LMZ23603 [TI]

具有 36V 最大输入电压的 3A SIMPLE SWITCHER® 电源模块;
LMZ23603
型号: LMZ23603
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 36V 最大输入电压的 3A SIMPLE SWITCHER® 电源模块

电源电路
文件: 总35页 (文件大小:1245K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LMZ23603  
SNVS711J MARCH 2011REVISED AUGUST 2015  
®
LMZ23603 3-A SIMPLE SWITCHER Power Module With 36-V Maximum Input Voltage  
1
1 Features  
Integrated Shielded Inductor  
2 Applications  
Simple PCB Layout  
Point-of-load Conversions from 12-V and 24-V  
Input Rail  
Frequency Synchronization Input (650 kHz to 950  
kHz)  
Time-Critical Projects  
Flexible Startup Sequencing Using External Soft-  
start, Tracking and Precision Enable  
Space Constrained and High Thermal  
Requirement Applications  
Protection Against Inrush Currents and Faults  
Such as Input UVLO and Output Short Circuit  
Negative Output Voltage Applications (See AN-  
2027, SNVA425)  
Junction Temperature Range –40°C to 125°C  
3 Description  
Single Exposed Pad and Standard Pinout for Easy  
Mounting and Manufacturing  
The LMZ23603 SIMPLE SWITCHER® power module  
is an easy-to-use step-down DC-DC solution capable  
of driving up to 3-A load. The LMZ23603 is available  
in an innovative package that enhances thermal  
performance and allows for hand or machine  
soldering.  
Fast Transient Response for Powering FPGAs  
and ASICs  
Fully Enabled for WEBENCH® Power Designer  
Pin Compatible With  
LMZ22005/LMZ23605/LMZ22003  
The LMZ23603 can accept an input voltage rail  
between 6 V and 36 V and deliver an adjustable and  
highly accurate output voltage as low as 0.8 V. The  
LMZ23603 only requires two external resistors and  
three external capacitors to complete the power  
solution. The LMZ23603 is a reliable and robust  
design with the following protection features: thermal  
shutdown, programmable input undervoltage lockout,  
output overvoltage protection, short circuit protection,  
output current limit, and allows start-up into a  
Performance Benefits  
High Efficiency Reduces System Heat  
Generation  
Tested to EN55022 Class B  
See AN-2125 (SNVA473) and layout for  
information on device under test.  
VIN = 24 V, VO = 3.3 V, IO = 3 A  
NOTE: EN 55022:2006, +A1:2007, FCC Part 15 Subpart B: 2007.  
prebiased  
output.  
The  
sync  
input  
allows  
Low component count, only 5 external  
components  
synchronization over the 650-kHz to 950-kHz  
switching frequency range.  
Low output voltage ripple  
Device Information(1)(2)  
Uses PCB as heat sink, no airflow required  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
Electrical Specifications  
LMZ23603  
NDW (7)  
10.16 mm × 9.85 mm  
18-W maximum total output power  
Up to 3-A output current  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
(2) Peak reflow temperature equals 245°C. See SNAA214 for  
more details.  
Input voltage range 6 V to 36 V  
Output voltage range 0.8 V to 6 V  
Efficiency up to 92%  
Simplified Application Schematic  
Efficiency 5-V Output at 25°C Ambient  
100  
LMZ23603  
90  
80  
70  
V
IN  
V
OUT  
@ 3A  
R
FBT  
60  
50  
40  
9 VIn  
Enable  
12 Vin  
20 Vin  
24 Vin  
30 Vin  
36 Vin  
See Table  
C
Co  
220 PF  
R
SS  
FBB  
C
IN  
0.47 PF  
See Table  
22 PF  
0
1
2
3
OUTPUT CURRENT (A)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
 
LMZ23603  
SNVS711J MARCH 2011REVISED AUGUST 2015  
www.ti.com  
Table of Contents  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 4  
6.6 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description................................................. 14  
7.4 Device Functional Modes........................................ 16  
8
Application and Implementation ........................ 17  
8.1 Application Information............................................ 17  
8.2 Typical Application ................................................. 17  
Power Supply Recommendations...................... 23  
9
10 Layout................................................................... 23  
10.1 Layout Guidelines ................................................. 23  
10.2 Layout Examples................................................... 24  
10.3 Power Dissipation and Thermal Considerations... 25  
10.4 Power Module SMT Guidelines ............................ 26  
11 Device and Documentation Support ................. 27  
11.1 Device Support...................................................... 27  
11.2 Documentation Support ........................................ 27  
11.3 Community Resources.......................................... 27  
11.4 Trademarks........................................................... 27  
11.5 Electrostatic Discharge Caution............................ 27  
11.6 Glossary................................................................ 27  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 28  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision I (October 2013) to Revision J  
Page  
Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional  
Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device  
and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .............................. 1  
Deleted Easy-to-Use PFM 7-Pin Package image .................................................................................................................. 1  
Changes from Revision H (April 2013) to Revision I  
Page  
Deleted 12 mil......................................................................................................................................................................... 4  
Changed 10 mil .................................................................................................................................................................... 23  
Changed 10 mil .................................................................................................................................................................... 26  
Added Power Module SMT Guidelines................................................................................................................................. 26  
2
Submit Documentation Feedback  
Copyright © 2011–2015, Texas Instruments Incorporated  
Product Folder Links: LMZ23603  
 
