LMZ10504TZX-ADJ/NOPB [TI]

采用引线式表面贴装 TO 封装的 5.5V、4A 电源模块 | NDW | 7 | -40 to 125;
LMZ10504TZX-ADJ/NOPB
型号: LMZ10504TZX-ADJ/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用引线式表面贴装 TO 封装的 5.5V、4A 电源模块 | NDW | 7 | -40 to 125

开关 电源电路
文件: 总36页 (文件大小:1312K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMZ10504  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
具有 5.5V 最大输入电压的 LMZ10504 4A 电源模块  
创建定制设计方案  
1 特性  
1
集成屏蔽电感器  
2 应用  
使用外部软启动、跟踪和精密使能端实现灵活启动  
排序  
3.3V 5V 电源轨到负载点的转换  
空间受限型 应用  
针对浪涌电流以及输入 UVLO 和输出短路等故障提  
供保护  
噪声敏感型 应用 (如收发器、医疗设备)  
便于装配和制造的单个外露焊盘和标准引脚分布  
与以下器件引脚到引脚兼容:  
3 说明  
LMZ10504 电源模块是一款完整的易用型直流/直流解  
决方案,可驱动高达 4A 的负载,并具有出色的电源转  
换效率、输出电压精度以及线路和负载调节功能。  
LMZ10504 采用创新型封装,可提高散热性能并支持  
手工或机器焊接。  
LMZ10503(最大 3A/15W)  
LMZ10505(最大 5A/25W)  
针对 WEBENCH®Power Designer 提供全面支  
电气规范  
总输出功率最大值达 20W  
LMZ10504 的输入电压轨范围为 2.95V 5.5V,提供  
的高精度可调节输出电压低至 0.8VPWM 开关的固  
定频率为 1MHz,确保了 EMI 特性的可预测性。两个  
外部补偿组件经过调节可设置最快的响应时间,并且允  
许选用陶瓷输出电容或电解输出电容。外部可编程软启  
动电容便于控制启动过程。LMZ10504 是一款稳定可  
靠的解决方案,具有以下 功能:用于针对过流或短路  
故障提供保护的无损逐周期峰值电流限制、热关断、输  
入低压锁定和预偏置启动。  
输出电流高达 4A  
输入电压范围:2.95V 5.5V  
输出电压范围:0.8V 5V  
整个温度范围内的反馈电压精度达 ±1.63%  
性能优势  
可在高温环境下运行  
效率高达 96%,能够有效减少系统产生的热量  
经过低辐射发射 (EMI) 测试,符合 EN55022 B  
类标准(EN 55022:2006+A1:2007FCC 第  
15 部分 B 子部分:2007。请参阅Table 9 和布  
局,获取有关测试器件的信息。)  
器件信息(1)(2)  
器件型号  
LMZ10504  
封装  
封装尺寸(标称值)  
TO-PMOD (7)  
9.85mm × 10.16mm  
通过 10V/m 辐射抗扰度电磁干扰 (EMI) 测试标  
EN61000 4-3  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
针对现场可编程门阵列 (FPGA) 和特定用途集成  
电路 (ASIC) 供电的快速瞬态响应  
(2) 峰值回流温度等于 245°C。有关更多详细信息,请参阅  
LMZ1xxx LMZ2xxx 电源模块系列设计摘要》。  
使用 LMZ10504 并借助 WEBENCH® 电源设计器  
典型应用电路  
效率 (VOUT = 3.3V)  
VIN  
VOUT  
6, 7  
VOUT  
FB  
1
2
LMZ10504  
VIN  
EN  
CO  
5
Cin  
SS  
GND  
4, EP  
Rfbt  
3
CSS  
Ccomp  
Rcomp  
Rfbb  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNVS610  
 
 
 
 
 
 
 
 
LMZ10504  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
www.ti.com.cn  
目录  
8.1 Application Information............................................ 14  
8.2 Typical Application .................................................. 14  
8.3 System Examples ................................................... 20  
Power Supply Recommendations...................... 23  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 14  
9
10 Layout................................................................... 23  
10.1 Layout Guidelines ................................................. 23  
10.2 Layout Examples................................................... 24  
10.3 Estimate Power Dissipation and Thermal  
Considerations ......................................................... 26  
10.4 Power Module SMT Guidelines ............................ 27  
11 器件和文档支持 ..................................................... 28  
11.1 器件支持................................................................ 28  
11.2 文档支持................................................................ 28  
11.3 接收文档更新通知 ................................................. 28  
11.4 社区资源................................................................ 29  
11.5 ....................................................................... 29  
11.6 静电放电警告......................................................... 29  
11.7 术语表 ................................................................... 29  
12 机械、封装和可订购信息....................................... 29  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision O (June 2017) to Revision P  
Page  
仅有编辑修订;无技术性更改 ................................................................................................................................................ 1  
Changes from Revision N (September 2015) to Revision O  
Page  
已更改 WEBENCH 列表项的语言;在产品说明书中进一步添加了有关 WEBENCH 的其他内容和链................................ 1  
Changes from Revision M (October 2013) to Revision N  
Page  
添加了 ESD 额定值 表、特性 说明 部分、器件功能模式应用和实施 部分、电源建议 部分、布局 部分、器件和文档  
支持 部分以及机械、封装和可订购信息 部分。...................................................................................................................... 1  
Changes from Revision L (April 2013) to Revision M  
Page  
Deleted 10 mils....................................................................................................................................................................... 4  
Changed 10 mils................................................................................................................................................................... 23  
Changed 10 mils................................................................................................................................................................... 26  
Added Power Module SMT Guidelines................................................................................................................................. 27  
2
Copyright © 2009–2019, Texas Instruments Incorporated  
 
