LMZ36002RVQT [TI]

采用 QFN 封装的 4.5V 至 60V、2A 降压电源模块 | RVQ | 43 | -40 to 105;
LMZ36002RVQT
型号: LMZ36002RVQT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 QFN 封装的 4.5V 至 60V、2A 降压电源模块 | RVQ | 43 | -40 to 105

开关 电源电路
文件: 总36页 (文件大小:1804K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LMZ36002  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
LMZ36002 4.5V 60V 输入、2A 电源模块  
1 特性  
2 应用  
1
完整的集成式电源解决方案可实现  
小尺寸的薄型设计  
工业和电机控制  
自动测试设备  
10mm × 10mm × 4.3mm 封装  
宽输出电压调节范围(2.5V 7.5V)  
医疗和成像设备  
高密度电源系统  
可调节开关频率  
200kHz 1MHz)  
3 说明  
与外部时钟同步  
LMZ36002 电源模块是一款易于使用的集成式电源,  
它在一个扁平的 QFN 封装内整合了一个 2A 直流/直流  
转换器、一个屏蔽式电感器和多个无源器件。这套整体  
电源解决方案最少只需采用三个外部组件,同时仍能够  
调整关键参数以满足特定的设计要求。  
针对轻负载时效率的自动脉冲频率调制 (PFM) 模式  
可调软启动时间  
输出电压排序/跟踪  
电源正常输出  
可编程欠压锁定 (UVLO)  
过热热关断保护  
QFN 封装易于焊接到印刷电路板上,允许回流焊温度  
曲线最高达 245°C,并且具有出色的功率耗散能力。  
LMZ36002 极具灵活性且 功能 丰富,非常适合为各类  
器件和系统供电。  
过流保护(间断模式)  
预偏置输出启动  
工作温度范围:–40°C 105°C  
增强的热性能;14°C/W  
器件信息(1)  
器件型号  
LMZ36002  
封装  
QFN (43)  
封装尺寸  
符合 EN55022 B 类辐射标准  
集成屏蔽式电感  
10.0mm × 10.00mm  
使用 LMZ36002 并借助 WEBENCH® 电源设计器  
创建定制设计方案  
(1) 要了解所有可用封装,请参阅数据表末尾的可订购产品附录。  
效率与输出电流间的关系  
简化应用  
100  
LMZ36002  
VIN  
VOUT  
COUT  
PVIN  
VOUT  
SENSE+  
VBSEL  
90  
80  
INH/UVLO  
CIN  
70  
PVIN = 24 V  
60  
PVIN = 48 V  
VADJ  
50  
VOUT = 5 V  
RSET  
AGND  
PGND  
40  
30  
0
0.5  
1
1.5  
2
C001  
Output Current (A)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVSA92  
 
 
 
 
LMZ36002  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
www.ti.com.cn  
目录  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
7.4 Device Functional Modes........................................ 20  
Application and Implementation ........................ 21  
8.1 Application Information............................................ 21  
Power Supply Recommendations...................... 25  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics.......................................... 7  
6.7 Typical Characteristics.............................................. 8  
6.8 Typical Characteristics.............................................. 9  
6.9 Typical Characteristics............................................ 10  
6.10 Typical Characteristics (Thermal Derating)........... 11  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
8
9
10 Layout................................................................... 26  
10.1 Layout Guidelines ................................................. 26  
10.2 Layout Example .................................................... 26  
10.3 EMI........................................................................ 27  
11 器件和文档支持 ..................................................... 28  
11.1 器件支持................................................................ 28  
11.2 接收文档更新通知 ................................................. 28  
11.3 社区资源................................................................ 28  
11.4 ....................................................................... 28  
11.5 静电放电警告......................................................... 28  
11.6 术语表 ................................................................... 28  
12 机械、封装和可订购信息....................................... 28  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (April 2018) to Revision D  
Page  
已更改 将允许回流焊温度最高达 260°C”更改为最高达 245°C”,从而与绝对最大值 表保持一致 ........................................ 1  
已添加 TI 参考设计顶部导航图标............................................................................................................................................ 1  
Changes from Revision B (June 2017) to Revision C  
Page  
已添加 LMZ36002 WEBENCH® 设计链接......................................................................................................................... 1  
Increased the peak reflow temperature and maximum number of reflows to JEDEC specifications for improved  
manufacturability..................................................................................................................................................................... 5  
Changes from Revision A (September 2015) to Revision B  
Page  
已更改 一些语法错误,并修正了一些 TI 格式,以正确反映内容。 ........................................................................................ 1  
Added peak reflow and maximum number of reflows information ........................................................................................ 5  
Changes from Original (September 2015) to Revision A  
Page  
已更改 从产品预览更改为生产数据.................................................................................................................................... 1  
2
Copyright © 2015–2018, Texas Instruments Incorporated  
 