LMZ23603  
www.ti.com  
SNVS711J MARCH 2011REVISED AUGUST 2015  
5 Pin Configuration and Functions  
NDW Package  
7-Pin  
Top View  
VOUT  
SS/TRK  
FB  
AGND  
EN  
7
6
5
4
3
2
1
PGND/EP  
Connect to AGND  
SYNC  
VIN  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
AGND  
4
Ground  
Analog  
Analog Ground — Reference point for all stated voltages. Must be externally connected to  
EP/PGND.  
EN  
3
5
Enable — Input to the precision enable comparator. Rising threshold is 1.279 V typical. Once  
the module is enabled, a 21-µA source current is internally activated to facilitate  
programmable hysteresis.  
EP/PGND  
FB  
Ground  
Analog  
Analog  
Analog  
Exposed Pad / Power Ground Electrical path for the power circuits within the module. — NOT  
Internally connected to AGND / pin 4. Used to dissipate heat from the package during  
operation. Must be electrically connected to pin 4 external to the package.  
Feedback — Internally connected to the regulation, overvoltage, and short circuit comparators.  
The regulation reference point is 0.796 V at this input pin. Connect the feedback resistor  
divider between the output and AGND to set the output voltage.  
SS/TRK  
SYNC  
6
Soft-Start/Track — To extend the 1.6-ms internal soft-start connect an external soft-start  
capacitor. For tracking connect to an external resistive divider connected to a higher priority  
supply rail. See Design Steps for the LMZ23603 Application section.  
2
Sync Input — Apply a CMOS logic level square wave whose frequency is between 650 kHz  
and 950 kHz to synchronize the PWM operating frequency to an external frequency source.  
When not using synchronization connect to ground. The module free running PWM frequency  
is 812 kHz (typical).  
VIN  
1
7
Power  
Power  
Supply input — Nominal operating range is 6 V to 36 V. A small amount of internal  
capacitance is contained within the package assembly. Additional external input capacitance  
is required between this pin and exposed pad (PGND).  
VOUT  
Output Voltage — Output from the internal inductor. Connect the output capacitor between this  
pin and exposed pad.  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)(3)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
40  
UNIT  
V
VIN to PGND  
EN, SYNC to AGND  
5.5  
V
SS/TRK, FBto AGND  
AGND to PGND  
2.5  
V
0.3  
V
Junction Temperature  
Peak Reflow Case Temperature (30 sec)  
Storage temperature, Tstg  
150  
245  
150  
°C  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
(3) For soldering specifications: see product folder at www.ti.com and SNOA549  
Copyright © 2011–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LMZ23603  
LMZ23603  
SNVS711J MARCH 2011REVISED AUGUST 2015  
www.ti.com  
6.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)(2)  
±2000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) The human body model is a 100pF capacitor discharged through a 1.5 kresistor into each pin. Test method is per JESD-22-114.  
6.3 Recommended Operating Conditions  
MIN  
6
MAX  
36  
UNIT  
V
VIN  
EN, SYNC  
0
5
V
Operation Junction Temperature  
40  
125  
°C  
6.4 Thermal Information  
LMZ23603  
NDW  
THERMAL METRIC(1)  
UNIT  
7 PINS  
4-layer Evaluation Printed-Circuit-Board, 60 vias, No  
air flow  
12.0  
21.5  
1.9  
Junction-to-ambient thermal  
RθJA  
°C/W  
°C/W  
resistance(2)  
2-layer JEDEC Printed-Circuit-Board, No air flow  
Junction-to-case (top) thermal  
resistance  
RθJC(top)  
No air flow  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2)  
RθJA measured on a 3.5-in × 3.5-in 4-layer board, with 3-oz. copper on outer layers and 2-oz. copper on inner layers, sixty thermal vias,  
no air flow, and 1-W power dissipation. Refer to PCB layout diagrams.  
6.5 Electrical Characteristics  
Limits are for TJ = 25°C unless otherwise specified. Minimum and Maximum limits are specified through test, design or  
statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference  
purposes only. Unless otherwise stated the following conditions apply: VIN = 12V, VOUT = 3.3V  
PARAMETER  
SYSTEM PARAMETERS  
ENABLE CONTROL  
TEST CONDITIONS  
MIN(1) TYP(2)  
MAX(1) UNIT  
1.279  
1.1  
VEN  
EN threshold trip point  
VEN rising  
V
over the junction temperature (TJ)  
range of –40°C to +125°C  
1.458  
EN input hysteresis  
current  
VEN-HYS  
VEN > 1.279 V  
–21  
µA  
SOFT-START  
50  
ISS  
tSS  
SS source current  
VSS = 0 V  
µA  
60  
over the junction temperature (TJ)  
range of –40°C to +125°C  
40  
Internal soft-start interval  
1.6  
ms  
CURRENT LIMIT  
over the junction temperature (TJ)  
range of –40°C to +125°C  
ICL  
Current limit threshold  
DC average  
3.4  
A
INTERNAL SWITCHING OSCILLATOR  
Free-running oscillator  
frequency  
fosc  
Sync input connected to ground.  
711  
650  
812  
914 kHz  
950 kHz  
fsync  
Synchronization range  
(1) Min and Max limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation  
using Statistical Quality Control (SQC) methods. Limits are used to calculate TI’s Average Outgoing Quality Level (AOQL).  
(2) Typical numbers are at 25°C and represent the most likely parametric norm.  
4
Submit Documentation Feedback  
Copyright © 2011–2015, Texas Instruments Incorporated  
Product Folder Links: LMZ23603  
LMZ23603  
www.ti.com  
SNVS711J MARCH 2011REVISED AUGUST 2015  
Electrical Characteristics (continued)  
Limits are for TJ = 25°C unless otherwise specified. Minimum and Maximum limits are specified through test, design or  
statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference  
purposes only. Unless otherwise stated the following conditions apply: VIN = 12V, VOUT = 3.3V  
PARAMETER  
TEST CONDITIONS  
MIN(1) TYP(2)  
MAX(1) UNIT  
Synchronization logic zero  
amplitude  
over the junction temperature (TJ)  
range of –40°C to +125°C  
VIL-sync  
VIH-sync  
Vsync DC  
Dmax  
Relative to AGND  
0.4  
V
V
Synchronization logic one Relative to  
amplitude  
over the junction temperature (TJ)  
range of –40°C to +125°C  
1.5  
AGND.  
Synchronization duty  
cycle range  
15%  
50%  
83%  
85%  
Maximum Duty Factor  
REGULATION AND OVERVOLTAGE COMPARATOR  
VSS >+ 0.8 V  
0.796  
In-regulation feedback  
voltage  
TJ = –40°C to  
125°C  
IO = 3 A  
VFB  
V
over the junction temperature (TJ)  
range of –40°C to +125°C  
0.776  
0.816  
Feedback overvoltage  
protection threshold  
0.86  
5
VFB-OV  
IFB  
V
Feedback input bias  
current  
nA  
mA  
μA  
Non-switchinginput  
current  
2.6  
70  
IQ  
VFB= 0.86 V  
VEN= 0 V  
Shutdown quiescent  
current  
ISD  
THERMAL CHARACTERISTICS  
TSD  
Thermal shutdown  
Rising  
Falling  
165  
15  
°C  
°C  
TSD-HYST  
Thermal shutdown  
hysteresis  
PERFORMANCE PARAMETERS(3)  
ΔVO  
Output voltage ripple  
Cout = 220 µF with 7-mΩ ESR + 100-µF X7R + 2 x  
0.047-µF BW at 20 MHz  
9
mVPP  
mV/A  
ΔVO/ΔVIN  
ΔVO/IOUT  
η
Line regulation  
VIN = 12 V to 36 V, IO= 0.001 A  
VIN = 12 V, IO= 0.001 A to 3 A  
VIN = 12 V VO = 3.3 V, IO = 3 A  
VIN = 24 V VO = 3.3 V, IO = 3 A  
VIN = 24 V VO = 3.3 V, IO = 2 A  
VIN = 12 V VO = 3.3 V, IO = 1 A  
±0.02%  
1
Load regulation  
Full load efficiency  
85%  
78%  
80%  
86%  
η
Peak efficiency  
(3) Refer to BOM in Table 1.  
Copyright © 2011–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LMZ23603  
LMZ23603  
SNVS711J MARCH 2011REVISED AUGUST 2015  
www.ti.com  
6.6 Typical Characteristics  
Unless otherwise specified, the following conditions apply: VIN = 12 V; CIN = 2 x 10 μF + 1-μF X7R Ceramic; CO = 220-μF  
Specialty Polymer + 10-µF Ceramic; TA = 25°C for waveforms. Efficiency and dissipation plots marked with * have cycle  
skipping at light loads resulting is slightly higher output ripple – See Design Steps section.  
100  
90  
80  
70  
60  
50  
40  
4
3
2
1
0
36 Vin  
30 Vin  
24 Vin  
20 Vin  
12 Vin  
10 Vin  
10 Vin  
12 Vin  
20 Vin  
24 Vin  
30 Vin  
36 Vin  
0
1
2
3
0
1
2
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 1. Efficiency 6-V Output at 25°C Ambient  
Figure 2. Dissipation 6-V Output at 25°C Ambient  
100  
4
36 Vin  
30 Vin  
24 Vin  
20 Vin  
90  
80  
70  
12 Vin  
9 Vin  
3
2
1
0
60  
50  
40  
9 VIn  
12 Vin  
20 Vin  
24 Vin  
30 Vin  
36 Vin  
0
1
2
3
0
1
2
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 3. Efficiency 5-V Output at 25°C Ambient  
Figure 4. Dissipation 5-V Output at 25°C Ambient  
100  
4
36 Vin  
30 Vin  
24 Vin  
20 Vin  
90  
80  
70  
12 Vin  
9 Vin  
3
2
1
0
60  
50  
40  
9 Vin  
12 Vin  
20 Vin  
24 Vin  
30 Vin  
36 Vin  
0
1
2
3
0
1
2
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 5. Efficiency 3.3-V Output at 25°C Ambient  
Figure 6. Dissipation 3.3-V Output at 25°C Ambient  
6
Submit Documentation Feedback  
Copyright © 2011–2015, Texas Instruments Incorporated  
Product Folder Links: LMZ23603  
 