LMZ10504  
www.ti.com.cn  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
5 Pin Configuration and Functions  
NDW Package  
7-Lead TO-PMOD  
Top View  
VOUT  
VOUT  
FB  
7
6
5
4
3
2
1
Exposed Pad  
Connect to GND  
GND  
SS  
EN  
VIN  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
EN  
2
Analog  
Ground  
Active-high enable input for the device.  
Exposed pad is used as a thermal connection to remove heat from the device. Connect this  
pad to the PCB ground plane in order to reduce thermal resistance value. EP must also  
provide a direct electrical connection to the input and output capacitors ground terminals.  
Connect EP to pin 4.  
Exposed Pad  
Feedback pin. This is the inverting input of the error amplifier used for sensing the output  
voltage. Keep the copper area of this node small.  
FB  
5
4
Analog  
Ground  
Power ground and signal ground. Provide a direct connection to the EP. Place the bottom  
feedback resistor as close as possible to GND and FB pin.  
GND  
Soft-start control pin. An internal 2-µA current source charges an external capacitor  
connected between SS and GND pins to set the output voltage ramp rate during start-up.  
The SS pin can also be used to configure the tracking feature.  
SS  
3
Analog  
Power supply input. A low-ESR input capacitance should be located as close as possible to  
the VIN pin and exposed pad (EP).  
VIN  
1
Power  
Power  
The output terminal of the internal inductor. Connect the output filter capacitor between  
VOUT pin and EP.  
VOUT  
6, 7  
Copyright © 2009–2019, Texas Instruments Incorporated  
3
LMZ10504  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)(2)(3)  
MIN  
MAX  
UNIT  
VIN, VOUT, EN, FB, SS to GND  
Power dissipation  
–0.3  
6
V
Internally Limited  
Junction temperature  
150  
245  
150  
°C  
°C  
°C  
Peak reflow case temperature (30 s)  
Storage temperature, Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(3) For soldering specifications, refer to the Absolute Maximum Ratings for Soldering (SNOA549).  
6.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V
(1) The human body model is a 100-pF capacitor discharged through a 1.5-kresistor into each pin. Test method is per JESD22-AI14S.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.95  
–40  
MAX  
5.5  
UNIT  
V
VIN to GND  
Junction temperature (TJ)  
125  
°C  
6.4 Thermal Information  
LMZ10504  
THERMAL METRIC(1)  
NDW (TO-PMOD)  
UNIT  
7 PINS  
20  
RθJA  
Junction-to-ambient thermal resistance(2)  
°C/W  
°C/W  
RθJC(top)  
Junction-to-case (top) thermal resistance (no air flow)  
1.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2)  
RθJA measured on a 2.25-in × 2.25-in (5.8 cm × 5.8 cm) 4-layer board, with 1-oz. copper, thirty six thermal vias, no air flow, and 1-W  
power dissipation. Refer to Layout Examples or AN-2022 LMZ1050x Evaluation Board (SNVA421).  
4
Copyright © 2009–2019, Texas Instruments Incorporated  
LMZ10504  
www.ti.com.cn  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
6.5 Electrical Characteristics  
Specifications are for TJ = 25°C unless otherwise specified. Minimum and maximum limits are ensured through test, design,  
or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference  
purposes only. VIN = VEN = 3.3 V, unless otherwise indicated in the conditions column.  
PARAMETER  
TEST CONDITIONS  
MIN(1)  
TYP(2) MAX(1)  
UNIT  
SYSTEM PARAMETERS  
0.8  
0.82  
0.8  
Total feedback voltage  
variation including line and VOUT = 2.5 V  
load regulation  
VIN = 2.95 V to 5.5 V  
over the operating junction  
temperature range TJ of  
–40°C to 125°C  
V FB  
V FB  
V FB  
V
0.78  
0.787  
0.785  
IOUT = 0 A to 4 A  
VIN = 3.3 V, VOUT = 2.5  
V
IOUT = 0 A  
over the operating junction  
temperature range TJ of  
–40°C to 125°C  
Feedback voltage variation  
V
V
0.812  
0.798  
0.81  
2.6  
VIN = 3.3 V, VOUT = 2.5  
V
IOUT = 4 A  
over the operating junction  
temperature range TJ of  
–40°C to 125°C  
Feedback voltage variation  
over the operating junction  
temperature range TJ of  
–40°C to 125°C  
Rising  
2.95  
Input UVLO threshold  
(measured at VIN pin)  
VIN(UVLO)  
V
2.4  
over the operating junction  
temperature range TJ of  
–40°C to 125°C  
Falling  
1.95  
ISS  
Soft-start current  
Charging Current  
2
µA  
1.7  
over the operating junction  
temperature range TJ of  
–40°C to 125°C  
IQ  
Non-switching input current VFB = 1 V  
mA  
3
260  
500  
5.5  
Shutdown quiescent  
current  
over the operating junction  
temperature range TJ of  
–40°C to 125°C  
ISD  
VIN = 5.5 V, VEN = 0 V  
µA  
Output current limit  
(average current)  
over the operating junction  
temperature range TJ of  
–40°C to 125°C  
IOCL  
VOUT = 2.5 V  
In current limit  
A
4.1  
6.7  
fFB  
Frequency foldback  
250  
kHz  
PWM SECTION  
1000  
1160  
fSW  
Switching frequency  
kHz  
over the operating junction temperature range TJ of  
–40°C to 125°C  
750  
0%  
over the operating junction temperature range TJ of  
–40°C to 125°C  
Drange  
PWM duty cycle range  
100%  
ENABLE CONTROL  
VEN-IH EN pin rising threshold  
1.23  
V
V
over the operating junction temperature range TJ of  
–40°C to 125°C  
1.8  
1.06  
VEN-IF  
EN pin falling threshold  
over the operating junction temperature range TJ of  
–40°C to 125°C  
0.8  
(1) Minimum and maximum limits are 100% production tested at an ambient temperature (TA) of 25°C. Limits over the operating  
temperature range are ensured through correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate  
Average Outgoing Quality Level (AOQL).  
(2) Typical numbers are at 25°C and represent the most likely parametric norm.  
Copyright © 2009–2019, Texas Instruments Incorporated  
5
LMZ10504  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
Specifications are for TJ = 25°C unless otherwise specified. Minimum and maximum limits are ensured through test, design,  
or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference  
purposes only. VIN = VEN = 3.3 V, unless otherwise indicated in the conditions column.  
PARAMETER  
THERMAL CONTROL  
TEST CONDITIONS  
MIN(1)  
TYP(2) MAX(1)  
UNIT  
TSD  
TJ for thermal shutdown  
145  
10  
°C  
°C  
Hysteresis for thermal  
shutdown  
TSD-HYS  
PERFORMANCE PARAMETERS  
Refer to Table 1  
VOUT = 2.5 V  
Bandwidth Limit = 2 MHz  
10  
ΔVOUT  
Output voltage ripple  
mVpk-pk  
Refer to Table 5 bandwidth limit = 20 MHz  
5
0.04%  
0.25%  
0.04%  
ΔVIN = 2.95 V to 5.5 V  
IOUT = 0 A  
ΔVFB  
VFB  
/
Feedback voltage line  
regulation  
IOUT = 0 A to 4 A  
ΔVIN = 2.95 V to 5.5 V  
IOUT = 0 A, VOUT = 2.5 V  
ΔVOUT  
VOUT  
/
Output voltage line  
regulation  
IOUT = 0 A to 4 A  
VOUT = 2.5 V  
0.25%  
EFFICIENCY  
VOUT = 3.3 V  
VOUT = 2.5 V  
VOUT = 1.8 V  
VOUT = 1.5 V  
VOUT = 1.2 V  
VOUT = 0.8 V  
VOUT = 2.5 V  
VOUT = 1.8 V  
VOUT = 1.5 V  
VOUT = 1.2 V  
VOUT = 0.8V  
VOUT = 3.3 V  
VOUT = 2.5 V  
VOUT = 1.8 V  
VOUT = 1.5 V  
VOUT = 1.2 V  
VOUT = 0.8 V  
VOUT = 2.5 V  
VOUT = 1.8 V  
VOUT = 1.5 V  
VOUT = 1.2 V  
VOUT = 0.8 V  
96.1%  
94.8%  
93.1%  
92%  
Peak efficiency (1 A) VIN  
5 V  
=
=
η
η
η
η
90.4%  
86.8%  
95.7%  
94.1%  
93%  
Peak efficiency (1 A) VIN  
3.3 V  
91.6%  
88.3%  
94.1%  
92.4%  
90%  
Full load efficiency (4 A)  
VIN = 5 V  
88.3%  
86.1%  
80.8%  
91.4%  
90%  
Full load efficiency (4 A)  
VIN = 3.3 V  
87.2%  
84.9%  
79.3%  
6
Copyright © 2009–2019, Texas Instruments Incorporated  
LMZ10504  
www.ti.com.cn  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
6.6 Typical Characteristics  
Unless otherwise specified, the following conditions apply: VIN = VEN = 5 V, CIN is 47-µF 10-V X5R ceramic capacitor; TA =  
25°C for efficiency curves and waveforms.  
VOUT = 3.3 V  
VOUT = 1.8 V  
VOUT = 1.2 V  
VOUT = 2.5 V  
VOUT = 1.5 V  
VOUT = 0.8 V  
Figure 1. Efficiency  
Figure 3. Efficiency  
Figure 5. Efficiency  
Figure 2. Efficiency  
Figure 4. Efficiency  
Figure 6. Efficiency  
Copyright © 2009–2019, Texas Instruments Incorporated  
7
 