LMZ36002  
www.ti.com.cn  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
5 Pin Configuration and Functions  
RVQ Package  
43-Pin QFN  
(Top View)  
AGND  
1
PGND  
31  
40 39 38 37 36 35 34 33 32  
PGND  
PGND  
AGND  
AGND  
AGND  
AGND  
DNC  
2
3
4
5
30  
29  
28 PVIN  
42  
PVIN  
27  
PVIN  
41 PGND  
INH/UVLO  
SS/TR  
6
7
26  
25  
24  
23  
22  
VBSEL  
CLK  
VADJ  
8
RT  
9
VERSA-COMP  
SENSE+  
RTSEL  
10  
43 VOUT  
AGND  
PWRGD_PU  
11  
21  
12  
18 19 20  
13 14 15 16 17  
Pin Functions  
PIN  
(1)  
TYPE  
DESCRIPTION  
NAME  
NO.  
Zero volt reference for the analog control circuitry. All of these pins are not connected together  
internal to the device and must be connected to one another externally using an analog ground  
plane on the PCB. Pins 11 and 12 are internally connected to the PGND of the device at a single  
point. The analog ground plane of the PCB should allow only analog ground currents to flow through  
these pins.  
1, 2, 3, 4,  
5, 11, 12  
AGND  
G
Synchronization input to synchronize the device to an external clock. Connect this pin to AGND if  
not used.  
CLK  
8
I
Do Not Connect. Do not connect these pins to AGND, to another DNC pin, or to any other voltage.  
These pins are connected to internal circuitry. Each pin must be soldered to an isolated pad.  
DNC  
6, 40  
-
Inhibit and UVLO adjust pin. Use an open drain or open collector device to control the inhibit  
function. A resistor divider between this pin, AGND, and PVIN adjusts the UVLO voltage. Connect  
this pin to PVIN if not used.  
INH/UVLO  
PGND  
26  
I
This is the return current path for the power stage of the device. Connect these pins to the input  
source, the load, and to the bypass capacitors associated with PVIN and VOUT using power ground  
planes on the PCB. Pad 41 should be connected to the ground planes using multiple vias for good  
thermal performance.  
19, 29, 30,  
31, 32, 33,  
41  
G
34, 35, 36,  
37, 38, 39  
Phase switch node. Do not place any external components on these pins or tie them to a pin of  
another function.  
PH  
O
I
Power input voltage. These pins supply all of the power to the device. Connect these pins to the  
input source and connect external bypass capacitors between these pins and PGND close to the  
device.  
PVIN  
27, 28, 42  
20  
Power Good flag pin. This open drain output asserts low if the output voltage is more than  
approximately ±10% out of regulation. This pin is internally connected to an uncommitted 100-kΩ  
pull-up resistor that can be pulled up to a user-defined voltage applied to the PWRGD_PU pin.  
PWRGD  
O
(1) G = Ground, I = Input, O = Output  
Copyright © 2015–2018, Texas Instruments Incorporated  
3
LMZ36002  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
(1)  
TYPE  
DESCRIPTION  
NAME  
NO.  
An internal 100-kΩ pull-up resistor is connected between this pin and the PWRGD pin. If use of this  
internal pull-up resistor is desired, connect this pin to an appropriate voltage source that is less than  
or equal to 12 V. If unused, leave this pin floating.  
PWRGD_PU  
21  
I
I
This pin is connected to internal frequency setting circuitry which sets the default switching  
frequency to 500 kHz. An external resistor can be connected from this pin to AGND to adjust the  
switching frequency. Refer to application section in datasheet.  
RT  
9
This pin can be used to adjust the switching frequency to 1 MHz without the need for an external  
resistor. Connect this pin to AGND to adjust the frequency to 1 MHz. Otherwise, leave this pin  
floating.  
RTSEL  
SENSE+  
SS/TR  
10  
22  
25  
I
I
I
Remote sense connection. This pin must be connected to VOUT at the load or at the device pins.  
Connect the pin to VOUT at the load for improved regulation.  
soft-start and tracking pin. Connecting an external capacitor to this pin adjusts the output voltage  
soft-start ramp above its 4.1 ms default setting. A voltage applied to this pin allows for tracking and  
sequencing control.  
VADJ  
24  
7
I
I
Connecting a resistor between this pin and AGND adjusts the output voltage.  
Selectable internal bias supply. For output voltages 4.5 V, connect this pin to VOUT. For output  
voltages < 4.5 V, connect this pin to AGND.  
VBSEL  
VERSA-  
COMP  
Connects to internal compensation network. This pin can be left floating or connected to the VADJ  
pin to select the proper compensation depending on the output voltage.  
23  
I
13, 14, 15,  
16, 17, 18,  
43  
Output voltage. These pins are connected to the internal output inductor. Connect these pins to the  
output load and connect external bypass capacitors between these pins and PGND close to the  
device.  
VOUT  
O
4
Copyright © 2015–2018, Texas Instruments Incorporated  
LMZ36002  
www.ti.com.cn  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
65  
30(2)  
UNIT  
V
PVIN, INH/UVLO  
VOUT, SENSE+, VBSEL  
V
Input voltage  
VADJ, VERSA-COMP, RT, RTSEL, SS/TR  
3.6  
V
PWRGD, PWRGD_PU  
15  
V
CLK  
PH  
5.5  
V
Output voltage  
65  
V
Operating junction temperature(3)  
125  
150  
245(5)  
3(5)  
1500  
20  
°C  
°C  
°C  
Storage temperature  
–65  
Peak Reflow Case Temperature(4)  
Maximum Number of Reflows Allowed(4)  
Mechanical shock  
Mil-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted  
Mil-STD-883D, Method 2007.2, 20-2000Hz  
G
G
Mechanical vibration  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The maximum voltage that can be applied to these pins is 30 V or PVIN, whichever is less.  
(3) See temperature derating curves in the Typical Characteristics section for thermal information.  
(4) For soldering specifications, refer to the Soldering Requirements for BQFN Packages application note.  
(5) Devices with a date code prior to week 14 2018 (1814) have a peak reflow case temperature of 240°C with a maximum of one reflow  
6.2 ESD Ratings  
VALUE  
±1000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
60  
UNIT  
V
PVIN  
VOUT  
ƒSW  
TA  
Input voltage  
Output voltage  
2.5  
7.5  
V
Switching frequency  
Operating ambient temperature  
200  
–40  
1000  
105  
kHz  
°C  
6.4 Thermal Information  
LMZ36002  
THERMAL METRIC(1)  
RVQ (QFN)  
UNIT  
43 PINS  
RθJA  
ψJT  
Junction-to-ambient thermal resistance  
14  
2.6  
9
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2015–2018, Texas Instruments Incorporated  
5
LMZ36002  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
www.ti.com.cn  
6.5 Electrical Characteristics  
Over -40°C to +105°C free-air temperature, PVIN = 24 V, VOUT = 5 V, IOUT = IOUT(max), ƒsw = 500 kHz, CIN1 = 1 × 10-µF, 100-V  
1210 ceramic, CIN2 = 1 × 100-µF 100-V electrolytic bulk, and COUT = 3 × 47-µF, 16-V 1210 ceramic (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT VOLTAGE (PVIN  
)
PVIN  
Input voltage range  
Over IOUT range  
4.5(1)  
60  
V
V
V
PVIN increasing  
PVIN decreasing  
3.2  
2.8  
3.8  
UVLO  
PVIN undervoltage lockout  
OUTPUT VOLTAGE  
VOUT (ADJ) Output voltage adjust range  
Over IOUT range  
2.5  
7.5  
V
Set-point voltage tolerance  
Temperature variation  
Line regulation  
TA = 25°C, IOUT = 300 mA  
±0.7%  
±0.9%  
±0.1%  
±0.3%  
±2%  
±1.5(2)  
-40°C TA 105°C, IOUT = 0 A  
TA = 25°C, Over PVIN range, IOUT = 300 mA  
TA = 25°C, IOUT = 300 mA to IOUT max  
Includes set-point, line, load, and temperature  
20-MHz Bandwidth  
VOUT  
Load regulation  
Total output voltage variation  
Output voltage ripple  
VOUT ripple  
10%  
mV/pp  
OUTPUT CURRENT  
IOUT  
IOUT  
IOUT  
ILIM  
Output current  
TA = 105°C, natural convection  
TA = 105°C, 200LFM  
0
0
0
1.5  
2
A
A
A
A
Output current  
Output current  
TA = 95°C, natural convection  
2
Overcurrent threshold  
2.5  
PERFORMANCE  
VOUT = 7.5 V, ƒSW = 400 kHz  
VOUT = 5 V, ƒSW = 200 kHz  
95%  
93%  
92%  
90%  
87%  
92%  
90%  
88%  
86%  
81%  
100  
PVIN = 12 V  
IOUT = 1 A  
VOUT = 5 V, ƒSW = 500 kHz  
VOUT = 3.3 V, ƒSW= 200 kHz  
VOUT = 2.5 V, ƒSW = 200 kHz  
VOUT = 7.5 V, ƒSW = 400 kHz  
VOUT = 5 V, ƒSW= 250 kHz  
η
Efficiency  
PVIN = 24 V  
IOUT = 1 A  
VOUT = 5 V, ƒSW= 500 kHz  
VOUT = 3.3 V, ƒSW = 250 kHz  
VOUT = 2.5 V, ƒSW = 250 kHz  
IOUT = 50%  
load step  
1 A/µs slew rate  
Recovery time  
µs  
Transient response  
Over/Undershoot  
2%  
SLOW START  
tSS  
Internal soft-start time  
Inhibit control  
SS/TR pin open  
4.1  
ms  
INHIBIT  
VINH (high)  
VINH (hys)  
Precision inhibit level  
2.00  
2.1  
2.42  
V
V
Inhibit turn-off hysteresis  
INH/UVLO pin conected to AGND  
–0.294  
II (shutdown) Input shutdown supply  
current  
2.4  
6.2(3)  
µA  
POWER GOOD (PWRGD)  
Good  
VOUT rising  
95%  
110%  
90%  
Fault  
VPWRGD  
PWRGD thresholds  
Fault  
VOUT falling  
Good  
105%  
(1) The minimum PVIN is 4.5 V or (VOUT / 0.75), whichever is greater. For VOUT = 3.3 V, the minimum PVIN is 4.75 V when IOUT > 1.5 A.  
(2) The stated limit of the set-point voltage tolerance includes the tolerance of both the internal voltage reference and the internal  
adjustment resistor. The overall output voltage tolerance is affected by the tolerance of the external RSET resistor.  
(3) Specified by design. Not production tested.  
6
Copyright © 2015–2018, Texas Instruments Incorporated  
LMZ36002  
www.ti.com.cn  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
Electrical Characteristics (continued)  
Over -40°C to +105°C free-air temperature, PVIN = 24 V, VOUT = 5 V, IOUT = IOUT(max), ƒsw = 500 kHz, CIN1 = 1 × 10-µF, 100-V  
1210 ceramic, CIN2 = 1 × 100-µF 100-V electrolytic bulk, and COUT = 3 × 47-µF, 16-V 1210 ceramic (unless otherwise noted).  
PARAMETER  
THERMAL SHUTDOWN  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Shutdown Temperature  
160  
10  
°C  
°C  
TSHUTDOWN  
Thermal shutdown  
Hysteresis  
INPUT/OUTPUT CAPACITANCE  
ceramic  
10(4)  
64(5)  
µF  
µF  
µF  
µF  
µF  
mΩ  
CIN  
External input capacitance  
non-ceramic  
100  
100  
Ceramic  
Note(6)  
Note(6)  
Note(6)  
20  
Non-ceramic  
COUT  
External output capacitance  
ceramic + non-ceramic  
Equivalent series resistance (ESR)  
(4) The specified minimum ceramic input capacitance represents the standard capacitance value. The actual effective capacitance after  
considering the effects of DC bias and temperature variation should be 4.7 µF.  
(5) The amount of required output capacitance varies depending on the output voltage (see Output Capacitor Selection ). The minimum  
required output capacitance must be comprised of ceramic capacitance. The amount of required ceramic capacitance represents the  
standard capacitance value. Locate the capacitance close to the device. Adding additional ceramic or non-ceramic capacitance close to  
the load improves the response of the regulator to load transients.  
