critical, then setup must be done through the SYNC pin and the setup and hold times for the  
OSCin pin are critical.  
版权 © 2018, Texas Instruments Incorporated  
61  
 
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
Determine SYNC  
category  
M = 1  
No  
CHDIV ≤ 2  
No  
No  
No  
ñ
ñ
M = 2 when Doubler is ON  
M = MULT when MULT ≥ 3  
Yes  
Yes  
Category 3  
Category 4  
fOUT is an  
integer multiple of  
fOSCin  
fOUT is an  
integer multiple of  
M x fOSCin  
SYNC required  
SYNC timing critical  
fOSCin 100 MHz  
Device cannot be  
reliably used in SYNC  
mode  
No  
No  
Yes  
Yes  
PLL_NUM = 0  
Yes  
Category 2  
SYNC required  
SYNC timing not critical  
No limitation on fOSCin  
CHDIV ≤ 2  
Yes  
Category 1  
SYNC not required  
SYNC mode required  
(VCO_PHASE_SYNC_EN = 1)  
159. SYNC Category  
The procedure for using SYNC in different SYNC categories is shown in 136.  
136. Procedure for Using SYNC  
CATEGORY  
CHARACTERISTIC  
SETUP PROCEDURE  
SYNC not required.  
SYNC mode required.  
1. Set N = N' / 2, where N' is the normal N divider value.  
1
2. Program all the registers with R0 VCO_PHASE_SYNC_EN = 1.  
SYNC required.  
SYNC timing not critical.  
No limitation on fOSCin  
1. Setup as usual.  
2. Program all the registers as usual. The device is now locked.  
3. Program N = N' / 2, where N' is the normal (original) N divider value.  
4. Program R0 with VCO_PHASE_SYNC_EN = 1.  
5. Program N = N'.  
.
2
6. Program R0 with VCO_PHASE_SYNC_EN = 0.  
7. Alternatively, step 3 to 6 can be replaced by applying a SYNC signal (0 1  
transition) to the SYNC pin and the timing on this in not critical.  
62  
版权 © 2018, Texas Instruments Incorporated  
 
