LMX2694-SEP [TI]

耐辐射 15GHz 宽带 PLLatinum™ 射频合成器;
LMX2694-SEP
型号: LMX2694-SEP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

耐辐射 15GHz 宽带 PLLatinum™ 射频合成器

射频
文件: 总90页 (文件大小:3838K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
LMX2694-SEP 射型具有相位同步功能的 15GHz 宽带 PLLatinum合成  
1 特性  
3 说明  
VID V62/19616-02XE  
LMX2694-SEP 器件是一款集成电压控制振荡器 (VCO)  
和稳压器的高性能宽带锁相环 (PLL),在无倍频器的情  
况,可输出 39.3MHz 15.1GHz 围内的任意  
频率,从而无需使用 ½ 波滤波器。此器件上的  
VCO 涵盖了整个倍频区间,因而频率覆盖度可完全低  
39.3MHz。该高性能 PLL 具有 -236dBc/Hz 的品质  
因数和高相位检测器频率,可实现非常低的带内噪声和  
集成抖动。  
39.3MHz 15.1GHz 输出频率  
100KHz 偏频和 15GHz 载波的情况下具有  
-110dBc/Hz 的相位噪声  
8GHz 时,具有 54fs RMS 抖动(100Hz 至  
100MHz)  
可编程输出功率  
PLL 主要规格  
品质因数:-236dBc/Hz  
归一化 1/f 噪声:-129dBc/Hz  
相位检测器频率高达 200MHz  
跨多个器件实现输出相位同步  
支持具有 9ps 分辨率可编程延迟的 SYSREF  
3.3V 单电源运行  
LMX2694-SEP 允许设计人员同步多个器件实例的输  
出。这意味着我们可从任意应用情形下的器件中获得确  
定性相位,包括采用分数引擎或启用输出分频器的情  
形。该器件还让设计人员可以生成或重复 SYSREF  
(符合 JESD204B 标准),以便将该器件用作高速数  
据转换器的低噪声时钟源。  
工作温度范围:-55°C 125°C  
辐射规范  
器件信息(1)  
单粒子闩锁 > 43MeV-cm2/mg  
电离辐射总剂量达 30krad (Si)  
器件型号  
封装  
封装尺寸(标称值)  
LMX2694-SEP  
VQFN (48)  
7.00mm × 7.00mm  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
命令和数据处理 (C&DH)  
通信有效载荷  
光学成像有效载荷  
雷达成像有效载荷  
航天和国防  
External loop  
filter  
CPOUT  
VTUNE  
OSCIN  
Buffer  
RFOUTA_P  
Phase  
Detector  
OSCIN_P  
OSCIN_N  
MUX  
MUX  
Vcc  
Vcc  
Input  
signal  
OSCIN  
Doubler  
Pre-R  
Divider  
Post-R  
Divider  
RFOUTA_N  
RFOUTB_P  
Charge  
Pump  
Channel  
Divider  
f
Sigma-Delta  
Modulator  
RFOUTB_N  
CS#  
SCK  
Output  
Buffers  
SYSREF  
Synchronization  
and Delay  
Serial Interface  
Control  
SDI  
N Divider  
MUXOUT  
简化版原理图  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNAS788  
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Timing Requirements..................................................8  
6.7 Timing Diagrams.........................................................8  
6.8 Typical Characteristics..............................................10  
7 Detailed Description......................................................13  
7.1 Overview...................................................................13  
7.2 Functional Block Diagram.........................................14  
7.3 Feature Description...................................................14  
7.4 Device Functional Modes..........................................26  
7.5 Programming............................................................ 26  
7.6 Register Maps...........................................................27  
8 Application and Implementation..................................72  
8.1 Application Information............................................. 72  
8.2 Typical Application.................................................... 76  
9 Power Supply Recommendations................................78  
10 Layout...........................................................................79  
10.1 Layout Guidelines................................................... 79  
10.2 Layout Example...................................................... 79  
11 Device and Documentation Support..........................80  
11.1 Device Support........................................................80  
11.2 Documentation Support.......................................... 80  
11.3 接收文档更新通知................................................... 80  
11.4 支持资源..................................................................80  
11.5 Trademarks............................................................. 80  
11.6 Electrostatic Discharge Caution..............................80  
11.7 术语表..................................................................... 80  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 80  
4 Revision History  
注:以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (June 2021) to Revision C (March 2022)  
Page  
特性 中的 VID V62/19616 可订购型号更改为“VID V62/19616-02XE”.............................................................1  
更改了应用 中列出的应用示例............................................................................................................................1  
器件信息 表中的 VID V62/19616-02XE 可订购型号移动至数据表末尾的封装信息 .................................... 1  
Changes from Revision A (May 2020) to Revision B (June 2021)  
Page  
将器件和文档可见性从定制更改为产品目录....................................................................................................... 1  
特性 中添加了 VID 文档编号“VID V62/19616”................................................................................................ 1  
器件信息 表中添加了可订购器件型号“V62/19616-02XE”................................................................................1  
Changed the JESD_DACx values in 7-15 ...................................................................................................23  
Changed the R1 register bit name 3 in 7-11 from: 1 to: MUXOUT_CTRL................................................... 37  
Changed the OUTA_MUX register description in 7-65 ................................................................................51  
Changed the OUTB_MUX register description in 7-66 ............................................................................... 52  
Changes from Revision * (November 2019) to Revision A (May 2020)  
Page  
将最大工作温度更改为 125°C.............................................................................................................................1  
将电离辐射总剂量更改为 30krad(Si)...................................................................................................................1  
Changed maximum TC to 125°C in Recommended Operating Conditions........................................................ 5  
Changed maximum TC to 125°C in Electrical Characteristics............................................................................ 6  
Changed maximum TC to 125°C in Timing Requirements..................................................................................8  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
CE  
GND  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
REFVCO2  
SYSREFREQ  
BIASVCO2  
VCCVCO2  
GND  
2
BIASVCO  
GND  
3
4
SYNC  
5
GND  
6
NC  
Thermal  
Pad  
VCCDIG  
OSCIN_P  
OSCIN_N  
REGIN  
NC  
7
NC  
8
GND  
9
CS#  
10  
11  
12  
GND  
RFOUTA_P  
RFOUTA_N  
NC  
Not to scale  
5-1. RTC Package 48-Pin VQFN Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
41  
3
BIASVARAC  
BIASVCO  
BIASVCO2  
BP VCO varactor bias. Connect a 10-µF decoupling capacitor to ground.  
BP VCO bias. Connect a 10-µF decoupling capacitor to ground. Place close to pin.  
BP VCO bias. Connect a 1-µF decoupling capacitor to ground. Place close to pin.  
34  
Chip Enable. High impedance CMOS input. 1.8-V to 3.3-V logic. Active HIGH powers on  
the device.  
CE  
1
I
CPOUT  
CS#  
14  
28  
O
I
Charge pump output. Recommend connecting C1 of loop filter close to this pin.  
SPI latch. High impedance CMOS input. 1.8-V to 3.3-V logic.  
GND  
2, 4, 32, 40, 42, 47  
G
G
G
G
O
VCO ground.  
GND  
6, 16, 48  
15  
Digital ground.  
GND  
Charge pump ground.  
GND  
27, 29  
23  
Buffer ground.  
MUXOUT  
Multiplexed output. Can output: lock detect, SPI readback and diagnostics.  
11, 12, 20, 30, 31, 37,  
38, 39  
NC  
NC Pins may be grounded or left unconnected.  
Reference input clock (–). High impedance self-biasing pin. Requires AC-coupling  
capacitor. (0.1 µF recommended)  
OSCIN_N  
OSCIN_P  
9
8
I
Reference input clock (+). High impedance self-biasing pin. Requires AC-coupling  
capacitor. (0.1 µF recommended)  
I
REFVCO  
44  
36  
BP VCO supply reference. Connect a 10-µF decoupling capacitor to ground.  
BP VCO supply reference. Connect a 10-µF decoupling capacitor to ground.  
REFVCO2  
Input reference path regulator decoupling. Connect a 1-µF decoupling capacitor to  
ground. Place close to pin.  
REGIN  
10  
46  
25  
BP  
REGVCO  
RFOUTA_N  
BP VCO regulator node. Connect a 1-µF decoupling capacitor to ground.  
Differential output A (–). Requires connecting 50-Ω resistor pullup to VCC as close as  
possible to pin.  
O
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMX2694-SEP  
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Differential output A (+). Requires connecting 50-Ω resistor pullup to VCC as close as  
possible to pin.  
RFOUTA_P  
26  
O
O
O
Differential output B (–). Requires connecting 50-Ω resistor pullup to VCC as close as  
possible to pin.  
RFOUTB_N  
RFOUTB_P  
21  
22  
Differential output B (+). Requires connecting 50-Ω resistor pullup to VCC as close as  
possible to pin.  
SCK  
SDI  
18  
19  
I
I
SPI clock. High impedance CMOS input. 1.8-V to 3.3-V logic.  
SPI data. High impedance CMOS input. 1.8-V to 3.3-V logic.  
Phase synchronization input. Has programmable threshold. Connect to ground if not  
being used.  
SYNC  
5
I
SYSREFREQ  
VCCBUF  
35  
24  
13  
7
I
SYSREF request input for JESD204B support. Connect to ground if not being used.  
Output buffer supply. Connect to 3.3-V and a 0.1-µF decoupling capacitor to ground.  
Charge pump supply. Connect to 3.3-V and a 0.1-µF decoupling capacitor to ground.  
Digital supply. Connect to 3.3-V and a 0.1-µF decoupling capacitor to ground.  
Digital supply. Connect to 3.3-V and a 1-µF decoupling capacitor to ground.  
VCO supply. Connect to 3.3-V and a 1-µF decoupling capacitor to ground.  
VCO supply. Connect to 3.3-V and a 1-µF decoupling capacitor to ground.  
P
P
P
P
P
P
VCCCP  
VCCDIG  
VCCMASH  
VCCVCO  
VCCVCO2  
17  
45  
33  
VCO tuning voltage input. Connect a 1.5-nF or more capacitor to VCO ground. See  
External Loop Filter for details.  
VTUNE  
43  
I
Connect the GND pin to the exposed thermal pad for correct operation. Connect the  
thermal pad to any internal PCB ground plane using multiple vias for good thermal  
performance.  
Thermal pad  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
3.6  
UNIT  
V
VCC  
VIN  
TJ  
Power supply voltage  
IO input voltage  
–0.3  
VCC + 0.3  
150  
V
Junction temperature  
Storage temperature  
–55  
–65  
°C  
°C  
Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated  
under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC  
JS-001(1)  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–55  
3.2  
NOM  
MAX  
125  
UNIT  
°C  
TC  
Case temperature  
VCC  
Supply input voltage  
3.3  
3.45  
V
6.4 Thermal Information  
LMX2694-EP  
THERMAL METRIC(1)  
RTC (VQFN)  
48 PINS  
22.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
10.0  
6.1  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ΨJB  
6.0  
RθJC(bot)  
0.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
3.2 V ≤ VCC ≤ 3.45 V, 50°C ≤ TC ≤ 125°C. Typical values are at VCC = 3.3 V, 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
OUTA_PD = 0; OUTB_PD = 1;  
OUTA_MUX = OUTB_MUX = 1;  
OUTA_PWR = 31; CPG = 7;  
Supply current  
360  
ICC  
mA  
fOSC = fPD = 100 MHz; fVCO = fOUT = 14.5 GHz  
Power on reset current  
Power down current  
RESET = 1  
289  
6
POWERDOWN = 1  
OUTPUT CHARACTERISTICS  
Single-ended output power(1)  
fOUT = 8 GHz  
fOUT = 15 GHz  
2
0
50-Ω resistor pull-up  
OUTx_PWR = 31  
pOUT  
dBm  
(2)  
INPUT SIGNAL PATH  
OSC_2X = 0  
5
5
1000  
200  
2
fOSC  
Reference input frequency  
MHz  
VPP  
OSC_2X = 1  
fOSC ≥ 20 MHz  
0.4  
0.8  
1.6  
VOSC  
Reference input voltage(3)  
10 MHz ≤ fOSC < 20 MHz  
5 MHz ≤ fOSC < 10 MHz  
2
2
PHASE DETECTOR AND CHARGE PUMP  
MASH_ORDER = 0  
MASH_ORDER > 0  
0.125  
5
250  
200  
fPD  
Phase detector frequency(4)  
MHz  
Charge-pump leakage current CPG = 0  
20  
nA  
ICPOUT  
Effective charge pump current Sum of the up and down currents  
3
15  
mA  
PNPLL_1/f  
Normalized PLL 1/f noise  
–129  
–236  
fPD = 100 MHz; fVCO = 12 GHz(5)  
dBc/Hz  
MHz  
PNPLL_FOM Normalized PLL noise floor  
VCO CHARACTERISTICS  
fVCO  
VCO frequency  
7550  
15100  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
3.2 V ≤ VCC ≤ 3.45 V, 50°C ≤ TC ≤ 125°C. Typical values are at VCC = 3.3 V, 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
–106.5  
–128  
MAX  
UNIT  
100 kHz  
1 MHz  
VCO1  
fVCO = 8.1 GHz  
10 MHz  
100 MHz  
100 kHz  
1 MHz  
–147.5  
–154  
–105  
–126.5  
–146.5  
–154  
VCO2  
fVCO = 9.3 GHz  
10 MHz  
100 MHz  
100 kHz  
1 MHz  
–103.5  
–125.5  
–146  
VCO3  
fVCO = 10.4 GHz  
10 MHz  
100 MHz  
100 kHz  
1 MHz  
–158  
–102.5  
–124.5  
–145  
VCO4  
fVCO = 11.4 GHz  
PNVCO  
VCO phase noise  
dBc/Hz  
10 MHz  
100 MHz  
100 kHz  
1 MHz  
–160  
–100.5  
–122.5  
–143.5  
–154.5  
–99.5  
–122  
VCO5  
fVCO = 12.5 GHz  
10 MHz  
100 MHz  
100 kHz  
1 MHz  
VCO6  
fVCO = 13.6 GHz  
10 MHz  
100 MHz  
100 kHz  
1 MHz  
–142.5  
–154  
–98  
–120.5  
–141.5  
–155  
VCO7  
fVCO = 14.7 GHz  
10 MHz  
100 MHz  
Switch across the entire frequency band;  
fOSC = fPD = 100 MHz;  
tVCOCAL  
VCO calibration time(6)  
650  
µs  
VCO_SEL = 7  
8.1 GHz  
94  
106  
122  
148  
185  
202  
233  
125  
–30  
–25  
9.3 GHz  
10.4 GHz  
KVCO  
VCO Gain  
11.4 GHz  
MHz/V  
12.5 GHz  
13.6 GHz  
14.7 GHz  
|ΔTCL  
H2  
|
Allowable temperature drift  
VCO second harmonic  
VCO third harmonic  
VCO not being re-calibrated  
fVCO = 8 GHz; divider disabled  
fVCO = 8 GHz; divider disabled  
°C  
dBc  
H3  
DIGITAL INTERFACE  
VIH  
VIL  
IIH  
High-level input voltage  
1.4  
V
V
Low-level input voltage  
High-level input current  
Low-level input current  
0.4  
100  
100  
–100  
–100  
µA  
µA  
IIL  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMX2694-SEP  
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
3.2 V ≤ VCC ≤ 3.45 V, 50°C ≤ TC ≤ 125°C. Typical values are at VCC = 3.3 V, 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Load current = –5 mA  
Load current = 5 mA  
MIN  
TYP  
MAX  
UNIT  
V
VOH  
VOL  
High-level output voltage  
High-level output current  
VCC – 0.6  
MUXOUT pin  
0.6  
V
(1) Single ended output power obtained after de-embedding microstrip trace losses and matching with a manual tuner. Unused port  
terminated to 50-Ω load.  
(2) Output power, spurs, and harmonics can vary based on board layout and components.  
(3) Single-ended AC coupled sine wave input with complementary side AC coupled to ground with 50-Ω resistor.  
(4) For lower VCO frequencies, the N divider minimum value can limit the phase-detector frequency.  
(5) The PLL noise contribution is measured using a clean reference and a wide loop bandwidth and is composed into flicker and flat  
components. PLL_flat = PLL_FOM + 20 x log(fVCO/fPD) + 10 x log(fPD/1 Hz). PLL_flicker (offset) = PLL_1/f + 20 x log(fVCO/1 GHz) - 10  
x log(offset/10 kHz). Once these two components are found, the total PLL noise can be calculated as PLL_Noise = 10 x log(10PLL_Flat/  
10 + 10PLL_flicker/10).  
(6) See 7.3.7.1 for details.  