LMZ23603  
www.ti.com  
SNVS711J MARCH 2011REVISED AUGUST 2015  
Typical Characteristics (continued)  
Unless otherwise specified, the following conditions apply: VIN = 12 V; CIN = 2 x 10 μF + 1-μF X7R Ceramic; CO = 220-μF  
Specialty Polymer + 10-µF Ceramic; TA = 25°C for waveforms. Efficiency and dissipation plots marked with * have cycle  
skipping at light loads resulting is slightly higher output ripple – See Design Steps section.  
90  
80  
70  
60  
50  
40  
30  
4
3
2
1
0
36 Vin  
30 Vin  
24 Vin  
20 Vin  
12 Vin  
9 Vin  
6 Vin  
6 Vin  
9 Vin  
12 Vin  
20 Vin  
24 Vin  
30 Vin  
36 Vin  
0
1
2
3
0
1
2
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 7. Efficiency 2.5-V Output at 25°C Ambient  
Figure 8. Dissipation 2.5-V Output at 25°C Ambient  
90  
4
36 Vin*  
30 Vin  
24 Vin  
20 Vin  
80  
70  
60  
12 Vin  
9 Vin  
6 Vin  
3
2
1
0
6 Vin  
50  
9 Vin  
12 Vin  
20 Vin  
40  
24 Vin  
30 Vin  
36 Vin*  
30  
0
1
2
3
0
1
2
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 9. Efficiency 1.8-V Output at 25°C Ambient  
Figure 10. Dissipation 1.8-V Output at 25°C Ambient  
85  
4
36 Vin*  
30 Vin*  
24 Vin  
20 Vin  
75  
65  
12 Vin  
9 Vin  
6 Vin  
3
2
1
0
55  
6 Vin  
45  
35  
25  
9 Vin  
12 Vin  
20 Vin  
24 Vin  
30 Vin*  
36 Vin*  
0
1
2
3
0
1
2
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 11. Efficiency 1.5-V Output at 25°C Ambient  
Figure 12. Dissipation 1.5-V Output at 25°C Ambient  
Copyright © 2011–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LMZ23603  
LMZ23603  
SNVS711J MARCH 2011REVISED AUGUST 2015  
www.ti.com  
Typical Characteristics (continued)  
Unless otherwise specified, the following conditions apply: VIN = 12 V; CIN = 2 x 10 μF + 1-μF X7R Ceramic; CO = 220-μF  
Specialty Polymer + 10-µF Ceramic; TA = 25°C for waveforms. Efficiency and dissipation plots marked with * have cycle  
skipping at light loads resulting is slightly higher output ripple – See Design Steps section.  
80  
70  
60  
50  
40  
30  
20  
4
3
2
1
0
36 Vin*  
30 Vin*  
24 Vin  
20 Vin  
12 Vin  
9 Vin  
6 Vin  
6 Vin  
9 Vin  
12 Vin  
20 Vin  
24 Vin  
30 Vin*  
36 Vin*  
0
1
2
3
0
1
2
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 13. Efficiency 1.2-V Output at 25°C Ambient  
Figure 14. Dissipation 1.2-V Output at 25°C Ambient  
80  
4
36 Vin*  
30 Vin*  
24 Vin*  
20 Vin  
70  
60  
50  
12 Vin  
9 VIn  
6 Vin  
3
2
1
0
6 Vin  
40  
9 Vin  
12 Vin  
20 Vin  
30  
24 Vin*  
30 Vin*  
36 Vin*  
20  
0
1
2
3
0
1
2
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 15. Efficiency 1-V Output at 25°C Ambient  
Figure 16. Dissipation 1-V Output at 25°C Ambient  
70  
4
36 Vin*  
30 Vin*  
24 Vin*  
20 Vin*  
60  
50  
40  
12 Vin  
9 Vin  
6 Vin  
3
2
1
0
6 Vin  
30  
9 Vin  
12 Vin  
20 Vin*  
20  
24 Vin*  
30 Vin*  
36 Vin*  
10  
0
1
2
3
0
1
2
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 17. Efficiency 0.8-V Output at 25°C Ambient  
Figure 18. Dissipation 0.8-V Output at 25°C Ambient  
8
Submit Documentation Feedback  
Copyright © 2011–2015, Texas Instruments Incorporated  
Product Folder Links: LMZ23603  
LMZ23603  
www.ti.com  
SNVS711J MARCH 2011REVISED AUGUST 2015  
Typical Characteristics (continued)  
Unless otherwise specified, the following conditions apply: VIN = 12 V; CIN = 2 x 10 μF + 1-μF X7R Ceramic; CO = 220-μF  
Specialty Polymer + 10-µF Ceramic; TA = 25°C for waveforms. Efficiency and dissipation plots marked with * have cycle  
skipping at light loads resulting is slightly higher output ripple – See Design Steps section.  
100  
4
36 Vin  
30 Vin  
90  
80  
70  
60  
50  
40  
24 Vin  
20 Vin  
12 Vin  
10 Vin  
3
2
1
0
10 Vin  
12 Vin  
20 Vin  
24 Vin  
30 Vin  
36 Vin  
0
1
2
3
4
5
0
1
2
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 19. Efficiency 6-V Output at 85°C  
Figure 20. Dissipation 6-V Output at 85°C Ambient  
100  
4
36 Vin  
30 Vin  
24 Vin  
20 Vin  
90  
80  
70  
12 Vin  
9 Vin  
3
2
1
0
60  
50  
40  
9 Vin  
12 Vin  
20 Vin  
24 Vin  
30 Vin  
36 Vin  
0
1
2
3
0
1
2
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 22. Dissipation 5-V Output at 85°C Ambient  
Figure 21. Efficiency 5-V Output at 85°C Ambient  
90  
4
36 Vin  
30 Vin  
24 Vin  
20 Vin  
80  
70  
60  
12 Vin  
9 Vin  
3
2
1
0
50  
9 Vin  
12 Vin  
20 Vin  
40  
30  
24 Vin  
30 Vin  
36 Vin  
0
1
2
3
0
1
2
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 23. Efficiency 3.3-V Output at 85°C Ambient  
Figure 24. Dissipation 3.3-V Output at 85°C Ambient  
Copyright © 2011–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LMZ23603  
LMZ23603  
SNVS711J MARCH 2011REVISED AUGUST 2015  
www.ti.com  
Typical Characteristics (continued)  
Unless otherwise specified, the following conditions apply: VIN = 12 V; CIN = 2 x 10 μF + 1-μF X7R Ceramic; CO = 220-μF  
Specialty Polymer + 10-µF Ceramic; TA = 25°C for waveforms. Efficiency and dissipation plots marked with * have cycle  
skipping at light loads resulting is slightly higher output ripple – See Design Steps section.  
90  
4
36 Vin  
30 Vin  
24 Vin  
20 Vin  
12 Vin  
9 Vin  
80  
70  
60  
50  
40  
30  
3
2
1
0
6 Vin  
6 Vin  
9 Vin  
12 Vin  
20 Vin  
24 Vin  
30 Vin  
36 Vin  
0
1
2
3
0
1
2
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 26. Dissipation 2.5-V Output at 85°C Ambient  
Figure 25. Efficiency 2.5-V Output at 85°C Ambient  
90  
4
36 Vin*  
30 Vin  
24 Vin  
20 Vin  
12 Vin  
9 Vin  
6 Vin  
80  
70  
60  
3
2
1
0
6 Vin  
50  
9 Vin  
12 Vin  
20 Vin  
40  
24 Vin  
30 Vin  
36 Vin*  
30  
0
1
2
3
0
1
2
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 27. Efficiency 1.8-V Output at 85°C Ambient  
Figure 28. Dissipation 1.8-V Output at 85°C Ambient  
80  
4
36 Vin*  
30 Vin*  
24 Vin  
20 Vin  
12 Vin  
9 Vin  
6 Vin  
70  
60  
50  
3
2
1
0
6 Vin  
40  
9 Vin  
12 Vin  
20 Vin  
30  
24 Vin  
30 Vin*  
36 Vin*  
20  
0
1
2
3
0
1
2
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 29. Efficiency 1.5-V Output at 85°C Ambient  
Figure 30. Dissipation 1.5-V Output at 85°C Ambient  
10  
Submit Documentation Feedback  
Copyright © 2011–2015, Texas Instruments Incorporated  
Product Folder Links: LMZ23603  
LMZ23603  
www.ti.com  
SNVS711J MARCH 2011REVISED AUGUST 2015  
Typical Characteristics (continued)  
Unless otherwise specified, the following conditions apply: VIN = 12 V; CIN = 2 x 10 μF + 1-μF X7R Ceramic; CO = 220-μF  
Specialty Polymer + 10-µF Ceramic; TA = 25°C for waveforms. Efficiency and dissipation plots marked with * have cycle  
skipping at light loads resulting is slightly higher output ripple – See Design Steps section.  
80  
4
36 Vin*  
30 Vin*  
70  
60  
50  
40  
30  
20  
24 Vin  
20 Vin  
12 Vin  
9 Vin  
3
2
1
0
6 Vin  
6 Vin  
9 Vin  
12 Vin  
20 Vin  
24 Vin  
30 Vin*  
36 Vin*  
0
1
2
3
0
1
2
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 31. Efficiency 1.2-V Output at 85°C Ambient  
Figure 32. Dissipation 1.2-V Output at 85°C Ambient  
75  
4
36 Vin*  
30 Vin*  
24 Vin*  
20 Vin  
12 Vin  
9 Vin  
6 Vin  
65  
55  
3
2
1
0
45  
6 Vin  
35  
25  
15  
9 Vin  
12 Vin  
20 Vin  
24 Vin*  
30 Vin*  
36 Vin*  
0
1
2
3
0
1
2
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 33. Efficiency 1-V Output at 85°C Ambient  
Figure 34. Dissipation 1-V Output at 85°C Ambient  
70  
4
36 Vin*  
30 Vin*  
24 Vin*  
20 Vin*  
12 Vin  
9 Vin  
6 Vin  
60  
50  
3
2
1
0
40  
6 Vin  
9 Vin  
12 Vin  
20 Vin*  
24 Vin*  
30 Vin*  
36 Vin*  
30  
20  
0
1
2
3
0
1
2
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 35. Efficiency 0.8-V Output at 85°C Ambient  
Figure 36. Dissipation 0.8-V Output at 85°C Ambient  
Copyright © 2011–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LMZ23603  
LMZ23603  
SNVS711J MARCH 2011REVISED AUGUST 2015  
www.ti.com  
Typical Characteristics (continued)  
Unless otherwise specified, the following conditions apply: VIN = 12 V; CIN = 2 x 10 μF + 1-μF X7R Ceramic; CO = 220-μF  
Specialty Polymer + 10-µF Ceramic; TA = 25°C for waveforms. Efficiency and dissipation plots marked with * have cycle  
skipping at light loads resulting is slightly higher output ripple – See Design Steps section.  
4
3
2
1
0
4
3
2
1
0
JA = 12°C/W  
JA = 12 °C/W  
30 40 50 60 70 80 90 100 110 120 130  
AMBIENT TEMPERATURE (°C)  
30 40 50 60 70 80 90 100 110 120 130  
AMBIENT TEMPERATURE (°C)  
VIN = 12 V, VOUT = 5 V  
VIN = 12 V, VOUT = 3.3 V  
Figure 37. Thermal Derating  
Figure 38. Thermal Derating  
4
3
2
1
0
4
3
2
1
0
JA=12°C/W  
JA=12°C/W  
30 40 50 60 70 80 90 100 110 120 130  
AMBIENT TEMPERATURE (°C)  
30 40 50 60 70 80 90 100 110 120 130  
ANBIENT TEMPERATURE (°C)  
VIN = 24 V, VOUT = 5 V  
VIN = 24 V, VOUT = 3.3 V  
Figure 39. Thermal Derating  
Figure 40. Thermal Derating  
1.002  
1.001  
1.000  
0.999  
0.998  
9 Vin  
12 Vin  
20 Vin  
24 Vin  
30 Vin  
36 Vin  
10 mV/Div  
500 ns/Div  
0
1
2
3
OUTPUT CURRENT (A)  
12 VIN, 3.3 VO at 3 A, BW = 20 MHz  
VOUT = 3.3 V Normalized  
Figure 42. Output Ripple from Evaluation Board  
Figure 41. Normalized Line and Load Regulation  
12  
Submit Documentation Feedback  
Copyright © 2011–2015, Texas Instruments Incorporated  
Product Folder Links: LMZ23603  
LMZ23603  
www.ti.com  
SNVS711J MARCH 2011REVISED AUGUST 2015  
Typical Characteristics (continued)  
Unless otherwise specified, the following conditions apply: VIN = 12 V; CIN = 2 x 10 μF + 1-μF X7R Ceramic; CO = 220-μF  
Specialty Polymer + 10-µF Ceramic; TA = 25°C for waveforms. Efficiency and dissipation plots marked with * have cycle  
skipping at light loads resulting is slightly higher output ripple – See Design Steps section.  
2A/Div  
10 mV/Div  
500 ns/Div  
100 mV/Div  
500 µs/Div  
12 VIN, 3.3 VO at 3 A BW = 250 MHz  
12 VIN, 3.3 VO, 0.5- to 3-A Step  
Figure 43. Output Ripple from Evaluation Board  
Figure 44. Transient Response from Evaluation Board  
9
8
7
6
5
4
3
2
1
0
Output Current  
Input Current  
0
4
8
12 16 20 24 28 32 36  
INPUT VOLTAGE (V)  
Figure 45. Short Circuit Current  
Copyright © 2011–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LMZ23603  
LMZ23603  
SNVS711J MARCH 2011REVISED AUGUST 2015  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The architecture used is an internally compensated emulated peak current mode control, based on a monolithic  
synchronous SIMPLE SWITCHER core capable of supporting high load currents. The output voltage is  
maintained through feedback compared with an internal 0.8-V reference. For emulated peak current-mode, the  
valley current is sampled on the down-slope of the inductor current. This is used as the DC value of current to  
start the next cycle.  
The primary application for emulated peak current-mode is high input voltage to low output voltage operating at a  
narrow duty cycle. By sampling the inductor current at the end of the switching cycle and adding an external  
ramp, the minimum ON-time can be significantly reduced, without the need for blanking or filtering which is  
normally required for peak current-mode control.  
7.2 Functional Block Diagram  
V
IN  
Linear  
Regulator  
2M  
C
IN  
CINint  
CBST  
EN  
SYNC  
SS/TRK  
800 kHz  
PWM  
V
O
3.3 uH  
0.796 VREF  
FB  
CSS  
RFBT  
RFBB  
C
O
Comp  
EP/  
PGND  
AGND  
Regulator IC  
Internal Passives  
7.3 Feature Description  
7.3.1 Synchronization Input  
The PWM switching frequency can be synchronized to an external frequency source. If this feature is not used,  
connect this input either directly to ground, or connect to ground through a resistor of 1.5-kor less. The allowed  
synchronization frequency range is 650 kHz to 950 kHz. The typical input threshold is 1.4-V transition level.  
Ideally the input clock must overdrive the threshold by a factor of 2, so direct drive from 3.3-V logic through a 1.5-  
kThevenin source resistance is recommended. Applying a sustained logic 1 corresponds to zero Hz PWM  
frequency and will cause the module to stop switching.  
7.3.2 Output Overvoltage Protection  
If the voltage at FB is greater than a 0.86-V internal reference, the output of the error amplifier is pulled toward  
ground, causing VO to fall.  
7.3.3 Current Limit  
The LMZ23603 is protected by both low-side (LS) and high-side (HS) current limit circuitry. The LS current limit  
detection is carried out during the OFF-time by monitoring the current through the LS synchronous MOSFET.  
Referring to the Functional Block Diagram, when the top MOSFET is turned off, the inductor current flows  
through the load, the PGND pin and the internal synchronous MOSFET. If this current exceeds the low-side  
current limit level the current limit comparator disables the start of the next switching period. Switching cycles are  
prohibited until current drops below the limit.  
14  
Submit Documentation Feedback  
Copyright © 2011–2015, Texas Instruments Incorporated  
Product Folder Links: LMZ23603  
 