LMX2572LP  
www.ti.com.cn  
CATEGORY  
ZHCSIA2 MAY 2018  
136. Procedure for Using SYNC (接下页)  
CHARACTERISTIC  
SETUP PROCEDURE  
SYNC required.  
SYNC timing critical.  
1. Ensure that the maximum fOSCin for SYNC is not violated and there are  
hardware accommodations to use the SYNC pin.  
fOSCin 100 MHz  
2. Set N = N' / 2, where N' is the normal N divider (integer + fraction) value.  
3. Program all the registers with R0 VCO_PHASE_SYNC_EN = 1.  
3
4. Apply a SYNC signal (0 1 transition) to the SYNC pin. The timing of the  
SYNC signal as shown in Timing Requirements must be obey.  
Set these bits to drive the SYNC pin with a LVDS signal:  
Set INPIN_FMT to 1 or 3 to enable LVDS input  
Set INPIN_LVL to one of the options  
Set INPIN_HYST, if necessary  
The LVDS driver that is driving the SYNC pin should be configured as shown in 160:  
SYNC  
100  
LMX2572LP  
160. Driving SYNC Pin With Differential Signal  
8.1.7 Application for Ramp  
8.1.7.1 Manual Ramping Mode  
Manual ramping is enabled when the user sets RAMP_EN = 1 and RAMP_MANUAL = 1. In this mode, the ramp  
is clocked by the rising edges applied to the RampClk pin. The size of the frequency change is defined by  
RAMP0_INC and RAMP1_INC. If a LOW is seen at the RampDir pin on the rising edge of RampClk, the output  
frequency will be incremented by RAMP0_INC. On the contrary, the output frequency will be incremented by  
RAMP1_INC if a HIGH is captured. If a rising edge is seen on the RampClk pin while the VCO is calibrating, then  
this rising edge is ignored. The frequency for the RampClk must be limited to a frequency of 250 kHz or less, and  
the rising edge of the RampDir signal must be targeted to the falling edge of the RampClk pin. The necessary  
register fields for use in manual ramping mode are shown in 137.  
137. Manual Ramping Mode Programming  
REGISTER FIELD  
VALUE  
DESCRIPTION  
Set this bit to 1 to enable frequency ramping.  
RAMP_EN  
1 = Enable ramp  
1 = Manual ramping  
mode  
RAMP_MANUAL  
To select manual ramping mode, set this bit to 1.  
Greater than the  
This sets the upper ramp limit that the ramp cannot go above. Suppose fHigh is this  
RAMP_LIMIT_HIGH highest VCO ramp  
frequency  
frequency and fStart is the starting VCO ramp frequency, then, for fHigh > fStart  
,
RAMP_LIMIT_HIGH = 224 × (fHigh – fStart) / fPD  
Smaller than the  
RAMP_LIMIT_LOW lowest VCO ramp  
frequency  
This sets the lower ramp limit that the ramp cannot go below. Suppose fLow is this frequency  
and fStart is the starting VCO ramp frequency, then, for fStart > fLow  
,
RAMP_LIMIT_LOW = 233 – 224 × (fStart – fLow) / fPD  
RAMP0_INC  
RAMP1_INC  
Equal to the ramp  
size  
Suppose the ramp size is Δf, then  
RAMPx_INC = (Δf / fPD) × 224 or = 230 – (Δf / fPD) × 224 if Δf is a negative number.  
If the amount of frequency ramp exceeds this threshold, a VCO calibration will be initiated.  
For example, if the ramp size is 50 MHz while this threshold is 30 MHz, then VCO  
calibration will be executed every time it ramps. Suppose the threshold frequency is fTH,  
Suggest less than 50  
MHz  
RAMP_THRESH  
then  
RAMP_THRESH = (fTH / fPD) × 224  
版权 © 2018, Texas Instruments Incorporated  
63  
 