6.6 Timing Requirements  
3.2 V ≤ VCC ≤ 3.45 V, 50°C ≤ TC ≤ 125°C. Typical values are at VCC = 3.3 V, 25°C (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
SYNC AND SYSREFREQ TIMING  
tSETUP Setup time for pin relative to OSCIN rising edge  
tHOLD Hold time for pin relative to OSCIN rising edge  
DIGITAL INTERFACE WRITE SPECIFICATIONS  
9
4
ns  
ns  
See 6-1  
fSPIWrite  
tCE  
SPI write speed  
tCWL + tCWH ≥ 25 ns  
40  
MHz  
ns  
Clock to enable low time  
Data to clock setup time  
Data to clock hold time  
Clock pulse width high  
Clock pulse width low  
Enable to clock setup time  
Enable pulse width high  
5
2
2
5
5
5
2
tCS  
ns  
tCH  
ns  
tCWH  
tCWL  
tCES  
tEWH  
See 6-2  
ns  
ns  
ns  
ns  
DIGITAL INTERFACE READBACK SPECIFICATIONS  
fSPIReadback SPI readback speed  
40  
MHz  
ns  
tCE  
Clock to enable low time  
Clock to data wait time  
Clock to data hold time  
Clock pulse width high  
5
2
tCS  
ns  
tCH  
2
ns  
tCWH  
tCWL  
tCES  
tEWH  
tCD  
See 6-3  
10  
10  
5
ns  
Clock pulse width low  
ns  
Enable to clock setup time  
Enable pulse width high  
Falling clock edge to data wait time  
ns  
2
ns  
8
ns  
6.7 Timing Diagrams  
SYNC  
or  
SYSREFREQ  
tSETUP  
tHOLD  
OSCIN  
6-1. Trigger Signals Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
MSB  
R/W  
LSB  
D0  
SDI  
A5  
A0  
D15  
D14  
SCK  
CS#  
t
t
CWH  
CS  
t
CE  
t
CH  
t
CES  
t
CWL  
t
EWH  
6-2. Serial Data Input Timing Diagram  
There are several other considerations for writing on the SPI:  
The R/W bit must be set to 0.  
The data on SDI pin is clocked into a shift register on each rising edge on the SCK pin.  
The CS# must be held low for data to be clocked. Device will ignore clock pulses if CS# is held high.  
The CS# transition from high to low must occur when SCK is low.  
When SCK and SDI lines are shared between devices, TI recommends to hold the CS# line high on the  
device that is not to be clocked.  
LSB  
MUXOUT  
RB15  
RB14  
RB0  
t
CD  
MSB  
R/W  
SDI  
SCK  
CS#  
A6  
A5  
A0  
t
CE  
t
t
CWH  
CES  
t
CWL  
t
CS  
t
EWH  
6-3. Serial Data Readback Timing Diagram  
There are several other considerations for SPI readback:  
The R/W bit must be set to 1.  
The MUXOUT pin will always be low for the address portion of the transaction.  
The data on MUXOUT becomes available momentarily after the falling edge of SCK, and therefore, should be  
read back on the rising edge of SCK.  
The data portion of the transition on the SDI line is always ignored.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMX2694-SEP  
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
6.8 Typical Characteristics  
At TA = 25°C, unless otherwise noted  
-60  
-70  
-60  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-150  
8.1 GHz  
9.3 GHz  
100 1k  
-160  
100  
1k  
10k  
100k  
1M  
10M  
100M  
10k  
100k  
1M  
10M  
100M  
Offset (Hz)  
Offset (Hz)  
tc-0  
tc-0  
fOSC = 100 MHz  
fPD = 200 MHz  
Jitter = 61.2 fs (100 Hz - 100 MHz)  
fOSC = 100 MHz  
fPD = 200 MHz  
Jitter = 61.8 fs (100 Hz - 100 MHz)  
6-4. Closed Loop Phase Noise at 8.1 GHz  
6-5. Closed Loop Phase Noise at 9.3 GHz  
-60  
-70  
-60  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
10.4 GHz  
11.4 GHz  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Offset (Hz)  
Offset (Hz)  
tc-0  
tc-0  
fOSC = 100 MHz  
fPD = 200 MHz  
Jitter = 61.8 fs (100 Hz - 100 MHz)  
fOSC = 100 MHz  
fPD = 200 MHz  
Jitter = 61.7 fs (100 Hz - 100 MHz)  
6-6. Closed Loop Phase Noise at 10.4 GHz  
6-7. Closed Loop Phase Noise at 11.4 GHz  
-60  
-70  
-60  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
12.5 GHz  
13.6 GHz  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Offset (Hz)  
Offset (Hz)  
tc-0  
tc-0  
fOSC = 100 MHz  
fPD = 200 MHz  
Jitter = 68.8 fs (100 Hz - 100 MHz)  
fOSC = 100 MHz  
fPD = 200 MHz  
Jitter = 67.8 fs (100 Hz - 100 MHz)  
6-8. Closed Loop Phase Noise at 12.5 GHz  
6-9. Closed Loop Phase Noise at 13.6 GHz  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
At TA = 25°C, unless otherwise noted  
-60  
-70  
-90  
-95  
Measurement  
Flicker noise  
Flat noise  
-80  
Modeled phase noise  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
14.7 GHz  
-160  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
Offset (Hz)  
Offset (Hz)  
tc-0  
tc-0  
fPD = 200 MHz  
fVCO = 10 GHz  
FOM = –237.5 dBc/Hz  
Flicker = –130.5 dBc/Hz  
fOSC = 100 MHz  
fPD = 200 MHz  
Jitter = 67.8 fs (100 Hz - 100 MHz)  
6-11. Calculation of PLL Noise Metrics  
6-10. Closed Loop Phase Noise at 14.7 GHz  
9
8
4
3
Flicker noise  
FOM  
7
2
6
1
5
0
4
-1  
-2  
-3  
-4  
-5  
-6  
3
2
TA  
=
-55èC  
25èC  
85èC  
125èC  
1
0
-1  
100  
200  
300  
400  
500  
600  
700  
800  
10k  
100k  
1M  
10M  
100M  
Slew rate (V/ms)  
Offset (Hz)  
tc-0  
tc-1  
fOSC = 200 MHz  
fVCO = 14.8 GHz  
fVCO = 10 GHz  
LBW < 100 Hz  
VCO re-calibrated at final temperature  
6-12. PLL Phase Noise Metrics vs fosc Slew Rate  
6-13. Change in VCO Phase Noise Over Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMX2694-SEP  
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
6.8 Typical Characteristics (continued)  
At TA = 25°C, unless otherwise noted  
4
3
-80  
-90  
8 GHz  
4 GHz  
2 GHz  
2
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
1 GHz  
1
500 MHz  
250 MHz  
125 MHz  
62.5 MHz  
0
-1  
-2  
-3  
-4  
TA = -55èC, TLock = 25èC  
-5  
TA = -55èC, TLock = -55èC  
TA = 125èC, TLock = 25èC  
TA = 125èC, TLock = 125èC  
-6  
-7  
10k  
1k  
10k  
100k  
1M  
10M  
100M  
100k  
1M  
10M  
100M  
Offset (Hz)  
tc-1  
Offset (Hz)  
tc-1  
.
.
.
fVCO = 10 GHz  
LBW < 100 Hz  
VCO calibrated at 25°C and temperature  
drifted  
6-14. Change in VCO Phase Noise Over Temperature  
6-15. Divided Output Frequency  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMX2694-SEP is a high-performance, wideband frequency synthesizer with an integrated VCO and output  
divider. The VCO operates from 7550 to 15100 MHz, and can be combined with the output divider to produce  
any frequency in the range of 39.3 MHz to 15.1 GHz. There are two dividers within the input path.  
The PLL is fractional-N PLL with a programmable delta-sigma modulator up to the 3rd order. The fractional  
denominator is a programmable 32-bit long that can provide fine frequency steps easily below 1-Hz resolution,  
as well as be used to do exact fractions like 1/3, 7/1000, and so on.  
For applications where deterministic or adjustable phase is desired, the SYNC pin can be used to get the phase  
relationship between the OSCIN and RFOUTx pins deterministic. Once this is done, the phase can be adjusted  
in very fine steps of the VCO period divided by the fractional denominator.  
The ultra-fast VCO calibration is designed for applications where the frequency must be swept or abruptly  
changed. The frequency can be manually programmed.  
For JESD204B support, the RFOUTB output can be used as a differential SYSREF output that can be either  
a single pulse or a series of pulses that occur at a programmable distance away from the rising edges of the  
output signal.  
The LMX2694-SEP device requires only a single 3.3-V power supply. The internal power supplies are provided  
by integrated LDOs, eliminating the need for high-performance external LDOs.  
7-1 shows the range of several of the doubler, dividers, and fractional settings.  
7-1. Range of Doubler, Divider, and Fractional Settings  
PARAMETER  
MIN  
MAX  
COMMENTS  
The low noise doubler can be used to increase the  
phase detector frequency to improve phase noise and  
avoid spurs. This is in reference to the OSC_2X bit.  
OSCIN doubler  
0 (1X)  
1 (2X)  
Only use the Pre-R divider if the input frequency is too  
high for the Post-R divider.  
Pre-R divider  
Post-R divider  
1 (bypass)  
1 (bypass)  
128  
255  
The maximum input frequency for the Post-R divider is  
250 MHz. Use the Pre-R divider if necessary.  
The minimum divide depends on modulator order and  
VCO frequency. See N Divider and Fractional Circuitry  
for more details.  
N divider  
≥ 28  
524287  
The fractional denominator is programmable and can  
assume any value between 1 and 232– 1. It is not a  
fixed denominator.  
Fractional numerator /  
denominator  
1 (integer mode)  
0
232 – 1 = 4294967295  
Order 0 is integer mode, and the order can be  
programmed.  
Fractional order  
Channel divider  
Output frequency  
3
This is the series of several dividers. Also, be aware  
that above 10 GHz, the maximum allowable channel  
divider value is 6.  
1 (bypass)  
39.3 MHz  
192  
This is implied by the minimum VCO frequency divided  
by the maximum channel divider value.  
15.1 GHz  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMX2694-SEP  
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7.2 Functional Block Diagram  
CPOUT  
Phase  
Detector  
VTUNE  
OSCIN  
Buffer  
RFOUTA_P  
Vcc  
OSCIN_P  
OSCIN_N  
MUX  
MUX  
Input  
signal  
OSCIN  
Doubler  
Pre-R  
Divider  
Post-R  
Divider  
RFOUTA_N  
Charge  
Pump  
Channel  
Divider  
f
RFOUTB_P  
Vcc  
Sigma-Delta  
Modulator  
RFOUTB_N  
CS#  
SCK  
Output  
Buffers  
SYSREF  
Synchronization  
and Delay  
Serial Interface  
Control  
SDI  
N Divider  
MUXOUT  
7.3 Feature Description  
7.3.1 Reference Oscillator Input  
The OSCIN pins are used as a frequency reference input to the device. The input is high impedance and  
requires AC-coupling caps at the pin. The OSCIN pins can be driven single-ended with a CMOS clock or  
XO. Differential clock input is also supported, making it easier to interface with high-performance system clock  
devices such as TI’s LMK series clock devices. As the OSCIN signal is used as a clock for the VCO calibration,  
a proper reference signal must be applied at the OSCIN pin at the time of programming FCAL_EN.  
7.3.2 Reference Path  
The reference path consists of an OSCIN doubler (OSC_2X), Pre-R divider, and a Post-R divider.  
OSCIN  
Buffer  
OSCIN_P  
Input  
signal  
OSCIN  
Doubler  
Pre-R  
Divider  
Post-R  
Divider  
OSCIN_N  
7-1. Reference Path Diagram  
The OSCIN doubler (OSC_2X) can double up low OSCIN frequencies. Pre-R (PLL_R_PRE) and Post-R  
(PLL_R) dividers both divide frequency down. Use 方程式 1 to calculate the phase detector frequency, fPD  
:
fPD = fOSC × OSC_2X / (PLL_R_PRE × PLL_R)  
(1)  
If the OSCIN doubler is used, the OSCIN signal should have a 50% duty cycle as both the rising and falling  
edges are used.  
If the OSCIN doubler is not used, only rising edges of the OSCIN signal are used and duty cycle is not  
critical.  
7.3.2.1 OSCIN Doubler (OSC_2X)  
The OSCIN doubler allows the user to double the input reference frequency at up to 400 MHz, while adding  
minimal noise. It may be advantageous to use the doubler to go higher than the maximum phase detector  
frequency in some situations, because the Pre-R divider may be able to divide down this frequency to a phase  
detector frequency that is advantageous for fractional spurs.  
7.3.2.2 Pre-R Divider (PLL_R_PRE)  
The Pre-R divider is useful for reducing the input frequency to help meet the maximum 250-MHz input frequency  
limitation to the PLL-R divider. Otherwise, it does not have to be used.  
7.3.2.3 Post-R Divider (PLL_R)  
The Post-R divider can be used to further divide down the frequency to the phase detector frequency. When  
PLL_R > 1, the input frequency to this divider is limited to 250 MHz.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7.3.3 State Machine Clock  
The state machine clock is a divided-down version of the OSCIN signal that is used internally in the device.  
This divide value 1, 2, 4, 8, 16, or 32 and is determined by CAL_CLK_DIV programming word (described in the  
Programming section). This state machine clock impacts various features like the VCO calibration. The state  
machine clock is calculated as fSM = fOSC / 2CAL_CLK_DIV  
.
7.3.4 PLL Phase Detector and Charge Pump  
The phase detector compares the outputs of the Post-R divider and N divider, and will generate a correction  
current corresponding to the phase error until the two signals are aligned in-phase. This charge-pump current is  
software-programmable to many different levels, which allows the user to modify the closed-loop bandwidth of  
the PLL.  
7.3.5 N Divider and Fractional Circuitry  
The N divider includes fractional compensation that can achieve any fractional denominator from 1 to (232 – 1).  
The integer portion of N is the whole part of the N divider value, while the fractional portion (Nfrac = NUM / DEN)  
is the remaining fraction. In general, the total N divider value is determined by N + NUM / DEN. The N, NUM and  
DEN are software-programmable. The higher the denominator, the finer the resolution step of the output. For  
example, even when using fPD = 200 MHz, the output can increment in steps of 200 MHz / ( 232 – 1) = 0.047 Hz.  
方程式 2 shows the relationship between the phase detector and VCO frequencies. Note that in SYNC mode,  
there is an extra divider that is not shown in 方程式 2.  
fVCO = fPD × [N + NUM/DEN]  
(2)  
The sigma-delta modulator that controls this fractional division is also programmable from integer mode to the  
third order. To make the fractional spurs consistent, the modulator is reset any time that the R0 register is  
programmed.  
The N divider has minimum value restrictions based on the modulator order (MASH_ORDER) and VCO  
frequency. Furthermore, the PFD_DLY_SEL bit must be programmed in accordance to 7-2. IncludedDivide  
may be larger than one in SYNC mode. In all other modes, IncludedDivide is just one.  
7-2. Minimum N Divider Restrictions  
MASH_ORDER  
fVCO / IncludedDivide (MHz)  
MINIMUM N  
PFD_DLY_SEL  
≤ 12500  
29  
33  
30  
34  
38  
31  
31  
32  
36  
33  
37  
41  
45  
1
2
1
2
3
1
2
2
3
1
2
3
4
0
> 12500  
≤ 10000  
1
2
10000 - 12500  
> 12500  
≤ 4000 (SYNC mode)  
4000 - 7500 (SYNC mode)  
7500 - 10000  
> 10000  
≤ 4000 (SYNC mode)  
4000 - 7500 (SYNC mode)  
7500 - 10000  
3
> 10000  
7.3.6 MUXOUT Pin  
The MUXOUT pin can be configured as either a lock detect indicator for the PLL or as a serial data output for the  
SPI interface to read back registers. Field MUXOUT_LD_SEL (register R0[2]) configures this output.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMX2694-SEP  
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-3. MUXOUT Pin Configurations  
MUXOUT_LD_SEL  
FUNCTION  
0
1
Serial data output for readback  
Lock detect indicator  
When the lock detect indicator is selected, there are two types of indicators that can be selected with the field  
LD_TYPE (register R59[0]). The first indicator is called “VCOCal” (LD_TYPE = 0), and the second indicator is  
called “Vtune and VCOCal” (LD_TYPE = 1).  
7.3.6.1 Serial Data Output for Readback  
In this mode, the MUXOUT pin can be used as a the serial data output of the SPI interface. This output cannot  
be in a tri-state condition, therefore no line sharing is possible. Details of this pin operation are described in  
Timing Requirements. Readback is very useful when a device is used in full-assist mode, because the VCO  
calibration data are retrieved and saved for future use. It can also be used to read back the lock detect status  
using the field rb_LD_VTUNE(register R110[10:9]).  
7.3.6.2 Lock Detect Indicator Set as Type “VCOCal”  
In this mode, the MUXOUT pin will be low when the VCO is calibrating or when the lock detect delay timer is  
running. Otherwise, the MUXOUT will be high. The programmable timer (LD_DLY, register R60[15:0]) adds an  
additional delay after the VCO calibration finishes and before the lock detect indicator is asserted high. LD_DLY  
is a 16-bit unsigned quantity that corresponds to the 4 times the number of phase detector cycles in absolute  
delay. For example, a phase detector frequency of 100 MHz and the LD_DLY = 10000 will add a delay of 400  
µs before the indicator is asserted. This indicator will remain in its current state (high or low) until register R0 is  
programmed with FCAL_EN = 1 with a valid input reference. In other words, if the PLL goes out of lock or the  
input reference goes away when the current state is high, then the current state will remain high.  