(6) The maximum allowable output capacitance varies depending on the output voltage (see Output Capacitor Selection ).  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
RT and RTSEL pins open  
Synchronization frequency  
CLK high level  
MIN  
410  
200  
2
TYP  
MAX  
590  
1000  
5.5  
UNIT  
kHz  
kHz  
V
ƒSW  
Switching frequency  
500  
ƒCLK  
VCLK-H  
VCLK-L  
DCLK  
CLK Control  
CLK low level  
0.4  
V
CLK duty cycle  
10%  
50%  
90%  
版权 © 2015–2018, Texas Instruments Incorporated  
7
LMZ36002  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
www.ti.com.cn  
6.7 Typical Characteristics  
TA = 25°C, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
30  
VOUT = 7.5 V, fSW = 400 kHz  
VOUT = 5.0 V, fSW = 200 kHz  
VOUT = 3.3 V, fSW = 200 kHz  
VOUT = 2.5 V, fSW = 200 kHz  
VOUT = 3.3 V, fSW = 200 kHz  
VOUT = 2.5 V, fSW = 200 kHz  
30  
0.0  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
0.0  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
D001  
D004  
PVIN = 5 V  
PVIN = 12 V  
1. Efficiency vs Output Current  
2. Efficiency vs Output Current  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
VOUT = 3.3 V, fSW = 200 kHz  
VOUT = 2.5 V, fSW = 200 kHz  
VOUT = 7.5 V, fSW = 400 kHz  
VOUT = 5.0 V, fSW = 200 kHz  
VOUT = 3.3 V, fSW = 200 kHz  
VOUT = 2.5 V, fSW = 200 kHz  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Output Current (A)  
Output Current (A)  
D002  
D005  
PVIN = 5 V  
PVIN = 12 V  
3. Power Dissipation vs Output Current  
4. Power Dissipation vs Output Current  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
VOUT = 3.3 V, fSW = 200 kHz  
VOUT = 2.5 V, fSW = 200 kHz  
VOUT = 7.5 V, fSW = 400 kHz  
VOUT = 5.0 V, fSW = 200 kHz  
VOUT = 3.3 V, fSW = 200 kHz  
VOUT = 2.5 V, fSW = 200 kHz  
0
0
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Output Current (A)  
Output Current (A)  
D003  
D006  
PVIN = 5 V  
PVIN = 12 V  
5. Voltage Ripple vs Output Current  
6. Voltage Ripple vs Output Current  
8
版权 © 2015–2018, Texas Instruments Incorporated  
LMZ36002  
www.ti.com.cn  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
6.8 Typical Characteristics  
TA = 25°C, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
40  
30  
VOUT = 7.5 V, fSW = 400 kHz  
fSW = 250 kHz  
fSW = 500 kHz  
fSW = 750 kHz  
fSW = 1 MHz  
VOUT = 5.0 V, fSW = 250 kHz  
VOUT = 3.3 V, fSW = 250 kHz  
VOUT = 2.5 V, fSW = 250 kHz  
40  
30  
0.0  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Output Current (A)  
D007  
D010  
PVIN = 24 V  
PVIN = 24 V  
VOUT = 5 V  
over frequency range  
7. Efficiency vs Output Current  
8. Efficiency vs Output Current  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
fSW = 1 MHz  
VOUT = 7.5 V, fSW = 400 kHz  
VOUT = 5.0 V, fSW = 250 kHz  
VOUT = 3.3 V, fSW = 250 kHz  
VOUT = 2.5 V, fSW = 250 kHz  
fSW = 750 kHz  
fSW = 500 kHz  
fSW = 250 kHz  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Output Current (A)  
Output Current (A)  
D008  
D011  
PVIN = 24 V  
PVIN = 24 V  
VOUT = 5 V  
over frequency range  
9. Power Dissipation vs Output Current  
10. Power Dissipation vs Output Current  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
VOUT = 7.5 V, fSW = 400 kHz  
VOUT = 5.0 V, fSW = 250 kHz  
VOUT = 3.3 V, fSW = 250 kHz  
VOUT = 2.5 V, fSW = 250 kHz  
fSW = 250 kHz  
fSW = 500 kHz  
fSW = 750 kHz  
fSW = 1 MHz  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Output Current (A)  
Output Current (A)  
D009  
D012  
PVIN = 24 V  
PVIN = 24 V  
VOUT = 5 V  
over frequency range  
11. Voltage Ripple vs Output Current  
12. Voltage Ripple vs Output Current  
版权 © 2015–2018, Texas Instruments Incorporated  
9
LMZ36002  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
www.ti.com.cn  
6.9 Typical Characteristics  
TA = 25°C, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
40  
30  
VOUT = 7.5 V, fSW = 400 kHz  
VOUT = 7.5 V, fSW = 400 kHz  
VOUT = 5.0 V, fSW = 250 kHz  
VOUT = 3.3 V, fSW = 250 kHz  
VOUT = 2.5 V, fSW = 250 kHz  
VOUT = 5.0 V, fSW = 300 kHz  
VOUT = 3.3 V, fSW = 250 kHz  
VOUT = 2.5 V, fSW = 200 kHz  
40  
30  
0.0  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
0.0  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
D013  
D016  
PVIN = 36V  
PVIN = 48 V  
13. Efficiency vs Output Current  
14. Efficiency vs Output Current  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VOUT = 7.5 V, fSW = 400 kHz  
VOUT = 5.0 V, fSW = 250 kHz  
VOUT = 3.3 V, fSW = 250 kHz  
VOUT = 2.5 V, fSW = 250 kHz  
VOUT = 7.5 V, fSW = 400 kHz  
VOUT = 5.0 V, fSW = 300 kHz  
VOUT = 3.3 V, fSW = 250 kHz  
VOUT = 2.5 V, fSW = 200 kHz  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Output Current (A)  
Output Current (A)  
D014  
D017  
PVIN = 36 V  
PVIN = 48 V  
15. Power Dissipation vs Output Current  
16. Power Dissipation vs Output Current  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
VOUT = 7.5 V, fSW = 400 kHz  
VOUT = 5.0 V, fSW = 250 kHz  
VOUT = 3.3 V, fSW = 250 kHz  
VOUT = 2.5 V, fSW = 250 kHz  
VOUT = 7.5 V, fSW = 400 kHz  
VOUT = 5.0 V, fSW = 300 kHz  
VOUT = 3.3 V, fSW = 250 kHz  
VOUT = 2.5 V, fSW = 200 kHz  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Output Current (A)  
Output Current (A)  
D015  
D018  
PVIN = 36 V  
PVIN = 48 V  
17. Voltage Ripple vs Output Current  
18. Voltage Ripple vs Output Current  
10  
版权 © 2015–2018, Texas Instruments Incorporated  
LMZ36002  
www.ti.com.cn  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
6.10 Typical Characteristics (Thermal Derating)  
The temperature derating curves represent the conditions at which internal components are at or below the manufacturer's  
maximum operating temperatures. Derating limits apply to devices soldered directly to a 50 mm × 100 mm, 4-layer PCB with  
2 oz. copper.  
115  
115  
105  
105  
95  
85  
75  
65  
55  
45  
35  
25  
95  
85  
75  
65  
55  
45  
35  
25  
Airflow  
400LFM  
Airflow  
100LFM  
200LFM  
100LFM  
Nat conv  
Nat conv  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
C001  
C001  
Output Current (A)  
Output Current (A)  
PVIN = 24 V  
VOUT = 3.3 V  
PVIN = 48 V  
VOUT = 3.3 V  
19. Safe Operating Area  
20. Safe Operating Area  
115  
115  
105  
105  
95  
85  
75  
65  
55  
45  
35  
25  
95  
85  
75  
65  
55  
45  
35  
25  
Airflow  
400LFM  
Airflow  
200LFM  
200LFM  
100LFM  
Nat conv  
100LFM  
Nat conv  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
C001  
C001  
Output Current (A)  
Output Current (A)  
PVIN = 24 V  
VOUT = 5 V  
PVIN = 48 V  
VOUT = 5 V  
21. Safe Operating Area  
22. Safe Operating Area  
115  
115  
105  
105  
95  
85  
75  
65  
55  
45  
35  
25  
95  
85  
75  
65  
55  
45  
35  
25  
Airflow  
400LFM  
Airflow  
400LFM  
200LFM  
100LFM  
Nat conv  
200LFM  
100LFM  
Nat conv  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
C001  
C001  
Output Current (A)  
Output Current (A)  
PVIN = 24 V  
VOUT = 7.5 V  
PVIN = 48 V  
VOUT = 7.5 V  
23. Safe Operating Area  
24. Safe Operating Area  
版权 © 2015–2018, Texas Instruments Incorporated  
11  
LMZ36002  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMZ36002 is a full featured 60-V input, 2-A, synchronous step down converter with PWM, MOSFETs,  
inductor, and control circuitry integrated into a low-profile, overmolded package. This device enables small  
designs by integrating all but the input and output capacitors, while still leaving the ability to adjust key  
parameters to meet specific design requirements. The LMZ36002 provides a 3× output voltage range of 2.5 V to  
7.5 V. A single external resistor is used to adjust the output voltage to the desired output. The switching  
frequency is also adjustable by using an external resistor or a synchronization pulse to accommodate various  
input and output voltage conditions and to optimize efficiency. The device provides accurate voltage regulation  
for a variety of loads by using an internal voltage reference that is 2% accurate over temperature. Input under-  
voltage lockout is internally set at 3.2 V, but can be adjusted upward using a resistor divider on the INH/UVLO  
pin of the device. The INH/UVLO pin can also be pulled low to put the device in standby mode to reduce input  
quiescent current. The device provides a power good signal to indicate when the output is within ±5% of its  
nominal voltage. Thermal shutdown and current limit features protect the device during an overload condition.  
Automatic PFM mode improves light-load efficiency. A 43-pin, QFN, package that includes exposed bottom pads  
provides a thermally enhanced solution for space-constrained applications.  
7.2 Functional Block Diagram  
LMZ36002  
LDO  
PWRGD_PU  
PWRGD  
100 kΩ  
OCP  
INH/UVLO  
VBSEL  
PVIN  
Shutdown  
Logic  
SENSE+  
PWRGD  
Logic  
Thermal  
PVIN  
Shutdown UVLO  
VERSA-COMP  
20 kΩ  
PH  
VADJ  
Power  
Stage  
and  
+
+
VOUT  
10 µH  
SS/TR  
VREF  
Comp  
Control  
Logic  
CLK  
RT  
Oscillator  
PGND  
AGND  
RTSEL  
38.3 kΩ  
12  
版权 © 2015–2018, Texas Instruments Incorporated  
LMZ36002  
www.ti.com.cn  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
7.3 Feature Description  
7.3.1 Adjusting the Output Voltage  
The VADJ pin sets the output voltage of the LMZ36002. The output voltage adjustment range is from 2.5 V to  
7.5 V. The switching frequency range for any output voltage must be determined from 4 or 5. The  
adjustment method requires the addition of RSET, which sets the output voltage, and the connection of SENSE+  
to VOUT. The RSET resistor must be connected directly between the VADJ (pin 24) and AGND. The SENSE+ pin  
(pin 22) must be connected to VOUT either at the load for improved regulation or at VOUT of the device. 1  
lists the standard external RSET resistor for a number of common bus voltages.  
1. Standard RSET Resistor Values for Common Output Voltages  
OUTPUT VOLTAGE VOUT (V)  
2.5  
3.3  
5.0  
6.0  
7.5  
RSET (k)  
13.7  
8.87  
5.11  
4.02  
3.09  
For other output voltages, the value of the required resistor can either be calculated using the following formula,  
or simply selected from the range of values given in 2.  
20  
RSET  
=
(kW)  
»
ÿ
V
OUT  
-1  
Ÿ
«
÷
1.011  
(1)  
2. Standard RSET Resistor Values  
VOUT (V)  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
RSET (k)  
13.7  
12.7  
11.8  
11.3  
10.7  
10.2  
9.76  
9.31  
8.87  
8.45  
8.06  
7.87  
7.50  
7.32  
6.98  
6.81  
6.49  
6.34  
6.19  
5.90  
5.76  
5.62  
5.49  
5.36  
5.23  
5.11  
VOUT (V)  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
7.0  
7.1  
7.2  
7.3  
7.4  
7.5  
RSET (k)  
4.99  
4.87  
4.75  
4.64  
4.53  
4.42  
4.32  
4.22  
4.12  
4.02  
3.97  
3.92  
3.83  
3.74  
3.65  
3.61  
3.57  
3.48  
3.40  
3.36  
3.32  
3.24  
3.20  
3.16  
3.09  
版权 © 2015–2018, Texas Instruments Incorporated  
13  
 