LMZ23603  
www.ti.com  
SNVS711J MARCH 2011REVISED AUGUST 2015  
Feature Description (continued)  
NOTE  
DC current limit is dependent on both duty cycle and temperature as illustrated in the  
graphs in the Typical Characteristics section.  
The HS current limit monitors the current of top side MOSFET. Once HS current limit is detected, the HS  
MOSFET is shutoff immediately, until the next cycle. Exceeding HS current limit causes VO to fall. Typical  
behavior of exceeding LS current limit is that fSW drops to 1/2 of the operating frequency.  
7.3.4 Thermal Protection  
The junction temperature of the LMZ23603 must not be allowed to exceed its maximum ratings. Thermal  
protection is implemented by an internal Thermal Shutdown circuit which activates at 165°C (typical) causing the  
device to enter a low power standby state. In this state the main MOSFET remains off causing VO to fall, and  
additionally the CSS capacitor is discharged to ground. Thermal protection helps prevent catastrophic failures for  
accidental device overheating. When the junction temperature falls back below 150°C (typical hysteresis = 15°C)  
the SS pin is released, VO rises smoothly, and normal operation resumes.  
Applications requiring maximum output current especially those at high input voltage may require additional  
derating at elevated temperatures.  
7.3.5 Prebiased Start-Up  
The LMZ23603 will properly start up into a prebiased output. This start-up situation is common in multiple rail  
logic applications where current paths may exist between different power rails during the start-up sequence.  
Figure 46 shows proper behavior in this mode. Trace one is Enable going high. Trace two is 1.5-V prebias rising  
to 3.3 V. Rise-time determined by CSS, trace three.  
Figure 46. Prebiased Start-Up  
Copyright © 2011–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LMZ23603  
 