7.3.6.3 Lock Detect Indicator Set as Type “Vtune and VCOCal”  
In this mode the MUXOUT pin will be high when the VCO calibration has finished, the lock detect delay timer is  
finished running, and the PLL is locked. This indicator may remain in its current state (high or low) if the OSCin  
signal is lost. The true status of the indicator will be updated and resume its operation only when a valid input  
reference to the OSCin pin is returned. An alternative method to monitor the OSCin of the PLL is recommended.  
This indicator is reliable as long as the reference to OSCin is present.  
The output of the device can be automatically muted when lock detect indicator “Vtune and VCOCal” is low. This  
feature is enabled with the field OUT_MUTE (register R0[9]) asserted.  
7.3.7 VCO (Voltage-Controlled Oscillator)  
The LMX2694-SEP includes a fully integrated VCO. The VCO takes the voltage from the loop filter and converts  
this into a frequency. The VCO frequency is related to the other frequencies and as follows:  
fVCO = fPD × N divider × IncludedDivide  
(3)  
7.3.7.1 VCO Calibration  
To reduce the VCO tuning gain, and therefore improve the VCO phase-noise performance, the VCO frequency  
range is divided into several different frequency bands. The entire range (7550 to 15100 MHz) covers an octave  
that allows the divider to take care of frequencies below the lower bound. This creates the need for frequency  
calibration to determine the correct frequency band given a desired output frequency. The frequency calibration  
routine is activated any time that the R0 register is programmed with the FCAL_EN = 1. It is important that a  
valid OSCIN signal must present before VCO calibration begins.  
The VCO also has an internal amplitude calibration algorithm to optimize the phase noise, which is also  
activated any time the R0 register is programmed.  
The optimum internal settings for this are temperature-dependent. If the temperature is allowed to drift too much  
without being recalibrated, some minor phase noise degradation could result. The maximum allowable drift for  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
continuous lock, ΔTCL, is stated in the electrical specifications. For this device, a number of 125°C means the  
device never loses lock if the device is operated under recommended operating conditions.  
The LMX2694-SEP allows the user to assist the VCO calibration. In general, there are three kinds of assistance,  
as shown in 7-4.  
7-4. Assisting the VCO Calibration Speed  
VCO_SEL_FORCE  
VCO_CAPCTRL_FORCE  
VCO_DACISET_FORCE  
ASSISTANCE  
LEVEL  
VCO_CAPCTRL  
VCO_DACISET  
DESCRIPTION  
VCO_SEL  
No assist  
User does nothing to improve VCO calibration speed.  
7
0
Don't care  
Don't care  
Upon every frequency change, before the FCAL_EN  
bit is checked, the user provides the initial starting  
VCO_SEL.  
Partial assist  
Choose by table  
0
The user forces the VCO core (VCO_SEL), amplitude  
settings (VCO_DACISET), and frequency band  
(VCO_CAPCTRL) and manually sets the value.  
Full assist  
Choose by readback  
1
Choose by readback  
For the no-assist method, just set VCO_SEL = 7 and this is done. For partial-assist, the VCO calibration speed  
can be improved by changing the VCO_SEL bit according to frequency. Note that the frequency is not the actual  
VCO core range, but actually favors choosing the VCO. This is not only optimal for VCO calibration speed, but  
required for reliable locking.  
7-5. Minimum VCO_SEL for Partial Assist  
fVCO  
VCO CORE (MIN)  
7550 - 8740 MHz  
8740 - 10000 MHz  
10000 - 10980 MHz  
10980 - 12100 MHz  
12100 - 13080 MHz  
13080 - 14180 MHz  
14180 - 15100 MHz  
VCO1  
VCO2  
VCO3  
VCO4  
VCO5  
VCO6  
VCO7  
For fastest calibration time, it is ideal to use the minimum VCO core as recommended in 7-5. The 7-6  
shows typical VCO calibration times (in µs) for this choice in bold as well as showing how long the calibration  
time is increased if a higher than necessary VCO core is chosen. Realize that these calibration times are specific  
to these fOSC and fPD conditions specified and at the boundary of two cores, sometimes the calibration time can  
be increased.  
7-6. Typical Calibration Times for fOSC = fPD = 100 MHz Based on VCO_SEL  
VCO_SEL  
fVCO (GHz)  
VCO7  
650  
610  
590  
340  
270  
240  
160  
VCO6  
540  
530  
520  
290  
170  
130  
VCO5  
550  
VCO4  
440  
VCO3  
360  
VCO2  
230  
VCO1  
110  
8.1  
9.3  
540  
430  
320  
220  
Invalid  
10.4  
11.4  
12.5  
13.6  
14.7  
530  
430  
240  
Invalid  
280  
180  
Invalid  
120  
Invalid  
Invalid  
Invalid  
7.3.7.2 Determining the VCO Gain  
The VCO gain varies between the seven cores, and is the lowest at the lowest end of the band and highest at  
the highest end of each band. For a more accurate estimation, use 7-7.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMX2694-SEP  
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-7. VCO Gain  
f1  
f2  
KVCO  
78  
1
KVCO  
114  
125  
136  
168  
206  
218  
248  
2
7550  
8740  
8740  
10000  
10980  
12100  
13080  
14180  
15100  
91  
10000  
10980  
12100  
13080  
14180  
112  
136  
171  
188  
218  
Based ion 7-7, 方程式 4 can estimate the VCO gain for an arbitrary VCO frequency of fVCO  
:
KVCO = KVCO1 + (KVCO2 – KVCO1) × (fVCO – f1) / (f2 – f1)  
(4)  
7.3.8 Channel Divider  
To go below the VCO lower bound of 7550 MHz, the channel divider can be used. The channel divider consists  
of four segments, and the total division value is equal to the multiplication of them. Therefore, not all values are  
valid.  
RFOUTA  
MUX  
Divide by  
2 or 3  
Divide by  
2 or 4  
Divide by  
2, 4, or 8  
MUX  
1/2  
VCO  
RFOUTB  
MUX  
7-2. Channel Divider  
When the channel divider is used, there are limitations on the values. 7-8 shows how these values are  
implemented and which segments are used.  
7-8. Channel Divider Segments  
OUTPUT FREQUENCY (MHz)  
EQUIVALENT  
DIVISION VALUE  
FREQUENCY  
LIMITATION  
CHDIV[4:0]  
SEG0  
SEG1  
SEG2  
SEG3  
MIN  
3775  
MAX  
7550  
2
4
0
2
2
1
2
1
1
1
1
None  
1887.5  
1258.333  
943.75  
629.167  
471.875  
314.583  
235.938  
157.292  
117.969  
78.646  
58.984  
39.323  
n/a  
3775  
1
6
2516.667  
1437.5  
958.333  
718.75  
469.167  
359.375  
239.583  
179.688  
119.792  
89.844  
59.896  
n/a  
2
2
3
1
1
8
3
2
2
2
1
12  
4
2
3
2
1
16  
5
2
2
4
1
24  
6
2
3
4
1
32  
7
8
2
2
8
1
fVCO ≤ 11.5 GHz  
48  
2
3
8
1
64  
9
2
2
8
2
96  
10  
2
3
8
2
128  
192  
Invalid  
11  
2
2
8
4
12  
2
3
8
4
n/a  
13 - 31  
n/a  
n/a  
n/a  
n/a  
The channel divider is powered up whenever an output (OUTx_MUX) is selected to the channel divider or  
SYSREF, regardless of whether it is powered down or not. When an output is not used, TI recommends  
selecting the VCO output to ensure that the channel divider is not unnecessarily powered up.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-9. Channel Divider  
OUTA MUX  
Channel Divider  
X
OUTB MUX  
CHANNEL DIVIDER  
Powered up  
X
Channel Divider or SYSREF  
Powered up  
All other cases  
Powered down  
7.3.9 Output Buffer  
The RF output buffer type is open-collector that requires an external pullup to VCC. This component may be  
a 50-Ω resistor or an inductor. The inductor has less controlled impedance, but higher power. For the inductor  
case, it is often helpful to follow this with a resistive pad. The output power can be programmed to various levels  
or disabled while still keeping the PLL in lock.  
7-10. OUTx_PWR Recommendations  
fOUT  
RESTRICTIONS  
COMMENTS  
At lower frequencies, the output buffer impedance is high, so the 50-Ω  
pullup will make the output impedance look somewhat like 50 Ω.  
10 MHz ≤ fOUT ≤ 5 GHz  
None  
In this range, parasitic inductances have some impact, so the output setting  
is restricted.  
5 GHz ≤ fOUT ≤ 10 GHz  
10 GHz < fOUT  
OUTx_PWR ≤ 31  
OUTx_PWR ≤ 20  
At these higher frequency ranges, it is best to keep below 20 for highest  
power and optimal noise floor.  
7.3.10 Powerdown Modes  
The LMX2694-SEP can be powered up and down using the CE pin or the POWERDOWN bit. When the device  
comes out of the powered-down state, either by resuming the POWERDOWN bit to zero or by pulling back CE  
pin HIGH (if it was powered down by CE pin), register R0 must be programmed with FCAL_EN high again to  
recalibrate the device.  
7.3.11 Treatment of Unused Pins  
This device has several pins for many features and there is a preferred way to treat these pins if not needed. For  
the input pins, a series resistor is recommend, but they can be directly shorted.  
7-11. Recommended Treatment of Pins  
PINS  
CE  
RECOMMENDED TREATMENT IF NOT USED  
VCC with 1 kΩ.  
SYNC, SYSREFREQ  
Ground with 1 kΩ.  
Ground with 50 Ω after AC-coupling capacitors. If one of the complimentary sides is used and other side  
is not, impedance looking out should be similar for both of these pins.  
OSCIN_P, OSCIN_N  
SCK, SDI  
CS#  
Ground with 1 kΩ.  
VCC with 1 kΩ.  
VCC with 50 Ω. If one of the complimentary sides is used and the other side is not, impedance looking  
out should be similar for both of these pins.  
RFOUTx  
MUXOUT  
Ground with 10 kΩ.  
7.3.12 Phase Synchronization  
7.3.12.1 General Concept  
The SYNC pin allows the user to synchronize the LMX2694-SEP such that the delay from the rising edge of  
the OSCIN signal to the output signal is deterministic. Initially, the devices are locked to the input, but are  
not synchronized. The user sends a synchronization pulse that is reclocked to the next rising edge of the  
OSCIN pulse. After a given time, t1, the phase relationship from OSCIN to fOUT will be deterministic. This  
time is dominated by the sum of the VCO calibration time, the analog setting time of the PLL loop, and the  
MASH_RST_CNT if used in fractional mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMX2694-SEP  
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
. . . . .  
Device 1  
SYNC  
. . . . .  
Device 2  
. . . . .  
fOSC  
t1  
t2  
7-3. Phase SYNC Mechanism  
When the SYNC feature is enabled, part of the channel divide may be included in the feedback path.  
7-12. IncludedDivide With VCO_PHASE_SYNC = 1  
OUTx_MUX  
CHANNEL DIVIDER  
IncludedDivide  
OUTA_MUX = OUTB_MUX = 1 ("VCO")  
Don't care  
1
Divisible by 3 but NOT 24 or 192  
All other values  
SEG0 x SEG1 = 6  
SEG0 x SEG1 = 4  
All other valid conditions  
RFOUTA  
External loop  
filter  
Pre-R  
Divider  
Post-R  
Divider  
OSCIN  
Doubler  
Charge  
Pump  
SEG0  
SEG2  
SEG1  
f
SEG3  
RFOUTB  
N Divider  
7-4. Phase SYNC Diagram  
7.3.12.2 Categories of Applications for SYNC  
The requirements for SYNC depend on certain setup conditions. In cases that the SYNC is not timing critical,  
it can be done through software by toggling the VCO_PHASE_SYNC bit from 0 to 1. 7-5 gives the different  
categories. When it is timing critical, then it must be done through the pin and the setup and hold times for the  
OSCIN pin are critical. For timing critical SYNC (Category 3 only), adhere to the following guidelines.  
7-13. SYNC Pin Timing Characteristics for Category 3 SYNC  
PARAMETER  
MIN  
MAX  
UNIT  
MHz  
ns  
fOSC  
Input reference frequency  
40  
tSETUP  
tHOLD  
Setup time between SYNC and OSCIN rising edges  
Hold time between SYNC and OSCIN rising edges  
9
4
ns  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
Start  
CHDIV ≤ 128?  
This means the channel divider  
after the VCO is either bypassed, 2,  
4, or 6. In this case, SYNC mode  
will put it in the loop.  
No  
Yes  
Category 4  
Device cannot be reliably  
used in SYNC mode  
CHDIV = 1, 2, 4, 6?  
OSC_2X = 0?  
No  
No  
This means that the output (fOUT  
and input frequencies (fOSC) are  
related. In other words,  
)
Yes  
Yes  
(fOUT % fOSC = 0) or (fOSC % fOUT = 0)  
fOUT and fOSC  
related by integer  
multiple?  
fOUT % (2 x fOSC) = 0  
No  
fOSC 50 MHz?  
No  
No  
Yes  
Yes  
Category 3  
ñ SYNC required  
ñ SYNC timing critical  
ñ Limitations on fOSC  
Yes  
Category 2  
ñ SYNC required  
ñ SYNC timing not critical  
ñ No limitations on fOSC  
CHDIV = 1, 2, 4, 6?  
No  
This means the channel divider  
after the VCO is either bypassed, 2,  
4, or 6. In this case, SYNC mode  
will put it in the loop.  
Yes  
Category 1b  
ñ SYNC mode required  
ñ No software or pin SYNC  
pulse required  
CHDIV = 1?  
Integer mode?  
No  
Yes  
No  
Yes  
This is asking if the device is in  
integer mode, which would mean  
the fractional numerator is zero.  
Category 1a  
ñ SYNC mode not required  
ñ No limitations on fOSC  
7-5. Determining the SYNC Category  
7.3.12.3 Procedure for Using SYNC  
This procedure must be used to put the device in SYNC mode.  
1. Use the flowchart to determine the SYNC category.  
2. Make determinations for OSCIN and using SYNC based on the category.  
a. If category 4, SYNC cannot be performed in this setup.  
b. If category 3, ensure that the maximum fOSC frequency for SYNC is not violated and there are hardware  
accommodations to use the SYNC pin.  
3. If the channel divide is used, determine the included channel divide value which will be 2 × SEG1 of the  
channel divide.  
a. If OUTA_MUX is not channel divider and OUTB_MUX is not channel divider or SYSREF, then  
IncludedDivide = 1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMX2694-SEP  
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
b. Otherwise, IncludedDivide = 2 × SEG1. In the case that the channel divider is 2, then IncludedDivide =  
4.  
4. If not done already, divide the N divider and fractional values by the included channel divide to account for  
the included channel divide.  
5. Program the device with the VCO_PHASE_SYNC = 1. Note that this does not count as applying a SYNC to  
device (for category 2).  
6. Apply the SYNC, if required.  
a. If category 2, VCO_PHASE_SYNC can be toggled from 0 to 1. Alternatively, a rising edge can be sent to  
the SYNC pin and the timing of this is not critical.  
b. If category 3, the SYNC pin must be used, and the timing must be away from the rising edge of the  
OSCIN signal.  
7.3.12.4 SYNC Input Pin  
If not using SYNC mode (VCO_PHASE_SYNC = 0), the INPIN_IGNORE bit must be set to one, otherwise  
it causes issues with lock detect. If the pin is desired for to be used and VCO_PHASE_SYNC = 1, then set  
INPIN_IGNORE = 0.  
7.3.13 Phase Adjust  
The MASH_SEED word can use the sigma-delta modulator to shift output signal phase with respect to the input  
reference. If a SYNC pulse is sent (software or pin) or the MASH is reset with MASH_RST_N, then this phase  
shift is from the initial phase of zero. If the MASH_SEED word is written to, then this phase is added. The phase  
shift is calculated as below.  
Phase shift in degrees = 360 × (MASH_SEED / PLL_DEN) × (IncludedDivide / CHDIV)  
(5)  
For example:  
MASH_SEED = 1; PLL_DEN = 12; CHDIV = 16  
If VCO_PHASE_SYNC = 0, Phase shift = 360 × (1 / 12) × (1 / 16) = 1.875 degrees.  
If VCO_PHASE_SYNC = 1, Phase shift = 360 × (1 / 12) × (4 / 16) = 7.5 degrees.  
There are several considerations when using MASH_SEED.  
Phase shift can be done with a PLL_NUM = 0, but MASH_ORDER must be greater than zero. For  
MASH_ORDER = 1, the phase shifting only occurs when MASH_SEED is a multiple of PLL_DEN.  
For the 2nd order modulator, PLL_N ≥ 45. For the 3rd order modulator, PLL_N ≥ 49.  