 
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
137. Manual Ramping Mode Programming (接下页)  
REGISTER FIELD  
VALUE  
DESCRIPTION  
In manual ramping mode, the ramp is triggered by the rising edges applied to the RampClk  
RAMP_TRIGA  
RAMP_TRIGB  
1 = RampClk rising  
edge trigger  
pin.  
Either RAMP_TRIGA or RAMP_TRIGB can be selected as the trigger source for the next  
ramp.  
RAMP0_NEXT_TRIG Equal to the selected These fields define what triggers the next ramp. They must be set to the same trigger  
RAMP1_NEXT_TRIG RAMP_TRIGx  
source selected above.  
RAMPx_INC  
161. Manual Ramp Waveform  
8.1.7.2 Automatic Ramping Mode  
Automatic ramping mode is enabled when RAMP_EN = 1 with RAMP_MANUAL = 0. In this mode, there are two  
ramps profiles that one can use to set the length and frequency change. In addition to this, there are ramp limits  
that can be used to create more complicated waveforms. The output frequency will ramp once on each phase  
detector cycle.  
Automatic ramping can really be divided into two classes depending on whether the VCO must calibrate in the  
middle of the ramping or not. If the VCO can go the entire range without calibrating, this is calibration-free  
ramping. Note that this range is less at hot temperatures and less for lower frequency VCOs. This range is not  
ensured, so margin must be built into the design.  
For ramping that are not calibration free, the ramp waveform is more like a staircase ramp.  
138. Automatic Ramping Mode Programming  
REGISTER FIELD  
VALUE  
DESCRIPTION  
Set this bit to 1 to enable frequency ramping.  
RAMP_EN  
1 = Enable ramp  
0 = Automatic  
ramping mode  
RAMP_MANUAL  
To select automatic ramping mode, set this bit to 0.  
Greater than the  
This sets the upper ramp limit that the ramp cannot go above. Suppose fHigh is this  
RAMP_LIMIT_HIGH highest VCO ramp  
frequency  
frequency and fStart is the starting VCO ramp frequency, then, for fHigh > fStart  
,
RAMP_LIMIT_HIGH = 224 × (fHigh – fStart) / fPD  
Smaller than the  
RAMP_LIMIT_LOW lowest VCO ramp  
frequency  
This sets the lower ramp limit that the ramp cannot go below. Suppose fLow is this frequency  
and fStart is the lowest VCO ramp frequency, then, for fStart > fLow  
,
RAMP_LIMIT_LOW = 233 – 224 × (fStart – fLow) / fPD  
RAMP0_INC  
RAMP1_INC  
Equal to the ramp  
size  
Suppose the ramp size is Δf, then  
RAMPx_INC = (Δf / fPD) × 224 or = 230 – (Δf / fPD) x 224 if Δf is a negative number.  
If the amount of frequency ramp exceed this threshold, a VCO calibration will be initiated.  
Suggest less than 50 For example, if the ramp size is 15 MHz while this threshold is 20 MHz, then VCO  
RAMP_THRESH  
MHz  
calibration will be executed every two ramps. Suppose the threshold frequency is fTH, then  
RAMP_THRESH = (fTH / fPD) × 224  
64  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
138. Automatic Ramping Mode Programming (接下页)  
REGISTER FIELD  
VALUE  
DESCRIPTION  
Set the number of ramp required in each ramp profile. Maximum value is 216. If this number  
is exceeded, enable the RAMPx_DLY bit or reduce the phase detector frequency.  
RAMPx_LEN = Ramp duration of a ramp profile × fPD  
RAMP0_LEN  
RAMP1_LEN  
0 to 216  
RAMP0_DLY  
RAMP1_DLY  
0 or 1  
If this bit is set to 1, the output frequency will ramp every two fPD cycles.  
Set the next ramping profile when the present profile is finished.  
RAMP0_NEXT  
RAMP1_NEXT  
Equal to the next  
ramp  
RAMP0_NEXT_TRIG 0 = RAMP_LENx time  
RAMP1_NEXT_TRIG out counter  
Set these bits to 0 in order to start the next ramp immediately after the previous ramp.  
RAMP0_RST  
0 or 1  
If the stop frequency of the present ramp profile is different from the start frequency of the  
next ramp profile, set this bit to 1.  
RAMP1_RST  
These two register fields set the minimum pause time when RAMP_THRESH is hit. This  
pause time must be sufficient to allow the VCO to complete a calibration, otherwise it will be  
overwritten by the actual VCO calibration time.  
RAMP_SCALE_COU  
Suggest a minimum  
NT  
pause time of 50 µs  
RAMP_DLY_CNT  
Minimum pause time = RAMP_DLY_CNT × 2RAMP_SCALE_COUNT × 2CAL_CLK_DIV / fOSCin  
RAMPx_INC  
Configurable  
pause time  
RAMP_THRESH  
1 / fPD  
Accumulated  
ramp frequency.  
RAMP_THRESH  
Total ramp time = Desired ramp duration + sum of all pause time.  
162. Auto Ramp Waveform  
8.1.8 Application for FSK  
In fractional mode, the finest delta frequency difference between two programmable output frequencies is equal  
to 公式 7:  
f1 – f2 = Δfmin = fPD × {[(PLL_N + 1) / PLL_DEN] – (PLL_N / PLL_DEN)} = fPD / PLL_DEN  
(7)  
In other words, when the fractional numerator is incremented by 1 (one step), the output frequency will change  
by Δfmin. A two steps increment will therefore change the frequency by 2 × Δfmin  
.
In FSK operation, the instantaneous carrier frequency is kept changing among some pre-defined frequencies. In  
general, the instantaneous carrier frequency is defined as a certain frequency deviation from the nominal carrier  
frequency. The frequency deviation could be positive and negative.  
版权 © 2018, Texas Instruments Incorporated  
65  
 