 
LMZ36002  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
www.ti.com.cn  
7.3.2 Switching Frequency (RT)  
The switching frequency range of the LMZ36002 is 200 kHz to 1 MHz. Not all PVIN, VOUT, and IOUT conditions  
can be set to all of the frequencies in this range. See Recommended Operating Range for the allowable  
operating ranges. The switching frequency can easily be set one of three ways. First, leaving the RT pin (pin 9)  
and RTSEL pin (pin 10) floating (OPEN) allows operation at the default switching frequency of 500 kHz. Also,  
connecting the RTSEL pin to AGND while floating the RT pin, sets the switching frequency to 1 MHz. The option  
is also available to set the switching frequency to any frequency in the range of 200 kHz to 1 MHz, by connecting  
a resistor (RRT) between the RT pin and AGND, while floating the RTSEL pin. See 3 below for standard  
resistor values for setting the switching frequency or use 公式 2 to calculate RRT for additional switching  
frequencies.  
3. Switching Frequency RRT Values  
Switching Frequency  
250 kHz  
RRT (kΩ)  
158  
500 kHz  
78.7 or (RT pin OPEN, RTSEL pin OPEN)  
53.6  
750 kHz  
1 MHz  
38.3 or (RT pin OPEN, RTSEL pin to AGND)  
40200  
RRT  
=
- 0.6 (kW)  
Fsw(kHz)  
(2)  
7.3.3 Recommended Operating Range  
4 and 5 below show the allowable switching frequencies for a given range of output voltages. Reference 表  
4 for applications where the maximum output current is 1.75 A or less. Reference 5 for applications that the  
output current is greater than 1.75 A. Notice that applications requiring less than 1.75 A can operate over a much  
wider range of switching frequencies. For the most efficient solution, always operate at the lowest allowable  
frequency.  
4. Switching Frequency vs Output Voltage  
Output Current 1.75 A  
SWITCHING FREQUENCY RANGE (kHz)  
VOUT RANGE (V)  
PVIN = 12 V  
MIN  
PVIN = 24 V  
PVIN = 36 V  
PVIN = 48 V  
MIN  
MAX  
1000  
1000  
1000  
1000  
900  
MIN  
MAX  
600  
MIN  
MAX  
400  
MAX  
300  
400  
550  
630  
800  
2.5 - 3.5 V  
>3.5 - 4.5 V  
>4.5 - 5.5 V  
>5.5 - 6.5 V  
>6.5 - 7.5 V  
200  
200  
200  
300  
300  
200  
200  
200  
200  
300  
200  
200  
200  
200  
300  
200  
200  
200  
200  
300  
850  
550  
1000  
1000  
1000  
750  
1000  
950  
5. Switching Frequency vs Output Voltage  
Output Current > 1.75 A  
SWITCHING FREQUENCY RANGE (kHz)  
VOUT RANGE (V)  
PVIN = 12 V  
PVIN = 24 V  
MIN  
PVIN = 36 V  
MIN  
PVIN = 48 V  
MIN  
200  
200  
200  
300  
300  
MAX  
450  
500  
500  
500  
400  
MAX  
500  
600  
650  
700  
750  
MAX  
400  
550  
700  
800  
800  
MIN  
200  
200  
200  
250  
300  
MAX  
300  
400  
550  
650  
800  
2.5 - 3.5 V  
>3.5 - 4.5 V  
>4.5 - 5.5 V  
>5.5 - 6.5 V  
>6.5 - 7.5 V  
200  
200  
200  
250  
300  
200  
200  
200  
250  
300  
14  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
 