LMZ23603  
SNVS711J MARCH 2011REVISED AUGUST 2015  
www.ti.com  
7.4 Device Functional Modes  
7.4.1 Discontinuous Conduction and Continuous Conduction Modes  
At light load the regulator will operate in discontinuous conduction mode (DCM). With load currents above the  
critical conduction point, it will operate in continuous conduction mode (CCM). In CCM, current flows through the  
inductor through the entire switching cycle and never falls to zero during the OFF-time. When operating in DCM,  
inductor current is maintained to an average value equaling IOUT. Inductor current exhibits normal behavior for  
the emulated current mode control method used. Output voltage ripple typically increases during this mode of  
operation.  
Figure 47 is a comparison pair of waveforms of the showing both CCM (upper) and DCM operating modes.  
800 kHz Sync  
CCM Mode  
DCM Mode  
VIN = 12V, VO = 3.3V, IO = 3 A / 0.3 A 2 μs/div  
Figure 47. CCM and DCM Operating Modes  
16  
Submit Documentation Feedback  
Copyright © 2011–2015, Texas Instruments Incorporated  
Product Folder Links: LMZ23603  
 
LMZ23603  
www.ti.com  
SNVS711J MARCH 2011REVISED AUGUST 2015  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LMZ23603 is a step-down DC-to-DC power module. It is typically used to convert a higher DC voltage to a  
lower DC voltage with a maximum output current of 3 A. The following design procedure can be used to select  
components for the LMZ23603. Alternately, the WEBENCH software may be used to generate complete designs.  
When generating a design, the WEBENCH software uses iterative design procedure and accesses  
comprehensive databases of components. Please go to www.ti.com for more details.  
8.2 Typical Application  
U1  
7V to 36V  
PGND/EP  
V
IN  
Enable  
LMZ23603TZ  
3.3V @ 3A  
+
O
C
6 OPT  
IN  
150 PF  
R
FBT  
R
ENT  
3.32k  
42.2k  
SYNC  
R
FRA  
OPT  
23.7Ö  
R
FBB  
R
OPT  
ENH  
100Ö  
1,5  
1.07k  
C
SS  
0.47µF  
D1 OPT  
5.1V  
+
C
C 5  
O
IN  
0.047 PF  
OPT  
C 2  
O
C
1,6  
O
R
ENB  
220 PF  
100 PF  
OPT  
0.047 PF  
C
2,3  
IN  
12.7k  
R
SN  
10 PF  
1.50 kÖ  
Figure 48. Simplified Evaluation Board Schematic Diagram  
8.2.1 Design Requirements  
For this example the following application parameters exist.  
VIN Range = Up to 36 V  
VOUT = 0.8 V to 6 V  
IOUT = 3 A  
Copyright © 2011–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LMZ23603  
 