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
Nominal  
carrier  
frequency  
Instantaneous  
carrier  
frequencies  
Negative  
deviation  
Postivie  
deviation  
fDEV  
0
fDEV  
1
163. General FSK Definition  
公式 8 and 公式 9 define the number of steps required for the desired frequency deviation with respect to the  
nominal carrier frequency output. Assume ΔfDEV is the frequency deviation,  
For positive deviation, FSK step = Round[(ΔfDEV × PLL_DEN x CHDIV) / (fPD × 2FSK_DEV_SCALE)]  
For negative deviation, FSK step = 216 – the positive deviation, FSK step answer  
(8)  
(9)  
In FSK SPI mode, registers R116 – R123 are used to store the desired FSK steps as defined in 公式 8 and 公式  
9. The order of the registers, 0 to 7, depends on the application system. A typical 4FSK definition is shown in 图  
164. In this case, the FSK_DEV0 and FSK_DEV1 are calculated using 公式 8, while the FSK_DEV2 and  
FSK_DEV3 are calculated using 公式 9.  
4FSK symbol:  
11 10 00 01  
Frequency  
164. Typical 4FSK Definition  
FSK SPI mode assumes the user knows which symbol to send. The user can directly write to  
FSK_SPI_DEV_SEL to select the desired frequency deviation. For example, to enable the device to support  
4FSK modulation in FSK SPI mode, set:  
FSK_MODE_SEL = 2 (FSK SPI)  
FSK_SPI_LEVEL = 2 (4FSK)  
FSK_EN = 1  
139. FSK SPI Mode Example  
DESIRED SYMBOL  
WRITE REGISTER FSK_SPI_DEV_SEL  
REGISTER SELECTED  
FSK_DEV2  
FSK_DEV3  
FSK_DEV2  
FSK_DEV3  
FSK_DEV1  
FSK_DEV0  
10  
11  
10  
11  
01  
00  
2
3
2
3
1
0
66  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
FSK SPI mode supports up to eight levels of FSK. To support an arbitrary-level FSK, use FSK SPI FAST mode.  
Constructing pulse-shaping FSK modulation by over-sampling the FSK modulation waveform is one of the used  
cases of this mode.  
Analog-FM modulation can also be produced in this mode. For example, with a 1-kHz sine wave modulation  
signal with peak frequency deviation of ±2 kHz, the signal can be oversampled, say 10 times. Each sample point  
corresponding to a scaled frequency deviation.  
+2 kHz  
t5 t6 t7 t8 t9  
Time  
t0 t1 t2 t3 t4  
Þ2 kHz  
165. Oversampling Modulation Signal  
In FSK SPI FAST mode, write the desired FSK steps directly to FSK_SPI_FAST_DEV. To enable this mode, set:  
FSK_MODE_SEL = 3 (FSK SPI FAST)  
FSK_EN = 1  
140. FSK SPI FAST Mode Example  
FREQUENCY DEVIATION  
(Hz)  
CORRESPONDING FSK  
STEPS(1)  
WRITE TO  
FSK_SPI_FAST_DEV  
TIME  
BINARY EQUIVALENT  
t0  
t1  
618.034  
1618.034  
2000  
396  
1036  
1280  
0000 0001 1000 1100  
0000 0100 0000 1100  
0000 0101 0000 0000  
396  
1036  
1280  
t2  
t6  
–1618.034  
–2000  
64500  
64256  
1111 1011 1111 0011  
1111 1010 1111 1111  
64500  
64256  
t7  
(1) fVCO = 3840 MHz, fOUT = 480 MHz, fPD = 100 MHz, CHDIV = 8, PLL_DEN = 8000000, FSK_DEV_SCALE = 0.  
Block Programming is possible with FSK SPI FAST mode programming as long as ADD_HOLD = 1, which will  
freeze the register address after the first register write. The same programming sequent as shown in 27  
applies.  
In FSK I2S mode, clock in the desired binary format FSK steps in the I2S interface.  
RampDir  
RampClk  
SysRefReq  
t0  
t1  
166. FSK I2S Mode Example  
版权 © 2018, Texas Instruments Incorporated  
67  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
To enable FSK I2S mode, set  
INPIN_IGNORE = 0  
FSK_MODE_SEL = 1 (FSK I2S)  
FSK_EN = 1  
8.1.9 Unused Pins  
TI recommends to pull these pins low if they are not used:  
Pin 5, SYNC  
Pin 28, SysRefReq  
Pin 30, RampClk  
Pin 32, RampDir  
8.1.10 External Loop Filter  
The LMX2572LP requires an external loop filter that is application-specific and can be configured by PLLatinum  
Sim. For the LMX2572LP, it matters what impedance is seen from the Vtune pin looking outwards. This  
impedance is dominated by the component C3 for a third order filter or C1 for a second order filter. If there is at  
least 1.5 nF for the capacitance that is shunt with this pin, the VCO phase noise will be close to the best it can  
be. If there is less, the VCO phase noise in the 100-kHz to 1-MHz region will degrade. This capacitor should be  
placed close to the Vtune pin.  
C3  
3
0
1
2
9
2
2
8
3
2
7
4
2
6
5
2
5
6
2
4
7
2
3
8
2
2
9
1
0
2
1
R3  
C1  
R2  
C2  
167. External Loop Filter  
8.1.11 Power-Up, Wake-Up Time  
When the device comes out of the powered-down state, either by resuming the POWERDOWN bit to zero or by  
pulling back CE pin HIGH (if it was powered down by CE pin), it takes time for the device to acquire lock again.  
This wake-up time depends on LDO_DLY setting, loop bandwidth, and the state machine clock frequency (=  
fOSCin / 2CAL_CLK_DIV). If the loop bandwidth is greater than 20 kHz, the wake-up time could be adjusted to less  
than 1.5 ms with the LDO_DLY setting listed in 141.  
141. LDO_DLY Setting  
STATE MACHINE CLOCK  
LDO_DLY  
FREQUENCY  
130 MHz f 200MHz  
80 MHz f < 130 MHz  
50 MHz f < 80 MHz  
30 MHz f < 50 MHz  
f < 30 MHz  
8
5
3
2
1
68  
版权 © 2018, Texas Instruments Incorporated  
 