LMZ10504  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
Unless otherwise specified, the following conditions apply: VIN = VEN = 5 V, CIN is 47-µF 10-V X5R ceramic capacitor; TA =  
25°C for efficiency curves and waveforms.  
VIN = 5 V, RθJA = 20°C/W  
Figure 7. Current Derating  
VIN = 3.3 V, RθJA = 20°C/W  
Figure 8. Current Derating  
VOUT = 2.5 V, IOUT = 0 A  
VIN = 5 V, VOUT = 2.5 V, IOUT = 4 A Evaluation Board  
Figure 10. Start-Up  
Figure 9. Radiated Emissions (EN 55022, Class B)  
VOUT = 2.5 V, IOUT = 0 A  
VIN = 3.3 V, VOUT = 2.5 V, IOUT = 0.4-A to 3.6-A to 0.4-A step  
20 mV/DIV, 20-MHz Bandwidth Limited  
Refer to Table 5 for BOM, includes optional components  
Figure 12. Load Transient Response  
Figure 11. Prebiased Start-Up  
8
Copyright © 2009–2019, Texas Instruments Incorporated  
LMZ10504  
www.ti.com.cn  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
Typical Characteristics (continued)  
Unless otherwise specified, the following conditions apply: VIN = VEN = 5 V, CIN is 47-µF 10-V X5R ceramic capacitor; TA =  
25°C for efficiency curves and waveforms.  
VIN = 3.3 V, VOUT = 2.5 V, IOUT = 4 A, 20 mV/DIV  
Refer to Table 5 for BOM  
VIN = 5.0 V, VOUT = 2.5 V, IOUT = 0.4-A to 3.6-A to 0.4-A step  
20 mV/DIV, 20-MHz Bandwidth Limited  
Refer to Table 5 for BOM, includes optional components  
Figure 13. Load Transient Response  
Figure 14. Output Voltage Ripple  
VIN = 5.0 V, VOUT = 2.5 V, IOUT = 4 A,  
20 mV/DIV, Refer to Table 5 for BOM  
Figure 15. Output Voltage Ripple  
Copyright © 2009–2019, Texas Instruments Incorporated  
9
LMZ10504  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMZ10504 power module is a complete, easy-to-use DC-DC solution capable of driving up to a 4-A load  
with exceptional power conversion efficiency, output voltage accuracy, line and load regulation. The LMZ10504 is  
available in an innovative package that enhances thermal performance and allows for hand or machine  
soldering. The LMZ10504 is a reliable and robust solution with the following features: lossless cycle-by-cycle  
peak current limit to protect for overcurrent or short-circuit fault, thermal shutdown, input undervoltage lockout,  
and prebiased start-up.  
7.2 Functional Block Diagram  
VIN  
1
1W  
2.2 mF  
2
2.2 mF  
EN  
1.5 mH  
Voltage  
Mode  
6, 7  
VOUT  
3
Control  
SS  
5
4, EP  
GND  
FB  
7.3 Feature Description  
7.3.1 Enable  
The LMZ10504 features an enable (EN) pin and associated comparator to allow the user to easily sequence the  
LMZ10504 from an external voltage rail, or to manually set the input UVLO threshold. The turnon or rising  
threshold and hysteresis for this comparator are typically 1.23 V and 0.15 V, respectively. The precise reference  
for the enable comparator allows the user to ensure that the LMZ10504 will be disabled when the system  
demands it to be.  
The EN pin should not be left floating. For always-on operation, connect EN to VIN.  
7.3.2 Enable and UVLO  
Using a resistor divider from VIN to EN as shown in the schematic diagram below, the input voltage at which the  
part begins switching can be increased above the normal input UVLO level according to:  
Rent + Renb  
V
= 1.23V ì  
IN(UVLO)  
Renb  
(1)  
For example, suppose that the required input UVLO level is 3.69 V. Choosing Renb = 10 k, then we calculate  
Rent = 20 k.  
10  
Copyright © 2009–2019, Texas Instruments Incorporated  
LMZ10504  
www.ti.com.cn  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
Feature Description (continued)  
VIN  
VIN  
EN  
LMZ10504  
Rent  
Cin1  
Renb  
GND  
Figure 16. Setting Enable and UVLO  
Alternatively, the EN pin can be driven from another voltage source to cater to system sequencing requirements  
commonly found in FPGA and other multi-rail applications. Figure 17 shows an LMZ10504 that is sequenced to  
start based on the voltage level of a master system rail (VOUT1).  
VOUT1  
VIN  
VOUT2  
VIN  
EN  
VOUT  
Rent  
LMZ10504  
CO1  
Cin1  
Renb  
GND  
Figure 17. Setting Enable and UVLO Using External Power Supply  
7.3.3 Soft-Start  
The LMZ10504 begins to operate when both the VIN and EN, voltages exceed the rising UVLO and enable  
thresholds, respectively. A controlled soft-start eliminates inrush currents during start-up and allows the user  
more control and flexibility when sequencing the LMZ10504 with other power supplies.  
In the event of either VIN or EN decreasing below the falling UVLO or enable threshold respectively, the voltage  
on the soft-start pin is collapsed by discharging the soft-start capacitor by a 14-µA (typical) current sink to  
ground.  
7.3.4 Soft-Start Capacitor  
Determine the soft-start capacitance with the following relationship:  
tssìIss  
VFB  
CSS  
=
where  
VFB is the internal reference voltage (nominally 0.8 V),  
ISS is the soft-start charging current (nominally 2 µA)  
and CSS is the external soft-start capacitance.  
(2)  
(3)  
Thus, the required soft-start capacitor per unit output voltage start-up time is given by:  
CSS = 2.5 nF / ms  
For example, a 4-ms soft-start time will yield a 10-nF capacitance. The minimum soft-start capacitance is 680 pF.  
Copyright © 2009–2019, Texas Instruments Incorporated  
11  
 
LMZ10504  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
www.ti.com.cn  
Feature Description (continued)  
7.3.5 Tracking  
The LMZ10504 can track the output of a master power supply during soft-start by connecting a resistor divider to  
the SS pin. In this way, the output voltage slew rate of the LMZ10504 will be controlled by a master supply for  
loads that require precise sequencing. When the tracking function is used, a small value soft-start capacitor  
should be connected to the SS pin to alleviate output voltage overshoot when recovering from a current limit  
fault.  
Master Power  
Supply  
VOUT1  
VIN  
VOUT2  
VIN  
VOUT  
Rtrkt  
EN  
SS  
LMZ10504  
CO1  
Cin1  
VSS  
Rtrkb  
GND  
Figure 18. Tracking Using External Power Supply  
7.3.6 Tracking - Equal Soft-Start Time  
One way to use the tracking feature is to design the tracking resistor divider so that the master supply output  
voltage, VOUT1, and the LMZ10504 output voltage, VOUT2, both rise together and reach their target values at the  
same time. This is termed ratiometric start-up. For this case, the equation governing the values of tracking divider  
resistors Rtrkb and Rtrkt is given by:  
Rtrkt  
Rtrkb  
=
VOUT1-1.0V  
(4)  
The above equation includes an offset voltage, of 200 mV, to ensure that the final value of the SS pin voltage  
exceeds the reference voltage of the LMZ10504. This offset will cause the LMZ10504 output voltage to reach  
regulation slightly before the master supply. For a value of 33 k, 1% is recommended for Rtrkt as a compromise  
between high-precision and low-quiescent current through the divider while minimizing the effect of the 2-µA soft-  
start current source.  
For example, if the master supply voltage VOUT1 is 3.3 V and the LMZ10504 output voltage was 1.8 V, then the  
value of Rtrkb needed to give the two supplies identical soft-start times would be 14.3 k. Figure 19 shows an  
example of tracking using the equal soft-start time.  
RATIOMETRIC STARTUP  
VOUT1  
VOUT2  
EN  
TIME  
Figure 19. Timing Diagram for Tracking Using Equal Soft-Start Time  
12  
Copyright © 2009–2019, Texas Instruments Incorporated  
 