LMZ23603  
SNVS711J MARCH 2011REVISED AUGUST 2015  
www.ti.com  
Typical Application (continued)  
8.2.2 Detailed Design Procedure  
8.2.2.1 Design Steps  
The LMZ23603 is fully supported by WEBENCH which offers: component selection, electrical and thermal  
simulations. Additionally there are both evaluation and demonstration boards that may be used as a starting point  
for design. The following list of steps can be used to manually design the LMZ23603 application.  
All references to values refer to Figure 48.  
1. Select minimum operating VIN with enable divider resistors  
2. Program VO with resistor divider selection  
3. Select CO  
4. Select CIN  
5. Determine module power dissipation  
6. Layout PCB for required thermal performance  
8.2.2.2 Enable Divider, RENT, RENB and RENH Selection  
Internal to the module is a 2-MΩ pullup resistor connected from VIN to Enable. For applications not requiring  
precision undervoltage lockout (UVLO), the Enable input may be left open circuit and the internal resistor will  
always enable the module. In such case, the internal UVLO occurs around 4.3 V.  
In applications with separate supervisory circuits Enable can be directly interfaced to a logic source. In the case  
of sequencing supplies, the divider is connected to a rail that becomes active earlier in the power-up cycle than  
the LMZ23603 output rail.  
Enable provides a precise 1.279-V threshold to allow direct logic drive or connection to a voltage divider from a  
higher enable voltage such as VIN. Additionally there is 21 μA (typical) of switched offset current allowing  
programmable hysteresis. See Figure 49.  
The function of the enable divider is to allow the designer to choose an input voltage below which the circuit will  
be disabled. This implements the feature of programmable UVLO. The two resistors must be chosen based on  
the following ratio:  
RENT / RENB = (VIN UVLO / 1.279 V) – 1  
(1)  
The LMZ23603 typical application shows 12.7 kfor RENB and 42.2 kfor RENT resulting in a rising UVLO of  
5.46 V. This divider presents 8.33 V to the input when the divider is raised to 36 V which would exceed the  
recommended 5.5-V limit for Enable. A midpoint 5.1-V Zener clamp is applied to allow the application to cover  
the full 6-V to 36-V range of operation. The Zener clamp is not required if the target application prohibits the  
maximum Enable input voltage from being exceeded.  
Additional enable voltage hysteresis can be added with the inclusion of RENH. It is possible to select values for  
RENT and RENB such that RENH is a value of zero allowing it to be omitted from the design.  
Rising threshold can be calculated as follows:  
VEN(rising) = 1.279 ( 1 + (RENT|| 2 meg)/ RENB  
)
(2)  
(3)  
Whereas the falling threshold level can be calculated using:  
VEN(falling) = VEN(rising) – 21 µA ( RENT|| 2 meg || RENTB + RENH  
)
18  
Submit Documentation Feedback  
Copyright © 2011–2015, Texas Instruments Incorporated  
Product Folder Links: LMZ23603  
LMZ23603  
www.ti.com  
SNVS711J MARCH 2011REVISED AUGUST 2015  
Typical Application (continued)  
INT-VCC (5V)  
VIN  
21 PA  
2.0M  
RENT  
42.2k  
RENH  
ENABLE  
RUN  
100:  
RENB  
12.7k  
5.1V  
1.279V  
Figure 49. Enable Input Detail  
8.2.2.3 Output Voltage Selection  
Output voltage is determined by a divider of two resistors connected between VO and ground. The midpoint of  
the divider is connected to the FB input.  
The regulated output voltage determined by the external divider resistors RFBT and RFBB is:  
VO = 0.796 V × (1 + RFBT / RFBB  
)
(4)  
(5)  
Rearranging terms; the ratio of the feedback resistors for a desired output voltage is:  
RFBT / RFBB = (VO / 0.796 V) – 1  
These resistors must generally be chosen from values in the range of 1.0 kto 10.0 k.  
For VO = 0.8 V the FB pin can be connected to the output directly and RFBB can be set to 8.06 kto provide  
minimum output load.  
Table 1 lists values for RFBT , and RFBB  
.
Table 1. Evaluation Board Bill of Materials  
REF DES  
U1  
DESCRIPTION  
CASE SIZE  
PFM-7  
1206  
CASE SIZE  
MANUFACTURER P/N  
LMZ23603TZ  
SIMPLE SWITCHER  
0.047 µF, 50 V, X7R  
10 µF, 50 V, X7R  
CAP, AL, 150 µF, 50 V  
0.047 µF, 50 V, X7R  
100 µF, 6.3 V, X7R  
220 μF, 6.3 V, SP-Cap  
3.32 kΩ  
Texas Instruments  
Yageo America  
Taiyo Yuden  
Panasonic  
Yageo America  
TDK  
Cin1,5  
CC1206KRX7R9BB473  
UMK325BJ106MM-T  
EEE-FK1H151P  
Cin2,3  
1210  
Cin6 (OPT)  
CO1,6  
Radial G  
1206  
CC1206KRX7R9BB473  
C3225X5R0J107M  
EEF-UE0J221LR  
CO2 (OPT)  
CO5  
1210  
(7343)  
0805  
Panasonic  
Panasonic  
Panasonic  
Vishay Dale  
Panasonic  
Panasonic  
Vishay Dale  
Vishay Dale  
AVX  
RFBT  
ERJ-6ENF3321V  
RFBB  
1.07 kΩ  
0805  
ERJ-6ENF1071V  
RSN (OPT)  
RENT  
1.50 kΩ  
0805  
CRCW08051K50FKEA  
ERJ-6ENF4222V  
42.2 kΩ  
0805  
RENB  
12.7 kΩ  
0805  
ERJ-6ENF1272V  
RFRA(OPT)  
RENH  
23.7 Ω  
0805  
CRCW080523R7FKEA  
CRCW0805100RFKEA  
0805YC474KAT2A  
MMSZ5231BS-7-F  
100 Ω  
0805  
CSS  
0.47 μF, ±10%, X7R, 16 V  
5.1 V, 0.5 W  
0805  
D1(OPT)  
SOD-123  
Diodes Inc.  
Copyright © 2011–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LMZ23603  
 