 
 
LMZ36002  
www.ti.com.cn  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
7.3.4 Synchronization (CLK)  
The LMZ36002 switching frequency can also be synchronized to an external clock from 200 kHz to 1 MHz. Not  
all PVIN, VOUT, and IOUT conditions can be set to all of the frequencies in this range. See Recommended  
Operating Range section for the allowable operating ranges.  
To implement the synchronization feature, connect a clock signal to the CLK pin with a duty cycle between 10%  
and 90%. The clock signal amplitude must transition lower than 0.4 V and higher than 2.0 V. The start of the  
switching cycle is synchronized to the rising edge of CLK pin. Before the external clock is present the device  
operates in RT mode and the switching frequency is set by RRT resistor. Select RRT to set the frequency close to  
the external synchronization frequency. When the external clock is present, the CLK mode overrides the RT  
mode. If the external clock is removed or fails at logic high or low, the LMZ36002 will switch at the frequency  
programmed by the RRT resistor after a time-out period. Connect the CLK pin (pin 8) to AGND if not used.  
7.3.5 Output Capacitor Selection  
The minimum required and maximum output capacitance of the LMZ36002 is a function of the output voltage as  
shown in 6. Additionally, the output voltage will determine the Versa-Comp configuration (see VERSA-COMP  
Pin Configurations), which is also included in 6. The capacitance values listed in 6 are the specified  
capacitance values. The effects of DC bias and temperature variation must be considered when using ceramic  
capacitance. For ceramic capacitors, package size, voltage rating, and dielectric material will contribute to  
differences between the specified value and the actual effective value of the capacitance. COUT(min) must be  
comprised of ceramic type capacitors. Additional capacitance, not exceeding COUT(max), may be ceramic type or  
low-ESR polymer type. See 7 for a preferred list of output capacitors by vendor.  
6. Required Output Capacitance  
MINIMUM REQUIRED  
Versa-Comp  
Connection  
(2)  
VOUT (V)  
MAXIMUM COUT (µF)  
(1) (2)  
COUT (µF)  
2.5  
3.3  
5.0  
6.0  
7.5  
64  
64  
350  
350  
350  
200  
200  
Leave OPEN  
Connect to VADJ  
Connect to VADJ  
Connect to VADJ  
Connect to VADJ  
64  
64  
100  
(1) Minimum required output capacitance must be comprised of ceramic capacitance.  
(2) COUT values represent specified capacitance values.  
7. Recommended Output Capacitors(1)  
CAPACITOR CHARACTERISTICS  
CAPACITANCE(2)  
ESR(3)  
VENDOR  
SERIES  
PART NUMBER  
WORKING  
VOLTAGE (V)  
(µF)  
(m)  
TDK  
X5R  
X5R  
C3225X5R1C106K  
16  
16  
10  
2
2
Murata  
TDK  
GRM32ER61C106K  
C3225X5R1C226M  
GRM32ER61C226K  
C3225X5R1A476M  
GRM32ER61C476K  
C3225X5R0J107M  
GRM32ER60J107M  
GRM32ER61A107M  
C1210C107M4PAC7800  
6TPE100MI  
10  
X5R  
16  
22  
2
Murata  
TDK  
X5R  
16  
22  
2
X5R  
10  
47  
2
Murata  
TDK  
X5R  
16  
47  
3
X5R  
6.3  
6.3  
10  
100  
100  
100  
100  
100  
220  
220  
2
Murata  
Murata  
Kemet  
X5R  
2
X5R  
2
X5R  
16  
2
Panasonic  
Panasonic  
Panasonic  
POSCAP  
POSCAP  
POSCAP  
6.3  
6.3  
6.3  
18  
9
6TPF220M9L  
6TPE220ML  
12  
(1) Capacitor Supplier Verification, RoHS, Lead-free and Material Details  
Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process  
requirements for any capacitors identified in this table.  
(2) Specified capacitance values.  
(3) Maximum ESR @ 100kHz, 25°C.  
版权 © 2015–2018, Texas Instruments Incorporated  
15  
 
 
LMZ36002  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
www.ti.com.cn  
7.3.6 VERSA-COMP Pin Configurations  
The versa-comp feature of the LMZ36002 allows a simple method to adjust the internal compensation network to  
provide the optimized phase and gain margin based on the output voltage. This easy-to-use feature requires no  
external components and is implemented by the simple configuration of two adjacent pins on the module.  
The versa-comp feature must be configured in one of two ways; VERSA-COMP pin left open or VERSA-COMP  
pin tied to VADJ. The output voltage determines the appropriate VERSA-COMP pin configuration. 8 lists the  
VERSA-COMP configuration. 25 and 26 show the two possible VERSA-COMP pin configurations.  
VOUT  
VOUT  
SENSE+  
SENSE+  
VERSA-COMP  
VERSA-COMP  
VADJ  
VADJ  
AGND  
AGND  
RSET  
RSET  
25. VERSA-COMP Open  
26. VERSA-COMP to VADJ  
8. VERSA-COMP Pin Configurations  
VOUT RANGE (V)  
VERSA-COMP PIN  
CONFIGURATION  
MIN  
2.5  
MAX  
< 3.0  
7.5  
OPEN  
3.0  
Connect to VADJ  
7.3.7 Input Capacitor Selection  
The LMZ36002 requires a ceramic capacitor with a minimum effective input capacitance of 4.7 μF. Use only  
high-quality ceramic type X5R or X7R capacitors with sufficient voltage rating. An additional 100 µF of non-  
ceramic capacitance is recommended for applications with transient load requirements. The voltage rating of  
input capacitors must be greater than the maximum input voltage. To compensate the derating of ceramic  
capactors, a voltage rating of twice the maximum input voltage is recommended. At worst case, when operating  
at 50% duty cycle and maximum load, the combined ripple current rating of the input capacitors must be at least  
1.0 Arms. 9 includes a preferred list of capacitors by vendor.  
9. Recommended Input Capacitors(1)  
CAPACITOR CHARACTERISTICS  
(2)  
(3)  
VENDOR  
SERIES  
PART NUMBER  
CAPACITANCE  
(µF)  
ESR  
WORKING VOLTAGE (V)  
(m)  
TDK  
X5R  
X7R  
X7R  
ZA  
C3225X5R1H106K  
50  
50  
63  
50  
63  
10  
10  
3
Murata  
GRM32ER71H106K  
GRM32ER71J106K  
EEHZA1H101P  
2
Murata  
10  
2
Panasonic  
Panasonic  
100  
56  
28  
30  
ZA  
EEHZA1J560P  
(1) Capacitor Supplier Verification, RoHS, Lead-free and Material Details  
Consult capacitor suppliers regarding availability, material composition, RoHS and lead-free status, and manufacturing process  
requirements for any capacitors identified in this table.  
(2) Specified capacitance values  
(3) Maximum ESR @ 100kHz, 25°C.  
16  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
 