LMZ10504  
www.ti.com.cn  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
Feature Description (continued)  
7.3.7 Tracking - Equal Slew Rates  
Alternatively, the tracking feature can be used to have similar output voltage ramp rates. This is referred to as  
simultaneous start-up. In this case, the tracking resistors can be determined based on Equation 5:  
0.8V  
Rtrkb  
=
ìRtrkt  
VOUT2 - 0.8V  
(5)  
and to ensure proper overdrive of the SS pin  
VOUT2 < 0.8ì VOUT1  
(6)  
For the example case of VOUT1 = 5 V and VOUT2 = 2.5 V, with Rtrkt set to 33 kas before, Rtrkb is calculated from  
the above equation to be 15.5 k. Figure 20 shows an example of tracking using the equal slew rates.  
SIMULTANEOUS STARTUP  
VOUT1  
VOUT2  
EN  
TIME  
Figure 20. Timing Diagram for Tracking Using Equal Slew Rates  
7.3.8 Current Limit  
When a current greater than the output current limit (IOCL) is sensed, the ON-time is immediately terminated and  
the low-side MOSFET is activated. The low-side MOSFET stays on for the entire next four switching cycles.  
During these skipped pulses, the voltage on the soft-start pin is reduced by discharging the soft-start capacitor by  
a current sink on the soft-start pin of nominally 14 µA. Subsequent overcurrent events will drain more and more  
charge from the soft-start capacitor, effectively decreasing the reference voltage as the output droops due to the  
pulse skipping. Reactivation of the soft-start circuitry ensures that when the overcurrent situation is removed, the  
part will resume normal operation smoothly.  
7.3.9 Overtemperature Protection  
When the LMZ10504 senses a junction temperature greater than 145°C (typical), both switching MOSFETs are  
turned off and the part enters a standby state. Upon sensing a junction temperature below 135°C (typical), the  
part will re-initiate the soft-start sequence and begin switching once again.  
7.4 Device Functional Modes  
7.4.1 Prebias Start-Up Capability  
At start-up, the LMZ10504 is in a prebiased state when the output voltage is greater than zero. This often occurs  
in many multi-rail applications such as when powering an ASIC, FPGA, or DSP. The output can be prebiased in  
these applications through parasitic conduction paths from one supply rail to another. Even though the  
LMZ10504 is a synchronous converter, it will not pull the output low when a prebias condition exists. The  
LMZ10504 will not sink current during start-up until the soft-start voltage exceeds the voltage on the FB pin.  
Because the device does not sink current it protects the load from damage that might otherwise occur if current  
is conducted through the parasitic paths of the load.  
Copyright © 2009–2019, Texas Instruments Incorporated  
13  
 
 
LMZ10504  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LMZ10504 is a step-down DC-to-DC power module. It is typically used to convert a higher DC voltage to a  
lower DC voltage with a maximum output current of 4 A. The following design procedure can be used to select  
components for the LMZ10504. Alternately, the WEBENCH software may be used to generate complete designs.  
When generating a design, the WEBENCH software uses iterative design procedure and accesses  
comprehensive databases of components. Please go to www.ti.com for more details.  
8.2 Typical Application  
This section provides several application solutions with an associated bill of materials. The compensation for  
each solution was optimized to work over the full input range. Many applications have a fixed input voltage rail. It  
is possible to modify the compensation to obtain a faster transient response for a given input voltage operating  
point.  
U1  
VIN  
VOUT  
6, 7  
5
1
2
VOUT  
FB  
VIN  
EN  
CO1  
LMZ10504  
Cin1  
SS  
3
GND  
4, EP  
Rfbt  
CSS  
C
comp  
Rcomp  
Rfbb  
Figure 21. Typical Applications Schematic  
8.2.1 Design Requirements  
For this example the following application parameters exist.  
VIN = 5 V  
VOUT = 2.5 V  
IOUT = 4 A  
ΔVOUT = 20 mVpk-pk  
ΔVo_tran = ±20 mVpk-pk  
Table 1. Bill of Materials, VIN = 3.3 V to 5 V, VOUT = 2.5 V, IOUT (MAX) = 4 A, Optimized for Electrolytic Input  
and Output Capacitance  
DESIGNATOR  
DESCRIPTION  
Power Module  
CASE SIZE  
PFM-7  
MANUFACTURER  
Texas Instruments  
Sanyo  
MANUFACTURER P/N  
LMZ10504TZ-ADJ  
6TPE150MIC2  
QUANTITY  
U1  
1
1
Cin1  
150 µF, 6.3 V, 18 mΩ  
C2, 6.0 x 3.2 x 1.8 mm  
D3L, 7.3 x 4.3 x 2.8  
mm  
CO1  
Rfbt  
330 µF, 6.3 V, 18 mΩ  
100 kΩ  
Sanyo  
6TPE330MIL  
1
1
0603  
Vishay Dale  
CRCW0603100KFKEA  
14  
Copyright © 2009–2019, Texas Instruments Incorporated  
LMZ10504  
www.ti.com.cn  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
Typical Application (continued)  
Table 1. Bill of Materials, VIN = 3.3 V to 5 V, VOUT = 2.5 V, IOUT (MAX) = 4 A, Optimized for Electrolytic Input  
and Output Capacitance (continued)  
DESIGNATOR  
Rfbb  
DESCRIPTION  
47.5 kΩ  
CASE SIZE  
0603  
MANUFACTURER  
Vishay Dale  
Vishay Dale  
TDK  
MANUFACTURER P/N  
CRCW060347K5FKEA  
CRCW060315K0FKEA  
C1608C0G1H331J  
QUANTITY  
1
1
1
1
Rcomp  
15 kΩ  
0603  
Ccomp  
330 pF, ±5%, C0G, 50 V  
10 nF, ±10%, X7R, 16 V  
0603  
CSS  
0603  
Murata  
GRM188R71C103KA01  
Table 2. Bill of Materials, VIN = 3.3 V, VOUT = 0.8 V, IOUT (MAX) = 4 A, Optimized for Solution Size and  
Transient Response(1)  
DESIGNATOR  
U1  
DESCRIPTION  
Power Module  
CASE SIZE  
PFM-7  
1206  
MANUFACTURER  
Texas Instruments  
TDK  
MANUFACTURER P/N  
LMZ10504TZ-ADJ  
QUANTITY  
1
2
1
1
1
1
Cin1, CO1  
Rfbt  
47 µF, X5R, 6.3 V  
110 kΩ  
C3216X5R0J476M  
0402  
Vishay Dale  
Vishay Dale  
Murata  
CRCW0402100KFKED  
CRCW04021K00FKED  
GRM1555C1H270JZ01  
GRM155R71C103KA01  
Rcomp  
1.0 kΩ  
0402  
Ccomp  
27 pF, ±5%, C0G, 50 V  
10 nF, ±10%, X7R, 16 V  
0402  
CSS  
0402  
Murata  
(1) In the case where the output voltage is 0.8 V, TI recommends removing Rfbb and keep Rfbt, Rcomp, and Ccomp for a type III  
compensation.  
8.2.2 Detailed Design Procedure  
LMZ10504 is fully supported by WEBENCH and offers the following: component selection, performance,  
electrical, and thermal simulations as well as the Build-It board, for a reduced design time. On the other hand, all  
external components can be calculated by following the design procedure below.  
1. Determine the input voltage and output voltage. Also, make note of the ripple voltage and voltage transient  
requirements.  
2. Determine the necessary input and output capacitance.  
3. Calculate the feedback resistor divider.  
4. Select the optimized compensation component values.  
5. Estimate the power dissipation and board thermal requirements.  
6. Follow the PCB design guideline.  
7. Learn about the LMZ10504 features such as enable, input UVLO, soft start, tracking, prebiased start-up,  
current limit, and thermal shutdown.  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LMZ10504 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
Copyright © 2009–2019, Texas Instruments Incorporated  
15  
LMZ10504  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
www.ti.com.cn  
8.2.2.2 Input Capacitor Selection  
A 22-µF or 47-µF high-quality dielectric (X5R, X7R) ceramic capacitor rated at twice the maximum input voltage  
is typically sufficient. The input capacitor must be placed as close as possible to the VIN pin and GND exposed  
pad to substantially eliminate the parasitic effects of any stray inductance or resistance on the PCB and supply  
lines.  
Neglecting capacitor equivalent series resistance (ESR), the resultant input capacitor AC ripple voltage is a  
triangular waveform. The minimum input capacitance for a given peak-to-peak value (ΔVIN) of VIN is specified as  
follows:  
IOUTìDì(1-D)  
Cin  
í
fsw ì D V  
IN  
where  
the PWM duty cycle, D, is given by Equation 8  
(7)  
(8)  
VOUT  
D =  
V
IN  
If ΔVIN is 1% of VIN, this equals to 50 mV and fSW = 1 MHz.  
2.5V  
5V  
2.5V  
5V  
«
’ ≈  
ì 1-  
4Aì  
÷ ∆  
◊ «  
÷
Cin  
í
í 20 mF  
1 MHz ì 50mV  
(9)  
A second criteria before finalizing the Cin bypass capacitor is the RMS current capability. The necessary RMS  
current rating of the input capacitor to a buck regulator can be estimated by:  
ICin(RMS) = IOUTì D(1-D)  
(10)  
2.5V  
5V  
2.5V  
5V  
ICin(RMS) = 4Aì  
1-  
= 2A  
«
÷
(11)  
With this high AC current present in the input capacitor, the RMS current rating becomes an important  
parameter. The maximum input capacitor ripple voltage and RMS current occur at 50% duty cycle. Select an  
input capacitor rated for at least the maximum calculated ICin(RMS)  
.
Additional bulk capacitance with higher ESR may be required to damp any resonance effects of the input  
capacitance and parasitic inductance.  
8.2.2.3 Output Capacitor Selection  
In general, 22-µF to 100-µF, high-quality dielectric (X5R, X7R) ceramic capacitor rated at twice the maximum  
output voltage is sufficient given the optimal high-frequency characteristics and low ESR of ceramic dielectrics.  
Although, the output capacitor can also be of electrolytic chemistry for increased capacitance density.  
Two output capacitance equations are required to determine the minimum output capacitance. One equation  
determines the output capacitance (CO) based on PWM ripple voltage. The second equation determines CO  
based on the load transient characteristics. Select the largest capacitance value of the two.  
The minimum capacitance, given the maximum output voltage ripple (ΔVOUT) requirement, is determined by the  
following equation:  
DiL  
CO  
í
8ì fswì D VOUT - (DiLìRESR  
)
[
]
where  
the peak to peak inductor current ripple (ΔiL) is equal to Equation 13:  
(12)  
(13)  
(V - VOUT )ìD  
IN  
DiL =  
Lì fsw  
16  
Copyright © 2009–2019, Texas Instruments Incorporated  
 