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
8.2 Typical Application  
This application example demonstrates how to set up the LMX2572LP in FSK SPI FAST mode to synthesize 4-  
level GFSK modulation.  
XO  
100MHz  
100pF  
RFoutAP  
RFoutAM  
OSCin  
OSCin*  
100pF  
50  
LMX2572LP  
Vtune  
CPout  
SCK  
SDI  
CSB  
FSK data  
stream  
330  
15nF  
2.2nF  
168. Application Example Schematic  
8.2.1 Design Requirements  
142 lists the design parameters for this example.  
142. Design Parameters  
PARAMETER  
OSCin frequency  
EXAMPLE VALUE  
100 MHz  
490 MHz  
RFout frequency  
4FSK modulation baud rate  
BT of Gaussian filter  
FSK frequency deviation  
Fractional denominator  
125 kSps  
0.4  
±17 kHz and ±51 kHz  
8000000  
8.2.2 Detailed Design Procedure  
First, determine all the elementary blocks of a synthesizer.  
OSCin  
Doubler  
Pre-R  
MULT  
Post-R  
PDF  
VCO  
3920  
CHDIV  
Output  
100  
1
1
1
1
100  
8
490  
N
39.2  
169. Application Example Frequency Plan  
Then, program these registers to make LMX2572LP locks to the target output frequency:  
OSC_2X = 0  
PLL_R_PRE = 1  
MULT = 1  
PLL_R = 1  
PLL_N[18:16] = 0; PLL_N[15:0] = 39  
PLL_NUM[31:16] = 24; PLL_NUM[15:0] = 27136  
PLL_DEN[31:16] = 122; PLL_DEN[15:0] = 4680  
CHDIV = 8  
Then program these registers to enable FSK SPI FAST mode:  
FSK_MODE_SEL = 3  
版权 © 2018, Texas Instruments Incorporated  
69  
 