LMZ23603  
SNVS711J MARCH 2011REVISED AUGUST 2015  
www.ti.com  
8.2.2.4 Soft-Start Capacitor Selection  
Programmable soft-start permits the regulator to slowly ramp to its steady state operating point after being  
enabled, thereby reducing current inrush from the input supply and slowing the output voltage rise-time.  
Upon turnon, after all UVLO conditions have been passed, an internal 1.6-ms circuit slowly ramps the SS/TRK  
input to implement internal soft-start. If 1.6 ms is an adequate turnon time then the Css capacitor can be left  
unpopulated. Longer soft-start periods are achieved by adding an external capacitor to this input.  
Soft-start duration is given by the formula:  
tSS = VREF × CSS / Iss = 0.796 V × CSS / 50 µA  
(6)  
This equation can be rearranged as follows:  
CSS = tSS × 50 μA / 0.796 V  
(7)  
Using a 0.22-μF capacitor results in 3.5-ms typical soft-start duration; and 0.47-μF results in 7.5 ms typical. 0.47  
μF is a recommended initial value.  
As the soft-start input exceeds 0.796 V the output of the power stage will be in regulation and the 50-μA current  
is deactivated. The following conditions will reset the soft-start capacitor by discharging the SS input to ground  
with an internal current sink.  
The Enable input being pulled low  
Thermal shutdown condition  
Internal VCC UVLO (Approx 4.3-V input to VIN)  
8.2.2.5 Tracking Supply Divider Option  
The tracking function allows the module to be connected as a slave supply to a primary voltage rail (often the  
3.3-V system rail) where the slave module output voltage is lower than that of the master. Proper configuration  
allows the slave rail to power up coincident with the master rail such that the voltage difference between the rails  
during ramp-up is small (that is, < 0.15 V typical). The values for the tracking resistive divider must be selected  
such that the presence of the internal 50-µA current source is minimized. In most cases the ratio of the tracking  
divider resistors is the same as the ratio of the output voltage setting divider. Proper operation in tracking mode  
dictates the soft-start time of the slave rail be shorter than the master rail; a condition that is easy satisfy  
because the CSS cap is replaced by RTKB. The tracking function is only supported for the power up interval of the  
master supply; once the SS/TRK rises past 0.8 V the input is no longer enabled and the 50-µA internal current  
source is switched off.  
3.3V Master  
2.5Vout  
Int VCC  
50 PA  
Rfbt  
2.26k  
Rtkt  
226  
SS/TRK  
FB  
Rtkb  
107  
Rfbb  
1.07k  
Figure 50. Tracking Option Input Detail  
20  
Submit Documentation Feedback  
Copyright © 2011–2015, Texas Instruments Incorporated  
Product Folder Links: LMZ23603  
LMZ23603  
www.ti.com  
SNVS711J MARCH 2011REVISED AUGUST 2015  
8.2.2.6 CO Selection  
None of the required CO output capacitance is contained within the module. A minimum value of 200 μF is  
required based on the values of internal compensation in the error amplifier. Low ESR tantalum, organic  
semiconductor or specialty polymer capacitor types are recommended for obtaining lowest ripple. The output  
capacitor CO may consist of several capacitors in parallel placed in close proximity to the module. The output  
capacitor assembly must also meet the worst case minimum ripple current rating of 0.5 × ILR P-P, as calculated in  
Equation 14 below. Beyond that, additional capacitance will reduce output ripple so long as the ESR is low  
enough to permit it. Loop response verification is also valuable to confirm closed loop behavior. RLRA is included  
on the typical application schematic and evaluation board for this purpose. It is not required in the end design.  
For applications with dynamic load steps; the following equation provides a good first pass approximation of CO  
for load transient requirements. Where VO-Tran is 100 mV on a 3.3-V output design.  
CO IO-Tran / ((VO-Tran– ESR × IO–Tran) × ( FSW / VO))  
(8)  
Solving:  
CO 2.5 A / ((0.1 V – .007 × 2.5 A) × ( 800000 Hz / 3.3 V) 125 μF  
(9)  
NOTE  
The stability requirement for 200-µF minimum output capacitance will take precedence.  
One recommended output capacitor combination is a 220-µF, 7-mΩ ESR specialty polymer cap in parallel with a  
100-µF, 6.3-V X5R ceramic. This combination provides excellent performance that may exceed the requirements  
of certain applications. Additionally some small ceramic capacitors can be used for high frequency EMI  
suppression.  
8.2.2.7 CIN Selection  
The LMZ23603 module contains a small amount of internal ceramic input capacitance. Additional input  
capacitance is required external to the module to handle the input ripple current of the application. The input  
capacitor can be several capacitors in parallel. This input capacitance must be located in very close proximity to  
the module. Input capacitor selection is generally directed to satisfy the input ripple current requirements rather  
than by capacitance value. Input ripple current rating is dictated by the equation:  
I(CIN(RMS)) 1 /2 × IO × SQRT (D / 1–D)  
where  
D VO / VIN  
(10)  
As a point of reference, the worst case ripple current will occur when the module is presented with full load  
current and when VIN = 2 × VO.  
Recommended minimum input capacitance is 22-µF X7R (or X5R) ceramic with a voltage rating at least 25%  
higher than the maximum applied input voltage for the application. It is also recommended that attention be paid  
to the voltage and temperature derating of the capacitor selected.  
NOTE  
Ripple current rating of ceramic capacitors may be missing from the capacitor data sheet  
and you may have to contact the capacitor manufacturer for this parameter.  
If the system design requires a certain minimum value of peak-to-peak input ripple voltage (ΔVIN) be maintained  
then the following equation may be used.  
CIN IO × D × (1–D) / fSW-CCM × ΔVIN  
(11)  
If ΔVIN is 1% of VIN for a 12-V input to 3.3-V output application this equals 120 mV and fSW = 812 kHz.  
CIN 3 A × 3.3 V / 12 V × (1– 3.3 V / 12 V) / (812000 × 0.240 V) 22.3 μF  
(12)  
Additional bulk capacitance with higher ESR may be required to damp any resonant effects of the input  
capacitance and parasitic inductance of the incoming supply lines. The LMZ23603 typical applications schematic  
and evaluation board include a 150-μF, 50-V aluminum capacitor for this function. There are many situations  
where this capacitor is not necessary.  
Copyright © 2011–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LMZ23603  
LMZ23603  
SNVS711J MARCH 2011REVISED AUGUST 2015  
www.ti.com  
8.2.2.8 Discontinuous Conduction and Continuous Conduction Modes Selection  
The approximate formula for determining the DCM/CCM boundary is as follows:  
IDCB VO × (VIN– VO) / (2 × 3.3 μH × fSW(CCM) × VIN)  
(13)  
The inductor internal to the module is 3.3 μH. This value was chosen as a good balance between low and high  
input voltage applications. The main parameter affected by the inductor is the amplitude of the inductor ripple  
current (ILR). ILR can be calculated with:  
ILR P-P = VO × (VIN – VO) / (3.3 µH × fSW × VIN)  
where  
VIN is the maximum input voltage  
fSW is typically 812 kHz  
(14)  
If the output current IO is determined by assuming that IO = IL, the higher and lower peak of ILR can be  
determined.  
8.2.3 Application Curves  
100  
4
3
2
1
4
3
2
1
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
JA = 12°C/W  
0
0.0 0.2 0.4 0.6 .08 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
OUTPUT CURRENT (A)  
30 40 50 60 70 80 90 100 110 120 130  
AMBIENT TEMPERATURE (°C)  
VIN = 12 V, VOUT = 5 V  
VIN = 12 V, VOUT = 5 V  
Figure 51. Efficiency  
Figure 52. Thermal Derating  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Class A Limit  
Class B Limit  
Horiz Peak  
Horiz Quasi-Peak  
0
0
200  
400  
600  
800  
1000  
FREQUENCY (MHz)  
Figure 53. Radiated EMI (EN 55022)  
of Demo Board (See AN-2125, SNVA473)  
22  
Submit Documentation Feedback  
Copyright © 2011–2015, Texas Instruments Incorporated  
Product Folder Links: LMZ23603  
LMZ23603  
www.ti.com  
SNVS711J MARCH 2011REVISED AUGUST 2015  
9 Power Supply Recommendations  
The LMZ23603 device is designed to operate from an input voltage supply range between 6 V and 36 V. This  
input supply must be well regulated and able to withstand maximum input current and maintain a stable voltage.  
The resistance of the input supply rail must be low enough that an input current transient does not cause a high  
enough drop at the LMZ23603 supply voltage that can cause a false UVLO fault triggering and system reset. If  
the input supply is more than a few inches from the LMZ23603, additional bulk capacitance may be required in  
addition to the ceramic bypass capacitors. The amount of bulk capacitance is not critical, but a 47-μF or 100-μF  
electrolytic capacitor is a typical choice.  
10 Layout  
10.1 Layout Guidelines  
PCB layout is an important part of DC-DC converter design. Poor board layout can disrupt the performance of a  
DC-DC converter and surrounding circuitry by contributing to EMI, ground bounce and resistive voltage drop in  
the traces. These can send erroneous signals to the DC-DC converter resulting in poor regulation or instability.  
Good layout can be implemented by following a few simple design rules.  
1. Minimize area of switched current loops.  
From an EMI reduction standpoint, it is imperative to minimize the high di/dt paths during PCB layout as  
shown in Figure 54. The high current loops that do not overlap have high di/dt content that will cause  
observable high-frequency noise on the output pin if the input capacitor (Cin1) is placed at a distance away  
from the LMZ23603. Therefore place CIN1 as close as possible to the LMZ23603 VIN and PGND exposed  
pad. This will minimize the high di/dt area and reduce radiated EMI. Additionally, grounding for both the input  
and output capacitor must consist of a localized top side plane that connects to the PGND exposed pad  
(EP).  
2. Have a single point ground.  
The ground connections for the feedback, soft-start, and enable components must be routed to the AGND  
pin of the device. This prevents any switched or load currents from flowing in the analog ground traces. If not  
properly handled, poor grounding can result in degraded load regulation or erratic output voltage ripple  
behavior. Additionally provide the single point ground connection from pin 4 (AGND) to EP/PGND.  
3. Minimize trace length to the FB pin.  
Both feedback resistors, RFBT and RFBB must be located close to the FB pin. Because the FB node is high  
impedance, maintain the copper area as small as possible. The traces from RFBT, RFBB must be routed away  
from the body of the LMZ23603 to minimize possible noise pickup.  
4. Make input and output bus connections as wide as possible.  
This reduces any voltage drops on the input or output of the converter and maximizes efficiency. To optimize  
voltage accuracy at the load, ensure that a separate feedback voltage sense trace is made to the load. Doing  
so will correct for voltage drops and provide optimum output accuracy.  
5. Provide adequate device heat-sinking.  
Use an array of heat-sinking vias to connect the exposed pad to the ground plane on the bottom PCB layer.  
If the PCB has a plurality of copper layers, these thermal vias can also be employed to make connection to  
inner layer heat-spreading ground planes. For best results use a 6 × 10 via array with a minimum via  
diameter of 8 mils thermal vias spaced 59 mils (1.5 mm). Ensure enough copper area is used for heat-  
sinking to keep the junction temperature below 125°C.  
Copyright © 2011–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LMZ23603  
LMZ23603  
SNVS711J MARCH 2011REVISED AUGUST 2015  
www.ti.com  
10.2 Layout Examples  
V
IN  
V
O
VOUT  
VIN  
High  
di/dt  
C
in1  
C
O1  
GND  
Loop 2  
Loop 1  
Figure 54. Critical Current Loops to Minimize  
Top View  
Thermal Vias  
GND  
GND  
EPAD  
CIN  
COUT  
1
2
3
4
5
6
7
VOUT  
VIN  
RFBT  
SYNC  
RENT  
RENB  
CFF  
CSS  
RFBB  
GND Plane  
Figure 55. PCB Layout Guide  
24  
Submit Documentation Feedback  
Copyright © 2011–2015, Texas Instruments Incorporated  
Product Folder Links: LMZ23603  
LMZ23603  
www.ti.com  
SNVS711J MARCH 2011REVISED AUGUST 2015  
Layout Examples (continued)  
Figure 56. Top View Evaluation Board – See AN–2085 SNVA457  
Figure 57. Bottom View Demonstration Board  
10.3 Power Dissipation and Thermal Considerations  
When calculating module dissipation use the maximum input voltage and the average output current for the  
application. Many common operating conditions are provided in the characteristic curves such that less common  
applications can be derived through interpolation. In all designs, the junction temperature must be kept below the  
rated maximum of 125°C.  
For the design case of VIN = 24 V, VO = 3.3 V, IO = 3 A, and TAMB(MAX) = 85°C, the module must see a thermal  
resistance from case to ambient of less than:  
RθCA< (TJ-MAX – TA-MAX) / PIC-LOSS – RθJC  
(15)  
Given the typical thermal resistance from junction to case to be 1.9°C/W. Use the 85°C power dissipation curves  
in the Typical Characteristics section to estimate the PIC-LOSS for the application being designed. In this  
application it is 3 W.  
RθCA = (125 – 85) / 3 W – 1.9 = 11.4  
(16)  
Copyright © 2011–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LMZ23603  
LMZ23603  
SNVS711J MARCH 2011REVISED AUGUST 2015  
www.ti.com  
Power Dissipation and Thermal Considerations (continued)  
To reach RθCA = 11.4., the PCB is required to dissipate heat effectively. With no airflow and no external heat, a  
good estimate of the required board area covered by 2 oz. copper on both the top and bottom metal layers is:  
Board_Area_cm2 = 500°C × cm2/W / RθCA  
(17)  
As a result, approximately 44 square cm of 2-oz copper on top and bottom layers is required for the PCB design.  
The PCB copper heat sink must be connected to the exposed pad. Approximately sixty, 8 mil thermal vias  
spaced 39 mils (1.0 mm) apart connect the top copper to the bottom copper. For an example of a high thermal  
performance PCB layout for SIMPLE SWITCHER power modules, refer to AN-2085 (SNVA457), AN-2125  
(SNVA473), AN-2020 (SNVA419) and AN-2026 (SNVA424).  
10.4 Power Module SMT Guidelines  
The recommendations below are for a standard module surface mount assembly  
Land Pattern — Follow the PCB land pattern with either soldermask defined or non-soldermask defined pads  
Stencil Aperture  
For the exposed die attach pad (DAP), adjust the stencil for approximately 80% coverage of the PCB land  
pattern  
For all other I/O pads use a 1:1 ratio between the aperture and the land pattern recommendation  
Solder Paste — Use a standard SAC Alloy such as SAC 305, type 3 or higher  
Stencil Thickness — 0.125 to 0.15 mm  
Reflow — Refer to solder paste supplier recommendation and optimized per board size and density  
Refer to Design Summary LMZ1xxx and LMZ2xxx Power Modules Family (SNAA214) for reflow information  
Maximum number of reflows allowed is one  
Figure 58. Sample Reflow Profile  
Table 2. Sample Reflow Profile Table  
MAX TEMP  
(°C)  
REACHED TIME ABOVE REACHED TIME ABOVE REACHED TIME ABOVE REACHED  
PROBE  
MAX TEMP  
235°C  
235°C  
245°C  
245°C  
260°C  
260°C  
1
2
3
242.5  
242.5  
241.0  
6.58  
0.49  
6.39  
0.00  
7.10  
0.00  
7.10  
0.55  
6.31  
0.00  
0.00  
7.09  
0.42  
6.44  
0.00  
0.00  
26  
Submit Documentation Feedback  
Copyright © 2011–2015, Texas Instruments Incorporated  
Product Folder Links: LMZ23603  
LMZ23603  
www.ti.com  
SNVS711J MARCH 2011REVISED AUGUST 2015  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.1.2 Development Support  
For developmental support, see the following:  
WEBENCH Tool, http://www.ti.com/webench  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation, see the following:  
AN-2027 Inverting Application for the LMZ14203 SIMPLE SWITCHER Power Module, (SNVA425)  
Absolute Maximum Ratings for Soldering, (SNOA549)  
AN-2024 LMZ1420x / LMZ1200x Evaluation Board (SNVA422)  
AN-2085 LMZ23605/03, LMZ22005/03 Evaluation Board (SNVA457)  
AN-2054 Evaluation Board for LM10000 - PowerWise AVS System Controller (SNVA437)  
Step-Down DC-DC Converter with Integrated Low Dropout Regulator and Startup Mode (SNVA473)  
AN-2020 Thermal Design By Insight, Not Hindsight (SNVA419)  
AN-2026 Effect of PCB Design on Thermal Performance of SIMPLE SWITCHER Power Modules (SNVA424)  
Design Summary LMZ1xxx and LMZ2xxx Power Modules Family (SNAA214)  
11.3 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 Trademarks  
E2E is a trademark of Texas Instruments.  
WEBENCH, SIMPLE SWITCHER are registered trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2011–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LMZ23603  
LMZ23603  
SNVS711J MARCH 2011REVISED AUGUST 2015  
www.ti.com  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
28  
Submit Documentation Feedback  
Copyright © 2011–2015, Texas Instruments Incorporated  
Product Folder Links: LMZ23603  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Feb-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
LMZ23603TZ/NOPB  
LMZ23603TZE/NOPB  
LMZ23603TZX/NOPB  
ACTIVE  
TO-PMOD  
TO-PMOD  
TO-PMOD  
NDW  
7
7
7
45  
RoHS & Green  
RoHS & Green  
RoHS & Green  
SN  
SN  
SN  
Level-3-245C-168 HR  
Level-3-245C-168 HR  
Level-3-245C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
LMZ23603  
ACTIVE  
ACTIVE  
NDW  
NDW  
250  
500  
LMZ23603  
LMZ23603  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Feb-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMZ23603TZE/NOPB  
LMZ23603TZX/NOPB  
TO-  
PMOD  
NDW  
NDW  
7
7
250  
500  
330.0  
24.4  
10.6 14.22  
5.0  
16.0  
24.0  
Q2  
TO-  
330.0  
24.4  
10.6 14.22  
5.0  
16.0  
24.0  
Q2  
PMOD  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMZ23603TZE/NOPB  
LMZ23603TZX/NOPB  
TO-PMOD  
TO-PMOD  
NDW  
NDW  
7
7
250  
500  
367.0  
367.0  
367.0  
367.0  
45.0  
45.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
NDW TO-PMOD  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LMZ23603TZ/NOPB  
7
45  
502  
17  
6700  
8.4  
Pack Materials-Page 3  
MECHANICAL DATA  
NDW0007A  
BOTTOM SIDE OF PACKAGE  
TOP SIDE OF PACKAGE  
TZA07A (Rev D)  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