LMZ36002  
www.ti.com.cn  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
7.3.8 Output On/Off Inhibit (INH/UVLO)  
The INH/UVLO pin provides on and off control of the device. The INH input provides a precise 2.1 V as soon as  
rising threshold to allow direct logic drive or connection to a voltage divider from a higher voltage source such as  
PVIN. Once the INH/UVLO pin voltage exceeds the threshold voltage, the device starts operation. The INH input  
also incorporates 300 mV (typ) of hysteresis resulting in a falling threshold of 1.8 V. If the INH/UVLO pin voltage  
is pulled below the threshold voltage, the regulator stops switching and enters low quiescent current state. The  
INH/UVLO pin cannot be open circuit or floating. The simplest way to enable the operation of the LMZ36002 is to  
connect the INH/UVLO pin to PVIN pin directly as shown in 27. This connection allows the LMZ36002 device  
to restart when PVIN is again within the operation range.  
If an application requires controlling the INH/UVLO pin, either drive it directly with a logic input or use an open  
drain and collector device to interface with the pin and place a 100-kΩ resistor between this pin and PVIN pin as  
shown in 28. When turning Q1 on applies a low voltage to the inhibit control (INH/UVLO) pin and disables the  
output of the supply, shown in 29. If Q1 is turned off, the supply executes a soft-start power-up sequence, as  
shown in 30.  
PVIN  
PVIN  
PVIN  
100 kΩ  
INH/UVLO  
AGND  
INH/UVLO  
AGND  
Q1  
INH  
Control  
27. Enabling the Device  
28. Typical Inhibit Control  
29. Inhibit Turn-Off  
30. Inhibit Turn-On  
版权 © 2015–2018, Texas Instruments Incorporated  
17  
 
 
LMZ36002  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
www.ti.com.cn  
7.3.9 Under Voltage Lockout (UVLO)  
The LMZ36002 device has an internal UVLO circuit which prevents the device from operating until the PVIN  
voltage exceeds the UVLO threshold, (3.2 V (typ)). The device will begin switching and the output voltage will  
begin to rise once PVIN exceeds the threshold, however PVIN must be greater than (VOUT/0.75) in order to for  
VOUT to regulate at the set-point voltage.  
Applications may require a higher UVLO threshold to prevent early turn-on, for sequencing requirements, or to  
prevent input current draw at lower input voltages. An external resistor divider can be added to the INH/UVLO pin  
to adjust the UVLO threshold higher. The external resistor divider can be configured as shown in 31. 10  
lists standard values for RUVLO1 and RUVLO2 to adjust the UVLO voltage higher.  
PVIN  
PVIN  
R
R
UVLO1  
UVLO2  
INH/UVLO  
AGND  
31. Adjustable PVIN UVLO  
10. Standard Resistor Values for Adjusting PVIN UVLO  
VIN UVLO (V)  
RUVLO1 (kΩ)  
RUVLO2 (kΩ)  
4.5  
100  
46.4  
10  
15  
20  
25  
30  
35  
40  
45  
100  
21.0  
100  
14.0  
100  
10.5  
100  
8.45  
100  
6.98  
100  
6.04  
100  
5.23  
100  
4.64  
7.3.10 Remote Sense  
The SENSE+ pin must be connected to VOUT at the load, or at the device pins.  
Connecting the SENSE+ pin to VOUT at the load improves the load regulation performance of the device by  
allowing it to compensate for any I-R voltage drop between its output pins and the load. An I-R drop is caused by  
the high output current flowing through the small amount of pin and trace resistance. This should be limited to a  
maximum of 300 mV.  
The remote sense feature is not designed to compensate for the forward drop of nonlinear  
or frequency dependent components that may be placed in series with the converter  
output. Examples include OR-ing diodes, filter inductors, ferrite beads, and fuses. When  
these components are enclosed by the SENSE+ connection, they are effectively placed  
inside the regulation control loop, which can adversely affect the stability of the regulator.  
7.3.11 VBSEL  
The VBSEL pin allows the user to select the input source of the internal bias circuitry to improve efficiency. For  
output voltages 4.5 V, connect this pin to VOUT. For output voltages < 4.5 V, connect this pin to AGND.  
18  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
LMZ36002  
www.ti.com.cn  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
7.3.12 Soft-Start (SS/TR)  
Leaving SS/TR pin open enables the internal slow start time interval of approximately 4.1 ms. Adding additional  
capacitance between the SS pin and AGND increases the slow start time. Increasing the slow start time will  
reduce inrush current seen by the input source and reduce the current seen by the device when charging the  
output capacitors. To avoid the activation of current limit and ensure proper start-up, the SS capacitor may need  
to be increased when operating near the maximum output capacitance limit.  
See 11 below for SS capacitor values and timing interval.  
11. Soft-Start Capacitor Values and Soft-Start Time  
CSS (nF)  
open  
15  
22  
33  
47  
SS Time (ms)  
4.1  
7
10  
15  
20  
7.3.13 Power Good (PWRGD) and Pull-up (PWRGD_PU)  
The PWRGD pin is an open drain output. Once the voltage on the SENSE+ pin is between 95% and 105% of the  
set voltage, the PWRGD pin pull-down is released and the pin floats. The recommended pullup resistor value is  
between 10 kΩ and 100-kΩ to a voltage source that is 12 V or less. The LMZ36002 has an internal 100-kΩ  
between the PWRGD pin (pin 20) and the PWRGD_PU pin (pin 21). Connect the PWRGD_PU pin to an external  
voltage source to avoid using an external pullup resistor. The PWRGD pin is pulled low when the voltage on  
SENSE+ is lower than 90% or greater than 110% of the nominal set voltage.  
7.3.14 Overcurrent Protection  
For protection against load faults, the LMZ36002 incorporates output overcurrent protection. Applying a load that  
exceeds the regulator's overcurrent threshold causes the output to shut down when the output voltage falls below  
the PWRGD threshold. Following shutdown, the module periodically attempts to recover by initiating a soft-start  
power-up as shown in 32. This is described as a hiccup mode of operation, whereby the module continues in  
a cycle of successive shutdown and power up until the load fault is removed. During this period, the average  
current flowing into the fault is significantly reduced which reduces power dissipation. Once the fault is removed,  
the module automatically recovers and returns to normal operation as shown in 33.  
33. Removal of Overcurrent  
32. Overcurrent Limiting  
7.3.15 Thermal Shutdown  
The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds  
160°C typically. The device reinitiates the power up sequence when the junction temperature drops below 150°C  
typically.  
版权 © 2015–2018, Texas Instruments Incorporated  
19  
 