 
LMZ10504  
www.ti.com.cn  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
RESR is the total output capacitor ESR, L is the inductance value of the internal power inductor, where L = 1.5  
µH, and fSW = 1 MHz. Therefore, per the design example:  
(5V- 2.5V)ì 2.5 V  
5 V  
DiL =  
= 833 mA  
1.5 mH ì 1 MHz  
(14)  
The minimum output capacitance requirement due to the PWM ripple voltage is:  
833 mA  
CO  
í
»
ÿ
8ì1 MHzì 20 mV- 833 mAì3 mW  
(
)
(15)  
(16)  
CO í 6 mF  
Three mΩ is a typical RESR value for ceramic capacitors.  
Equation 17 provides a good first pass capacitance requirement for a load transient:  
Istepì VFBìLì V  
IN  
CO  
í
4ì VOUTì(V - VOUT )ì D Vo_tran  
IN  
where  
Istep is the peak to peak load step,  
VFB = 0.8 V,  
and ΔVo_tran is the maximum output voltage deviation, which is ±20 mV.  
(17)  
Therefore the capacitance requirement for the given design parameters is:  
3.2Aì0.8Vì1.5mHì5V  
4ì 2.5Vì(5V- 2.5V)ì 20mV  
CO  
í
(18)  
(19)  
CO í 39 mF  
In this particular design the output capacitance is determined by the load transient requirements.  
Table 3 lists some examples of commercially available capacitors that can be used with the LMZ10504.  
Table 3. Recommended Output Filter Capacitors  
CO (µF)  
22  
VOLTAGE (V), RESR (m)  
6.3, < 5  
MAKE  
MANUFACTURER  
PART NUMBER  
C3216X5R0J226M  
C3216X5R0J476M  
C3225X5R0J476M  
C3225X5R1A476M  
C3225X5R0J107M  
TPSD157M006#0050  
6TPE100MPB2  
CASE SIZE  
1206  
Ceramic, X5R  
Ceramic, X5R  
Ceramic, X5R  
Ceramic, X5R  
Ceramic, X5R  
Tantalum  
TDK  
TDK  
47  
6.3, < 5  
1206  
47  
6.3, < 5  
TDK  
1210  
47  
10.0, < 5  
6.3, < 5  
TDK  
1210  
100  
100  
100  
150  
TDK  
1210  
6.3, 50  
AVX  
D, 7.5 × 4.3 × 2.9 mm  
B2, 3.5 × 2.8 × 1.9 mm  
C2, 6.0 × 3.2 × 1.8 mm  
6.3, 25  
Organic Polymer  
Organic Polymer  
Sanyo  
Sanyo  
6.3, 18  
6TPE150MIC2  
D3L, 7.3 × 4.3 × 2.8  
mm  
330  
470  
6.3, 18  
6.3, 23  
Organic Polymer  
Niobium Oxide  
Sanyo  
AVX  
6TPE330MIL  
NOME37M006#0023  
E, 7.3 × 4.3 × 4.1 mm  
8.2.2.3.1 Output Voltage Setting  
A resistor divider network from VOUT to the FB pin determines the desired output voltage as follows:  
Rfbt + Rfbb  
VOUT = 0.8Vì  
Rfbb  
(20)  
Rfbt is defined based on the voltage loop requirements and Rfbb is then selected for the desired output voltage.  
Resistors are normally selected as 0.5% or 1% tolerance. Higher accuracy resistors such as 0.1% are also  
available.  
Copyright © 2009–2019, Texas Instruments Incorporated  
17  
 
 
LMZ10504  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
www.ti.com.cn  
The feedback voltage (at VOUT = 2.5 V) is accurate to within –2.5% / +2.5% over temperature and over line and  
load regulation. Additionally, the LMZ10504 contains error nulling circuitry to substantially eliminate the feedback  
voltage variation over temperature as well as the long-term aging effects of the internal amplifiers. In addition the  
zero nulling circuit dramatically reduces the 1/f noise of the bandgap amplifier and reference. The manifestation  
of this circuit action is that the duty cycle will have two slightly different but distinct operating points, each evident  
every other switching cycle.  
8.2.2.4 Loop Compensation  
The LMZ10504 preserves flexibility by integrating the control components around the internal error amplifier while  
using three small external compensation components from VOUT to FB. An integrated type II (two pole, one zero)  
voltage-mode compensation network is featured. To ensure stability, an external resistor and small value  
capacitor can be added across the upper feedback resistor as a pole-zero pair to complete a type III (three pole,  
two zero) compensation network. The compensation components recommended in Table 4 provide type III  
compensation at an optimal control loop performance. The typical phase margin is 45° with a bandwidth of 80  
kHz. Calculated output capacitance values not listed in Table 4 should be verified before designing into  
production. The detailed application note AN-2013 LMZ1050x/LMZ1050xEXT SIMPLE SWITCHER Power  
Module (SNVA417) is available to provide verification support. . In general, calculated output capacitance values  
below the suggested value will have reduced phase margin and higher control loop bandwidth. Output  
capacitance values above the suggested values will experience a lower bandwidth and increased phase margin.  
Higher bandwidth is associated with faster system response to sudden changes such as load transients. Phase  
margin changes the characteristics of the response. Lower phase margin is associated with underdamped ringing  
and higher phase margin is associated with overdamped response. Losing all phase margin will cause the  
system to be unstable; an optimized area of operation is 30° to 60° of phase margin, with a bandwidth of 100  
kHz ±20 kHz.  
VIN  
VOUT  
VIN  
Ccomp  
EN  
Rfbt  
LMZ10504  
Rcomp  
FB  
GND  
Rfbb  
Figure 22. Loop Compensation Control Components  
Table 4. LMZ10504 Compensation Component Values  
ESR (m)  
VIN (V)  
CO (µF)  
Rfbt (k)(1)  
Ccomp (pF)(1)  
Rcomp (k)(1)  
MIN  
2
MAX  
20  
20  
10  
5
22  
200  
124  
82.5  
63.4  
63.4  
226  
150  
316  
27  
68  
1.5  
1.4  
47  
2
100  
150  
150  
150  
220  
220  
1
150  
220  
220  
62  
0.681  
1
1
5
10  
26  
15  
31  
25  
50  
30  
60  
3.48  
12.1  
6.98  
14  
100  
560  
(1) In the special case where the output voltage is 0.8 V, TI recommends to remove Rfbb and keep Rfbt, Rcomp, and Ccomp for a type III  
compensation.  
18  
Copyright © 2009–2019, Texas Instruments Incorporated  
 