When using MASH_SEED in the case where IncludedDivide > 1, there are several additional considerations in  
order to get the phase shift to be monotonically increasing with MASH_SEED.  
TI recommends to use MASH_ORDER ≤ 2.  
When using the 2nd order modulator for VCO frequencies below 10 GHz (when IncludedDivide = 6) or 9  
GHz (when IncludedDivide = 4), it may be necessary to increase the PLL_N value much higher or change to  
the 1st order modulator. When this is necessary depends on the VCO frequency, IncludedDivide, and PLL_N  
value.  
7.3.14 Fine Adjustments for Phase Adjust and Phase SYNC  
Phase SYNC refers to the process of getting the same phase relationship for every power up cycle and each  
time assuming that a given programming procedure is followed. However, there are some adjustments that can  
be made to get the most accurate results. As for the consistency of the phase SYNC, the only source of variation  
could be if the VCO calibration chooses a different VCO core and capacitor, which can introduce a bimodal  
distribution with about 10 ps of variation. If this 10 ps is not desirable, then it can be eliminated by reading back  
the VCO core, capcode, and DACISET values and forcing these values to ensure the same calibration settings  
every time. The delay through the device varies from part to part and can be on the order of 60 ps. This part  
to part variation can be calibrated out with the MASH_SEED. The variation in delay through the device also  
changes on the order of +2.5 ps/°C, but devices on the same board likely have similar temperatures, so this will  
somewhat track. In summary, the device can be made to have consistent delay through the part and there are  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
means to adjust out any remaining errors with the MASH_SEED. This tends only to be an issue at higher output  
frequencies when the period is shorter.  
7.3.15 SYSREF  
The LMX2694-SEP can generate a SYSREF output signal that is synchronized to fOUT with a programmable  
delay. This output can be a single pulse, series of pulses, or a continuous stream of pulses. To use the SYSREF  
capability, the PLL must first be placed in SYNC mode with VCO_PHASE_SYNC = 1.  
fOUT  
MUX  
Rest of channel  
divider  
IncludedDivide  
N Divider  
RFOUTA  
fVCO  
To phase  
detector  
Divider  
(SYSREF_DIV_PRE)  
Divider  
(SYSREF_DIV)  
1/2  
fSYSREF  
Delay  
circuit  
RFOUTB  
Re-clocking  
circuit  
SYSREFREQ  
7-6. SYSREF Setup  
As 7-6 shows, the SYSREF feature uses IncludedDivide and SYSREF_DIV_PRE divider to generate  
fINTERPOLATOR. This frequency is used for re-clocking of the rising and falling edges at the SYSREFREQ pin.  
In master mode, the fINTERPOLATOR is further divided by 2 × SYSREF_DIV to generate finite series or continuous  
stream of pulses.  
7-14. SYSREF Setup  
PARAMETER  
fVCO  
MIN  
7550  
0.8  
TYP  
MAX  
15100  
1.5  
UNIT  
MHz  
GHz  
fINTERPOLATOR  
IncludedDivide  
SYSREF_DIV_PRE  
SYSREF_DIV  
fINTERPOLATOR  
fSYSREF  
4 or 6  
1, 2, or 4  
4, 6, 8, ..., 4098  
fINTERPOLATOR = fVCO / (IncludedDivide × SYSREF_DIV_PRE)  
fSYSREF = fINTERPOLATOR / (2 × SYSREF_DIV)  
9
Delay step size  
ps  
Pulses for pulsed mode  
(SYSREF_PULSE_CNT)  
0
15  
The delay can be programmed using the JESD_DAC1_CTRL, JESD_DAC2_CTRL, JESD_DAC3_CTRL, and  
JESD_DAC4_CTRL words. By concatenating these words into a larger word called "SYSREFPHASESHIFT",  
the relative delay can be found. The sum of these words must always be 63.  
7-15. SYSREF Delay  
SYSREFPHASESHIFT  
DELAY  
JESD_DAC1  
JESD_DAC2  
JESD_DAC3  
JESD_DAC4  
0
Minimum  
36  
27  
0
0
0
0
...  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMX2694-SEP  
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-15. SYSREF Delay (continued)  
SYSREFPHASESHIFT  
DELAY  
JESD_DAC1  
JESD_DAC2  
JESD_DAC3  
JESD_DAC4  
36  
37  
0
0
63  
62  
0
1
0
0
...  
99  
0
0
0
0
63  
62  
0
1
100  
...  
161  
162  
163  
225  
226  
247  
> 247  
0
0
0
1
62  
0
0
63  
1
0
0
0
62  
63  
0
0
62  
1
0
0
0
0
Maximum  
Invalid  
41  
22  
Invalid  
Invalid  
Invalid  
Invalid  
7.3.15.1 Programmable Fields  
7-16 has the programmable fields for the SYSREF functionality.  
7-16. SYSREF Programming Fields  
FIELD  
PROGRAMMING  
DEFAULT  
DESCRIPTION  
0 = Disabled  
1 = Enabled  
Enables the SYSREF mode. SYSREF_EN must be 1 if and only if  
OUTB_MUX = 2 (SYSREF).  
SYSREF_EN  
0
1 = DIV1  
2 = DIV2  
4 = DIV4  
SYSREF_DIV_PRE  
The output of this divider is the fINTERPOLATOR.  
Other states = Invalid  
In master mode, the device creates a series of SYSREF pulses.  
In repeater mode, SYSREF pulses are generated with the  
SYSREFREQ pin.  
0 = Master mode  
1 = Repeater mode  
SYSREF_REPEAT  
SYSREF_PULSE  
0
0 = Continuous mode  
1 = Pulsed mode  
Continuous mode continuously makes SYSREF pulses, where  
pulsed mode makes a series of SYSREF_PULSE_CNT pulses  
0
4
In the case of using pulsed mode, this is the number of pulses.  
Setting this to zero is an allowable, but not practical state.  
SYSREF_PULSE_CNT 0 to 15  
0 = Divide by 4  
1 = Divide by 6  
2 = Divide by 8  
...  
The SYSREF frequency is at the VCO frequency divided by this  
value.  
SYSREF_DIV  
0
2047 = Divide by 4098  
7.3.15.2 Input and Output Pin Formats  
7.3.15.2.1 SYSREF Output Format  
The SYSREF output comes in differential format through RFOUTB. This will have a minimum voltage of about  
2.3 V and a maximum of 3.3 V. If DC coupling cannot be used, there are two strategies for AC coupling.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
3.3 V  
RFOUTB_P  
RFOUTB_N  
Data  
converter  
3.3 V  
7-7. SYSREF Output  
1. Send a series of pulses to establish a DC-bias level across the AC-coupling capacitor.  
2. Establish a bias voltage at the data converter that is below the threshold voltage by using a resistive divider.  
7.3.15.3 SYSREF Examples  
The SYSREF can be used in a repeater mode, which just echos the input, after the SYSREF is reclocked to the  
fINTERPOLATOR frequency and then RFOUT—or it can be used in a repeater. In repeater mode, it can repeat 1, 2,  
4, 8, or infinite (continuous) pulses. The frequency for repeater mode is equal to the RFOUT frequency divided  
by the SYSREF divider.  
RFOUTA_N  
RFOUTA_P  
OSCIN_N  
OSCIN_P  
RFOUTB_N  
RFOUTB_P  
SYSREFREQ  
t1  
t2  
f
t1  
f
t2  
7-8. SYSREF Out in Repeater Mode  
In master mode, the SYSREFREQ pin is pulled high to allow the SYSREF output.  
RFOUTA_N  
RFOUTA_P  
OSCIN_N  
OSCIN_P  
RFOUTB_N  
RFOUTB_P  
SYSREFREQ  
f
f
7-9. SYSREF Out in Pulsed / Continuous Mode  
7.3.15.4 SYSREF Procedure  
To use SYSREF, do the these steps:  
1. Put the device in SYNC mode using the procedure already outlined.  
2. Figure out IncludedDivide the same way it is done for SYNC mode.  
3. Calculate the SYSREF_DIV_PRE value such that the interpolator frequency (fINTERPOLATOR) is in the range  
of 800 to 1500 MHz. fINTERPOLATOR = fVCO / IncludedDivide / SYSREF_DIV_PRE. Make this frequency a  
multiple of fOSC if possible.  
4. If using master mode (SYSREF_REPEAT = 0), ensure SYSREFREQ pin is high.  
5. If using repeater mode (SYSREF_REPEAT = 1), set up the pulse count if desired. Pulses are created by  
toggling the SYSREFREQ pin.  
6. Adjust the delay between the RFOUTA and RFOUTB signal using the JESD_DACx_CTRL fields.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LMX2694-SEP  
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7.4 Device Functional Modes  
7-17 shows the function modes of the LMX2694-SEP.  
7-17. Functional Modes  
MODE  
DESCRIPTION  
SOFTWARE SETTINGS  
Registers are held in their reset state. This device does have a  
power-on reset, but it is good practice to also do a software reset if  
there is any possibility of noise on the programming lines, especially  
if there is sharing with other devices. Also realize that there are  
registers not disclosed in the data sheet that are reset as well.  
RESET = 1  
POWERDOWN = 0  
RESET  
POWERDOWN  
Device is powered down.  
POWERDOWN = 1  
This is used with at least one output on as a frequency synthesizer  
and the device can be controlled through the SPI interface.  
Normal operating mode  
This is used where part of the channel divider is in the feedback path  
to ensure deterministic phase.  
SYNC mode  
VCO_PHASE_SYNC = 1  
VCO_PHASE_SYNC =1  
SYSREF_EN = 1  
SYSREF mode  
In this mode, RFOUTB is used to generate pulses for SYSREF.  
7.5 Programming  
The LMX2694-SEP is programmed using 24-bit shift registers. The shift register consists of a R/W bit (MSB),  
followed by a 7-bit address field and a 16-bit data field. For the R/W bit, 0 is for write, and 1 is for read. The  
address field ADDRESS[6:0] is used to decode the internal register address. The remaining 16 bits form the data  
field DATA[15:0]. While CS# is low, serial data is clocked into the shift register upon the rising edge of clock (data  
is programmed MSB first). When CS# goes high, data is transferred from the data field into the selected register  
bank. See 6-2 for timing details.  
7.5.1 Recommended Initial Power-Up Sequence  
For the most reliable programming, TI recommends this procedure:  
1. Apply power to device.  
2. Program RESET = 1 to reset registers.  
3. Program RESET = 0 to remove reset.  
4. Program registers as shown in the register map in REVERSE order from highest to lowest.  
5. Programming of registers R113 down to R79 is not required, but if they are programmed, they should be  
done so as the register map shows. Programming of registers R79 down to R0 is required. Registers in this  
range that only 1's and 0's should also be programmed in accordance to the register map. Do NOT assume  
that the power-on reset state and the recommended value are the same.  
6. Wait 10 ms.  
7. Program register R0 one additional time with FCAL_EN = 1 to ensure that the VCO calibration runs from a  
stable state.  
7.5.2 Recommended Sequence for Changing Frequencies  
The recommended sequence for changing frequencies is as follows:  
1. Change the N-divider value.  
2. Program the PLL numerator and denominator.  
3. Program FCAL_EN (R0[3]) = 1.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7.6 Register Maps  
DATA[15:0]  
8
REG.  
POR  
15  
14  
13  
12  
11  
10  
9
7
6
5
4
3
2
1
0
VCO_PHASE_  
SYNC  
MUXOUT_  
LD_SEL  
POWER  
DOWN  
R0  
R1  
0
1
0
0
0
OUT_MUTE  
FCAL_HPFD_ADJ  
0
0
1
FCAL_EN  
RESET  
0x200C  
0x80C  
MUXOUT_C  
TRL  
0
0
0
0
1
0
0
0
0
0
0
0
CAL_CLK_DIV  
R2  
R3  
R4  
R5  
R6  
R7  
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
1
0
1
1
1
0
0
0
0
1
1
1
0
0
1
0
0
1
0
0
0
0
0
1
0
1
0
1
1
1
0
0
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
1
1
0
1
1
0
0
1
0
0
0
0x500  
0x642  
0xA43  
0xC8  
0xC802  
0xB2  
VCO_  
DACISET_  
FORCE  
VCO_  
CAPCTRL_  
FORCE  
R8  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0x2000  
R9  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
OSC_2X  
0
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
1
1
1
0
0
0
0
0
0
0
0
0x604  
0x10F8  
0x18  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
1
0
1
0
1
0
0
0
0
0
0
PLL_R  
0
0
1
0
0
0
0
0
0
0
1
1
0
0
0
1
0
0
1
1
0
0
0
1
0
0
0
0
PLL_R_PRE  
0x5001  
0x4000  
0x1E70  
0x64F  
0x80  
0
0
0
0
1
0
0
0
0
1
0
0
1
0
0
1
0
0
1
CPG  
0
0
VCO_DACISET  
1
0
1
0
0
0
1
1
1
0
0
1
0
1
1
0
0
0
0
0x96  
0x64  
VCO_CAPCTRL  
0x27B7  
VCO_SEL_  
FORCE  
R20  
R21  
1
0
1
0
VCO_SEL  
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
1
0x3048  
0x401  
0
0
1
0
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LMX2694-SEP  
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
DATA[15:0]  
REG.  
POR  
15  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
14  
13  
0
0
0
0
0
0
0
1
1
0
0
0
0
0
12  
0
0
0
0
0
0
0
1
1
0
0
1
0
0
11  
0
0
0
0
1
0
0
0
0
0
0
1
0
0
10  
0
0
1
1
1
0
1
0
0
0
0
1
0
0
9
0
0
1
1
0
0
0
0
0
1
1
1
0
0
8
7
0
0
0
0
1
0
1
1
1
1
1
0
0
0
6
0
1
0
0
0
0
0
0
0
1
0
0
0
0
5
0
1
0
1
1
0
0
0
0
1
0
1
0
0
4
0
1
1
0
1
0
0
0
0
0
1
0
0
0
3
0
1
1
0
0
0
1
1
1
1
0
0
0
0
2
0
1
0
1
0
0
0
1
1
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
1
1
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
0
0
0
0x1  
0x7C  
0
0
0
0
1
1
0x71A  
0x624  
0xDB0  
0x2  
0
0
0
0
1
0
0
0
1
0
0
0
0x488  
0x318C  
0x318C  
0xC3EC  
0x393  
0x1E21  
0x10  
0
1
0
0
1
0
SEG1_EN  
1
0
0
0
0
0
1
1
0
0
0
PLL_N[18:16]  
0
0
1
1
0
0
0x4  
PLL_N[15:0]  
0x70  
1
0
PFD_DLY_SEL  
0
0
0
0
0
0
0x205  
0xFFFF  
0xFFFF  
0x0  
PLL_DEN[31:16]  
PLL_DEN[15:0]  
MASH_SEED[31:16]  
MASH_SEED[15:0]  
PLL_NUM[31:16]  
PLL_NUM[15:0]  
0x0  
0x0  
0x0  
OUTB_  
OUTA_  
PD  
MASH_  
R44  
0
0
OUTA_PWR  
0
0
MASH_ORDER  
0x22A2  
PD  
1
RESET_N  
R45  
R46  
R47  
1
0
0
1
0
0
0
0
0
OUTA_MUX  
0
1
0
0
1
1
0
1
1
1
1
0
OUTB_PWR  
0xC622  
0x7F0  
0x300  
0
0
0
0
1
1
0
1
0
1
0
1
0
OUTB_MUX  
0 0  
0
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
DATA[15:0]  
REG.  
15  
POR  
14  
0
1
0
0
0
0
0
0
0
0
13  
0
0
0
0
0
0
0
0
0
0
12  
0
0
0
0
0
0
0
0
0
0
11  
0
0
0
0
0
0
0
0
0
0
10  
0
0
0
0
1
0
0
0
0
0
9
1
0
0
0
0
0
0
0
0
0
8
1
1
0
0
0
0
0
0
0
0
7
0
1
0
1
0
0
0
0
0
0
6
0
0
0
0
0
0
0
0
0
0
5
0
0
0
0
1
0
0
0
0
1
4
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
0
0
0
0
0
0
0
0
0
0
0x3E0  
0x4180  
0x80  
0x80  
0x420  
0x0  
0x0  
0x0  
0x0  
0x0  
INPIN_  
R58  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0x8001  
IGNORE  
R59  
R60  
R61  
R62  
R63  
R64  
R65  
R66  
R67  
R68  
R69  
R70  
0
0
LD_TYPE  
0x1  
0x3E8  
0xA8  
0xAE  
0x0  
LD_DLY  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
1
0
1
0
1
0
1
0
1
1
0
0
1
0
1
0
1
0
0
0
0
0
1
0
1
1
1
0
0
0
1
0
1
0
0
0
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x1388  
0x0  
0x140  
0x0  
0x3E8  
0x0  
MASH_RST_COUNT[31:16]  
MASH_RST_COUNT[15:0]  
0xC350  
SYSREF_  
PULSE  
SYSREF_  
EN  
SYSREF_  
REPEAT  
R71  
0
0
0
0
0
0
0
0
0
SYSREF_DIV_PRE  
0
0
0x80  
R72  
R73  
0
0
0
0
0
0
0
0
SYSREF_DIV  
0x1  
JESD_DAC2_CTRL  
JESD_DAC1_CTRL  
0x3F  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LMX2694-SEP  
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
DATA[15:0]  
8
REG.  