 
LMZ36002  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Active Mode  
The LMZ36002 is in Active Mode when PVIN is above the UVLO threshold and the INH/UVLO pin voltage is  
above the INH high threshold. The simplest way to enable the LMZ36002 is to connect the INH/UVLO terminal to  
PVIN. This allows self start-up of the LMZ36002 when the input voltage is in the operation range: 4.5 V to 60 V.  
7.4.2 Light Load Operation  
At light load, the LMZ36002 operates in pulse skip mode to improve efficiency and decrease power dissipation by  
reducing switching losses and gate drive losses. In light load operation (PFM mode), the output voltage can rise  
slightly above the set-point specification. To avoid this behavior, a 300-mA load is required on the output.  
7.4.3 Shutdown Mode  
The INH/UVLO pin provides electrical ON and OFF control for the LMZ36002. When the INH/UVLO pin voltage is  
below the INH threshold, the device is in shutdown mode. In shutdown mode the stand-by current is 2.4 μA  
typically with PVIN = 24 V. The LMZ36002 also employs under voltage lock out protection. If PVIN is below the  
UVLO level, the output of the regulator turns off.  
20  
版权 © 2015–2018, Texas Instruments Incorporated  
LMZ36002  
www.ti.com.cn  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LMZ36002 is a synchronous step down DC-DC power module. It is used to convert a higher DC voltage to a  
lower DC voltage with a maximum output current of 2 A. The following design procedure can be used to select  
components for the LMZ36002. Alternately, the WEBENCH® software may be used to generate complete  
designs. When generating a design, the WEBENCH software utilizes an iterative design procedure and accesses  
comprehensive databases of components.  
8.1.1 Minimum External Component Application  
The LMZ36002 requires only a few external components to convert from a wide input voltage supply range to a  
wide range of output voltages. 34 shows a basic LMZ36002 schematic with only the minimum required  
components.  
SENSE+  
PVIN = 24V  
VOUT = 5V  
PVIN  
VOUT  
VBSEL  
LMZ36002  
10 µF  
50 V  
100 µF  
10 V  
INH/UVLO  
SS/TR  
CLK  
PWRGD_PU  
PWRGD  
RTSEL  
RT  
VERSA-COMP  
VADJ  
AGND  
PGND  
5.11 kΩ  
34. LMZ36002 Minimum External Component Application  
8.1.1.1 Design Requirements  
For this design example, use the parameters listed in 12 and follow the design procedures below.  
12. Design Example Parameters  
DESIGN PARAMETER  
Input Voltage PVIN  
VALUE  
24 V typical  
5.0 V  
Output Voltage VOUT  
Output Current Rating  
Operating Frequency  
2 A  
500 kHz  
8.1.1.2 Detailed Design Procedure  
8.1.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LMZ36002 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
版权 © 2015–2018, Texas Instruments Incorporated  
21  
 
 
 
LMZ36002  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
www.ti.com.cn  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.1.1.2.2 Output Voltage Set-Point  
The output voltage of the LMZ36002 device is externally adjustable using a single resistor (RSET). Select the  
value of RSET from 2 or calculate using 公式 3:  
20  
RSET  
=
(kW)  
»
ÿ
V
OUT  
-1  
Ÿ
«
÷
1.011  
(3)  
Knowing the desired output voltage is 5 V, the RSET value can then be calculated using 公式 3 or selected from  
2. The formula yields a value of 5.07 kΩ. Choose the closest available value of 5.11 kΩ for RSET  
.
8.1.1.2.3 RT and RTSEL  
The default switching frequency of the LMZ36002 is set to 500 kHz by leaving the RT pin open and the RTSEL  
pin open. The switching frequency of this application is 500-kHz, therefore no additional resistor is required to set  
the switching frequency. If another frequency is desired, use 3 to select the required resistor value.  
8.1.1.2.4 VERSA-COMP  
The Versa-Comp feature of the LMZ36002 configures the internal compensation based on the output voltage.  
From 8, the required Versa-Comp configuration for a 5-V output is to connect the VERSA-COMP pin to the  
VADJ pin.  
8.1.1.2.5 VBSEL  
The VBSEL pin allows the user to select the input source of the internal bias circuitry to improve efficiency. For  
output voltages 4.5 V, connect this pin to VOUT. For output voltages < 4.5 V, connect this pin to AGND.  
8.1.1.2.6 Input Capacitors  
For this design, a 10-μF, X7R dielectric ceramic capacitor rated for 50 V is used for the input decoupling  
capacitor. The effective capacitance at 24 V is 5.7 μF, the equivalent series resistance (ESR) is approximately  
3 mΩ, and the current-rating is 5 A.  
8.1.1.2.7 Output Capacitors  
The minimum required output capacitance for a 5-V output is 64 μF of ceramic capacitance. For this design, a  
100-μF, X5R dielectric ceramic capacitor rated for 10 V is used for the output capacitor.  
22  
版权 © 2015–2018, Texas Instruments Incorporated  
 
LMZ36002  
www.ti.com.cn  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
8.1.1.2.8 Application Curves  
36. Output Ripple and PH Node Waveforms  
35. Start-up Waveforms  
8.1.2 Typical Application  
37 shows a more typical use schematic which makes use of the INH control, Versa-Comp, SS, PWRGD and  
PWRGD_PU features, along with adjusting the switching frequency with an external resistor. Setting these  
additional features is described below.  
SENSE+  
PVIN = 24V  
VOUT = 5V  
PVIN  
VOUT  
VBSEL  
100 kΩ  
LMZ36002  
100 µF  
10 V  
100 µF 100 µF  
100 µF 10 µF  
50 V 50 V  
10 V  
10 V  
INH/UVLO  
SS/TR  
PWRGD_PU  
PWRGD  
Q1  
PWRGD  
INH  
Control  
22 nF  
VERSA-COMP  
VADJ  
CLK  
RTSEL  
RT  
5.11 kΩ  
AGND  
PGND  
53.6 kΩ  
37. LMZ36002 Typical Schematic  
8.1.2.1 Design Requirements  
For this design example, use the parameters listed in 13 as the input parameters. For the complete design  
procedures begin with the procedures for the basic application shown in the Minimum External Component  
Application section as well as the procedures listed in this section.  
13. Design Example Parameters  
DESIGN PARAMETER  
Input Voltage PVIN  
VALUE  
24 V typical  
5.0 V  
Output Voltage VOUT  
版权 © 2015–2018, Texas Instruments Incorporated  
23  
 