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
FSK_DEV_SCALE = 1  
FSK_EN = 1  
A Mathlab script is then developed to generate the necessary codes that will be used to continuously bit-stream  
the LMX2572LP. These codes are uploaded to the data generator DG2020, which will generate the SPI data to  
modulate the LMX2572LP.  
Mathlab  
DG2020  
LMX2572LP  
SCK  
SDI  
CSB  
Signal  
Analyzer  
CLK  
DATA  
LE  
Creates and  
generates  
codes  
Generates  
the electrical  
signals  
170. Application Example Test Setup  
8.2.3 Application Curves  
172. Gaussian 4FSK Modulation Quality  
171. Gaussian 4FSK Modulated Spectrum  
8.3 Do's and Don'ts  
RFout output buffers do not need an external pullup. An AC-couple to the load is good enough.  
The last shunt capacitor of the loop filter should be placed close to the Vtune pin.  
70  
版权 © 2018, Texas Instruments Incorporated  
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
Do's and Don'ts (接下页)  
VCC  
X
RFout  
RFout  
3
0
3
0
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
2
9
2
9
2
8
2
8
2
7
2
7
2
6
2
6
2
5
2
5
2
4
2
4
2
3
2
3
2
2
2
2
1
0
2
1
1
0
2
1
X
173. Do's and Don'ts  
版权 © 2018, Texas Instruments Incorporated  
71  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
9 Power Supply Recommendations  
TI recommends placing a 100-nF capacitor close to each of the power supply pins. If fractional spurs are a large  
concern, use a ferrite bead to each of these power supply pins to reduce spurs to a small degree. This device  
has integrated LDOs, which improves the resistance to power supply noise. 174 is a typical application  
example.  
This device can be powered by an external DC/DC buck converter, such as the TPS62150. Note that although  
Rtps1 and Rtps2 are 1.5 Ω in the schematic, they could be potentially replaced with a larger resistor value or  
inductor value for better power supply filtering. Alternatively, the use of a larger capacitance value for C2 and C4  
could also result in better power supply filtering.  
174. Power Supply With a DC/DC Converter  
LDO output = 3.3 V; Current = 69.8 mA  
175. Phase Noise With LDO Power Supply  
DC/DC input = 7.2 V; DC/DC output = 3.3 V; Current = 35.5 mA  
176. Phase Noise With DC/DC Power Supply  
The power consumption of LMX2572LP depends on its configuration. The data as shown in the Electrical  
Characteristics table represent the current consumption at some specific conditions. It is possible to get a smaller  
or higher current consumption than what is specified in the data sheet. To get a rough estimation on current  
consumption at a particular configuration, use TICS Pro.  
72  
版权 © 2018, Texas Instruments Incorporated  
 