POR  
15  
14  
13  
12  
11  
10  
9
7
6
5
4
3
2
1
0
R74  
R75  
R76  
R77  
R78  
R79  
R80  
R81  
R82  
R83  
R84  
R85  
R86  
R87  
R88  
R89  
R90  
R91  
R92  
R93  
R94  
R95  
R96  
R97  
R98  
R99  
R100  
SYSREF_PULSE_CNT  
JESD_DAC4_CTRL  
CHDIV  
JESD_DAC3_CTRL  
0x0  
0x800  
0xC  
0x0  
0x64  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
DATA[15:0]  
REG.  
15  
POR  
14  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
13  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
12  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
11  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
10  
0
0
0
0
0
0
0
0
0
9
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0
0
0
0
7
0
0
0
0
0
0
0
0
0
6
5
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R101  
R102  
R103  
R104  
R105  
R106  
R107  
R108  
R109  
R110  
R111  
R112  
R113  
R114  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x0  
0x0  
0x0  
0x0  
0x440  
0x7  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0
0
0
0
0
0
0
0
rb_LD_VTUNE  
rb_VCO_SEL  
0
0
0
0
0
0
0
0
rb_VCO_CAPCTRL  
rb_VCO_DACISET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7-18. Device Registers  
Offset  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
Acronym  
R0  
Register Name  
Section  
Go  
R1  
Go  
R2  
Go  
R3  
Go  
R4  
Go  
R5  
Go  
R6  
Go  
R7  
Go  
R8  
Go  
R9  
Go  
R10  
Go  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LMX2694-SEP  
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-18. Device Registers (continued)  
Offset  
0xB  
Acronym  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
R35  
R36  
R37  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
0xC  
0xD  
0xE  
0xF  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-18. Device Registers (continued)  
Offset  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
Acronym  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LMX2694-SEP  
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-18. Device Registers (continued)  
Offset  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
Acronym  
R65  
R66  
R67  
R68  
R69  
R70  
R71  
R72  
R73  
R74  
R75  
R76  
R77  
R78  
R79  
R80  
R81  
R82  
R83  
R84  
R85  
R86  
R87  
R88  
R89  
R90  
R91  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-18. Device Registers (continued)  
Offset  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
Acronym  
R92  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
R93  
R94  
R95  
R96  
R97  
R98  
R99  
R100  
R101  
R102  
R103  
R104  
R105  
R106  
R107  
R108  
R109  
R110  
R111  
R112  
R113  
R114  
Complex bit access types are encoded to fit into small table cells. 7-19 shows the codes that are used for access types in this section.  
7-19. Device Access Type Codes  
Access Type  
Code  
Description  
Read Type  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LMX2694-SEP  
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-19. Device Access Type Codes (continued)  
Access Type  
Code  
Description  
R
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default value  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7.6.1 R0 Register (Offset = 0x0) [reset = 0x200C]  
R0 is shown in 7-10 and described in 7-20.  
Return to 7-18.  
7-10. R0 Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-0x0  
VCO_PHASE_SYNC  
R/W-0x0  
RESERVED  
R/W-0x8  
OUT_MUTE  
R/W-0x0  
FCAL_HPFD_ADJ  
R/W-0x0  
7
6
5
4
3
2
1
0
FCAL_HPFD_ADJ  
R/W-0x0  
RESERVED  
R/W-0x0  
FCAL_EN  
R/W-0x1  
MUXOUT_LD_SEL  
R/W-0x1  
RESET  
R/W-0x0  
POWERDOWN  
R/W-0x0  
7-20. R0 Register Field Descriptions  
Bit  
15  
14  
Field  
RESERVED  
Type  
R/W  
R/W  
Reset  
Description  
0x0  
Program 0x0 to this field.  
VCO_PHASE_SYNC  
0x0  
Enables phase SYNC. In this state, part of the channel divider is  
put in the feedback path to ensure deterministic phase. The action  
of toggling this bit from 0 to 1 also sends an asynchronous SYNC  
pulse.  
0x0 = Normal operation  
0x1 = Phase SYNC enabled  
13-10  
9
RESERVED  
OUT_MUTE  
R/W  
R/W  
0x8  
0x0  
Program 0x8 to this field.  
Mute the outputs (RFOUTA / RFOUTB) when the VCO is calibrating.  
0x0 = Disabled  
0x1 = Muted  
8-7  
FCAL_HPFD_ADJ  
R/W  
0x0  
Set this field in accordance to the phase detector frequency for  
optimal VCO calibration.  
0x0 = fPD ≤ 100 MHz  
0x1 = 100 MHz < fPD ≤ 150 MHz  
0x2 = 150 MHz < fPD ≤ 200 MHz  
0x3 = fPD > 200 MHz  
6-4  
3
RESERVED  
FCAL_EN  
R/W  
R/W  
0x0  
0x1  
Program 0x1 to this field.  
Writing register R0 with this bit set to a '1' enables and triggers the  
VCO frequency calibration.  
0x0 = No VCO frequency calibration  
0x1 = Enabled  
2
1
MUXOUT_LD_SEL  
RESET  
R/W  
R/W  
0x1  
0x0  
Selects the functionality of the MUXOUT pin.  
0x0 = Register readback  
0x1 = Lock detect  
Register reset. This resets all registers and state machines. After  
writing a '1', you must write a '0' to remove the reset. It is  
recommended to toggle the RESET bit before programming the part  
to ensure consistent performance.  
0x0 = Normal operation  
0x1 = Reset  
0
POWERDOWN  
R/W  
0x0  
Powers down device.  
0x0 = Normal operation  
0x1 = Powered down  
7.6.2 R1 Register (Offset = 0x1) [reset = 0x80C]  
R1 is shown in 7-11 and described in 7-21.  
Return to 7-18.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-11. R1 Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
8
RESERVED  
R/W-0x80  
4
3
1
0
RESERVED  
R/W-0x80  
MUXOUT_CTRL  
R/W-0x1  
CAL_CLK_DIV  
R/W-0x4  
7-21. R1 Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
R/W  
R/W  
Reset  
0x80  
0x1  
Description  
15-4  
3
Program 0x80 to this field.  
MUXOUT_CTRL  
Sets the MUXOUT pin status.  
0x0 = Tri-state  
0x1 = Normal operation  
2-0  
CAL_CLK_DIV  
R/W  
0x4  
Divides down the fOSC frequency to the state machine clock  
frequency.  
fSM = fOSC / (2CAL_CLK_DIV). Ensure that the state machine clock  
frequency is 50 MHz or less.  
0x0 = fOSC ≤ 50 MHz  
0x1 = 50 MHz < fOSC ≤ 100 MHz  
0x2 = 100 MHz < fOSC ≤ 200 MHz  
0x3 = 200 MHz < fOSC ≤ 400 MHz  
0x4 = 400 MHz < fOSC ≤ 800 MHz  
0x5 = fOSC > 800 MHz  
All other values are not used.  
7.6.3 R2 Register (Offset = 0x2) [reset = 0x500]  
R2 is shown in 7-12 and described in 7-22.  
Return to 7-18.  
7-12. R2 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x500  
7-22. R2 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x500  
Program 0x500 to this field.  
7.6.4 R3 Register (Offset = 0x3) [reset = 0x642]  
R3 is shown in 7-13 and described in 7-23.  
Return to 7-18.  
7-13. R3 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x642  
7-23. R3 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x642  
Program 0x642 to this field.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7.6.5 R4 Register (Offset = 0x4) [reset = 0xA43]  
R4 is shown in 7-14 and described in 7-24.  
Return to 7-18.  
7-14. R4 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
RESERVED  
R/W-0xA43  
7-24. R4 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0xA43  
Program 0xE43 to this field.  
7.6.6 R5 Register (Offset = 0x5) [reset = 0xC8]  
R5 is shown in 7-15 and described in 7-25.  
Return to 7-18.  
7-15. R5 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0xC8  
7-25. R5 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0xC8  
Program 0x3E8 to this field.  
7.6.7 R6 Register (Offset = 0x6) [reset = 0xC802]  
R6 is shown in 7-16 and described in 7-26.  
Return to 7-18.  
7-16. R6 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0xC802  
7-26. R6 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0xC802  
Program 0x7802 to this field.  
7.6.8 R7 Register (Offset = 0x7) [reset = 0xB2]  
R7 is shown in 7-17 and described in 7-27.  
Return to 7-18.  
7-17. R7 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0xB2  
7-27. R7 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0xB2  
Program 0xB2 to this field.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7.6.9 R8 Register (Offset = 0x8) [reset = 0x2000]  
R8 is shown in 7-18 and described in 7-28.  
Return to 7-18.  
7-18. R8 Register  
15  
14  
13  
12  
11  
10  
9
8
0
RESERVED  
VCO_DACISET_FO  
RCE  
RESERVED  
R/W-0x2  
VCO_CAPCTRL_FO  
RCE  
RESERVED  
R/W-0x0  
7
R/W-0x0  
6
R/W-0x0  
3
R/W-0x0  
1
5
4
2
RESERVED  
R/W-0x0  
7-28. R8 Register Field Descriptions  
Bit  
15  
14  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
VCO_DACISET_FORCE R/W  
0x0  
Forces VCO_DACISET value. Useful for fully assisted VCO  
calibration and debugging purposes.  
0x0 = Normal operation  
0x1 = Use VCO_DACISET value instead of the value obtained from  
VCO calibration  
13-12  
11  
RESERVED  
R/W  
0x2  
0x0  
Program 0x2 to this field.  
VCO_CAPCTRL_FORCE R/W  
Forces VCO_CAPCTRL value. Useful for fully assisted VCO  
calibration and debugging purposes.  
0x0 = Normal operation  
0x1 = Use VCO_CAPCTRL value instead of the value obtained from  
VCO calibration  
10-0  
RESERVED  
R/W  
0x0  
Program 0x0 to this field.  
7.6.10 R9 Register (Offset = 0x9) [reset = 0x604]  
R9 is shown in 7-19 and described in 7-29.  
Return to 7-18.  
7-19. R9 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
R/W-0x0  
OSC_2X  
R/W-0x0  
RESERVED  
R/W-0x604  
7
6
5
4
3
RESERVED  
R/W-0x604  
7-29. R9 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-13  
12  
RESERVED  
OSC_2X  
0x0  
Program 0x0 to this field.  
0x0  
Enables OSCIN doubler.  
0x0 = Disabled  
0x1 = Enable  
11-0  
RESERVED  
R/W  
0x604  
Program 0x604 to this field.  
7.6.11 R10 Register (Offset = 0xA) [reset = 0x10F8]  
R10 is shown in 7-20 and described in 7-30.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
Return to 7-18.  
7-20. R10 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x10F8  
7-30. R10 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x10F8  
Program 0x10D8 to this field.  
7.6.12 R11 Register (Offset = 0xB) [reset = 0x18]  
R11 is shown in 7-21 and described in 7-31.  
Return to 7-18.  
7-21. R11 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
R/W-0x0  
PLL_R  
R/W-0x1  
7
6
5
4
3
PLL_R  
RESERVED  
R/W-0x8  
R/W-0x1  
7-31. R11 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
15-12  
11-4  
3-0  
RESERVED  
PLL_R  
0x0  
Program 0x0 to this field.  
PLL Post-R divider value.  
Program 0x8 to this field.  
0x1  
RESERVED  
0x8  
7.6.13 R12 Register (Offset = 0xC) [reset = 0x5001]  
R12 is shown in 7-22 and described in 7-32.  
Return to 7-18.  
7-22. R12 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
R/W-0x50  
7
6
5
4
3
PLL_R_PRE  
R/W-0x1  
7-32. R12 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0x50  
0x1  
Description  
15-8  
7-0  
RESERVED  
PLL_R_PRE  
Program 0x50 to this field.  
PLL Pre-R divider value.  
7.6.14 R13 Register (Offset = 0xD) [reset = 0x4000]  
R13 is shown in 7-23 and described in 7-33.  
Return to 7-18.  
7-23. R13 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-23. R13 Register (continued)  
RESERVED  
R/W-0x4000  
7-33. R13 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
RESERVED  
R/W  
0x4000  
Program 0x4000 to this field.  
7.6.15 R14 Register (Offset = 0xE) [reset = 0x1E70]  
R14 is shown in 7-24 and described in 7-34.  
Return to 7-18.  
7-24. R14 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
R/W-0x3C  
7
6
5
4
3
RESERVED  
R/W-0x3C  
CPG  
RESERVED  
R/W-0x0  
R/W-0x7  
7-34. R14 Register Field Descriptions  
Bit  
15-7  
6-4  
Field  
Type  
R/W  
R/W  
Reset  
0x3C  
0x7  
Description  
RESERVED  
CPG  
Program 0x3C to this field.  
Effective charge pump gain. This is the sum of the up and down  
currents.  
0x0 = Tri-state  
0x4 = 3 mA  
0x1 = 6 mA  
0x5 = 9 mA  
0x3 = 12 mA  
0x7 = 15 mA  
All other values are not used.  
3-0  
RESERVED  
R/W  
0x0  
Program 0x0 to this field.  
7.6.16 R15 Register (Offset = 0xF) [reset = 0x64F]  
R15 is shown in 7-25 and described in 7-35.  
Return to 7-18.  
7-25. R15 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x64F  
7-35. R15 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x64F  
Program 0x64F to this field.  
7.6.17 R16 Register (Offset = 0x10) [reset = 0x80]  
R16 is shown in 7-26 and described in 7-36.  
Return to 7-18.  
7-26. R16 Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
VCO_DACISET  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-26. R16 Register (continued)  
R/W-0x0  
R/W-0x80  
0
7
6
5
4
3
2
1
VCO_DACISET  
R/W-0x80  
7-36. R16 Register Field Descriptions  
Bit  
15-9  
8-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
0x0  
Program 0x0 to this field.  
VCO_DACISET  
0x80  
Programmable current setting for the VCO that is applied  
when VCO_DACISET_FORCE = 1. Useful for fully-assisted VCO  
calibration.  
7.6.18 R17 Register (Offset = 0x11) [reset = 0x96]  
R17 is shown in 7-27 and described in 7-37.  
Return to 7-18.  
7-27. R17 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x96  
7-37. R17 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x96  
Program 0x12C to this field.  
7.6.19 R18 Register (Offset = 0x12) [reset = 0x64]  
R18 is shown in 7-28 and described in 7-38.  
Return to 7-18.  
7-28. R18 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x64  
7-38. R18 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x64  
Program 0x64 to this field.  
7.6.20 R19 Register (Offset = 0x13) [reset = 0x27B7]  
R19 is shown in 7-29 and described in 7-39.  
Return to 7-18.  
7-29. R19 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
R/W-0x27  
7
6
5
4
3
VCO_CAPCTRL  
R/W-0xB7  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-39. R19 Register Field Descriptions  
Bit  
15-8  
7-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
VCO_CAPCTRL  
0x27  
Program 0x27 to this field.  
0xB7  
Programmable band within VCO core that applies when  
VCO_CAPCTRL_FORCE = 1. Valid values are 183 to 0, where the  
higher number is a lower frequency.  
7.6.21 R20 Register (Offset = 0x14) [reset = 0x3048]  
R20 is shown in 7-30 and described in 7-40.  
Return to 7-18.  
7-30. R20 Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
RESERVED  
R/W-0x0  
VCO_SEL  
R/W-0x6  
VCO_SEL_FORCE  
R/W-0x0  
RESERVED  
R/W-0x48  
7
6
5
4
3
2
RESERVED  
R/W-0x48  
7-40. R20 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-14  
13-11  
RESERVED  
VCO_SEL  
0x0  
Program 0x3 to this field.  
0x6  
User specified start VCO for calibration. Also is the VCO core that is  
forced by VCO_SEL_FORCE.  
0x1 = VCO1  
0x2 = VCO2  
.....  
0x7 = VCO7  
10  
VCO_SEL_FORCE  
RESERVED  
R/W  
R/W  
0x0  
Forces the VCO to use the core specified by VCO_SEL.  
0x0 = Disabled  
0x1 = Enable  
9-0  
0x48  
Program 0x48 to this field.  
7.6.22 R21 Register (Offset = 0x15) [reset = 0x401]  
R21 is shown in 7-31 and described in 7-41.  
Return to 7-18.  
7-31. R21 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x401  
7-41. R21 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x401  
Program 0x401 to this field.  
7.6.23 R22 Register (Offset = 0x16) [reset = 0x1]  
R22 is shown in 7-32 and described in 7-42.  
Return to 7-18.  
7-32. R22 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-32. R22 Register (continued)  
R/W-0x1  
7-42. R22 Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
15-0  
R/W  
0x1  
Program 0x1 to this field  
7.6.24 R23 Register (Offset = 0x17) [reset = 0x7C]  
R23 is shown in 7-33 and described in 7-43.  