LMZ10504  
www.ti.com.cn  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
Table 4. LMZ10504 Compensation Component Values (continued)  
ESR (m)  
VIN (V)  
CO (µF)  
Rfbt (k)(1)  
Ccomp (pF)(1)  
Rcomp (k)(1)  
MIN  
2
MAX  
20  
20  
10  
5
22  
118  
76.8  
49.9  
40.2  
43.2  
143  
100  
200  
43  
9.09  
3.32  
2.49  
1
47  
2
100  
180  
330  
330  
100  
180  
100  
100  
150  
150  
150  
220  
220  
1
1
3.3  
10  
26  
15  
31  
25  
50  
30  
60  
4.99  
7.5  
4.99  
8.06  
8.2.3 Application Curves  
VOUT = 3.3 V  
VOUT = 3.3 V  
Figure 23. Current Derating  
Figure 24. Efficiency  
Figure 25. Radiated Emissions (EN 55022, Class B)  
Copyright © 2009–2019, Texas Instruments Incorporated  
19  
LMZ10504  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
www.ti.com.cn  
8.3 System Examples  
8.3.1 Application Schematic for 3.3-V to 5-V Input and 2.5-V Output With Optimized Ripple and Transient  
Response  
The compensation for each solution was optimized to work over the stated input range. Many applications have a  
fixed input voltage rail. It is possible to modify the compensation to obtain a faster transient response for a given  
input voltage operating point. This schematic is intended to serve as a helpful starting point towards an optimized  
design.  
U1  
Optional  
VOUT  
VIN  
6, 7  
1
2
VOUT  
FB  
VIN  
EN  
CO1  
CO2  
CO3  
LMZ10504  
C
comp  
+
Cin2  
Cin1  
Rfbt  
5
SS  
GND  
Rcomp  
3
4, EP  
CSS  
Optional  
Rfbb  
Figure 26. Schematic for 2.5-V Output Based on 3.3-V to 5-V Input  
Table 5. Bill of Materials, VIN = 3.3 V to 5 V, VOUT = 2.5 V, IOUT (MAX) = 4 A,  
Optimized for Low Input and Output Ripple Voltage and Fast Transient Response(1)  
DESIGNATOR  
U1  
DESCRIPTION  
Power Module  
CASE SIZE  
PFM-7  
1210  
E
MANUFACTURER  
Texas Instruments  
AVX  
MANUFACTURER P/N  
LMZ10504TZ-ADJ  
1210ZD226MAT  
QUANTITY  
1
2
Cin1  
22 µF, X5R, 10 V  
220 µF, 10 V, AL-Elec  
4.7 µF, X5R, 10 V  
22 µF, X5R, 6.3 V  
100 µF, X5R, 6.3 V  
75 kΩ  
Cin2  
Panasonic  
AVX  
EEE1AA221AP  
1*  
1*  
1*  
1
CO1  
0805  
1206  
1812  
0402  
0402  
0402  
0402  
0402  
0805ZD475MAT  
CO2  
AVX  
12066D226MAT  
CO3  
AVX  
18126D107MAT  
Rfbt  
Vishay Dale  
Vishay Dale  
Vishay Dale  
Murata  
CRCW040275K0FKED  
CRCW040234K8FKED  
CRCW04021K00FKED  
GRM1555C1H101JZ01  
GRM155R71C103KA01  
1
Rfbb  
34.8 kΩ  
1
Rcomp  
Ccomp  
CSS  
1.0 kΩ  
1
100 pF, ±5%, C0G, 50 V  
10 nF, ±10%, X7R, 16 V  
1
Murata  
1
(1) * Optional components, include for low input and output voltage ripple.  
Table 6. Output Voltage Setting (Rfbt = 75 k)  
VOUT  
2.5 V  
1.8 V  
1.5 V  
1.2 V  
0.9 V  
Rfbb  
34.8 kΩ  
59 kΩ  
84.5 kΩ  
150 kΩ  
590 kΩ  
20  
Copyright © 2009–2019, Texas Instruments Incorporated  
LMZ10504  
www.ti.com.cn  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
8.3.2 Application Schematic for 3.3-V to 5-V Input and 2.5-V Output  
The compensation for each solution was optimized to work over the stated input range. Many applications have a  
fixed input voltage rail. It is possible to modify the compensation to obtain a faster transient response for a given  
input voltage operating point. This schematic is intended to serve as a helpful starting point towards an optimized  
design.  
U1  
VOUT  
VIN  
6, 7  
5
1
2
VOUT  
FB  
VIN  
EN  
CO1  
CO2  
CO3  
LMZ10504  
Ren1  
+
Cin4  
Cin3  
Cin5  
Cin2  
Cin1  
SS  
3
GND  
Rfbt  
4, EP  
CSS  
C
Rcomp  
comp  
Rfbb  
Figure 27. Schematic for 2.5-V Output Based on 3.3-V to 5-V Input  
Table 7. Bill of Materials, VIN = 3.3 V to 5 V, VOUT = 2.5 V, IOUT (MAX) = 4 A  
DESIGNATOR  
U1  
DESCRIPTION  
Power Module  
1 µF, X7R, 16 V  
CASE SIZE  
PFM-7  
0805  
0805  
1210  
1210  
E
MANUFACTURER  
Texas Instruments  
TDK  
MANUFACTURER P/N  
QUANTITY  
LMZ10504TZ-ADJ  
C2012X7R1C105K  
C2012X5R0J475K  
C3225X5R1C226M  
C3225X5R0J476M  
EEE1AA221AP  
1
1
2
2
1
1
1
1
1
1
1
1
1
Cin1  
Cin2, CO1  
Cin3, CO2  
Cin4  
4.7 µF, X5R, 6.3 V  
22 µF, X5R, 16 V  
47 µF, X5R, 6.3 V  
220 µF, 10 V, AL-Elec  
100 µF, X5R, 6.3 V  
75 kΩ  
TDK  
TDK  
TDK  
Cin5  
Panasonic  
TDK  
CO3  
1812  
0805  
0805  
0805  
0603  
0805  
0805  
C4532X5R0J107M  
CRCW080575K0FKEA  
CRCW080534K8FKEA  
CRCW08051K10FKEA  
C1608C0G1H181J  
CRCW0805100KFKEA  
C2012C0G1H103J  
Rfbt  
Vishay Dale  
Vishay Dale  
Vishay Dale  
TDK  
Rfbb  
34.8 kΩ  
Rcomp  
Ccomp  
Ren1  
1.1 kΩ  
180 pF, ±5%, C0G, 50 V  
100 kΩ  
Vishay Dale  
TDK  
CSS  
10 nF, ±5%, C0G, 50 V  
Table 8. Output Voltage Setting (Rfbt = 75 k)  
VOUT  
3.3 V  
2.5 V  
1.8 V  
1.5 V  
1.2 V  
0.9 V  
Rfbb  
23.7 kΩ  
34.8 kΩ  
59 kΩ  
84.5 kΩ  
150 kΩ  
590 kΩ  
Copyright © 2009–2019, Texas Instruments Incorporated  
21  
LMZ10504  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
www.ti.com.cn  
8.3.3 EMI Tested Schematic for 2.5-V Output Based on 3.3-V to 5-V Input  
The compensation for each solution was optimized to work over the stated input range. Many applications have a  
fixed input voltage rail. It is possible to modify the compensation to obtain a faster transient response for a given  
input voltage operating point. This schematic is intended to serve as a helpful starting point towards an optimized  
design.  
U1  
VOUT  
VIN  
6, 7  
5
1
2
VOUT  
FB  
VIN  
EN  
CO1  
LMZ10504  
Cin3  
Cin2  
Cin1  
SS  
3
GND  
4, EP  
Rfbt  
CSS  
Ccomp  
Rcomp  
Rfbb  
Figure 28. EMI Tested Schematic for 2.5-V Output Based on 3.3-V to 5-V Input  
Table 9. Bill of Materials, VIN = 5 V, VOUT = 2.5 V, IOUT (MAX) = 4 A,  
Tested With EN55022 Class B Radiated Emissions  
DESIGNATOR  
U1  
DESCRIPTION  
Power Module  
CASE SIZE  
PFM-7  
0805  
MANUFACTURER  
Texas Instruments  
TDK  
MANUFACTURER P/N  
LMZ10504TZ-ADJ  
QUANTITY  
1
1
1
1
1
1
1
1
1
1
Cin1  
1 µF, X7R, 16 V  
4.7 µF, X5R, 6.3 V  
47 µF, X5R, 6.3 V  
100 µF, X5R, 6.3 V  
75 kΩ  
C2012X7R1C105K  
C2012X5R0J475K  
C3225X5R0J476M  
C4532X5R0J107M  
CRCW080575K0FKEA  
CRCW080534K8FKEA  
CRCW08051K10FKEA  
C1608C0G1H181J  
C2012C0G1H103J  
Cin2  
0805  
TDK  
Cin3  
1210  
TDK  
CO1  
1812  
TDK  
Rfbt  
0805  
Vishay Dale  
Vishay Dale  
Vishay Dale  
TDK  
Rfbb  
34.8 kΩ  
0805  
Rcomp  
Ccomp  
CSS  
1.1 kΩ  
0805  
180 pF, ±5%, C0G, 50 V  
10 nF, ±5%, C0G, 50 V  
0603  
0805  
TDK  
Table 10. Output Voltage Setting (Rfbt = 75 k)  
VOUT  
3.3 V  
2.5 V  
1.8 V  
1.5 V  
1.2 V  
0.9 V  
Rfbb  
23.7 kΩ  
34.8 kΩ  
59 kΩ  
84.5 kΩ  
150 kΩ  
590 kΩ  
22  
Copyright © 2009–2019, Texas Instruments Incorporated  
LMZ10504  
www.ti.com.cn  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
9 Power Supply Recommendations  
The LMZ10504 device is designed to operate from an input voltage supply range between 2.95 V and 5.5 V. This  
input supply should be well regulated and able to withstand maximum input current and maintain a stable  
voltage. The resistance of the input supply rail should be low enough that an input current transient does not  
cause a high enough drop at the LMZ10504 supply voltage that can cause a false UVLO fault triggering and  
system reset. If the input supply is more than a few inches from the LMZ10504, additional bulk capacitance may  
be required in addition to the ceramic bypass capacitors. The amount of bulk capacitance is not critical, but a 47-  
μF or 100-μF electrolytic capacitor is a typical choice.  
10 Layout  
10.1 Layout Guidelines  
PCB layout is an important part of DC-DC converter design. Poor board layout can disrupt the performance of a  
DC-DC converter and surrounding circuitry by contributing to EMI, ground bounce and resistive voltage drop in  
the traces. These can send erroneous signals to the DC-DC converter resulting in poor regulation or instability.  
Good layout can be implemented by following a few simple design rules.  
1. Minimize area of switched current loops.  
From an EMI reduction standpoint, it is imperative to minimize the high di/dt current paths. The high current  
that does not overlap contains high di/dt, see Figure 29. Therefore physically place input capacitor (Cin1) as  
