LMZ31520 [TI]

采用 15x16x5.8mm QFN 封装的 3V 至 14.5V、20A 降压电源模块;
LMZ31520
型号: LMZ31520
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 15x16x5.8mm QFN 封装的 3V 至 14.5V、20A 降压电源模块

电源电路
文件: 总35页 (文件大小:1737K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMZ31520  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
采用 QFN 封装且具有 3V 14.5V 输入的 LMZ31520 20A  
电源模块  
1 特性  
3 说明  
1
完全集成的电源解决方案;  
尺寸小于离散设计  
LMZ31520 电源模块是一款易于使用的集成式电源解  
决方案,它在一个扁平的 QFN 封装内整合了一个带有  
功率 MOSFET 20A 直流/直流转换器、一个屏蔽式  
电感器和多个无源器件。此整体电源解决方案仅需三个  
外部组件,并省去了环路补偿和磁性元件选择过程。  
15mm × 16mm × 5.8mm 封装尺寸  
- LMZ31530 引脚兼容  
超快速负载阶跃响应  
效率高达 96%  
该器件采用 15 × 16 × 5.8mm QFN 封装,可轻松焊接  
到印刷电路板上,并可实现紧凑的负载点设计。可实现  
95% 以上的效率,具有超快速负载阶跃响应,以及热  
阻抗为 8.6°C/W 的出色功率耗散能力。LMZ31520 提  
供离散负载点设计的灵活性和特性集,并且非常适合为  
广泛的集成电路 (IC) 和系统供电。先进的封装技术可  
提供一个与标准 QFN 贴装和测试技术兼容的稳健耐用  
且可靠的电源解决方案。  
宽输出电压调节  
0.6V 3.6V,基准精度为 1%  
可选分离电源轨可实现  
低至 3V 的输入电压  
可选开关频率范围  
300kHz 850kHz)  
可选缓启动  
可调过流限制  
电源正常输出  
简化应用  
输出电压排序  
过热保护  
PVIN  
V5V  
VIN  
预偏置输出启动  
运行温度范围:-40°C 85°C  
增强的散热性能:8.6°C/W  
VIN  
LMZ31520  
CI  
符合 EN55022 A 类辐射标准  
- 集成屏蔽电感器  
使用 LMZ31520 并借助 WEBENCH® 电源设计器  
创建定制设计方案  
SENSE+  
VOUT  
VOUT  
INH  
ILIM  
FREQ_SEL  
PWRGD  
VADJ  
CO  
RSET  
2 应用  
AGND  
PGND  
SS_SEL  
宽带和通信基础设施  
DSP FPGA 负载点 应用  
高密度电源系统  
效率  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
Vout = 1.8 V  
Fsw = 500 kHz  
PVIN = 3.3 V, VIN = 5 V  
PVIN = VIN = 5 V  
PVIN = VIN = 12 V  
0
4
8
12  
16  
20  
C001  
Output Current (A)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important  
disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSBM9  
 
 
LMZ31520  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
www.ti.com.cn  
4 Specifications  
4.1 Absolute Maximum Ratings(1)  
over operating temperature range (unless otherwise noted)  
VALUE  
UNIT  
MIN  
–0.3  
–0.3  
MAX  
20  
VIN, PVIN  
V
V
Input Voltage  
INH, VADJ, PWRGD, PWRGD_PU, ILIM, FREQ_SEL,  
SS_SEL, V5V  
7
PH  
–1  
–2  
25  
27  
V
Output Voltage  
PH 10ns Transient  
VOUT  
–0.3  
6
V
VDIFF (GND to exposed thermal  
pad)  
±200  
mV  
Operating Junction Temperature  
Storage Temperature  
Peak Reflow Case Temperature(3)  
–40  
–55  
125(2)  
150  
245(4)  
3(4)  
°C  
°C  
°C  
Maximum Number of Reflows Allowed(3)  
Mechanical Shock  
Mil-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted  
Mil-STD-883D, Method 2007.2, 20-2000Hz  
250  
G
Mechanical Vibration  
20  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) See the temperature derating curves in the Typical Characteristics section for thermal information.  
(3) For soldering specifications, refer to the Soldering Requirements for BQFN Packages application note.  
(4) Devices with a date code prior to week 14 2018 (1814) have a peak reflow case temperature of 240°C with a maximum of one reflow  
4.2 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
MAX  
14.5  
14.5  
3.6  
UNIT  
V
PVIN  
VIN  
Input Switching Voltage  
Input Bias Voltage  
Output Voltage  
4.5  
0.6  
300  
V
VOUT  
fSW  
V
Switching Frequency  
850  
kHz  
2
Copyright © 2013–2018, Texas Instruments Incorporated  
 