Return to 7-18.  
7-33. R23 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
RESERVED  
R/W-0x7C  
7-43. R23 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x7C  
Program 0x7C to this field.  
7.6.25 R24 Register (Offset = 0x18) [reset = 0x71A]  
R24 is shown in 7-34 and described in 7-44.  
Return to 7-18.  
7-34. R24 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x71A  
7-44. R24 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x71A  
Program 0x71A to this field.  
7.6.26 R25 Register (Offset = 0x19) [reset = 0x624]  
R25 is shown in 7-35 and described in 7-45.  
Return to 7-18.  
7-35. R25 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x624  
7-45. R25 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x624  
Program 0x624 to this field.  
7.6.27 R26 Register (Offset = 0x1A) [reset = 0xDB0]  
R26 is shown in 7-36 and described in 7-46.  
Return to 7-18.  
7-36. R26 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-36. R26 Register (continued)  
RESERVED  
R/W-0xDB0  
7-46. R26 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
RESERVED  
R/W  
0xDB0  
Program 0xDB0 to this field.  
7.6.28 R27 Register (Offset = 0x1B) [reset = 0x2]  
R27 is shown in 7-37 and described in 7-47.  
Return to 7-18.  
7-37. R27 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
4
4
3
3
3
2
2
2
1
1
1
0
0
0
RESERVED  
R/W-0x2  
7-47. R27 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x2  
Program 0x2 to this field.  
7.6.29 R28 Register (Offset = 0x1C) [reset = 0x488]  
R28 is shown in 7-38 and described in 7-48.  
Return to 7-18.  
7-38. R28 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x488  
7-48. R28 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x488  
Program 0x488 to this field.  
7.6.30 R29 Register (Offset = 0x1D) [reset = 0x318C]  
R29 is shown in 7-39 and described in 7-49.  
Return to 7-18.  
7-39. R29 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x318C  
7-49. R29 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x318C  
Program 0x318C to this field.  
7.6.31 R30 Register (Offset = 0x1E) [reset = 0x318C]  
R30 is shown in 7-40 and described in 7-50.  
Return to 7-18.  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-40. R30 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x318C  
7-50. R30 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x318C  
Program 0x318C to this field.  
7.6.32 R31 Register (Offset = 0x1F) [reset = 0xC3EC]  
R31 is shown in 7-41 and described in 7-51.  
Return to 7-18.  
7-41. R31 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
R/W-0x1  
SEG1_EN  
R/W-0x1  
RESERVED  
R/W-0x3EC  
7
6
5
4
3
RESERVED  
R/W-0x3EC  
7-51. R31 Register Field Descriptions  
Bit  
15  
14  
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
SEG1_EN  
0x1  
Program 0x0 to this field.  
0x1  
Enables the first divide-by-2 in channel divider.  
0x0 = Disabled  
0x1 = Enable  
13-0  
RESERVED  
R/W  
0x3EC  
Program 0x3EC to this field.  
7.6.33 R32 Register (Offset = 0x20) [reset = 0x393]  
R32 is shown in 7-42 and described in 7-52.  
Return to 7-18.  
7-42. R32 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x393  
7-52. R32 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x393  
Program 0x393 to this field.  
7.6.34 R33 Register (Offset = 0x21) [reset = 0x1E21]  
R33 is shown in 7-43 and described in 7-53.  
Return to 7-18.  
7-43. R33 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x1E21  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-53. R33 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
RESERVED  
R/W  
0x1E21  
Program 0x1E21 to this field.  
7.6.35 R34 Register (Offset = 0x22) [reset = 0x10]  
R34 is shown in 7-44 and described in 7-54.  
Return to 7-18.  
7-44. R34 Register  
15  
14  
13  
12  
11  
10  
2
9
8
0
RESERVED  
R/W-0x2  
7
6
5
4
3
1
RESERVED  
R/W-0x2  
PLL_N[18:16]  
R/W-0x0  
7-54. R34 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-3  
2-0  
RESERVED  
0x2  
Program 0x0 to this field.  
PLL_N[18:16]  
0x0  
Upper 3 bits of N divider, total 19 bits, split as 16 + 3.  
7.6.36 R35 Register (Offset = 0x23) [reset = 0x4]  
R35 is shown in 7-45 and described in 7-55.  
Return to 7-18.  
7-45. R35 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x4  
7-55. R35 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x4  
Program 0x4 to this field.  
7.6.37 R36 Register (Offset = 0x24) [reset = 0x70]  
R36 is shown in 7-46 and described in 7-56.  
Return to 7-18.  
7-46. R36 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_N[15:0]  
R/W-0x70  
7-56. R36 Register Field Descriptions  
Bit  
15-0  
Field  
PLL_N[15:0]  
Type  
Reset  
Description  
R/W  
0x70  
Lower 16 bits of N divider.  
7.6.38 R37 Register (Offset = 0x25) [reset = 0x205]  
R37 is shown in 7-47 and described in 7-57.  
Return to 7-18.  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-47. R37 Register  
15  
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
RESERVED  
PFD_DLY_SEL  
R/W-0x2  
R/W-0x0  
7
4
3
RESERVED  
R/W-0x5  
7-57. R37 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-14  
13-8  
RESERVED  
0x0  
Program 0x2 to this field.  
PFD_DLY_SEL  
0x2  
Programmable phase detector delay. This should be programmed  
based on VCO frequency, fractional order, and N divider value. See  
7-2 for details.  
7-0  
RESERVED  
R/W  
0x5  
Program 0x4 to this field.  
7.6.39 R38 Register (Offset = 0x26) [reset = 0xFFFF]  
R38 is shown in 7-48 and described in 7-58.  
Return to 7-18.  
7-48. R38 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
2
2
1
1
1
0
0
0
PLL_DEN[31:16]  
R/W-0xFFFF  
7-58. R38 Register Field Descriptions  
Bit  
15-0  
Field  
PLL_DEN[31:16]  
Type  
Reset  
Description  
R/W  
0xFFFF  
Upper 16 bits of fractional denominator (DEN).  
7.6.40 R39 Register (Offset = 0x27) [reset = 0xFFFF]  
R39 is shown in 7-49 and described in 7-59.  
Return to 7-18.  
7-49. R39 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
PLL_DEN[15:0]  
R/W-0xFFFF  
7-59. R39 Register Field Descriptions  
Bit  
15-0  
Field  
PLL_DEN[15:0]  
Type  
Reset  
Description  
R/W  
0xFFFF  
Lower 16 bits of fractional denominator (DEN).  
7.6.41 R40 Register (Offset = 0x28) [reset = 0x0]  
R40 is shown in 7-50 and described in 7-60.  
Return to 7-18.  
7-50. R40 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
MASH_SEED[31:16]  
R/W-0x0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-60. R40 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
MASH_SEED[31:16]  
R/W  
0x0  
Upper 16 bits of MASH_SEED. MASH_SEED sets the initial state  
of the fractional engine. Useful for producing a phase shift and  
fractional spur optimization.  
7.6.42 R41 Register (Offset = 0x29) [reset = 0x0]  
R41 is shown in 7-51 and described in 7-61.  
Return to 7-18.  
7-51. R41 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MASH_SEED[15:0]  
R/W-0x0  
7-61. R41 Register Field Descriptions  
Bit  
15-0  
Field  
MASH_SEED[15:0]  
Type  
Reset  
Description  
R/W  
0x0  
Lower 16 bits of MASH_SEED. MASH_SEED sets the initial state  
of the fractional engine. Useful for producing a phase shift and  
fractional spur optimization.  
7.6.43 R42 Register (Offset = 0x2A) [reset = 0x0]  
R42 is shown in 7-52 and described in 7-62.  
Return to 7-18.  
7-52. R42 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_NUM[31:16]  
R/W-0x0  
7-62. R42 Register Field Descriptions  
Bit  
15-0  
Field  
PLL_NUM[31:16]  
Type  
Reset  
Description  
R/W  
0x0  
Upper 16 bits of fractional numerator (NUM).  
7.6.44 R43 Register (Offset = 0x2B) [reset = 0x0]  
R43 is shown in 7-53 and described in 7-63.  
Return to 7-18.  
7-53. R43 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PLL_NUM[15:0]  
R/W-0x0  
7-63. R43 Register Field Descriptions  
Bit  
15-0  
Field  
PLL_NUM[15:0]  
Type  
Reset  
Description  
R/W  
0x0  
Lower 16 bits of fractional numerator (NUM).  
7.6.45 R44 Register (Offset = 0x2C) [reset = 0x22A2]  
R44 is shown in 7-54 and described in 7-64.  
Return to 7-18.  
7-54. R44 Register  
15  
14  
13  
12  
11  
10  
9
8
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-54. R44 Register (continued)  
RESERVED  
OUTA_PWR  
R/W-0x0  
R/W-0x22  
7
6
5
4
3
2
1
0
OUTB_PD  
R/W-0x1  
OUTA_PD  
R/W-0x0  
MASH_RESET_N  
R/W-0x1  
RESERVED  
R/W-0x0  
MASH_ORDER  
R/W-0x2  
7-64. R44 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-14  
13-8  
RESERVED  
OUTA_PWR  
0x0  
Program 0x0 to this field.  
0x22  
Sets current that controls output power for RFOUTA.  
0x0 is minimum current; 0x1F is maximum current.  
7
6
5
OUTB_PD  
R/W  
R/W  
R/W  
0x1  
0x0  
0x1  
Powers down RFOUTB.  
0x0 = Normal operation  
0x1 = Powered down  
OUTA_PD  
Powers down RFOUTA.  
0x0 = Normal operation  
0x1 = Powered down  
MASH_RESET_N  
Resets MASH.  
0x0 = Reset  
0x1 = Normal operation  
4-3  
2-0  
RESERVED  
R/W  
R/W  
0x0  
0x2  
Program 0x0 to this field.  
MASH_ORDER  
Sets the MASH order.  
0x0: Integer mode  
0x1: First order modulator  
0x2: Second order modulator  
0x3: Third order modulator  
All other values are not used.  
7.6.46 R45 Register (Offset = 0x2D) [reset = 0xC622]  
R45 is shown in 7-55 and described in 7-65.  
Return to 7-18.  
7-55. R45 Register  
15  
14  
13  
12  
11  
10  
2
9
8
0
RESERVED  
R/W-0x6  
OUTA_MUX  
R/W-0x0  
RESERVED  
R/W-0x18  
7
6
5
4
3
1
RESERVED  
OUTB_PWR  
R/W-0x22  
R/W-0x18  
7-65. R45 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-13  
12-11  
RESERVED  
OUTA_MUX  
0x6  
Program 0x6 to this field.  
0x0  
Selects the input source to RFOUTA.  
0x0 = Channel divider  
0x1 = VCO  
0x2 = Not used  
0x3 = Reserved  
10-6  
5-0  
RESERVED  
OUTB_PWR  
R/W  
R/W  
0x18  
0x22  
Program 0x3 to this field.  
Sets current that controls output power for RFOUTB.  
0x0 is minimum current; 0x1F is maximum current.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7.6.47 R46 Register (Offset = 0x2E) [reset = 0x7F0]  
R46 is shown in 7-56 and described in 7-66.  
Return to 7-18.  
7-56. R46 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
R/W-0x1FC  
7
6
5
4
3
RESERVED  
R/W-0x1FC  
OUTB_MUX  
R/W-0x0  
7-66. R46 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0x1FC  
0x0  
Description  
15-2  
1-0  
RESERVED  
OUTB_MUX  
Program 0x1FF to this field.  
Selects the input source to RFOUTB.  
0x0 = Channel divider  
0x1 = VCO  
0x2 = SYSREF  
0x3 = Reserved  
7.6.48 R47 Register (Offset = 0x2F) [reset = 0x300]  
R47 is shown in 7-57 and described in 7-67.  
Return to 7-18.  
7-57. R47 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x300  
7-67. R47 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x300  
Program 0x300 to this field.  
7.6.49 R48 Register (Offset = 0x30) [reset = 0x3E0]  
R48 is shown in 7-58 and described in 7-68.  
Return to 7-18.  
7-58. R48 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x3E0  
7-68. R48 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x3E0  
Program 0x300 to this field.  
7.6.50 R49 Register (Offset = 0x31) [reset = 0x4180]  
R49 is shown in 7-59 and described in 7-69.  
Return to 7-18.  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-59. R49 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
RESERVED  
R/W-0x4180  
7-69. R49 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x4180  
Program 0x4180 to this field.  
7.6.51 R50 Register (Offset = 0x32) [reset = 0x80]  
R50 is shown in 7-60 and described in 7-70.  
Return to 7-18.  
7-60. R50 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x80  
7-70. R50 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x80  
Program 0x0 to this field.  
7.6.52 R51 Register (Offset = 0x33) [reset = 0x80]  
R51 is shown in 7-61 and described in 7-71.  
Return to 7-18.  
7-61. R51 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x80  
7-71. R51 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x80  
Program 0x80 to this field.  
7.6.53 R52 Register (Offset = 0x34) [reset = 0x420]  
R52 is shown in 7-62 and described in 7-72.  
Return to 7-18.  
7-62. R52 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x420  
7-72. R52 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x420  
Program 0x420 to this field.  
7.6.54 R53 Register (Offset = 0x35) [reset = 0x0]  
R53 is shown in 7-63 and described in 7-73.  
Return to 7-18.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-63. R53 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
RESERVED  
R/W-0x0  
7-73. R53 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.55 R54 Register (Offset = 0x36) [reset = 0x0]  
R54 is shown in 7-64 and described in 7-74.  
Return to 7-18.  
7-64. R54 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-74. R54 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.56 R55 Register (Offset = 0x37) [reset = 0x0]  
R55 is shown in 7-65 and described in 7-75.  
Return to 7-18.  
7-65. R55 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-75. R55 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.57 R56 Register (Offset = 0x38) [reset = 0x0]  
R56 is shown in 7-66 and described in 7-76.  
Return to 7-18.  
7-66. R56 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-76. R56 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.58 R57 Register (Offset = 0x39) [reset = 0x0]  
R57 is shown in 7-67 and described in 7-77.  
Return to 7-18.  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-67. R57 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
7-77. R57 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x20 to this field.  
7.6.59 R58 Register (Offset = 0x3A) [reset = 0x8001]  
R58 is shown in 7-68 and described in 7-78.  
Return to 7-18.  
7-68. R58 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
INPIN_IGNORE  
R/W-0x1  
RESERVED  
R/W-0x1  
7
6
5
4
3
RESERVED  
R/W-0x1  
7-78. R58 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
INPIN_IGNORE  
R/W  
0x1  
Ignore SYNC and SYSREFREQ pins when VCO_PHASE_SYNC =  
0. This bit should be set to 1 unless VCO_PHASE_SYNC = 1.  
14-0  
RESERVED  
R/W  
0x1  
Program 0x1 to this field.  
7.6.60 R59 Register (Offset = 0x3B) [reset = 0x1]  
R59 is shown in 7-69 and described in 7-79.  
Return to 7-18.  
7-69. R59 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
RESERVED  
R/W-0x0  
7
6
5
4
3
0
RESERVED  
R/W-0x0  
LD_TYPE  
R/W-0x1  
7-79. R59 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-1  
0
RESERVED  
LD_TYPE  
0x0  
Program 0x0 to this field.  
Lock detect type.  
0x1  
VCOCal lock detect asserts a high output after the VCO has finished  
calibration and the LD_DLY timeout counter is finished.  
Vtune and VCOCal lock detect asserts a high output when VCOCal  
lock detect would assert a signal and the tuning voltage to the VCO  
is within acceptable limits.  
0x0 = VCOCal lock detect  
0x1 = VCOCal and Vtune lock detect  
7.6.61 R60 Register (Offset = 0x3C) [reset = 0x3E8]  
R60 is shown in 7-70 and described in 7-80.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
Return to 7-18.  
7-70. R60 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LD_DLY  
R/W-0x3E8  
7-80. R60 Register Field Descriptions  
Bit  
15-0  
Field  
LD_DLY  
Type  
Reset  
Description  
R/W  
0x3E8  
For the VCOCal lock detect, this is the delay in 1/4 fPD cycles that is  
added after the calibration is finished before the VCOCal lock detect  
is asserted high.  
7.6.62 R61 Register (Offset = 0x3D) [reset = 0xA8]  
R61 is shown in 7-71 and described in 7-81.  
Return to 7-18.  
7-71. R61 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
4
4
3
3
3
2
2
2
1
1
1
0
0
0
RESERVED  
R/W-0xA8  
7-81. R61 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0xA8  
Program 0xA8 to this field.  
7.6.63 R62 Register (Offset = 0x3E) [reset = 0xAE]  
R62 is shown in 7-72 and described in 7-82.  
Return to 7-18.  
7-72. R62 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0xAE  
7-82. R62 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0xAE  
Program 0x322 to this field.  
7.6.64 R63 Register (Offset = 0x3F) [reset = 0x0]  
R63 is shown in 7-73 and described in 7-83.  
Return to 7-18.  