close as possible to the LMZ10504 VIN pin and GND exposed pad to avoid observable high-frequency noise  
on the output pin. This will minimize the high di/dt area and reduce radiated EMI. Additionally, grounding for  
both the input and output capacitor should consist of a localized top side plane that connects to the GND  
exposed pad (EP).  
2. Have a single point ground.  
The ground connections for the feedback, soft-start, and enable components should be routed only to the  
GND pin of the device. This prevents any switched or load currents from flowing in the analog ground traces.  
If not properly placed, poor grounding can result in degraded load regulation or erratic output voltage ripple  
behavior. Provide the single point ground connection from pin 4 to EP.  
3. Minimize trace length to the FB pin.  
Both feedback resistors, Rfbt and Rfbb, and the compensation components, Rcomp and Ccomp, should be  
located close to the FB pin. Since the FB node is high impedance, keep the copper area as small as  
possible. This is most important as relatively high-value resistors are used to set the output voltage.  
4. Make input and output bus connections as wide as possible.  
This reduces any voltage drops on the input or output of the converter and maximizes efficiency. To optimize  
voltage accuracy at the load, ensure that a separate feedback voltage sense trace is made at the load. Doing  
so will correct for voltage drops and provide optimum output accuracy.  
5. Provide adequate device heat-sinking.  
Use an array of heat-sinking vias to connect the exposed pad to the ground plane on the bottom PCB layer.  
If the PCB has multiple copper layers, thermal vias can also be employed to make connection to inner layer  
heat-spreading ground planes. For best results use a 6 × 6 via array with minimum via diameter of 8 mils  
thermal vias spaced 59 mils (1.5 mm). Ensure enough copper area is used for heat-sinking to keep the  
junction temperature below 125°C.  
Copyright © 2009–2019, Texas Instruments Incorporated  
23  
LMZ10504  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
www.ti.com.cn  
10.2 Layout Examples  
VIN  
VOUT  
LMZ10504  
VIN  
VOUT  
dI  
dt  
High  
Cin1  
CO1  
GND  
Loop 2  
Loop 1  
Figure 29. Critical Current Loops to Minimize  
Top View  
Thermal Vias  
GND  
GND  
EXPOSED PAD  
CIN  
COUT  
1
2
3
4
5
6 7  
VOUT  
RFBT  
VIN  
RENT  
RENB  
CFF  
CSS  
RFBB  
GND Plane  
Figure 30. PCB Layout Guide  
Figure 31. Top Copper  
24  
Copyright © 2009–2019, Texas Instruments Incorporated  
LMZ10504  
www.ti.com.cn  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
Layout Examples (continued)  
Figure 32. Internal Layer 1 (Ground)  
Figure 33. Internal Layer 2 (Ground and Signal Traces)  
Copyright © 2009–2019, Texas Instruments Incorporated  
25  
LMZ10504  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
www.ti.com.cn  
Layout Examples (continued)  
Figure 34. Bottom Copper  
10.3 Estimate Power Dissipation and Thermal Considerations  
Use the current derating curves in the Typical Characteristics section to obtain an estimate of power loss  
(PIC_LOSS). For the design case of VIN = 5 V, VOUT = 2.5 V, IOUT = 4 A, TA(MAX) = 85°C , and TJ(MAX) = 125°C, the  
device must see a thermal resistance from case-to-ambient (θCA) of less than:  
TJ(MAX) - TA(MAX)  
qCA  
í
- qJC  
P
IC_LOSS  
(21)  
500 o Cì cm2  
Board Area_cm2 í  
ì
41oC  
W
(22)  
Given the typical thermal resistance from junction to case (θJC) to be 1.9°C/W (typical). Continuously operating at  
a TJ greater than 125°C will have a shorten life span.  
To reach θCA = 41°C/W, the PCB is required to dissipate heat effectively. With no airflow and no external heat, a  
good estimate of the required board area covered by 1-oz. copper on both the top and bottom metal layers is:  
500 o Cìcm2  
Board Area_cm2 í  
ì
qCA  
W
(23)  
(24)  
500 o Cì cm2  
Board Area_cm2 í  
ì
41oC  
W
As a result, approximately 12 square cm of 1-oz. copper on top and bottom layers is required for the PCB  
design.  
The PCB copper heat sink must be connected to the exposed pad (EP). Approximately thirty six, 8 mils thermal  
vias spaced 59 mils (1.5 mm) apart must connect the top copper to the bottom copper. For an extended  
discussion and formulations of thermal rules of thumb, refer to AN-2020 Thermal Design By Insight, Not  
Hindsight (SNVA419) and for an example of a high thermal performance PCB layout, refer to the evaluation  
board application note AN-2022 LMZ1050x Evaluation Board (SNVA421).  
26  
Copyright © 2009–2019, Texas Instruments Incorporated  
LMZ10504  
www.ti.com.cn  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
10.4 Power Module SMT Guidelines  
The recommendations below are for a standard module surface mount assembly.  
Land Pattern – Follow the PCB land pattern with either soldermask defined or non-soldermask defined pads  
Stencil Aperture  
For the exposed die attach pad (DAP), adjust the stencil for approximately 80% coverage of the PCB land  
pattern  
For all other I/O pads use a 1:1 ratio between the aperture and the land pattern recommendation  
Solder Paste – Use a standard SAC Alloy such as SAC 305, type 3 or higher  
Stencil Thickness – 0.125 to 0.15 mm  
Reflow - Refer to solder paste supplier recommendation and optimized per board size and density  
Maximum number of reflows allowed is one  
Refer to Design Summary LMZ1xxx and LMZ2xxx Power Modules Family (SNAA214) for reflow information.  
Figure 35. Sample Reflow Profile  
Table 11. Sample Reflow Profile Table  
MAX TEMP  
(°C)  
REACHED TIME ABOVE REACHED TIME ABOVE REACHED TIME ABOVE REACHED  
PROBE  
MAX TEMP  
235°C  
235°C  
245°C  
245°C  
260°C  
260°C  
1
2
3
242.5  
242.5  
241.0  
6.58  
0.49  
6.39  
0.00  
7.10  
0.00  
7.10  
0.55  
6.31  
0.00  
0.00  
7.09  
0.42  
6.44  
0.00  
0.00  
版权 © 2009–2019, Texas Instruments Incorporated  
27  
LMZ10504  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.1.2 开发支持  
11.1.2.1 使用 WEBENCH® 工具创建定制设计  
单击此处,使用 LMZ10504 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
11.2 文档支持  
11.2.1 相关文档  
请参阅如下相关文档:  
AN-2027 LMZ14203 SIMPLE SWITCHER 电源模块的反向应用》(SNVA425)  
《焊接的绝对最大额定值》(SNOA549)  
AN-2013 LMZ1050x/LMZ1050xEXT SIMPLE SWITCHER 电源模块》(SNVA417)  
AN-2022 LMZ1050x 评估板》(SNVA421)  
AN-2024 LMZ1420x/LMZ1200x 评估板》(SNVA422)  
AN-2020 热设计:学会洞察先机,不做事后诸葛》(SNVA419)  
AN-2026 PCB 设计对 SIMPLE SWITCHER 电源模块热性能的影响》(SNVA424)  
LMZ1xxx LMZ2xxx 电源模块系列设计摘要》(SNAA214)  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
28  
版权 © 2009–2019, Texas Instruments Incorporated  
LMZ10504  
www.ti.com.cn  
ZHCS546P DECEMBER 2009REVISED APRIL 2019  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2009–2019, Texas Instruments Incorporated  
29  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Feb-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
LMZ10504TZ-ADJ/NOPB  
LMZ10504TZE-ADJ/NOPB  
LMZ10504TZX-ADJ/NOPB  
ACTIVE  
TO-PMOD  
TO-PMOD  
TO-PMOD  
NDW  
7
7
7
250  
RoHS Exempt  
& Green  
SN  
SN  
SN  
Level-3-245C-168 HR  
Level-3-245C-168 HR  
Level-3-245C-168 HR  
LMZ10504  
TZ-ADJ  
ACTIVE  
ACTIVE  
NDW  
NDW  
45  
RoHS Exempt  
& Green  
-40 to 125  
LMZ10504  
TZ-ADJ  
500  
RoHS Exempt  
& Green  
-40 to 125  
LMZ10504  
TZ-ADJ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Feb-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMZ10504TZ-ADJ/NOPB  
TO-  
PMOD  
NDW  
NDW  
7
7
250  
500  
330.0  
24.4  
10.6 14.22  
5.0  
16.0  
24.0  
Q2  
LMZ10504TZX-  
ADJ/NOPB  
TO-  
PMOD  
330.0  
24.4  
10.6 14.22  
5.0  
16.0  
24.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMZ10504TZ-ADJ/NOPB  
LMZ10504TZX-ADJ/NOPB  
TO-PMOD  
TO-PMOD  
NDW  
NDW  
7
7
250  
500  
367.0  
367.0  
367.0  
367.0  
45.0  
45.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
NDW TO-PMOD  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LMZ10504TZE-ADJ/NOPB  
7
45  
502  
17  
6700  
8.4  
Pack Materials-Page 3  
MECHANICAL DATA  
NDW0007A  
BOTTOM SIDE OF PACKAGE  
TOP SIDE OF PACKAGE  
TZA07A (Rev D)  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LMZ10504_1