LMX2572LP  
www.ti.com.cn  
ZHCSIA2 MAY 2018  
10 Layout  
10.1 Layout Guidelines  
In general, the layout guidelines are similar to most other PLL devices. Here are some specific guidelines:  
GND pins may be routed on the package back to the DAP.  
The OSCin pins are internally biased and must be AC-coupled.  
The RampClk, RampDir, and SysRefReq can be grounded to the DAP if not used.  
Get a loop filter capacitor as close to the Vtune pin as possible to this. This may mean separating it from the  
rest of the loop filter.  
If a single-ended output is necessary, the other side must have the same loading. However, the routing for  
the used side can be optimized by routing the complementary side through a via to the other side of the  
board. On this side, make the load look equivalent to the side that is used.  
Ensure the DAP on the device is well-grounded with many vias, preferably copper filled.  
Have a thermal pad that is as large as the exposed pad. Add vias to the thermal pad to maximize thermal  
performance.  
10.2 Layout Example  
177. Layout Example  
版权 © 2018, Texas Instruments Incorporated  
73  
LMX2572LP  
ZHCSIA2 MAY 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
德州仪器 (TI) www.ti.com.cn 提供了多种辅助开发的软件工具。其中包括:  
PLLatinum Sim 程序,用于设计回路滤波器以及对相位噪声和杂散进行仿真。  
TICS Pro 软件,用于了解如何对器件和 EVM 板进行编程。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
《带有 DCS-Control TPS62150 3V 17V 1A 降压转换器》(SLVSAL5)  
AN-1879 分数 N 频率合成》(SNAA062)  
《通过 LMX2571 实现移频键控》(SNAA309)  
PLL 性能、仿真和设计手册》(SNAA106)  
LMX2572LPEVM 用户指南》(SNAU235)  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
74  
版权 © 2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMX2572LPRHAR  
LMX2572LPRHAT  
ACTIVE  
VQFN  
VQFN  
RHA  
40  
40  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
LMX2572  
LP  
ACTIVE  
RHA  
NIPDAU  
LMX2572  
LP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RHA 40  
6 x 6, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225870/A  
www.ti.com  
PACKAGE OUTLINE  
RHA0040H  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
2
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
0.5  
0.3  
A
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
PIN 1 INDEX AREA  
6.1  
5.9  
(0.1)  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.2) TYP  
2X 4.5  
EXPOSED  
THERMAL PAD  
11  
20  
36X 0.5  
10  
21  
SEE SIDE WALL  
DETAIL  
2X  
41  
SYMM  
4.5  
4.5 0.1  
SEE TERMINAL  
DETAIL  
1
30  
0.3  
0.2  
40X  
40  
31  
PIN 1 ID  
(OPTIONAL)  
0.1  
0.05  
C A B  
SYMM  
0.5  
0.3  
40X  
4219055/B 08/22/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHA0040H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.5)  
SYMM  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
4X  
(1.27)  
(
0.2) TYP  
VIA  
(0.73)  
(5.8)  
TYP  
4X  
41  
SYMM  
(1.46)  
36X (0.5)  
10  
21  
(R0.05)  
TYP  
11  
(0.73) TYP  
4X (1.46)  
20  
4X (1.27)  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219055/B 08/22/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHA0040H  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.46) TYP  
9X ( 1.26)  
(R0.05) TYP  
40  
31  
40X (0.6)  
1
30  
40X (0.25)  
41  
(1.46)  
TYP  
SYMM  
(5.8)  
36X (0.5)  
10  
21  
METAL  
TYP  
11  
20  
SYMM  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 41:  
70% PRINTED SOLDER COVERAGE BY AREA  
SCALE:15X  
4219055/B 08/22/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

LMX2572RHAR

6.4GHz 低功耗宽带射频合成器 | RHA | 40 | -40 to 85
TI

LMX2572RHAT

6.4GHz 低功耗宽带射频合成器 | RHA | 40 | -40 to 85
TI

LMX2575HVMX-12

3.2A SWITCHING REGULATOR, 63kHz SWITCHING FREQ-MAX, PDSO24, SMT-24
TI

LMX2575HVMX-15

3.2A SWITCHING REGULATOR, 63kHz SWITCHING FREQ-MAX, PDSO24, SMT-24
TI

LMX2575HVMX-5.0

3.2A SWITCHING REGULATOR, 63kHz SWITCHING FREQ-MAX, PDSO24, SMT-24
TI

LMX2575HVMX-ADJ

3.2A SWITCHING REGULATOR, 63kHz SWITCHING FREQ-MAX, PDSO24, SMT-24
TI

LMX2575MX-12

3.2A SWITCHING REGULATOR, 63kHz SWITCHING FREQ-MAX, PDSO24, SMT-24
TI

LMX2575MX-15

3.2A SWITCHING REGULATOR, 63kHz SWITCHING FREQ-MAX, PDSO24, SMT-24
TI

LMX2575MX-5.0

3.2A SWITCHING REGULATOR, 63kHz SWITCHING FREQ-MAX, PDSO24, SMT-24
TI

LMX2575MX-ADJ

3.2A SWITCHING REGULATOR, 63kHz SWITCHING FREQ-MAX, PDSO24, SMT-24
TI

LMX2581

LMX2581 Wideband Frequency Synthesizer with Integrated VCO
TI

LMX2581E

具有集成 VCO 的 3.8GHz 宽带频率合成器
TI