7-73. R63 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-83. R63 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7.6.65 R64 Register (Offset = 0x40) [reset = 0x1388]  
R64 is shown in 7-74 and described in 7-84.  
Return to 7-18.  
7-74. R64 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
RESERVED  
R/W-0x1388  
7-84. R64 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x1388  
Program 0x1388 to this field.  
7.6.66 R65 Register (Offset = 0x41) [reset = 0x0]  
R65 is shown in 7-75 and described in 7-85.  
Return to 7-18.  
7-75. R65 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-85. R65 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.67 R66 Register (Offset = 0x42) [reset = 0x140]  
R66 is shown in 7-76 and described in 7-86.  
Return to 7-18.  
7-76. R66 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x140  
7-86. R66 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x140  
Program 0x1F4 to this field.  
7.6.68 R67 Register (Offset = 0x43) [reset = 0x0]  
R67 is shown in 7-77 and described in 7-87.  
Return to 7-18.  
7-77. R67 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-87. R67 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7.6.69 R68 Register (Offset = 0x44) [reset = 0x3E8]  
R68 is shown in 7-78 and described in 7-88.  
Return to 7-18.  
7-78. R68 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x3E8  
7-88. R68 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x3E8  
Program 0x3E8 to this field.  
7.6.70 R69 Register (Offset = 0x45) [reset = 0x0]  
R69 is shown in 7-79 and described in 7-89.  
Return to 7-18.  
7-79. R69 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MASH_RST_COUNT[31:16]  
R/W-0x0  
7-89. R69 Register Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
MASH_RST_COUNT[31:1 R/W  
6]  
0x0  
Upper 16 bits of MASH_RST_COUNT.  
7.6.71 R70 Register (Offset = 0x46) [reset = 0xC350]  
R70 is shown in 7-80 and described in 7-90.  
Return to 7-18.  
7-80. R70 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MASH_RST_COUNT[15:0]  
R/W-0xC350  
7-90. R70 Register Field Descriptions  
Bit  
15-0  
Field  
Type  
Reset  
Description  
MASH_RST_COUNT[15:0] R/W  
0xC350  
Lower 16 bits of MASH_RST_COUNT. This register is used to add a  
delay when using phase SYNC. The delay should be set at least four  
times the PLL lock time. This delay is expressed in state machine  
clock periods. One of these periods is equal to 2CAL_CLK_DIV / fOSC  
.
7.6.72 R71 Register (Offset = 0x47) [reset = 0x80]  
R71 is shown in 7-81 and described in 7-91.  
Return to 7-18.  
7-81. R71 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
R/W-0x0  
7
6
5
4
3
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-81. R71 Register (continued)  
SYSREF_DIV_PRE  
R/W-0x4  
SYSREF_PULSE  
SYSREF_EN  
SYSREF_REPEAT  
RESERVED  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
7-91. R71 Register Field Descriptions  
Bit  
15-8  
7-5  
Field  
RESERVED  
Type  
R/W  
R/W  
Reset  
Description  
0x0  
Program 0x0 to this field.  
SYSREF_DIV_PRE  
0x4  
This divider is used to get the frequency input to the SYSREF  
interpolater within acceptable limits.  
0x2 = Divided by 2  
0x4 = Divided by 4  
4
SYSREF_PULSE  
R/W  
0x0  
When in master mode (SYSREF_REPEAT = 0), this allows multiple  
pulses (as determined by SYSREF_PULSE_CNT) to be sent out  
whenever the SYSREFREQ pin goes high.  
0x0 = Disabled  
0x1 = Enable  
3
2
SYSREF_EN  
R/W  
R/W  
0x0  
0x0  
Enables SYSREF mode.  
0x0 = Disabled  
0x1 = Enabled  
SYSREF_REPEAT  
Defines SYSREF mode.  
In Master mode, SYSREF pulses are generated continuously at the  
output.  
In Repeater mode, SYSREF pulses are generated in response to the  
SYSREFREQ pin.  
0x0 = Master mode  
0x1 = Repeater Mode  
1-0  
RESERVED  
R/W  
0x0  
Program 0x0 to this field.  
7.6.73 R72 Register (Offset = 0x48) [reset = 0x1]  
R72 is shown in 7-82 and described in 7-92.  
Return to 7-18.  
7-82. R72 Register  
15  
14  
13  
12  
11  
10  
2
9
8
0
RESERVED  
R/W-0x0  
SYSREF_DIV  
R/W-0x1  
7
6
5
4
3
1
SYSREF_DIV  
R/W-0x1  
7-92. R72 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
15-11  
10-0  
RESERVED  
0x0  
Program 0x0 to this field.  
SYSREF_DIV  
0x1  
This divider further divides the output frequency for the SYSREF.  
7.6.74 R73 Register (Offset = 0x49) [reset = 0x3F]  
R73 is shown in 7-83 and described in 7-93.  
Return to 7-18.  
7-83. R73 Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R/W-0x0  
JESD_DAC2_CTRL  
R/W-0x0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-83. R73 Register (continued)  
7
6
5
4
3
2
1
0
JESD_DAC2_CTRL  
R/W-0x0  
JESD_DAC1_CTRL  
R/W-0x3F  
7-93. R73 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
15-12  
11-6  
5-0  
RESERVED  
0x0  
Program 0x0 to this field.  
JESD_DAC2_CTRL  
JESD_DAC1_CTRL  
0x0  
Programmable delay adjustment for SYSREF mode.  
Programmable delay adjustment for SYSREF mode.  
0x3F  
7.6.75 R74 Register (Offset = 0x4A) [reset = 0x0]  
R74 is shown in 7-84 and described in 7-94.  
Return to 7-18.  
7-84. R74 Register  
15  
14  
SYSREF_PULSE_CNT  
R/W-0x0  
13  
12  
11  
10  
2
9
1
8
0
JESD_DAC4_CTRL  
R/W-0x0  
7
6
5
4
3
JESD_DAC4_CTRL  
R/W-0x0  
JESD_DAC3_CTRL  
R/W-0x0  
7-94. R74 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
SYSREF_PULSE_CNT  
R/W  
0x0  
Used in SYSREF_REPEAT mode to define how many pulses are  
sent.  
11-6  
5-0  
JESD_DAC4_CTRL  
JESD_DAC3_CTRL  
R/W  
R/W  
0x0  
0x0  
Programmable delay adjustment for SYSREF mode.  
Programmable delay adjustment for SYSREF mode.  
7.6.76 R75 Register (Offset = 0x4B) [reset = 0x800]  
R75 is shown in 7-85 and described in 7-95.  
Return to 7-18.  
7-85. R75 Register  
15  
14  
13  
12  
11  
10  
2
9
8
0
RESERVED  
R/W-0x1  
CHDIV  
R/W-0x0  
7
6
5
4
3
1
CHDIV  
RESERVED  
R/W-0x0  
R/W-0x0  
7-95. R75 Register Field Descriptions  
Bit  
15-11  
Field  
Type  
Reset  
Description  
RESERVED  
R/W  
0x1  
Program 0x1 to this field.  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-95. R75 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
10-6  
CHDIV  
R/W  
0x0  
Channel divider.  
0x0 = Divide by 2  
0x1 = Divide by 4  
0x2 = Divide by 6  
0x3 = Divide by 8  
0x4 = Divide by 12  
0x5 = Divide by 16  
0x6 = Divide by 24  
0x7 = Divide by 32  
0x8 = Divide by 48  
0x9 = Divide by 64  
0xA = Divide by 96  
0xB = Divide by 128  
0xC = Divide by 192  
5-0  
RESERVED  
R/W  
0x0  
Program 0x0 to this field.  
7.6.77 R76 Register (Offset = 0x4C) [reset = 0xC]  
R76 is shown in 7-86 and described in 7-96.  
Return to 7-18.  
7-86. R76 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
4
4
3
3
3
2
2
2
1
1
1
0
0
0
RESERVED  
R/W-0xC  
7-96. R76 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0xC  
Program 0xC to this field.  
7.6.78 R77 Register (Offset = 0x4D) [reset = 0x0]  
R77 is shown in 7-87 and described in 7-97.  
Return to 7-18.  
7-87. R77 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-97. R77 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.79 R78 Register (Offset = 0x4E) [reset = 0x64]  
R78 is shown in 7-88 and described in 7-98.  
Return to 7-18.  
7-88. R78 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x64  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-98. R78 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
RESERVED  
R/W  
0x64  
Program 0x64 to this field.  
7.6.80 R79 Register (Offset = 0x4F) [reset = 0x0]  
R79 is shown in 7-89 and described in 7-99.  
Return to 7-18.  
7-89. R79 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
RESERVED  
R/W-0x0  
7-99. R79 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.81 R80 Register (Offset = 0x50) [reset = 0x0]  
R80 is shown in 7-90 and described in 7-100.  
Return to 7-18.  
7-90. R80 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-100. R80 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.82 R81 Register (Offset = 0x51) [reset = 0x0]  
R81 is shown in 7-91 and described in 7-101.  
Return to 7-18.  
7-91. R81 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-101. R81 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.83 R82 Register (Offset = 0x52) [reset = 0x0]  
R82 is shown in 7-92 and described in 7-102.  
Return to 7-18.  
7-92. R82 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-102. R82 Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
15-0  
R/W  
0x0  
Program 0x0 to this field.  
7.6.84 R83 Register (Offset = 0x53) [reset = 0x0]  
R83 is shown in 7-93 and described in 7-103.  
Return to 7-18.  
7-93. R83 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
RESERVED  
R/W-0x0  
7-103. R83 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.85 R84 Register (Offset = 0x54) [reset = 0x0]  
R84 is shown in 7-94 and described in 7-104.  
Return to 7-18.  
7-94. R84 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-104. R84 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.86 R85 Register (Offset = 0x55) [reset = 0x0]  
R85 is shown in 7-95 and described in 7-105.  
Return to 7-18.  
7-95. R85 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-105. R85 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.87 R86 Register (Offset = 0x56) [reset = 0x0]  
R86 is shown in 7-96 and described in 7-106.  
Return to 7-18.  
7-96. R86 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-106. R86 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
RESERVED  
R/W  
0x0  
Program 0x0 to this field.  
7.6.88 R87 Register (Offset = 0x57) [reset = 0x0]  
R87 is shown in 7-97 and described in 7-107.  
Return to 7-18.  
7-97. R87 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
RESERVED  
R/W-0x0  
7-107. R87 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.89 R88 Register (Offset = 0x58) [reset = 0x0]  
R88 is shown in 7-98 and described in 7-108.  
Return to 7-18.  
7-98. R88 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-108. R88 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.90 R89 Register (Offset = 0x59) [reset = 0x0]  
R89 is shown in 7-99 and described in 7-109.  
Return to 7-18.  
7-99. R89 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-109. R89 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.91 R90 Register (Offset = 0x5A) [reset = 0x0]  
R90 is shown in 7-100 and described in 7-110.  
Return to 7-18.  
7-100. R90 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-110. R90 Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
15-0  
R/W  
0x0  
Program 0x0 to this field.  
7.6.92 R91 Register (Offset = 0x5B) [reset = 0x0]  
R91 is shown in 7-101 and described in 7-111.  
Return to 7-18.  
7-101. R91 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
RESERVED  
R/W-0x0  
7-111. R91 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.93 R92 Register (Offset = 0x5C) [reset = 0x0]  
R92 is shown in 7-102 and described in 7-112.  
Return to 7-18.  
7-102. R92 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-112. R92 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.94 R93 Register (Offset = 0x5D) [reset = 0x0]  
R93 is shown in 7-103 and described in 7-113.  
Return to 7-18.  
7-103. R93 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-113. R93 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.95 R94 Register (Offset = 0x5E) [reset = 0x0]  
R94 is shown in 7-104 and described in 7-114.  
Return to 7-18.  
7-104. R94 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-114. R94 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
RESERVED  
R/W  
0x0  
Program 0x0 to this field.  
7.6.96 R95 Register (Offset = 0x5F) [reset = 0x0]  
R95 is shown in 7-105 and described in 7-115.  
Return to 7-18.  
7-105. R95 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
RESERVED  
R/W-0x0  
7-115. R95 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.97 R96 Register (Offset = 0x60) [reset = 0x0]  
R96 is shown in 7-106 and described in 7-116.  
Return to 7-18.  
7-106. R96 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-116. R96 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.98 R97 Register (Offset = 0x61) [reset = 0x0]  
R97 is shown in 7-107 and described in 7-117.  
Return to 7-18.  
7-107. R97 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-117. R97 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.99 R98 Register (Offset = 0x62) [reset = 0x0]  
R98 is shown in 7-108 and described in 7-118.  
Return to 7-18.  
7-108. R98 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-118. R98 Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
15-0  
R/W  
0x0  
Program 0x0 to this field.  
7.6.100 R99 Register (Offset = 0x63) [reset = 0x0]  
R99 is shown in 7-109 and described in 7-119.  
Return to 7-18.  
7-109. R99 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
RESERVED  
R/W-0x0  
7-119. R99 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.101 R100 Register (Offset = 0x64) [reset = 0x0]  
R100 is shown in 7-110 and described in 7-120.  
Return to 7-18.  
7-110. R100 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-120. R100 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.102 R101 Register (Offset = 0x65) [reset = 0x0]  
R101 is shown in 7-111 and described in 7-121.  
Return to 7-18.  
7-111. R101 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-121. R101 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.103 R102 Register (Offset = 0x66) [reset = 0x0]  
R102 is shown in 7-112 and described in 7-122.  
Return to 7-18.  
7-112. R102 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-122. R102 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
RESERVED  
R/W  
0x0  
Program 0x0 to this field.  
7.6.104 R103 Register (Offset = 0x67) [reset = 0x0]  
R103 is shown in 7-113 and described in 7-123.  
Return to 7-18.  
7-113. R103 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
4
4
4
3
3
3
3
2
2
2
2
1
1
1
1
0
0
0
0
RESERVED  
R/W-0x0  
7-123. R103 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.105 R104 Register (Offset = 0x68) [reset = 0x0]  
R104 is shown in 7-114 and described in 7-124.  
Return to 7-18.  
7-114. R104 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x0  
7-124. R104 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
7.6.106 R105 Register (Offset = 0x69) [reset = 0x440]  
R105 is shown in 7-115 and described in 7-125.  
Return to 7-18.  
7-115. R105 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x440  
7-125. R105 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x440  
Program 0x0 to this field.  
7.6.107 R106 Register (Offset = 0x6A) [reset = 0x7]  
R106 is shown in 7-116 and described in 7-126.  
Return to 7-18.  
7-116. R106 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R/W-0x7  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-126. R106 Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
15-0  
R/W  
0x7  
Program 0x0 to this field.  
7.6.108 R107 Register (Offset = 0x6B) [reset = 0x0]  
R107 is shown in 7-117 and described in 7-127.  
Return to 7-18.  
7-117. R107 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
4
4
3
3
3
2
2
2
1
1
1
0
0
0
RESERVED  
R-0x0  
7-127. R107 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0x0  
Not used. Read back only.  
7.6.109 R108 Register (Offset = 0x6C) [reset = 0x0]  
R108 is shown in 7-118 and described in 7-128.  
Return to 7-18.  
7-118. R108 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R-0x0  
7-128. R108 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0x0  
Not used. Read back only.  
7.6.110 R109 Register (Offset = 0x6D) [reset = 0x0]  
R109 is shown in 7-119 and described in 7-129.  
Return to 7-18.  
7-119. R109 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
RESERVED  
R-0x0  
7-129. R109 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0x0  
Not used. Read back only.  
7.6.111 R110 Register (Offset = 0x6E) [reset = 0x0]  
R110 is shown in 7-120 and described in 7-130.  
Return to 7-18.  
7-120. R110 Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R-0x0  
rb_LD_VTUNE  
R-0x0  
RESERVED  
R-0x0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-120. R110 Register (continued)  
7
6
5
4
3
2
1
0
rb_VCO_SEL  
R-0x0  
RESERVED  
R-0x0  
7-130. R110 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
10-9  
RESERVED  
R
0x0  
Not used. Read back only.  
rb_LD_VTUNE  
R
0x0  
Readback field for the lock detect.  
0x0 = Unlocked (fVCO Low)  
0x1 = Invalid  
0x2 = Locked  
0x3 = Unlocked (fVCO High)  
8
RESERVED  
R
R
0x0  
0x0  
Not used. Read back only.  
7-5  
rb_VCO_SEL  
Reads back the actual VCO that the calibration has selected.  
0x1 = VCO1  
0x2 = VCO2  
.....  
0x7 = VCO7  
4-0  
RESERVED  
R
0x0  
Not used. Read back only.  
7.6.112 R111 Register (Offset = 0x6F) [reset = 0x0]  
R111 is shown in 7-121 and described in 7-131.  
Return to 7-18.  
7-121. R111 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
RESERVED  
R-0x0  
7
6
5
4
3
rb_VCO_CAPCTRL  
R-0x0  
7-131. R111 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
7-0  
RESERVED  
R
0x0  
Not used. Read back only.  
rb_VCO_CAPCTRL  
R
0x0  
Readback field for the actual VCO_CAPCTRL value that is chosen  
by the VCO calibration.  