4A SIMPLE SWITCHER®Power Module with 5.5V Maximum Input Voltage
NSC

LMZ10505

5A SIMPLE SWITCHER® Power Module with 5.5V Maximum Input Voltage
NSC

LMZ10505

LMZ10505 5A SIMPLE SWITCHER® Power Module with 5.5V Maximum Input Voltage
TI

LMZ10505EXT

5A SIMPLE SWITCHER® Power Module with 5.5V Maximum Input Voltage for Military and Rugged Applications
TI

LMZ10505EXTTZ

LMZ1050xEXT Evaluation Board
NSC

LMZ10505EXTTZ

5A SIMPLE SWITCHER® Power Module with 5.5V Maximum Input Voltage for Military and Rugged Applications
TI

LMZ10505EXTTZ/NOPB

5-A Power module with 5.5-V maximum input voltage for military and rugged applications 7-TO-PMOD -55 to 125
TI

LMZ10505EXTTZE

5A SIMPLE SWITCHER® Power Module with 5.5V Maximum Input Voltage for Military and Rugged Applications
TI

LMZ10505EXTTZE/NOPB

5-A Power module with 5.5-V maximum input voltage for military and rugged applications 7-TO-PMOD -55 to 125
TI

LMZ10505EXTTZX

5A SIMPLE SWITCHER® Power Module with 5.5V Maximum Input Voltage for Military and Rugged Applications
TI

LMZ10505EXTTZX/NOPB

适用于军用和严苛环境应用、具有 5.5V 最大输入电压的 5A 电源模块 | NDW | 7 | -55 to 125
TI

LMZ10505TZ-ADJ

5A SIMPLE SWITCHER® Power Module with 5.5V Maximum Input Voltage
NSC