LMZ23603TZ/NOPB

具有 36V 最大输入电压的 3A SIMPLE SWITCHER® 电源模块 | NDW | 7 | -40 to 85
TI

LMZ23603TZE/NOPB

具有 36V 最大输入电压的 3A SIMPLE SWITCHER® 电源模块 | NDW | 7 | -40 to 85
TI

LMZ23603TZX/NOPB

具有 36V 最大输入电压的 3A SIMPLE SWITCHER® 电源模块 | NDW | 7 | -40 to 85
TI

LMZ23605

Evaluation Board to be an easy-to-use platform to evaluate
NSC

LMZ23605

LMZ23605 5A SIMPLE SWITCHER® Power Module with 36V Maximum Input Voltage
TI

LMZ23605TZ

5A SIMPLE SWITCHER Power Module with 36V Maximum Input Voltage
NSC

LMZ23605TZ/NOPB

LMZ23605 5A SIMPLE SWITCHER® Power Module with 36V Maximum Input Voltage
TI

LMZ23605TZE

5A SIMPLE SWITCHER Power Module with 36V Maximum Input Voltage
NSC

LMZ23605TZE/NOPB

LMZ23605 5A SIMPLE SWITCHER® Power Module with 36V Maximum Input Voltage
TI

LMZ23605TZX

5A SIMPLE SWITCHER Power Module with 36V Maximum Input Voltage
NSC

LMZ23605TZX/NOPB

LMZ23605 5A SIMPLE SWITCHER® Power Module with 36V Maximum Input Voltage
TI

LMZ23605_14

5A SIMPLE SWITCHER® Power Module with 36V Maximum Input Voltage
TI