LMZ31520  
www.ti.com.cn  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
4.3 Thermal Information  
LMZ31520  
THERMAL METRIC(1)  
RLG  
72 PINS  
8.6  
UNIT  
θJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-ambient thermal resistance(3)  
Junction-to-top characterization parameter(4)  
Junction-to-board characterization parameter(5)  
Natural Convection  
100 LFM  
°C/W  
°C/W  
°C/W  
°C/W  
θJA(100LFM)  
ψJT  
7.8  
1.6  
ψJB  
4.2  
(1) For more information about traditional and new thermal metrics, see theSemiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
(2) The junction-to-ambient thermal resistance, θJA, applies to devices soldered directly to a 100 mm x 100 mm, 6-layer PCB with 1 oz.  
copper and natural convection cooling. Additional airflow reduces θJA  
(3) The junction-to-ambient thermal resistance, θJA, applies to devices soldered directly to a 100 mm x 100 mm, 6-layer PCB with 1 oz.  
copper and 100 LFM forced air cooling. Additional airflow reduces θJA  
.
.
(4) The junction-to-top characterization parameter, ψJT, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (sections 6 and 7). TJ = ψJT * Pdis + TT; where Pdis is the power dissipated in the device and TT is  
the temperature of the top of the device.  
(5) The junction-to-board characterization parameter, ψJB, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (sections 6 and 7). TJ = ψJB * Pdis + TB; where Pdis is the power dissipated in the device and TB is  
the temperature of the board 1mm from the device.  
4.4 Package Specifications  
LMZ31520  
UNIT  
Weight  
4.96 grams  
Flammability  
Meets UL 94 V-O  
Per Bellcore TR-332, 50% stress, TA = 40°C, ground benign  
MTBF Calculated reliability  
26.5 MHrs  
4.5 Electrical Characteristics  
TA = -40°C to 85°C, VIN = 12 V, VOUT = 1.8 V, IOUT = 20A  
CIN = 2x 22 µF ceramic & 330 µF bulk, COUT = 4x 100 µF ceramic (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0
TYP  
MAX  
20  
UNIT  
IOUT  
VIN  
Output current  
A
V
V
V
Input bias voltage range  
Input switching voltage range  
Over IOUT range  
Over IOUT range  
VIN Increasing  
Hysteresis  
4.5  
3.0(1)  
14.5  
14.5  
4.33  
PVIN  
4.0  
4.2  
UVLO  
VIN Undervoltage lockout  
0.25  
VOUT(adj)  
Output voltage adjust range  
Set-point voltage tolerance  
Temperature variation  
Load regulation  
Over IOUT range  
0.6  
3.6  
V
(2)  
IOUT = 20 A, FCCM mode  
-40°C TA +85°C  
±1.0%  
±0.25%  
+0.3%  
VOUT  
Over IOUT range  
(2)  
Total output voltage variation  
Includes set-point, load, and temperature variation  
PVIN ±10%  
±1.8%  
±0.1%  
±0.5%  
Line regulation  
Over PVIN range  
(1) The minimum PVIN voltage is 3.0V or (VOUT+ 1.1V), whichever is greater. See VIN and PVIN Input Voltage for more details.  
(2) The stated limit of the set-point voltage tolerance includes the tolerance of both the internal voltage reference and the internal  
adjustment resistor. The overall output voltage tolerance will be affected by the tolerance of the external RSET resistor.  
Copyright © 2013–2018, Texas Instruments Incorporated  
3
LMZ31520  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
TA = -40°C to 85°C, VIN = 12 V, VOUT = 1.8 V, IOUT = 20A  
CIN = 2x 22 µF ceramic & 330 µF bulk, COUT = 4x 100 µF ceramic (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
94  
92  
88  
86  
82  
96  
94  
91  
88  
85  
1%  
30  
25  
25  
MAX  
UNIT  
VOUT = 3.3 V, fSW = 500kHz  
VOUT = 1.8 V, fSW = 500kHz  
VOUT = 1.2 V, fSW = 500kHz  
VOUT = 0.9 V, fSW = 500kHz  
VOUT = 0.6 V, fSW = 500kHz  
VOUT = 3.3 V, fSW = 500kHz  
VOUT = 1.8 V, fSW = 500kHz  
VOUT = 1.2 V, fSW = 500kHz  
VOUT = 0.9 V, fSW = 500kHz  
VOUT = 0.6 V, fSW = 500kHz  
PVIN = VIN = 12 V  
IO = 15 A  
%
η
Efficiency  
PVIN = VIN = 5 V  
IO = 15 A  
%
Output voltage ripple  
Current limit threshold  
20 MHz bandwith  
VOUT  
A
ILIM  
Recovery time  
µs  
2.5 A/µs load step from 25 to 75%  
IOUT(max)  
Transient response  
Inhibit Control  
VOUT over/undershoot  
mV  
V
Inhibit High Voltage  
Inhibit Low Voltage  
1.8  
Open(3)  
0.6  
VINH  
-0.3  
V
VIN = 5 V  
VIN = 12 V  
Good  
0.5  
1.2  
95  
0.7  
mA  
mA  
IIN(stby)  
VIN standby current  
INH pin to AGND  
VOUT rising  
1.5  
Fault  
115  
90  
PWRGD Thresholds  
%
Power Good  
Fault  
VOUT falling  
Good  
110  
0.2  
520  
300  
850  
145  
10  
PWRGD Low Voltage  
Switching frequency  
I(PWRGD) = 2 mA  
0.3  
V
fSW  
FREQ_SEL pin OPEN, IOUT = 10 A  
470  
570  
kHz  
kHz  
kHz  
°C  
66 kΩ resistor between FREQ_SEL pin and PGND  
fSEL  
Frequency Select(4)  
FREQ_SEL pin connected to V5V (pin 61)  
Thermal shutdown  
Thermal shutdown hysteresis  
Thermal Shutdown  
°C  
(5)  
Ceramic  
44  
94  
CIN  
External input capacitance  
External output capacitance  
µF  
µF  
Non-ceramic  
330  
400  
(6)  
COUT  
100  
5000  
(3) This pin has an internal pull-up to approximately 0.4 x VIN. If this pin is left open circuit, the device operates when a valid input voltage is  
applied. A small, low-leakage (<300nA) MOSFET is recommended for control.  
(4) See the Frequency Select section for more information on selecting the frequency.  
(5) A minimum of 44 µF (2x 22 µF) of external ceramic capacitance is required across the input (PVIN/VIN and PGND connected) for  
proper operation. Locate the capacitor close to the device. See Table 3 for more details. When operating with split VIN and PVIN rails,  
place 4.7 µF of ceramic capacitance directly at the VIN pin to PGND.  
(6) A minimum of 100 µF of ceramic capacitance is required at the output. Locate the capacitance close to the device. Adding additional  
capacitance close to the load improves the response of the regulator to load transients and reduces ripple. See Table 3 for more details.  
4
Copyright © 2013–2018, Texas Instruments Incorporated  
LMZ31520  
www.ti.com.cn  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
5 Device Information  
RLG PACKAGE  
(TOP VIEW)  
49  
33  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34  
PGND  
PGND  
NC  
PGND  
PGND  
50  
51  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
65  
NC  
PVIN  
66  
PGND  
67  
PGND  
VOUT  
VOUT  
VOUT  
VOUT  
VOUT  
NC  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
NC  
PH  
PH  
PH  
VOUT  
68  
PVIN  
69  
PGND  
70  
PH  
71  
PH  
VOUT  
VOUT  
VOUT  
VOUT  
V5V  
PH  
PH  
PH  
DNC  
DNC  
PWRGD  
PWRGD_PU  
PGND  
72  
PGND  
PGND  
PGND  
PGND  
PGND  
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
1
17  
Copyright © 2013–2018, Texas Instruments Incorporated  
5
LMZ31520  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
www.ti.com.cn  
Pin Functions  
TERMINAL  
DESCRIPTION  
NAME  
NO.  
This pin is connected internally to the power ground of the device. This pin should only be used as the zero  
volt ground reference for connecting the voltage setting resistor (RSET). Do not connect AGND to PGND.  
See Layout Recommendations.  
AGND  
9
4
8
12  
20  
21  
35  
36  
Do Not Connect. Do not connect these pins to AGND, to another DNC pin, or to any other voltage. These  
pins are connected to internal circuitry. Each pin must be soldered to an isolated pad.  
DNC  
Frequency Select pin. Leave this pin open (floating) to select 500 kHz (typ) operating frequency. Connect  
this pin to V5V pin to select 850 kHz (typ) operating frequency. Connect a 66 kΩ resistor between this pin  
and PGND to select 300 kHz (typ) operating frequency. See Table 2 for more info.  
FREQ_SEL  
7
Current limit setting pin. Connecting a resistor between this pin and PGND sets the current limit. When left  
open, refer to the Electrical Characterization table for current limit value.  
ILIM  
INH  
6
16  
29  
30  
31  
32  
45  
1
Inhibit pin. Use an open drain or open collector logic device to ground this pin to control the INH function.  
Not Connected. These pins are internally isolated from any signal and all other pins. Each pin must be  
soldered to a pad on the PCB. These pins can be left isolated, connected to one another, or connected to  
any signal on the PCB.  
NC  
5
17  
33  
34  
37  
38  
39  
40  
41  
46  
47  
48  
49  
50  
51  
62  
63  
64  
65  
67  
70  
72  
This is the return current path for the power stage of the device. Connect these pins to the load and to the  
bypass capacitors associated with VIN and VOUT. Pads 65, 67, 70, and 72 should be connected to PCB  
ground planes using multiple vias for good thermal performance. Not all pins are connected together  
internally. All pins must be connected together externally with a copper plane or pour directly under the  
device.  
PGND  
6
Copyright © 2013–2018, Texas Instruments Incorporated  
LMZ31520  
www.ti.com.cn  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
Pin Functions (continued)  
TERMINAL  
DESCRIPTION  
NAME  
NO.  
11  
22  
23  
24  
25  
26  
27  
28  
71  
42  
43  
44  
66  
69  
Phase switch node. Do not place any external component on these pins or tie them to a pin of another  
function. Connect these pins using a copper area beneath pad 71.  
PH  
PVIN  
Input switching voltage pin. This pin supplies voltage to the power switches of the converter.  
Power Good flag pin. This open drain output asserts low if the output voltage is more than approximately  
±6% out of regulation.  
PWRGD  
19  
18  
14  
Power Good pull-up pin. This pin is connected to a 100kΩ resistor which is tied to the PWRGD pin internally.  
Connect this pin to V5V or to any voltage between 1.3V and 6.5V.  
PWRGD_PU  
SENSE+  
Remote sense connection. Connect this pin to VOUT at the load for improved regulation. This pin must be  
connected to VOUT at the load, or at the module pins.  
Slow-start select pin. Connect a resistor between this pin and PWRGD (or PGND) to select the slow-start  
time. See the SS_SEL section of the datasheet for slow-start times and corresponding resistor values.  
Connect the SS_SEL pin to PGND to select Auto-skip Eco-mode or to the PWRGD pin (pin 19) to select  
FCCM.  
SS_SEL  
3
V5V  
61  
13  
2
5V regulator pin. This regulator supplies the internal circuitry.  
VADJ  
Output voltage adjust pin. Connecting a resistor between this pin and AGND sets the output voltage.  
VIN  
Input bias voltage pins. Supplies the control circuitry of the power converter.  
15  
10  
52  
53  
54  
55  
56  
57  
58  
59  
60  
68  
Output voltage. These pins are connected to the internal output inductor. Connect these pins to the output  
load and connect external bypass capacitors between these pins and PGND.  
VOUT  
Copyright © 2013–2018, Texas Instruments Incorporated  
7
LMZ31520  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
www.ti.com.cn  
Functional Block Diagram  
LMZ31520  
VIN  
ILIM  
OCP  
INH  
V5V  
VIN  
Shutdown  
Logic  
10kΩ  
100kΩ  
PWRGD_PU  
LDO  
6.65kΩ  
PWRGD  
PWRGD  
Logic  
Thermal  
VIN  
Shutdown UVLO  
SENSE+  
Ramp  
Comp  
PVIN  
PH  
VADJ  
+
+
SS/  
FCCM/  
Skip  
Power  
Stage  
and  
VREF  
SS_SEL  
Control  
Logic  
VOUT  
PGND  
Frequency  
Select  
FREQ_SEL  
AGND  
8
Copyright © 2013–2018, Texas Instruments Incorporated  
LMZ31520  
www.ti.com.cn  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
6 Typical Characteristics (PVIN = VIN = 12 V)  
The electrical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for  
the converter. Applies to Figure 1, Figure 2, and Figure 3. The temperature derating curves represent the conditions at which  
internal components are at or below the manufacturer's maximum operating temperatures. Derating limits apply to devices  
soldered directly to a 100 mm × 100 mm six-layer PCB with 1 oz. copper. Applies to Figure 4 and Figure 5.  
55  
45  
35  
25  
15  
5
100  
90  
80  
70  
60  
50  
40  
30  
Vo = 3.3V, fsw = 500kHz  
Vo = 1.8V, fsw = 500kHz  
Vo = 1.2V, fsw = 500kHz  
Vo = 0.9V, fsw = 500kHz  
Vo = 0.6V, fsw = 500kHz  
Vo = 3.3V, fsw = 500kHz  
Vo = 1.8V, fsw = 500kHz  
Vo = 1.2V, fsw = 500kHz  
Vo = 0.9V, fsw = 500kHz  
Vo = 0.6V, fsw = 500kHz  
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
C004  
Output Current (A)  
C001  
Output Current (A)  
Figure 2. Voltage Ripple vs. Output Current  
Figure 1. Efficiency vs. Output Current  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
90  
80  
70  
60  
50  
40  
30  
20  
Vo = 3.3V, fsw = 500kHz  
Vo = 1.8V, fsw = 500kHz  
Vo = 1.2V, fsw = 500kHz  
Vo = 0.9V, fsw = 500kHz  
Vo = 0.6V, fsw = 500kHz  
Airflow = 0 LFM  
Vo ≤ 1.8V, fsw = 500kHz  
Vo = 3.3V, fsw = 500kHz  
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
C004  
C001  
Output Current (A)  
Output Current (A)  
Figure 3. Power Dissipation vs. Output Current  
Figure 4. Safe Operating Area (0 LFM)  
90  
80  
70  
60  
50  
40  
30  
20  
Airflow = 100 LFM  
All Output Voltages  
0
4
8
12  
16  
20  
C001  
Output Current (A)  
Figure 5. Safe Operating Area (100 LFM)  
Copyright © 2013–2018, Texas Instruments Incorporated  
9
 
 
 
LMZ31520  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
www.ti.com.cn  
7 Typical Characteristics (PVIN = VIN = 5 V)  
The electrical characteristic data has been developed from actual products tested at 25°C. This data is considered typical for  
the converter. Applies to Figure 6, Figure 7, and Figure 8. The temperature derating curves represent the conditions at which  
internal components are at or below the manufacturer's maximum operating temperatures. Derating limits apply to devices  
soldered directly to a 100 mm × 100 mm six-layer PCB with 1 oz. copper. Applies to Figure 9.  
100  
90  
80  
70  
60  
50  
40  
30  
45  
35  
25  
15  
5
Vo = 3.3V, fsw = 500kHz  
Vo = 1.8V, fsw = 500kHz  
Vo = 1.2V, fsw = 500kHz  
Vo = 0.9V, fsw = 500kHz  
Vo = 0.6V, fsw = 500kHz  
Vo = 3.3V, fsw = 500kHz  
Vo = 1.8V, fsw = 500kHz  
Vo = 1.2V, fsw = 500kHz  
Vo = 0.9V, fsw = 500kHz  
Vo = 0.6V, fsw = 500kHz  
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
C001  
C004  
Output Current (A)  
Output Current (A)  
Figure 6. Efficiency vs. Output Current  
Figure 7. Voltage Ripple vs. Output Current  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
90  
80  
70  
60  
50  
40  
30  
20  
Vo = 3.3V, fsw = 500kHz  
Vo = 1.8V, fsw = 500kHz  
Vo = 1.2V, fsw = 500kHz  
Vo = 0.9V, fsw = 500kHz  
Vo = 0.6V, fsw = 500kHz  
Airflow = 0 LFM  
All Output Voltages  
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
C004  
C001  
Output Current (A)  
Output Current (A)  
Figure 8. Power Dissipation vs. Output Current  
Figure 9. Safe Operating Area (0 LFM)  
10  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
 
LMZ31520  
www.ti.com.cn  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
8 Application Information  
8.1 Adjusting the Output Voltage  
The VADJ control sets the output voltage of the LMZ31520. The output voltage adjustment range is from 0.6V to  
3.6V. The adjustment method requires the addition of RSET, which sets the output voltage, and the connection of  
SENSE+ to VOUT. The RSET resistor must be connected directly between the VADJ (pin 13) and AGND (pin 9).  
The SENSE+ pin (pin 14) must be connected to VOUT either at the load for improved regulation or at VOUT of  
the device.  
The LMZ31520 relies on a precision trimmed 0.6 V reference for the feedback voltage regulation and operates by  
regulating the valley of the voltage ripple appearing at the VADJ pin. The voltage ripple is a function of the input  
voltage and the output voltage, therefore the RSET resistor will change based on the input voltage. Table 1 gives  
the calculated external RSET resistor for a number of common bus voltages for PVIN of 12 V, 5 V, and 3.3 V. The  
recommended switching frequency is 500 kHz which can be configured by leaving the FREQ_SEL pin open. To  
adjust the frequency, see Table 2.  
Table 1. RSET Resistor Values  
RSET ()  
PVIN = 5 V  
open  
18681  
8993  
5923  
4416  
3521  
2927  
2505  
2190  
1945  
1749  
1589  
1456  
1344  
1248  
1164  
1091  
1027  
970  
RSET ()  
PVIN = 5 V  
563  
VOUT (V)  
0.60  
0.65  
0.70  
0.75  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
2.10  
PVIN = 12 V  
open  
18787  
9024  
5939  
4427  
3529  
2934  
2511  
2195  
1950  
1754  
1594  
1460  
1348  
1251  
1168  
1095  
1031  
973  
PVIN = 3.3 V  
open  
18588  
8966  
5908  
4406  
3513  
2921  
2500  
2185  
1941  
1745  
1586  
1453  
1341  
1244  
1161  
1088  
1024  
968  
VOUT (V)  
2.15  
2.20  
2.25  
2.30  
2.35  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
2.70  
2.75  
2.80  
2.85  
2.90  
2.95  
3.00  
3.05  
3.10  
3.15  
3.20  
3.25  
3.30  
3.35  
3.40  
3.45  
3.50  
3.55  
3.60  
PVIN = 12 V  
566  
548  
532  
516  
502  
488  
475  
462  
451  
439  
429  
419  
409  
400  
391  
382  
374  
367  
359  
352  
345  
339  
332  
326  
320  
315  
309  
304  
299  
294  
PVIN = 3.3 V  
560  
542  
525  
510  
495  
481  
468  
456  
444  
433  
422  
412  
402  
393  
384  
375  
367  
359  
352  
345  
338  
331  
325  
318  
312  
307  
301  
296  
291  
286  
545  
528  
513  
498  
484  
471  
459  
447  
436  
425  
415  
405  
396  
387  
379  
370  
363  
355  
922  
919  
916  
348  
876  
873  
870  
341  
834  
831  
828  
335  
797  
793  
790  
328  
762  
759  
756  
322  
730  
727  
724  
316  
701  
698  
695  
310  
674  
671  
668  
305  
650  
646  
643  
300  
626  
623  
620  
294  
605  
602  
599  
289  
585  
581  
578  
Copyright © 2013–2018, Texas Instruments Incorporated  
11  
 
LMZ31520  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
www.ti.com.cn  
8.2 Frequency Select  
The LMZ31520 switching frequency can be selected from several values as shown in Table 2. To select a  
switching frequency, a resistor (RFREQ) must be connected between the FREQ_SEL pin and either PGND or V5V  
(pin 61) as shown in Table 2. For all output voltages, the recommended switching frequency is 500 kHz which  
can be configured by leaving the FREQ_SEL pin open. Table 2 also shows the output voltage range for each  
frequency.  
Table 2. Frequency Selection  
VOUT RANGE (V)  
Frequency Select (kHz)  
RFREQ (kΩ)  
66  
Connect To  
PGND  
PGND  
-
MIN  
0.6  
0.6  
0.6  
0.8  
1.0  
1.2  
MAX  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
300  
400  
500  
650  
750  
850  
498  
open  
745  
V5V  
188  
V5V  
short  
V5V  
8.3 Capacitor Recommendations for the LMZ31520 Power Supply  
8.3.1 Capacitor Technologies  
8.3.1.1 Electrolytic, Polymer-Electrolytic Capacitors  
Aluminum electrolytic capacitors provide adequate decoupling over the frequency range of 2 kHz to 150 kHz.  
When using electrolytic capacitors, high-quality, polymer-electrolytic capacitors are recommended. Polymer-  
electrolytic type capacitors are recommended for applications where the ambient operating temperature is less  
than 0°C. The Panasonic OS-CON capacitor series is suggested due to the lower ESR, higher rated surge,  
power dissipation, ripple current capability, and small package size.  
8.3.1.2 Ceramic Capacitors  
The performance of ceramic capacitors is most effective above 150 kHz. Multilayer ceramic capacitors have a  
low ESR and a resonant frequency higher than the bandwidth of the regulator. They can be used to reduce the  
reflected ripple current at the input as well as improve the transient response of the output.  
8.3.1.3 Tantalum, Polymer-Tantalum Capacitors  
Polymer-tantalum type capacitors are recommended for applications where the ambient operating temperature is  
less than 0°C. The Panasonic POSCAP series and Kemet T530 capacitor series are recommended rather than  
many other tantalum types due to their lower ESR, higher rated surge, power dissipation, ripple current  
capability, and small package size. Tantalum capacitors that have no stated ESR or surge current rating are not  
recommended for power applications.  
8.3.1.4 Input Capacitor  
The LMZ31520 requires a minimum input capacitance of 44 μF of ceramic type. The voltage rating of input  
capacitors must be greater than the maximum input voltage. The input RMS ripple current is a function of the  
output current and the duty cycle for any application. The input capacitor must be rated for the application's RMS  
ripple current. Table 3 includes a preferred list of capacitors by vendor.  
8.3.1.5 Output Capacitor  
The required output capacitance of the LMZ31520 can be comprised of either all ceramic capacitors, or a  
combination of ceramic and bulk capacitors. The required output capacitance must include at least 100 µF of  
ceramic type. When adding additional non-ceramic bulk capacitors, low-ESR devices like the ones recommended  
in Table 3 are required. The required capacitance above the minimum is determined by actual transient deviation  
requirements. See Table 4 for typical transient response values for several output voltage, input voltage and  
capacitance combinations. Table 3 includes a preferred list of capacitors by vendor.  
12  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
LMZ31520  
www.ti.com.cn  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
Capacitor Recommendations for the LMZ31520 Power Supply (continued)  
Table 3. Recommended Input/Output Capacitors(1)  
CAPACITOR CHARACTERISTICS  
VENDOR  
SERIES  
PART NUMBER  
WORKING VOLTAGE (V)  
CAPACITANCE (µF)  
ESR (2) (m)  
Murata  
X5R  
X5R  
GRM32ER61E226K  
25  
25  
22  
47  
2
2
TDK  
C3216X5R1E476M  
C3216X5R1C476M  
GRM32ER61C476M  
C3225X5R0J107M  
GRM32ER60J107M  
C3225X5R0J476K  
GRM32ER60J476M  
EEH-ZA1E101XP  
T520V107M010ASE025  
6TPE100MI  
TDK  
X5R  
16  
47  
2
Murata  
TDK  
X5R  
16  
47  
2
X5R  
6.3  
6.3  
6.3  
6.3  
25  
100  
100  
47  
2
Murata  
TDK  
X5R  
2
X5R  
2
Murata  
Panasonic  
Kemet  
X5R  
47  
2
EEH-ZA  
T520  
100  
100  
100  
220  
220  
330  
330  
330  
30  
25  
25  
7
10  
Panasonic  
Panasonic  
Kemet  
POSCAP  
POSCAP  
T530  
6.3  
2.5  
6.3  
6.3  
2.0  
6.3  
2R5TPE220M7  
T530D227M006ATE006  
T530D337M006ATE010  
2TPF330M6  
6
Kemet  
T530  
10  
6
Panasonic  
Panasonic  
POSCAP  
POSCAP  
6TPE330MFL  
15  
(1) Capacitor Supplier Verification, RoHS, Lead-free and Material Details  
Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process  
requirements for any capacitors identified in this table.  
(2) Maximum ESR @ 100kHz, 25°C.  
8.4 Transient Response  
The LMZ31520 is designed to have an ultra-fast load step response with minimal output capacitance. Table 4  
shows the voltage deviation and recovery time for several different transient conditions. Several transient  
(1)  
waveforms are shown in Application Curves  
.
Table 4. Output Voltage Transient Response  
CIN1 = 3 x 47 µF CERAMIC  
VOLTAGE DEVIATION (mV)  
RECOVERY TIME  
(µs)  
VOUT (V)  
VIN (V)  
COUT1 Ceramic  
COUT2 BULK  
5 A LOAD STEP,  
(1 A/µs)  
10 A LOAD STEP,  
(1 A/µs)  
5
500 µF  
500 µF  
500 µF  
500 µF  
500 µF  
500 µF  
500 µF  
500 µF  
500 µF  
500 µF  
500 µF  
500 µF  
500 µF  
500 µF  
500 µF  
500 µF  
-
8
8
15  
15  
15  
12  
20  
16  
20  
15  
20  
16  
20  
16  
20  
16  
25  
25  
35  
35  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
45  
50  
50  
0.6  
12  
-
-
8
5
12  
5
470 µF  
6
0.9  
1.2  
-
8
470 µF  
7
-
10  
8
330 µF  
-
10  
8
12  
5
330 µF  
-
10  
8
330 µF  
1.8  
3.3  
-
10  
8
12  
330 µF  
5
-
-
12  
12  
12  
(1) Device configured for FCCM mode of operation, (pin 3 connected to pin 19).  
Copyright © 2013–2018, Texas Instruments Incorporated  
13  
 
 
LMZ31520  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
www.ti.com.cn  
(1)  
8.5 Application Curves  
Figure 10. PVIN = 5V, VOUT = 1.8V, 5A Load Step  
Figure 11. PVIN = 5V, VOUT = 1.2V, 10A Load Step  
Figure 13. PVIN = 12V, VOUT = 1.8V, 10A Load Step  
Figure 12. PVIN = 12V, VOUT = 1.0V, 10A Load Step  
(1) Device configured for FCCM mode of operation, (pin 3 connected to pin 19).  
14  
Copyright © 2013–2018, Texas Instruments Incorporated  
LMZ31520  
www.ti.com.cn  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
8.6 Application Schematics  
LMZ31520  
SENSE+  
VOUT  
V
1.2 V  
VIN  
OUT  
V
/ P  
VIN  
IN  
4.5 V to 14.5 V  
PVIN  
+
+
C
C
OUT2  
220 µF  
OUT1  
C
C
C
IN3  
IN1  
IN2  
2x 100 µF  
100 µF 22 µF 22 µF  
INH  
FREQ_SEL PWRGD  
SS_SEL  
PGND  
VADJ  
R
AGND  
SET  
1.43 k  
Figure 14. Typical Schematic  
PVIN = VIN = 4.5 V to 14.5 V, VOUT = 1.2 V  
V
IN  
4.5 V to 14.5 V  
C
IN3  
4.7 µF  
LMZ31520  
SENSE+  
VOUT  
V
0.9 V  
OUT  
P
3.3 V  
VIN  
PVIN  
INH  
+
+
C
OUT1  
C
OUT2  
C
C
C
IN3  
IN1  
IN2  
3x 100 µF  
330 µF  
100 µF 22 µF 22 µF  
FREQ_SEL PWRGD  
SS_SEL  
PGND  
VADJ  
R
AGND  
SET  
2.87 k  
Figure 15. Typical Schematic  
PVIN = 3.3 V, VIN = 4.5 V to 14.5 V, VOUT = 0.9 V  
Copyright © 2013–2018, Texas Instruments Incorporated  
15  
LMZ31520  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
www.ti.com.cn  
8.7 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LMZ31520 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.8 VIN and PVIN Input Voltage  
The LMZ31520 allows for a variety of applications by using the VIN and PVIN pins together or separately. The  
VIN voltage supplies the internal control circuits of the device. The PVIN voltage provides the input voltage to the  
power converter system.  
If tied together, the input voltage for the VIN pin and the PVIN pin can range from 4.5 V to 14.5 V. If using the  
VIN pin separately from the PVIN pin, the VIN pin must be greater than 4.5 V, and the PVIN pin can range from  
as low as 3.0 V to 14.5 V. When operating from a split rail, it is recommended to supply VIN from 5 V to 12 V, for  
best performance.  
8.9 3.3 V PVIN Operation  
Applications operating from a PVIN of 3.3 V must provide at least 4.5 V for VIN. It is recommended to supply VIN  
from 5 V to 12 V, for best performance. See application note, SNVA692 for help creating 5 V from 3.3 V using a  
small, simple charge pump device.  
8.10 Power Good (PWRGD)  
The PWRGD pin is an open drain output. Once the voltage on the SENSE+ pin is between 90% and 115% of the  
set voltage, the PWRGD pin pull-down is released and the pin floats. The recommended pull-up resistor value is  
between 10 kΩ and 100 kΩ to a voltage source that is less than 7 V. An internal 100 kΩ pull-up resistor is  
provided internal to the device between the PWRGD pin (pin 19) and PWRGD_PU pin (pin 18). The  
PWRGD_PU pin can be connected to a voltage source less than 7 V or connected directly to V5V (pin 61), which  
is an internal 5V regulator. The PWRGD pin is in a defined state once VIN is greater than 1.0 V. The PWRGD  
pin is pulled low when the voltage on SENSE+ is lower than 90% or greater than 115% of the nominal set  
voltage. Also, the PWRGD pin is pulled low if the input UVLO or thermal shutdown is asserted or the INH pin is  
pulled low.  
16  
Copyright © 2013–2018, Texas Instruments Incorporated  
LMZ31520  
www.ti.com.cn  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
8.11 Slow Start (SS_SEL)  
Connecting the SS_SEL pin to PWRGD or PGND sets the slow start interval of approximately 0.7 ms. The  
connection to either PWRGD or PGND determines the mode of the LMZ31520 as decribed in Auto-Skip Eco-  
mode™ / Forced Continuous Conduction Mode. Adding a resistor between SS_SEL pin and PWRGD or PGND  
increases the slow start time. Increasing the slow start time will reduce inrush current.Table 5 shows a resistor  
connected between SS_SEL pin and PWRGD to select FCCM and Figure 17 shows a resistor between SS_SEL  
pin and PGND to select Auto-skip mode. See Table 5 below for SS resistor values and timing interval.  
PWRGD  
SS_SEL  
PWRGD  
SS_SEL  
R
SS  
R
SS  
PGND  
PGND  
Figure 16. Slow-Start Resistor (RSS) in FCCM  
Figure 17. Slow-Start Resistor (RSS) in Auto-skip Mode  
Table 5. Slow-Start Resistor Values and Slow-Start Time  
RSS (kΩ)  
short  
0.7  
61.9  
1.4  
161  
2.8  
436  
SS Time (msec)  
5.6  
8.12 Auto-Skip Eco-mode™ / Forced Continuous Conduction Mode  
Auto-skip Eco-mode or Forced Continuous Conduction Mode (FCCM) can be selected using the SS_SEL pin  
(pin 3). Connect the SS_SEL pin to PGND to select Auto-skip Eco-mode or to the PWRGD pin to select FCCM.  
In Auto-skip Eco-mode, the LMZ31520 automatically reduces the switching frequency at light load conditions to  
maintain high efficiency. In FCCM, the controller keeps continuous conduction mode in light load condition and  
the switching frequency is kept almost constant over the entire load range. Transient performance is best in  
FCCM.  
Copyright © 2013–2018, Texas Instruments Incorporated  
17  
 
 
 
LMZ31520  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
www.ti.com.cn  
8.13 Power-Up Characteristics  
When configured as shown in the front page schematic, the LMZ31520 produces a regulated output voltage  
following the application of a valid input voltage. During the power-up, internal soft-start circuitry slows the rate  
that the output voltage rises, thereby limiting the amount of in-rush current that can be drawn from the input  
source. Figure 18 shows the start-up waveforms for a LMZ31520, operating from a 5-V input (PVIN=VIN) and  
with the output voltage adjusted to 1.8 V. Figure 19 shows the start-up waveforms for a LMZ31520 starting up  
into a pre-biased output voltage. The waveforms were measured with a 15-A constant current load.  
Figure 19. Start-up into Pre-bias  
Figure 18. Start-Up Waveforms  
8.14 Pre-Biased Start-Up  
The LMZ31520 has been designed to prevent the low-side MOSFET from discharging a pre-biased output.  
During pre-biased startup, the low-side MOSFET does not turn on until the high-side MOSFET has started  
switching. The high-side MOSFET does not start switching until the slow start voltage exceeds the voltage on the  
VADJ pin. Refer to Figure 19.  
8.15 Remote Sense  
The SENSE+ pin must be connected to VOUT at the load, or at the device pins.  
Connecting the SENSE+ pin to VOUT at the load improves the load regulation performance of the device by  
allowing it to compensate for any I-R voltage drop between its output pins and the load. An I-R drop is caused by  
the high output current flowing through the small amount of pin and trace resistance. This should be limited to a  
maximum of 300 mV.  
NOTE  
The remote sense feature is not designed to compensate for the forward drop of nonlinear  
or frequency dependent components that may be placed in series with the converter  
output. Examples include OR-ing diodes, filter inductors, ferrite beads, and fuses. When  
these components are enclosed by the SENSE+ connection, they are effectively placed  
inside the regulation control loop, which can adversely affect the stability of the regulator.  
18  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
LMZ31520  
www.ti.com.cn  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
8.16 Output On/Off Inhibit (INH)  
The INH pin provides electrical on/off control of the device. Once the INH pin voltage exceeds the threshold  
voltage, the device starts operation. If the INH pin voltage is pulled below the threshold voltage, the regulator  
stops switching and enters low quiescent current state.  
The INH pin has an internal pull-up current source, allowing the user to float the INH pin for enabling the device.  
If an application requires controlling the INH pin, use an open drain/collector device, or a suitable logic gate to  
interface with the pin.  
Figure 20 shows the typical application of the inhibit function. The Inhibit control has its own internal pull-up to  
VIN potential. An open-collector or open-drain device is recommended to control this input.  
Turning Q1 on applies a low voltage to the inhibit control (INH) pin and disables the output of the supply, shown  
in Figure 21. If Q1 is turned off, the supply executes a soft-start power-up sequence, as shown in Figure 22. A  
regulated output voltage is produced within 2 ms. The waveforms were measured with a 5-A constant current  
load.  
INH  
Q1  
INH  
Control  
PGND  
Figure 20. Typical Inhibit Control  
Figure 21. Inhibit Turn-Off  
Figure 22. Inhibit Turn-On  
Copyright © 2013–2018, Texas Instruments Incorporated  
19  
 
 
LMZ31520  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
www.ti.com.cn  
8.17 Overcurrent Protection  
For protection against load faults, the LMZ31520 incorporates cycle-by-cycle overcurrent limiting control. The  
inductor current is monitored during the OFF state and the controller maintains the OFF state during the period in  
that the inductor current is larger than the overcurrent trip level. In cycle-by-cycle mode, applying a load that  
exceeds the regulator's overcurrent threshold limits the output current and reduces the output voltage as shown  
in Figure 23. If the overcurrent condition remains and the output voltage drops below 70% of the set-point, the  
LMZ31520 shuts down. Following shutdown, the module periodically attempts to recover by initiating a soft-start  
power-up as shown in Figure 23. This is described as a hiccup mode of operation, whereby the module  
continues in a cycle of successive shutdown and power up until the load fault is removed. During this period, the  
average current flowing into the fault is significantly reduced which reduces power dissipation. Once the fault is  
removed, the module automatically recovers and returns to normal operation as shown in Figure 24.  
Figure 23. Typical Overcurrent Limiting  
Figure 24. Typical Removal of Overcurrent  
8.18 Current Limit (ILIM) Adjust  
The current limit of this device can be adjusted lower by connecting a resistor, RILIM, between the ILIM pin (pin 6)  
and PGND. To adjust the typical current limit threshold, as listed in the electrical characteristics table, refer to  
Table 6.  
Table 6. Current Limit Adjust Resistor  
Current Limit Reduction  
RILIM (kΩ)  
715  
10 %  
20 %  
30 %  
383  
243  
8.19 Thermal Shutdown  
The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds  
145°C typically. The device reinitiates the power up sequence when the junction temperature drops below 135°C  
typically.  
20  
Copyright © 2013–2018, Texas Instruments Incorporated  
 
 
LMZ31520  
www.ti.com.cn  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
8.20 Layout Considerations  
To achieve optimal electrical and thermal performance, an optimized PCB layout is required. Figure 25 thru  
Figure 30, shows a typical PCB layout. Some considerations for an optimized layout are:  
Use large copper areas for power planes (PVIN, VOUT, and PGND) to minimize conduction loss and thermal  
stress.  
Place ceramic input and output capacitors close to the device pins to minimize high frequency noise.  
Locate additional output capacitors between the ceramic capacitor and the load.  
Keep AGND and PGND separate from one another. AGND should only be used as the return for RSET  
Place RSET, RFREQ, and RSS as close as possible to their respective pins.  
Use multiple vias to connect the power planes to internal layers.  
.
Figure 26. Typical Layer 2 Layout  
Figure 25. Typical Top Layer Layout  
Copyright © 2013–2018, Texas Instruments Incorporated  
21  
 
 
LMZ31520  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
www.ti.com.cn  
Layout Considerations (continued)  
Figure 28. Typical Layer 4 Layout  
Figure 27. Typical Layer 3 Layout  
Figure 29. Typical Layer 5 Layout  
Figure 30. Typical Bottom Layer Layout  
22  
Copyright © 2013–2018, Texas Instruments Incorporated  
LMZ31520  
www.ti.com.cn  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
8.21 EMI  
The LMZ31520 is compliant with EN55022 Class A radiated emissions. Figure 31 and Figure 32 show typical  
examples of radiated emissions plots for the LMZ31520 operating from 5V and 12V respectively. Both graphs  
include the plots of the antenna in the horizontal and vertical positions.  
Figure 32. Radiated Emissions 12-V Input, 3.3-V Output,  
20-A Load (EN55022 Class A)  
Figure 31. Radiated Emissions 5-V Input, 1.8-V Output, 20-  
A Load (EN55022 Class A)  
Copyright © 2013–2018, Texas Instruments Incorporated  
23  
 
LMZ31520  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
www.ti.com.cn  
9 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision D (April 2018) to Revision E  
Page  
Updated PCB Typical Bottom Layer Layout ........................................................................................................................ 21  
Changes from Revision C (June 2017) to Revision D  
Page  
添加 LMZ31520 WEBENCH® 设计链接 ............................................................................................................................ 1  
Increased the peak reflow temperature and maximum number of reflows to JEDEC specifications for improved  
manufacturability..................................................................................................................................................................... 2  
添加器件支持 ................................................................................................................................................................ 25  
添加机械、封装和可订购信息 部分....................................................................................................................................... 26  
Changes from Revision B (December 2013) to Revision C  
Page  
Added peak reflow and maximum number of reflows information ........................................................................................ 2  
Changes from Revision A (December 2013) to Revision B  
Page  
Added additional capacitors to the recommended capacitor table....................................................................................... 13  
Changes from Original (October 2013) to Revision A  
Page  
已更改 将状态从预览改为生................................................................................................................................................ 1  
24  
版权 © 2013–2018, Texas Instruments Incorporated  
LMZ31520  
www.ti.com.cn  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
10 器件和文档支持  
10.1 器件支持  
10.1.1 开发支持  
10.1.1.1 使用 WEBENCH® 工具创建定制设计  
单击此处,使用 LMZ31520 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
10.2 文档支持  
10.2.1 相关文档  
请参阅如下相关文档:  
BQFN 封装的焊接要求  
10.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
10.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
10.5 商标  
Eco-mode, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
10.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
10.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2013–2018, Texas Instruments Incorporated  
25  
LMZ31520  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
www.ti.com.cn  
11 机械封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
11.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
LMZ31520RLGT  
BQFN  
RLG  
72  
250  
330.0  
24.4  
15.35  
16.35  
6.1  
20.0  
24.0  
Q1  
26  
版权 © 2013–2018, Texas Instruments Incorporated  
LMZ31520  
www.ti.com.cn  
ZHCSBV6E OCTOBER 2013REVISED SEPTEMBER 2018  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
BQFN  
Package Drawing Pins  
RLG 72  
SPQ  
Length (mm) Width (mm)  
383.0 353.0  
Height (mm)  
LMZ31520RLGT  
250  
58.0  
版权 © 2013–2018, Texas Instruments Incorporated  
27  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2018 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Jul-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMZ31520RLGT  
ACTIVE  
BQFN  
RLG  
72  
250  
RoHS Exempt  
& Green  
NIPDAU  
Level-3-245C-168 HR  
-40 to 85  
LMZ31520  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Mar-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMZ31520RLGT  
BQFN  
RLG  
72  
250  
330.0  
24.4  
15.35 16.35  
6.1  
20.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Mar-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
BQFN RLG 72  
SPQ  
Length (mm) Width (mm) Height (mm)  
383.0 353.0 58.0  
LMZ31520RLGT  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RLG0072A  
B4QFN - 5.9 mm max height  
EXTREMELY THICK QUAD FLATPACK - NO LEAD  
15.15  
14.85  
B
A
PIN 1 ID  
16.15  
15.85  
(13 )  
ALL AROUND  
(0.2) TYP  
C
5.9  
5.7  
2.70  
SEATING PLANE  
0.08 C  
4X  
4.72 0.1  
0.05  
0.00  
4X 1.075  
4X 1.575  
33  
17  
71  
70  
5.45 0.1 2.8 0.1  
3X 2.3 0.1  
72  
67  
66  
3X 2.3 0.1  
2.25 0.1  
3X 1.89 0.1  
2X 12.8  
0.000 PKG  
1.44 0.1  
69  
68  
1.33 0.1  
1.9 0.1  
65  
0.49  
0.31  
2X 2.8 0.1  
2X 5.45 0.1  
60X  
1
49  
0.1  
C A B  
32X 0.8  
0.8 0.1  
32X 0.8  
0.6  
60X  
PIN 1 ID  
0.4  
(45 X 0.9)  
2X 12.8  
4226426/A 12/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pads must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RLG0072A  
B4QFN - 5.9 mm max height  
EXTREMELY THICK QUAD FLATPACK - NO LEAD  
(0.8)  
60X (0.7)  
64  
2X (6.988)  
49  
1
4X (6.15)  
4X (4.75)  
68  
69  
3X  
(2.8)  
2X (5.45)  
65  
68X (0.4)  
(1.33)  
4X (2.6)  
4X (1.2)  
(1.9)  
(2.25)  
(1.44)  
(15.7)  
66  
67  
0.000 PKG  
3X (1.89)  
64X (0.8)  
6X (1.19)  
6X (2.59)  
3X  
(2.3)  
72  
70  
71  
3X  
(2.3)  
(R0.05) TYP  
(
0.2) TYP  
4X (4.75)  
(5.45)  
VIA  
4X (6.15)  
17  
4X (1.575)  
2X (6.988)  
33  
4X (1.075)  
4X (4.62)  
(14.7)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 6X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDE MASK  
METAL EDGE  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK DEFINED  
NON SOLDER MASK DEFINED  
SOLDER MASK DETAILS  
4226426/A 12/2020  
NOTES: (continued)  
4. This package is designed to be soldered to the thermal pads on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RLG0072A  
B4QFN - 5.9 mm max height  
EXTREMELY THICK QUAD FLATPACK - NO LEAD  
12X (1.2)  
(0.8)  
64  
60X (0.7)  
2X (6.988)  
49  
1
68  
69  
6X (2.64)  
4X (5.45) (2.8)  
65  
68X (0.4)  
(1.33)  
(2.3)  
(R0.05) TYP  
3X (2.13)  
3X (1.9)  
(15.7)  
(1.44)  
66  
0.000 PKG  
64X (0.8)  
72  
67  
70  
7X (1.89)  
3X (2.17)  
4X (2.05)  
3X (5.45)  
4X  
(1)  
17  
4X (1.575)  
2X (6.988)  
33  
4X (1.075)  
(14.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 67 & 72: 78%  
PADS 68 & 71: 73%  
PADS 69 & 70: 74%  
SCALE: 6X  
4226426/A 12/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

LMZ31520RLGT

采用 15x16x5.8mm QFN 封装的 3V 至 14.5V、20A 降压电源模块 | RLG | 72 | -40 to 85
TI

LMZ31530

采用 15x16x5.8mm QFN 封装的 3V 至 14.5V、30A 降压电源模块
TI

LMZ31530RLGT

采用 15x16x5.8mm QFN 封装的 3V 至 14.5V、30A 降压电源模块 | RLG | 72 | -40 to 85
TI

LMZ31704

4A SIMPLE SWITCHER® Power Module with 2.95V-17V Input and Current Sharing in QFN Package
TI

LMZ31704EVM-003

Simple Switcher® Power Module Evaluation Module
TI

LMZ31704RVQR

4A SIMPLE SWITCHER® Power Module with 2.95V-17V Input and Current Sharing in QFN Package
TI

LMZ31704RVQT

4A SIMPLE SWITCHER® Power Module with 2.95V-17V Input and Current Sharing in QFN Package
TI

LMZ31704_14

4A SIMPLE SWITCHER® Power Module with 2.95V-17V Input and Current Sharing in QFN Package
TI

LMZ31707

7A SIMPLE SWITCHER® Power Module with 2.95V-17V Input and Current Sharing in QFN Package
TI

LMZ31707EVM-002

Simple Switcher® Power Module Evaluation Module
TI

LMZ31707RVQR

7A SIMPLE SWITCHER® Power Module with 2.95V-17V Input and Current Sharing in QFN Package
TI

LMZ31707RVQT

7A SIMPLE SWITCHER® Power Module with 2.95V-17V Input and Current Sharing in QFN Package
TI