 
LMZ36002  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
www.ti.com.cn  
13. Design Example Parameters (接下页)  
DESIGN PARAMETER  
Output Current Rating  
Operating Frequency  
Inhibit Control  
VALUE  
2 A  
750 kHz  
Yes  
Power Good Signal  
Slow Start Time  
Yes  
10 ms  
300 µF  
Output Capacitance  
8.1.3 Detailed Design Procedure  
8.1.3.1 Switching Frequency  
To adjust the switching frequency place a resistor between the RT pin (pin 9) and AGND. Refer to 3 to select  
the required value for the RRT resistor. To set the switching frequency to 750 kHz, the value for RRT is 53.6 kΩ,  
selected from 3.  
8.1.3.2 Power Good  
The PWRGD pin is an open drain output. The LMZ36002 includes an internal 100-kΩ pullup resistor between the  
PWRGD pin and the PWRGD_PU pin. Connecting the PWRGD_PU pin to a pullup voltage allows use of the  
PWRGD signal without adding an additional component. In this example, the 5-V output is used as the pullup  
voltage.  
8.1.3.3 Inhibit Control  
To control the turn ON and OFF of the LMZ36002, an open-drain and collector device is recommended. The  
open-drain and collector device must be rated for the maximum voltage applied to the PVIN pin. A pull-up  
resistor is required between the INH/UVLO pin and PVIN. Place a 100-kΩ resistor between the INH/UVLO pin  
and the PVIN pin.  
8.1.3.4 VERSA-COMP  
The Versa-Comp feature of the LMZ36002 configures the internal compensation based on the output voltage.  
From 8, the required Versa-Comp configuration for a 5-V output is to connect the VERSA-COMP pin to the  
VADJ pin.  
8.1.3.5 VBSEL  
The VBSEL pin allows the user to select the input source to the internal power circuitry to improve efficiency. For  
output voltages 4.5 V, connect this pin to VOUT. For output voltages < 4.5 V, connect this pin to AGND.  
8.1.3.6 Soft-Start Capacitors  
When the SS/TRK pin remains floating the LMZ36002 implements a typical soft-start time of 4.1 ms. In order to  
increase the slow start time, an external slow start capacitor, CSS must be placed between the SS/TRK pin and  
AGND. Select a value for CSS from 11.  
For the desired soft-start time of 10 ms, a soft-start capacitor value of 22 nF is selected from 11.  
8.1.3.7 Input Capacitors  
For this design, a 10-μF ceramic capacitor plus a 100-µF aluminum electrolytic capacitor, both rated for 50 V are  
used for the input decoupling capacitors.  
8.1.3.8 Output Capacitors  
The maximum allowable output capacitance for a 5-V output is 350 μF of capacitance. At least 64 µF of  
capacitance must be ceramic type. For this design, 3× 100-μF, X5R dielectric ceramic capacitors rated for 10 V  
are used for the output capacitors.  
24  
版权 © 2015–2018, Texas Instruments Incorporated  
LMZ36002  
www.ti.com.cn  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
9 Power Supply Recommendations  
The LMZ36002 is designed to operate from an input voltage supply range between 4.5 V and 60 V. This input  
supply should be well regulated and able to withstand maximum input current and maintain a stable voltage. The  
resistance of the input supply rail should be low enough that an input current transient does not cause a high  
enough drop at the LMZ36002 supply voltage that can cause a false UVLO fault triggering and system reset.  
If the input supply is located more than a few inches from the LMZ36002 additional bulk capacitance may be  
required in addition to the ceramic bypass capacitors. Typically, a 47 µF or 100 μF electrolytic capacitor will  
suffice.  
版权 © 2015–2018, Texas Instruments Incorporated  
25  
LMZ36002  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
www.ti.com.cn  
10 Layout  
The performance of any switching power supply depends as much upon the layout of the PCB as the component  
selection. The following guidelines will help users design a PCB with the best power conversion performance,  
thermal performance, and minimized generation of unwanted EMI.  
10.1 Layout Guidelines  
To achieve optimal electrical and thermal performance, an optimized PCB layout is required. 38 through 图  
41, shows a typical PCB layout. Some considerations for an optimized layout are:  
Use large copper areas for power planes (PVIN, VOUT, and PGND) to minimize conduction loss and thermal  
stress.  
Place ceramic input and output capacitors close to the device pins to minimize high frequency noise.  
Locate additional output capacitors between the ceramic capacitor and the load.  
Keep AGND and PGND separate from one another. The connection is made internal to the device.  
Place RSET, RRT, and CSS as close as possible to their respective pins.  
Use multiple vias to connect the power planes to internal layers.  
10.2 Layout Example  
38. Typical Top-Layer Layout  
39. Typical Layer-2 Layout  
40. Typical Layer-3 Layout  
41. Typical Bottom-Layer Layout  
26  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
LMZ36002  
www.ti.com.cn  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
10.3 EMI  
The LMZ36002 is compliant with EN55022 Class B radiated emissions. 42 through 45 show typical  
examples of radiated emissions plots for the LMZ36002 operating from 24 V and 48 V. Both graphs include the  
plots of the antenna in the horizontal and vertical positions.  
42. Radiated Emissions (EN55022 Class B)  
43. Radiated Emissions (EN55022 Class B)  
24-V Input, 5-V Output, 2-A Load, 250 kHz  
48-V Input, 5-V Output, 2-A Load, 300 kHz  
45. Radiated Emissions (EN55022 Class B)  
44. Radiated Emissions (EN55022 Class B)  
48-V Input, 7.5-V Output, 2-A Load, 750 kHz  
24-V Input, 5-V Output, 2-A Load, 500 kHz  
版权 © 2015–2018, Texas Instruments Incorporated  
27  
 
 
LMZ36002  
ZHCSE75D SEPTEMBER 2015REVISED JUNE 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 使用 WEBENCH® 工具创建定制设计  
单击此处,使用 LMZ36002 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 首先键入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
11.1.2 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
28  
版权 © 2015–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Jun-2020  
PACKAGING INFORMATION  
Orderable Device  
LMZ36002RVQR  
LMZ36002RVQT  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 105  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
B3QFN  
B3QFN  
RVQ  
43  
43  
500  
RoHS Exempt  
& Green  
NIPDAU  
Level-3-245C-168 HR  
LMZ36002  
LMZ36002  
ACTIVE  
RVQ  
250  
RoHS Exempt  
& Green  
NIPDAU  
Level-3-245C-168 HR  
-40 to 105  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Jun-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Mar-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMZ36002RVQR  
LMZ36002RVQT  
B3QFN  
B3QFN  
RVQ  
RVQ  
43  
43  
500  
250  
330.0  
330.0  
24.4  
24.4  
10.35 10.35  
10.35 10.35  
4.6  
4.6  
16.0  
16.0  
24.0  
24.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Mar-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LMZ36002RVQR  
LMZ36002RVQT  
B3QFN  
B3QFN  
RVQ  
RVQ  
43  
43  
500  
250  
383.0  
383.0  
353.0  
353.0  
58.0  
58.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RVQ0043A  
B3QFN - 4.4mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
A
10.15  
9.85  
B
PIN 1  
INDEX AREA  
10.15  
9.85  
(13 )  
ALL AROUND  
(0.2) TYP  
4.4  
4.2  
C
(2.17)  
SEATING PLANE  
0.08 C  
(0.32) TYP  
0.45  
0.35  
3.4  
3.2  
TYP  
0.1  
C A B  
8X (0.975)  
PKG  
0.05  
1.1  
0.9  
11  
21  
43  
(3.6)  
1.15  
0.95  
PKG  
41  
5.1  
4.9  
42  
(1.188)  
0.6  
0.4  
1.225  
1.025  
36X  
2.5  
2.3  
31  
1
40  
PIN 1 ID  
0.8 TYP  
(3.6)  
4X 8  
4226463/A 02/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pads must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RVQ0043A  
B3QFN - 4.4mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(9.7)  
4X (8)  
(0.8) TYP  
(3.6)  
40  
1
31  
(2.4)  
(1.05)  
36X (0.7)  
(1.125)  
(5)  
42  
(1.188)  
PKG  
41  
(9.7)  
(1.23) TYP  
(3.6)  
(
0.2) TYP  
(1)  
(3.3)  
43  
11  
21  
(R0.05) TYP  
(0.4) TYP  
(0.6) TYP  
(0.575)  
8X (0.975)  
PKG  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
0.05 MIN  
ALL AROUND  
EXPOSED  
METAL  
0.05 MAX.  
ALL AROUND  
EXPOSED  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAIL  
4226463/A 02/2021  
NOTES: (continued)  
4. This package designed to be soldered to a thermal pads on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RVQ0043A  
B3QFN - 4.4mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(9.7)  
4X (8)  
(3.6)  
(0.8) TYP  
40  
1
31  
8X (1.06)  
(0.99)  
36X (0.7)  
42  
(1.04)  
41  
8X (1.03)  
(1.188)  
PKG  
0.615  
(9.7)  
(3.6)  
(1.23)  
TYP  
(
0.95)  
43  
11  
21  
(0.63) TYP  
(1.15)  
(0.4) TYP  
(R0.05) TYP  
8X (0.975)  
PKG  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm STENCIL THICKNESS  
EXPOSED PAD 41:  
73% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
EXPOSED PAD 42:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
EXPOSED PAD 43:  
82% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:8X  
4226463/A 02/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

LMZ7-QW30

LED LUXEON WARM WHITE 3000K 2SMD
LUMILEDS

LMZ7-QW40

LED LUXEON NEU WHITE 4000K 2SMD
LUMILEDS

LMZ7-QW50

LED LUXEON COOL WHITE 5000K 2SMD
LUMILEDS

LMZ7-QW57

LED LUXEON COOL WHITE 5700K 2SMD
LUMILEDS

LMZ7-QW65

LED LUXEON COOL WHITE 6500K 2SMD
LUMILEDS

LMZ7-RW30

LED LUXEON WARM WHITE 3000K 2SMD
LUMILEDS

LMZ7-RW40

LED LUXEON NEU WHITE 4000K 2SMD
LUMILEDS

LMZ7-RW50

LED LUXEON COOL WHITE 5000K 2SMD
LUMILEDS

LMZ7-RW57

LED LUXEON COOL WHITE 5000K 2SMD
LUMILEDS

LMZ7-RW65

LED LUXEON COOL WHITE 6500K 2SMD
LUMILEDS

LMZ7-SW30

LED LUXEON WARM WHITE 3000K 2SMD
LUMILEDS

LMZ7-SW40

LED LUXEON NEU WHITE 4000K 2SMD
LUMILEDS