7.6.113 R112 Register (Offset = 0x70) [reset = 0x0]  
R112 is shown in 7-122 and described in 7-132.  
Return to 7-18.  
7-122. R112 Register  
15  
14  
13  
12  
11  
10  
2
9
1
8
RESERVED  
R-0x0  
rb_VCO_DACISET  
R-0x0  
7
6
5
4
3
0
rb_VCO_DACISET  
R-0x0  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
7-132. R112 Register Field Descriptions  
Bit  
15-9  
8-0  
Field  
Type  
Reset  
Description  
RESERVED  
R
0x0  
Not used. Read back only.  
rb_VCO_DACISET  
R
0x0  
Readback field for the actual VCO_DACISET value that is chosen by  
the VCO calibration.  
7.6.114 R113 Register (Offset = 0x71) [reset = 0x0]  
R113 is shown in 7-123 and described in 7-133.  
Return to 7-18.  
7-123. R113 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
7-133. R113 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R
0x0  
Not used. Read back only.  
7.6.115 R114 Register (Offset = 0x72) [reset = 0x0]  
R114 is shown in 7-124 and described in 7-134.  
Return to 7-18.  
7-124. R114 Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RESERVED  
R/W-0x0  
7-134. R114 Register Field Descriptions  
Bit  
15-0  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0x0  
Program 0x0 to this field.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。  
8.1 Application Information  
8.1.1 OSCIN Configuration  
OSCIN supports single or differential-ended clock. There must be a AC-coupling capacitor in series before the  
device pin. The OSCIN inputs are high-impedance CMOS with internal bias voltage. TI recommends putting  
termination shunt resistors to terminate the differential traces (if there are 50-Ω characteristic traces, place 50-Ω  
resistors). The OSCIN_P and OSCIN_N side must be matched in layout. A series AC-coupling capacitors must  
immediately follow OSCIN pins in the board layout, then the shunt termination resistors to ground must be  
placed after.  
Input clock definitions are shown in 8-1.  
VOSC  
VOSC  
VOSC  
CMOS  
Sine wave  
Differential  
8-1. Input Clock Definitions  
8.1.2 OSCIN Slew Rate  
The slew rate of the OSCIN signal can have an impact on the spurs and phase noise of the LMX2694-SEP if it is  
too low. In general, the best performance is for a high slew rate, but lower amplitude signal, such as LVDS.  
8.1.3 RF Output Buffer Power Control  
The OUTA_PWR and OUTB_PWR registers control the amount of drive current for the output. This current  
creates a voltage across the pullup component and load. TI generally recommends to keep the OUTx_PWR  
setting at 31 or less, as higher settings consume more current consumption and can also lead to higher output  
power. Optimal noise floor is typically obtained by setting OUTx_PWR in the range of 15 to 25.  
8.1.4 RF Output Buffer Pullup  
The choice of output buffer components is very important and can have a profound impact on the output power.  
The pullup component can be a resistor or inductor or combination thereof. The signal swing is created by  
a current flowing this pullup, so a higher impedance implies a higher signal swing. However, as this pullup  
component can be treated as if it is in parallel with the load impedance, there are diminishing returns as the  
impedance gets much larger than the load impedance. The output impedance of the device varies as a function  
of frequency and is a complex number, but typically has a magnitude on the order of 100 Ω, but this decreases  
with frequency.  
The output can be used differentially or single-ended. If using single-ended, the pullup is still needed, and user  
needs to terminate the unused complimentary side such that the impedance as seen from the pin looking out is  
similar to the pin that is being used. Following are some typical components that might be useful.  
8-1. Output Pullup Configuration  
COMPONENT  
VALUE  
PART NUMBER  
1 nH, 13.6 GHz SRF  
3.3 nH, 6.8 GHz SRF  
10 nH, 3.8 GHz SRF  
Toko LL1005-FH1N0S  
Toko LL1005-FH3N3S  
Toko LL1005-FH10NU  
Inductor  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
8-1. Output Pullup Configuration (continued)  
COMPONENT  
VALUE  
PART NUMBER  
Resistor  
50 Ω  
Vishay FC0402E50R0BST1  
ATC 520L103KT16T  
ATC 504L50R0FTNCFT  
Capacitor  
Varies with frequency  
8.1.4.1 Resistor Pullup  
One strategy for the choice of the pullup component is to use a resistor (R). This is typically chosen to be 50-Ω  
and under the assumption that the part output impedance is high, then the output impedance will theoretically be  
50 Ω, regardless of output frequency. As the output impedance of the device is not infinite, the output impedance  
when the pullup resistor is used will be less than 50 Ω, but will be reasonably close. There will be some drop  
across the resistor, but this does not seem to have a large impact on signal swing for a 50-Ω resistor provided  
that OUTx_PWR ≤ 31.  
+vcc  
R
C
RFOUTA_P  
8-2. Resistor Pullup  
8.1.4.2 Inductor Pullup  
Another strategy is to choose an inductor pullup (L). This allows a higher impedance without any concern of  
creating any DC drop across the component. Ideally, the inductor should be chosen large enough so that the  
impedance is high relative to the load impedance and also be operating away from its self-resonant frequency.  
For instance, consider a 3.3-nH pullup inductor with a self-resonant frequency of 7 GHz driving a 25-Ω spectrum  
analyzer input. This inductor theoretically has j50-Ω input impedance around 2.4 GHz. At this frequency, this in  
parallel with load is about j35-Ω, which is a 3-dB power reduction. At 1.4 GHz, this inductor has impedance of  
about 29 Ω. This in parallel with the 50-Ω load has a magnitude of 25 Ω, which is the same result seen with the  
50-Ω pullup. The main issue with the inductor pullup is that the impedance does not look nicely matched to the  
load.  
+vcc  
L
C
RFOUTA_P  
8-3. Inductor Pullup  
As the output impedance is not so nicely matched, but there is higher output power, it makes sense to use a  
resistive pad to get the best impedance control. A 6-dB pad (R1 = 18 Ω, R2 = 68 Ω) is likely more attenuation  
than necessary. A 3-dB or even 1-dB pad might suffice. Two AC-coupling capacitors are required before the pad.  
In 8-4, one of them is placed by the resistor to ground to minimize the number of components in the high  
frequency path for lower loss.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: LMX2694-SEP  
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
+vcc  
L
C
R1  
R1  
RFOUTA_P  
R2  
8-4. Inductor Pullup With Pad  
For the resistive pad, 8-2 shows some common values:  
8-2. Resistive T-Pad Values  
ATTENUATION  
R1  
R2  
1 dB  
2 dB  
3 dB  
4 dB  
5 dB  
6 dB  
2.7 Ω  
5.6 Ω  
6.8 Ω  
12 Ω  
15 Ω  
18 Ω  
420 Ω  
220 Ω  
150 Ω  
100 Ω  
82 Ω  
68 Ω  
8.1.4.3 Combination Pullup  
The resistor gives a good low frequency response, while the inductor gives a good high frequency response with  
worse matching. It is desirable to have the impedance of the pullup to be high, but if a resistor is used, then there  
could be too much DC drop. If an inductor is used, it is hard to find one good at low frequencies and around  
its self-resonant frequency. One approach to address this is to use a series resistor and inductor followed by  
resistive pad.  
+vcc  
R
L
R1  
R1  
RFOUTA_P  
C
R2  
8-5. Inductor and Resistor Pullup  
8.1.5 RF Output Treatment for the Complimentary Side  
Regardless of whether both sides of the differential outputs are used, both sides should see a similar load.  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
8.1.5.1 Single-Ended Termination of Unused Output  
The unused output should see a roughly the same impedance as looking out of the pin to minimize harmonics  
and get the best output power. As placement of the pull-up components is critical for the best output power, the  
routing does not need to be perfectly symmetrical. It makes sense to give highest priority routing to the used  
output (RFOUTA_P in this case).  
+vcc  
R
L
R1  
R1  
RFOUTA_P  
C
+vcc  
R2  
R
L
RL  
RFOUTA_N  
C
8-6. Termination of Unused Output - Single-Ended  
8.1.5.2 Differential Termination  
For differential termination this can be done by doing the same termination to both sides, or it is also possible to  
connect the grounds together. This approach can also be accompanied by a differential to single-ended balun for  
the highest possible output power.  
R1  
R1  
RFOUTA_P  
C
L
R
+vcc  
2 x R2  
R
L
R1  
R1  
RFOUTA_N  
C
8-7. Termination of Unused Output - Differential  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: LMX2694-SEP  
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
8.1.6 External Loop Filter  
The LMX2694-SEP requires an external loop filter that is application-specific and can be configured by  
PLLatinum Sim. For the LMX2694-SEP, it matters what impedance is seen from the VTUNE pin looking  
outwards. This impedance is dominated by the component C3 for a third order filter or C1 for a second order  
filter. If there is at least 1.5 nF for the capacitance that is shunt with this pin, the VCO phase noise will be close  
to the best it can be. If there is less, the VCO phase noise in the 100-kHz to 1-MHz region will degrade. This  
capacitor should be placed close to the VTUNE pin.  
C3  
3
1
0
2
9
2
8
7
8
9
1
2
0
1
R3  
C1  
R2  
C2  
8-8. External Loop Filter  
8.2 Typical Application  
8-9. Typical Application Schematic  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
8.2.1 Design Requirements  
The design of the loop filter is complex and is typically done with software. The PLLatinum Sim software is an  
excellent resource for doing this and the design is shown in 8-10.  
8-10. PLLatinum Sim Tool  
8.2.2 Detailed Design Procedure  
The integration of phase noise over a certain bandwidth (jitter) is an performance specification that translates  
to signal-to-noise ratio. Phase noise inside the loop bandwidth is dominated by the PLL, while the phase noise  
outside the loop bandwidth is dominated by the VCO. Generally, jitter is lowest if loop bandwidth is designed  
to the point where the two intersect. A higher phase margin loop filter design has less peaking at the loop  
bandwidth and thus lower jitter. The tradeoff with this is that longer lock times and spurs must be considered in  
design as well.  
8.2.3 Application Curve  
Using the settings described, the performance measured using a clean 100-MHz input reference is shown. Note  
the loop bandwidth is about 350 kHz, as simulations predict.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: LMX2694-SEP  
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
10.4 GHz  
-160  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Offset (Hz)  
tc-0  
8-11. Results for Loop Filter Design  
9 Power Supply Recommendations  
TI recommends placement of bypass capacitors close to the pins. Consult the EVM instructions for layout  
examples. If fractional spurs are a large concern, using a ferrite bead to each of these power supply pins can  
reduce spurs to a small degree. This device has integrated LDOs, which improves the resistance to power  
supply noise. However, the pullup components on the RFOUTA and RFOUTB pins on the outputs have a direct  
connection to the power supply, so take extra care to ensure that the voltage is clean for these pins.  
Copyright © 2022 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
In general, the layout guidelines are similar to most other PLL devices. Here are some specific guidelines.  
GND pins may be routed on the package back to the DAP.  
The OSCIN pins, these are internally biased and must be AC coupled.  
If not used, the SYSREFREQ may be grounded to the DAP.  
For optimal VCO phase noise in the 200 kHz to 1 MHz range, it is ideal that the capacitor closest to the  
VTUNE pin be at least 3.3 nF. As requiring this larger capacitor may restrict the loop bandwidth, this value  
can be reduced (to say 1.5 nF) at the expense of VCO phase noise.  
For the outputs, keep the pullup component as close as possible to the pin and use the same component on  
each side of the differential pair.  
If a single-ended output is needed, the other side must have the same loading and pullup. However, the  
routing for the used side can be optimized by routing the complementary side through a via to the other side  
of the board. On this side, use the same pullup and make the load look equivalent to the side that is used.  
Ensure DAP on device is well-grounded with many vias, preferably copper filled.  
Have a thermal pad that is as large as the LMX2694-SEP exposed pad. Add vias to the thermal pad to  
maximize thermal performance.  
Use a low loss dielectric material, such as Rogers 4350B, for optimal output power.  
10.2 Layout Example  
In addition to the layout guidelines already given, here are some additional comments for this specific layout  
example.  
The most critical part of the layout that the placement of the pull-up components (R19, R20, R21, and R22) is  
close to the pin for optimal output power.  
For this layout, all of the loop filter (C1LF, C2LF, C3LF, C4LF, R2LF, R3LF, and R4LF) are on the back side of  
the board. C4LF is located right underneath to the VTUNE pin. In the event that this C4LF capacitor would be  
open, it is recommended to move one of loop capacitors in this spot. For instance, if a 3rd order loop filter was  
used, technically C3LF would be non-zero and C4LF would be open. However, for this layout example that is  
designed for a 4th order loop filter, it would be optimal to make R3LF = 0 Ω, C3LF = open, and C4LF to be  
whatever C3LF would have been.  
10-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: LMX2694-SEP  
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
Texas Instruments has several software tools to aid in the development at www.ti.com. Among these tools are:  
PLLatinum Sim program for designing loop filters, simulating phase noise and spurs.  
TICS Pro software to understand how to program the device and for programming the EVM board.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
AN-1879 Fractional N Frequency Synthesis (SNAA062)  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更  
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
11.5 Trademarks  
PLLatinumis a trademark of Texas Instruments.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
 
 
 
 
 
 
 
 
 
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
PACKAGE OUTLINE  
RTC0048G  
VQFNP - 0.9 mm max height  
SCALE 2.100  
PLASTIC QUAD FLATPACK - NO LEAD  
7.1  
6.9  
B
A
PIN 1 ID  
7.1  
6.9  
(
6.75)  
0.9  
0.8  
C
SEATING PLANE  
0.08 C  
(0.2)  
0.60  
4X 45 X  
0.24  
EXPOSED  
THERMAL PAD  
13  
24  
12  
25  
SYMM  
49  
5.7 0.1  
4X  
5.5  
36  
1
0.30  
0.18  
44X 0.5  
48X  
48  
37  
SYMM  
0.5  
0.3  
0.1  
C B A  
C
PIN 1 ID  
(R0.2)  
48X  
0.05  
4224759/A 01/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: LMX2694-SEP  
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
RTC0048G  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
5.7)  
(1.35)  
(1.25)  
48  
37  
48X (0.6)  
48X (0.24)  
1
36  
(1.25)  
(1.35)  
44X (0.5)  
SYMM  
49  
(6.8)  
(
0.2) VIA  
TYP  
25  
12  
(R0.05) TYP  
13  
24  
SYMM  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4224759/A 01/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: LMX2694-SEP  
LMX2694-SEP  
ZHCSO17C – NOVEMBER 2019 – REVISED MARCH 2022  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
RTC0048G  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.675)  
(1.35)  
48  
37  
48X (0.6)  
48X (0.24)  
1
36  
44X (0.5)  
SYMM  
(1.35)  
(0.675)  
49  
(6.8)  
METAL  
TYP  
16X ( 1.15)  
25  
12  
(R0.05) TYP  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49:  
65% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4224759/A 01/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: LMX2694-SEP  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Feb-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMX2694SRTCTSEP  
ACTIVE  
VQFN  
RTC  
48  
1
RoHS & Green Call TI | NIPDAUAG  
Level-3-260C-168 HR  
-55 to 125  
LMX2694  
SEP  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Feb-2022  
OTHER QUALIFIED VERSIONS OF LMX2694-SEP :  
Enhanced Product : LMX2694-EP  
NOTE: Qualified Version Definitions:  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RTC 48  
7 x 7, 0.5 mm pitch  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224601/A  
www.ti.com  
PACKAGE OUTLINE  
RTC0048G  
VQFNP - 0.9 mm max height  
SCALE 2.100  
PLASTIC QUAD FLATPACK - NO LEAD  
7.1  
6.9  
B
A
PIN 1 ID  
7.1  
6.9  
(
6.75)  
0.9  
0.8  
C
SEATING PLANE  
0.08 C  
(0.2)  
0.60  
4X 45 X  
0.24  
EXPOSED  
THERMAL PAD  
13  
24  
12  
25  
SYMM  
49  
5.7 0.1  
4X  
5.5  
36  
1
0.30  
0.18  
0.1  
44X 0.5  
48X  
48  
37  
SYMM  
0.5  
0.3  
C B A  
C
PIN 1 ID  
(R0.2)  
48X  
0.05  
4224759/A 01/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTC0048G  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
5.7)  
(1.35)  
(1.25)  
37  
48  
48X (0.6)  
48X (0.24)  
1
36  
(1.25)  
44X (0.5)  
SYMM  
(1.35)  
49  
(6.8)  
(
0.2) VIA  
TYP  
25  
12  
(R0.05) TYP  
13  
24  
SYMM  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224759/A 01/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTC0048G  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.675)  
(1.35)  
48  
37  
48X (0.6)  
48X (0.24)  
1
36  
44X (0.5)  
SYMM  
(1.35)  
(0.675)  
49  
(6.8)  
METAL  
TYP  
16X ( 1.15)  
25  
12  
(R0.05) TYP  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49:  
65% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4224759/A 01/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY