LMZM33602 [TI]

采用紧凑型 7x9x4mm QFN 封装的 4V 至 36V、2A 降压直流/直流电源模块;
LMZM33602
型号: LMZM33602
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用紧凑型 7x9x4mm QFN 封装的 4V 至 36V、2A 降压直流/直流电源模块

电源电路
文件: 总36页 (文件大小:2806K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
QFN 封装LMZM33602 4V 36V 输入、2A 电源模块  
1 特性  
3 说明  
• 完全集成的电源解决方案  
– 仅需四个外部元件  
– 最小解决方案尺< 100mm2  
9mm × 7mm × 4mm QFN 封装  
LMZM33602 电源模块是一款易于使用的集成式电源解  
决方案在一个扁平封装内整合了一个带有功率  
MOSFET 2A 降压直流/直流转换器、一个屏蔽式电  
感器和多个无源器件。此电源解决方案仅需四个外部组  
并且省去了设计流程中的环路补偿和磁性元件选择  
过程。  
– 所有引脚均分布在封装外围  
– 引脚3A LMZM33603 兼容  
• 输入电压范围4V 36V  
• 输出电压范围1 V 18 V  
• 效率高95%  
• 可调节的开关频率范围200kHz 1.2MHz)  
• 支持与外部时钟同步  
• 电源正常状态输出  
该器件采用 9mm × 7mm × 4mm18 引脚 QFN 封  
可轻松焊接到印刷电路板上并实现紧凑的低厚度  
负载点设计。LMZM33602 具有全套功能集包括电源  
正常状态指示、可编UVLO、预偏置启动、过流和过  
热保护因此是为各种应用供电的出色器件。  
器件信息  
• 符EN55011 B 类辐EMI 标准  
IC 工作结温范围40°C +125°C  
• 工作环境温度范围-40°C +105°C  
• 使LMZM33602 并借WEBENCH® Power  
Designer 创建定制设计方案  
封装尺寸标称值)  
器件型号  
LMZM33602  
封装  
QFN (18)  
9.00mm × 7.00mm  
2 应用  
工厂和楼宇自动化  
智能电网与能源  
工业  
医疗  
国防  
反相输出应用  
115  
105  
95  
85  
75  
65  
55  
45  
35  
25  
PGOOD  
VIN  
VIN  
VOUT  
EN/SYNC  
VOUT  
CIN  
RFBT  
LMZM33602  
COUT  
RT  
FB  
PGND  
RRT  
RFBB  
VIN = 24V  
VOUT = 3.3V, fsw = 300kHz  
VOUT = 5.0V, fsw = 450kHz  
VOUT = 12V, fsw = 900kHz  
Copyright © 2017, Texas Instruments Incorporated  
简化原理图  
0.0  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
SOA2  
安全操作区域  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSAO4  
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
Table of Contents  
7 Detailed Description......................................................10  
7.1 Overview...................................................................10  
7.2 Functional Block Diagram.........................................10  
7.3 Feature Description...................................................11  
7.4 Device Functional Modes..........................................19  
8 Application and Implementation..................................20  
8.1 Application Information............................................. 20  
8.2 Typical Application.................................................... 20  
9 Device and Documentation Support............................27  
9.1 Device Support......................................................... 27  
9.2 Documentation Support............................................ 27  
9.3 Receiving Notification of Documentation Updates....27  
9.4 Support Resources................................................... 27  
9.5 Trademarks...............................................................27  
9.6 Electrostatic Discharge Caution................................27  
9.7 Glossary....................................................................27  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics............................................6  
6.7 Typical Characteristics (VIN = 5 V)..............................7  
6.8 Typical Characteristics (VIN = 12 V)............................8  
6.9 Typical Characteristics (VIN = 24 V)............................9  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (March 2018) to Revision D (August 2020)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Updated Storage temperature range in Absolute Maximum Ratings ................................................................ 4  
Changes from Revision B (February 2018) to Revision C (March 2018)  
Page  
Added 9.4 section........................................................................................................................................ 24  
Changes from Revision A (February 2018) to Revision B (February 2018)  
Page  
• 首次发布量产数据数据表.................................................................................................................................... 1  
Changes from Revision * (December 2017) to Revision A (January 2018)  
Page  
• 添加了新和指SNVA800 应用报告的链接并作了细微的编辑更新........................................................ 1  
Added sentence re: inverting buck-boost topology to 8.1 ........................................................................... 20  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LMZM33602  
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
AGND  
1
PGND  
15  
18  
17 16  
EN/SYNC  
2
PGND  
DNC  
14  
13  
RT  
3
4
VIN  
12  
DNC  
PGND  
5
11  
SW  
VOUT  
6
8
9
VOUT  
SW  
7
10  
5-1. RLR Package 18-Pin QFN Top View  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
Analog ground. Zero voltage reference for internal references and logic. Do not connect this pin to  
PGND; the connection is made internal to the device. See the Layout of the data sheet for a  
recommended layout.  
1
AGND  
G
EN - Enable input to regulator. High = On, Low = Off. Can be connected to VIN. Do not float. This pin  
can be used to set the input undervoltage lockout with two resistors. See 7.3.9. SYNC - The  
internal oscillator can be synchronized to an external clock via AC-coupling. See 7.3.5 for details.  
2
EN/SYNC  
I
An external timing resistor connected between this pin and AGND adjusts the switching frequency of  
the device. If left open, the default switching frequency is 400 kHz.  
3
4
RT  
I
I
VIN  
Input supply voltage. Connect external input capacitors between this pin and PGND.  
Power ground. This is the return current path for the power stage of the device. Connect pin 5 to the  
input source, the load, and to the bypass capacitors associated with VIN and VOUT using power  
ground planes on the PCB. Pins 14 and 15 are not connected to PGND internal to the device  
and must be connected to PGND at pad 18. Connect pad 18 to the power ground planes using  
multiple vias for good thermal performance. See Layout of the data sheet for a recommended  
layout.  
5, 14, 15, 18 PGND  
G
Output voltage. These pins are connected to the internal output inductor. Connect these pins to the  
output load and connect external bypass capacitors between these pins and PGND.  
6, 7, 8  
VOUT  
SW  
O
O
Switch node. Connect these pins to a small copper island under the device for thermal relief. Do not  
place any external component on these pins or tie them to a pin of another function.  
9, 10, 11  
12, 13  
Do not connect. Each pin must be soldered to an isolated pad. These pins connect to internal  
circuitry. Do not connect these pins to one another, AGND, PGND, or any other voltage.  
DNC  
Feedback input. Connect the center point of the feedback resistor divider to this pin. Connect the  
upper resistor (RFBT) of the feedback divider to VOUT at the desired point of regulation. Connect the  
lower resistor (RFBB) of the feedback divider to AGND.  
16  
17  
FB  
I
Open drain output for power-good flag. Use a 10-kΩto 100-kΩpullup resistor to logic rail or other  
DC voltage no higher than 12 V.  
PGOOD  
O
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LMZM33602  
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
0.3  
5.5  
0.3  
0.3  
1  
MAX  
42  
UNIT  
V
VIN  
EN/SYNC  
Input voltage  
VIN + 0.3  
15  
V
PGOOD  
V
FB, RT  
SW  
4.5  
V
VIN + 0.3  
42  
V
Output voltage  
SW (< 10-ns transients)  
V
5  
VOUT  
VIN  
V
0.3  
Sink current  
PGOOD  
3
mA  
G
Mechanical shock  
Mechanical vibration  
Mil-STD-883D, Method 2002.3, 1 msec, 1/2 sine, mounted  
500  
Mil-STD-883D, Method 2007.2, 20 to 2000 Hz  
20  
G
(2)  
Operating IC junction temperature, TJ  
125  
°C  
°C  
°C  
40  
40  
55  
(2)  
Operating ambient temperature, TA  
105  
Storage temperature, Tstg  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The ambient temperature is the air temperature of the surrounding environment. The junction temperature is the temperature of the  
internal power IC when the device is powered. Operating below the maximum ambient temperature, as shown in the safe operating  
area (SOA) curves in the typical characteristics sections, ensures that the maximum junction temperature of any component inside the  
module is never exceeded.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±750  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Over operating ambient temperature range (unless otherwise noted)  
MIN  
4(1)  
MAX  
UNIT  
V
Input voltage, VIN  
36  
18  
VIN  
12  
1
Output voltage, VOUT  
1
V
EN/SYNC voltage  
V
5  
0.3  
PGOOD pullup voltage, VPGOOD  
PGOOD sink current, IPGOOD  
Output current, IOUT  
V
mA  
A
0
2
Operating ambient temperature, TA  
105  
°C  
40  
(1) For output voltages 5 V, the recommended minimum VIN is 4 V or (VOUT + 1.5 V), whichever is greater. For output voltages > 5 V,  
the recommended minimum VIN is (1.3 × VOUT). See Voltage Dropout for information on voltage dropout.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LMZM33602  
 
 
 
 
 
 
 
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
6.4 Thermal Information  
LMZM33602  
THERMAL METRIC(1)  
RLR (QFN)  
18 PINS  
18.9  
UNIT  
RθJA  
ψJT  
Junction-to-ambient thermal resistance(2)  
Junction-to-top characterization parameter(3)  
Junction-to-board characterization parameter(4)  
°C/W  
°C/W  
°C/W  
2.0  
6.2  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) The junction-to-ambient thermal resistance, RθJA, applies to devices soldered directly to a 63 mm × 63 mm, 4-layer PCB with 2 oz.  
copper and natural convection cooling. Additional airflow reduces RθJA  
.
(3) The junction-to-top board characterization parameter, ψJT, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (section 6 and 7). TJ = ψJT × Pdis + TT; where Pdis is the power dissipated in the device and TT is  
the temperature of the top of the device.  
(4) The junction-to-board characterization parameter, ψJB, estimates the junction temperature, TJ, of a device in a real system, using a  
procedure described in JESD51-2A (sections 6 and 7). TJ = ψJB × Pdis + TB; where Pdis is the power dissipated in the device and TB  
is the temperature of the board 1mm from the device.  
6.5 Electrical Characteristics  
Over 40°C to +105°C ambient temperature, VIN = 24 V, VOUT = 5 V, IOUT = IOUT maximum, fsw = 450 kHz (unless otherwise  
noted); CIN1 = 2 × 4.7-µF, 50-V, 1210 ceramic; CIN2 = 100-µF, 50-V, electrolytic; COUT = 4 × 22-µF, 25-V, 1210 ceramic.  
Minimum and maximum limits are specified through production test or by design. Typical values represent the most likely  
parametric norm and are provided for reference only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT VOLTAGE (VIN)  
VIN  
Input voltage  
Over IOUT range  
4(1)  
3.3  
3
36  
3.9  
3.5  
4
V
V
VIN increasing  
3.6  
3.3  
2
UVLO  
VIN undervoltage lockout  
VIN decreasing  
V
ISHDN  
Shutdown supply current  
VEN = 0 V, VIN = 12 V  
µA  
OUTPUT VOLTAGE (VOUT  
)
VOUT(ADJ)  
Output voltage adjust  
Output voltage ripple  
Over IOUT range  
1
18  
V
VOUT(Ripple)  
FEEDBACK  
20-MHz bandwidth  
10  
mV  
TA = 25°C, IOUT = 0 A  
0.985  
0.98  
1
1
1.015  
1.02  
V
V
Feedback voltage(2)  
Load regulation  
Over VIN range, 40°C TJ 125°C, IOUT  
0 A  
=
VFB  
Over IOUT range, TA = 25°C  
0.04%  
10  
IFB  
Feedback leakage current VFB = 1 V  
nA  
CURRENT  
Output current  
Natural convection, TA = 25°C  
0
2
A
A
IOUT  
Overcurrent threshold  
3.6  
PERFORMANCE  
VOUT = 12 V, fSW = 900 kHz  
94%  
90%  
88%  
93%  
91%  
89%  
90  
VIN = 24 V,  
IOUT = 1 A  
VOUT = 5 V, fSW = 450 kHz  
VOUT = 3.3 V, fSW = 300 kHz  
VOUT = 5 V, fSW = 450 kHz  
VOUT = 3.3 V, fSW = 300 kHz  
VOUT = 2.5 V, fSW = 250 kHz  
Over/undershoot  
Efficiency  
ƞ
VIN = 12 V,  
IOUT = 1 A  
25% to 75%  
load step  
1 A/µs slew rate  
mV  
µs  
Transient response  
Recovery time  
55  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LMZM33602  
 
 
 
 
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
Over 40°C to +105°C ambient temperature, VIN = 24 V, VOUT = 5 V, IOUT = IOUT maximum, fsw = 450 kHz (unless otherwise  
noted); CIN1 = 2 × 4.7-µF, 50-V, 1210 ceramic; CIN2 = 100-µF, 50-V, electrolytic; COUT = 4 × 22-µF, 25-V, 1210 ceramic.  
Minimum and maximum limits are specified through production test or by design. Typical values represent the most likely  
parametric norm and are provided for reference only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SOFT START  
TSS  
Internal soft start time  
6
ms  
THERMAL  
Shutdown temperature  
170  
15  
°C  
°C  
TSHDN  
Thermal shutdown  
Hysteresis  
ENABLE (EN)  
VEN-H  
EN rising threshold  
1.4  
1.55  
0.4  
10  
1.7  
V
V
VEN-HYS  
EN hysteresis voltage  
VIN = 4 V to 36 V, VEN = 2 V  
VIN = 4 V to 36 V, VEN = 36 V  
100  
1
nA  
µA  
IEN  
EN Input leakage current  
POWER GOOD (PGOOD)  
VOUT rising (good)  
VOUT rising (fault)  
92%  
94%  
107%  
1.5%  
96.5%  
110%  
VPGOOD  
PGOOD thresholds  
104%  
VOUT falling hysteresis  
Minimum VIN for valid  
PGOOD  
1.5  
0.4  
V
V
50-μA pullup, VEN = 0 V, TA = 25°C  
PGOOD low voltage  
0.5-mA pullup, VEN = 0 V  
CAPACITANCE  
Ceramic type  
9.4(3)  
min(4)  
µF  
µF  
CIN  
External input capacitance  
Non-ceramic type  
47(3)  
External output  
capacitance  
COUT  
max(5)  
µF  
(1) See Voltage Dropout for information on voltage dropout.  
(2) The overall output voltage tolerance will be affected by the tolerance of the external RFBT and RFBB resistors.  
(3) A minimum of 9.4 µF (2 × 4.7 µF) ceramic input capacitance is required for proper operation. An additional 47 µF of bulk capacitance is  
recommended for applications with transient load requirements. See the Input Capacitors section of the datasheet for further guidance.  
(4) The minimum amount of required output capacitance varies depending on the output voltage (see Output Capacitor Selection). A  
minimum amount of ceramic output capacitance is required. Locate the capacitance close to the device. Adding additional ceramic or  
non-ceramic capacitance close to the load improves the response of the regulator to load transients.  
(5) The maximum allowable output capacitance varies depending on the output voltage (see Output Capacitor Selection).  
6.6 Switching Characteristics  
Over operating ambient temperature range (unless otherwise noted)  
Minimum and maximum limits are specified through production test or by design. Typical values represent the most likely  
parametric norm, and are provided for reference only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FREQUENCY (RT) and SYNCHRONIZATION (EN/SYNC)  
Default switching frequency  
RT pin = open  
340  
200  
400  
460  
kHz  
kHz  
fSW  
Switching frequency range  
1200  
Peak-to-peak amplitude of SYNC clock AC  
signal (measured at SYNC pin)  
VSYNC  
2.8  
5.5  
V
TS-MIN  
Minimum SYNC ON/OFF time  
100  
ns  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LMZM33602  
 
 
 
 
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
6.7 Typical Characteristics (VIN = 5 V)  
The typical characteristic data has been developed from actual products tested at 25°C. This data is considered  
typical for the device.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VOUT, fSW  
3.3 V, 300 kHz  
2.5 V, 250 kHz  
1.0 V, 250 kHz  
VOUT, fSW  
3.3 V, 300 kHz  
2.5 V, 250 kHz  
1.0 V, 250 kHz  
0.0  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
0.0  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
D001  
D005  
VIN = 5 V  
VIN = 5 V  
6-1. Efficiency vs Output Current  
6-2. Power Dissipation vs Output Current  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
115  
105  
95  
VOUT, fSW  
2.5 V, 250 kHz  
3.3 V, 300 kHz  
1.0 V, 250 kHz  
85  
75  
65  
55  
45  
Airflow  
Nat Conv  
35  
25  
0.0  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
0.0  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
D009  
D004  
VIN = 5 V  
COUT = 4 × 22 µF, 25 V, 1210 ceramic  
VIN = 5 V  
All VOUT  
6-3. Voltage Ripple vs Output Current  
6-4. Safe Operating Area  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LMZM33602  
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
6.8 Typical Characteristics (VIN = 12 V)  
The typical characteristic data has been developed from actual products tested at 25°C. This data is considered  
typical for the device.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VOUT, fSW  
5.0 V, 450 kHz  
3.3 V, 300 kHz  
2.5 V, 250 kHz  
1.0 V, 250 kHz  
VOUT, fSW  
5.0 V, 450 kHz  
3.3 V, 300 kHz  
2.5 V, 250 kHz  
1.0 V, 250 kHz  
0.0  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
0.0  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
D002  
D006  
VIN = 12 V  
VIN = 12 V  
6-5. Efficiency vs Output Current  
6-6. Power Dissipation vs Output Current  
16  
15  
14  
13  
12  
11  
10  
9
115  
105  
95  
VOUT, fSW  
2.5 V, 250 kHz  
3.3 V, 300 kHz  
5.0 V, 450 kHz  
1.0 V, 250 kHz  
85  
75  
65  
55  
8
7
45  
6
Airflow  
Nat Conv  
35  
25  
5
4
0.0  
0.0  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
D004  
D010  
VIN = 12 V  
VOUT = 5 V  
fSW = 450 kHz  
VIN = 12 V  
COUT = 4 × 22 µF, 25 V, 1210 ceramic  
6-8. Safe Operating Area  
6-7. Voltage Ripple vs Output Current  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LMZM33602  
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
6.9 Typical Characteristics (VIN = 24 V)  
The typical characteristic data has been developed from actual products tested at 25°C. This data is considered  
typical for the device.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VOUT, fSW  
12 V, 900 kHz  
5.0 V, 450 kHz  
3.3 V, 300 kHz  
2.5 V, 250 kHz  
VOUT, fSW  
12 V, 900 kHz  
5.0 V, 450 kHz  
3.3 V, 300 kHz  
2.5 V, 250 kHz  
0.0  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
0.0  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
D003  
D007  
VIN = 24 V  
VIN = 24 V  
6-9. Efficiency vs Output Current  
6-10. Power Dissipation vs Output Current  
16.0  
115  
105  
95  
VOUT, fSW  
2.5 V, 250 kHz  
3.3 V, 300 kHz  
12 V, 900 kHz  
5.0 V, 450 kHz  
15.0  
14.0  
13.0  
12.0  
11.0  
10.0  
9.0  
85  
75  
65  
55  
45  
8.0  
Airflow  
100LFM  
Nat Conv  
35  
7.0  
25  
6.0  
0.0  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
0.0  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
D011  
D008  
VIN = 24 V  
COUT = 4 × 22 µF, 25 V, 1210 ceramic  
VIN = 24 V  
VOUT = 5 V  
fSW = 450 kHz  
6-11. Voltage Ripple vs Output Current  
6-12. Safe Operating Area  
115  
105  
95  
85  
75  
65  
55  
Airflow  
45  
200LFM  
100LFM  
Nat Conv  
35  
25  
0.0  
0.5  
1.0  
Output Current (A)  
1.5  
2.0  
D012  
VIN = 24 V  
VOUT = 12 V  
fSW = 900 kHz  
6-13. Safe Operating Area  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LMZM33602  
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LMZM33602 is a full-featured, 36-V input, 2-A, synchronous step-down converter with PWM, MOSFETs,  
shielded inductor, and control circuitry integrated into a low-profile, overmolded package. The device integration  
enables small designs, while providing the ability to adjust key parameters to meet specific design requirements.  
The LMZM33602 provides an output voltage range of 1 V to 18 V. An external resistor divider is used to adjust  
the output voltage to the desired value. The switching frequency can also be adjusted, by either an external  
resistor or a sync signal, which allows the LMZM33602 to accommodate a variety of input and output voltage  
conditions as well as optimize efficiency. The device provides accurate voltage regulation over a wide load range  
by using a precision internal voltage reference. Input undervoltage lockout is internally set at 3.6 V (typical), but  
can be adjusted upward using a resistor divider on the EN/SYNC pin of the device. The EN/SYNC pin can also  
be pulled low to put the device into standby mode to reduce input quiescent current. A power-good signal is  
provided to indicate when the output is within its nominal voltage range. Thermal shutdown and current limit  
features protect the device during an overload condition. An 18-pin, QFN package that includes exposed bottom  
pads provides a thermally enhanced solution for space-constrained applications.  
7.2 Functional Block Diagram  
Thermal  
Shutdown  
Precision  
Enable  
EN/SYNC  
Shutdown  
Logic  
Sync  
Detect  
OCP  
Oscillator  
VIN  
UVLO  
RT  
VIN  
PGOOD  
SW  
PGOOD  
Logic  
Power  
Stage  
and  
FB  
6.8µH  
VOUT  
Control  
Logic  
Soft  
Start  
+
+
Comp  
VREF  
AGND  
PGND  
Copyright © 2017, Texas Instruments Incorporated  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LMZM33602  
 
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Adjusting the Output Voltage  
A resistor divider connected to the FB pin (pin 16) programs the output voltage of the LMZM33602. The output  
voltage adjustment range is from 1 V to 18 V. 7-1 shows the feedback resistor connections for setting the  
output voltage. The recommended value of RFBB is 10 kΩ. The value for RFBT can be calculated using 方程式 1.  
Depending on the output voltage, a feedforward capacitor, CFF, can be required for optimum transient  
performance. 7-1 lists the standard external RFBT and CFF values for several output voltages between 2.5 V  
and 18 V. 7-2 lists the values for output voltages below 2.5 V. Additionally, 7-1 and 7-2 include the  
recommended switching frequency (FSW), the frequency setting resistor (RRT), and the minimum and maximum  
output capacitance for each of the output voltages listed.  
For designs with RFBB other than 10 kΩ, adjust CFF and RFBT such that (CFF × RFBT) is unchanged and adjust  
RFBT such that (RFBT / RFBB) is unchanged.  
space  
RFBT = 10ì V  
-1 kW  
)(  
(
)
OUT  
(1)  
VOUT  
RFBT  
CFF  
FB  
RFBB  
10 k  
AGND  
7-1. Setting the Output Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LMZM33602  
 
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
7-1. Required Component Values (VOUT 2.5 V)  
COUT(min) (µF)(1)  
COUT(max) (µF)(2)  
RFBT (k)(3)  
15.0  
RRT (kΩ)  
VOUT (V)  
CFF (pF)  
fSW (kHz)  
2.5  
3.3  
5
220  
250  
162  
150  
88  
66  
54  
40  
36  
22  
22  
20  
16  
400  
300  
200  
160  
130  
110  
80  
23.2  
150  
300  
133  
40.2  
100  
450  
88.7  
71.5  
60.4  
56.2  
44.2  
39.2  
35.7  
33.2  
6
49.9  
68  
550  
7.5  
9
64.9  
47  
650  
80.6  
47  
700  
12  
13.5  
15  
18  
110  
open  
open  
open  
open  
900  
124  
1000  
1100  
1200  
75  
140  
65  
169  
55  
(1) For output voltages 2.5 V, the minimum required output capactiance must be comprised of ceramic type and account for DC bias  
and temperature derating.  
(2) The maximum output capactiance must include the required ceramic COUT(min). Additional capacitance, may be ceramic type, low-ESR  
polymer type, or a combination of the two.  
(3) RFBB = 10.0 kΩ  
7-2. Required Component Values (VOUT < 2.5 V)  
RFBT (k)(1)  
RRT (kΩ)  
VOUT (V)  
CFF (pF)  
FSW (kHz)  
COUT  
150-µF ceramic +  
470-µF polymer  
1 to 2.5  
open  
250  
162  
See 方程1  
(1) RFBB = 10 kΩ. For VOUT = 1 V, RFBB= open and RFBT = 0 Ω.  
7.3.2 Feedforward Capacitor, CFF  
The LMZM33602 is internally compensated to be stable over the operating frequency and output voltage range.  
However, depending on the output voltage, an additional feedforward capacitor can be required. TI recommends  
an external feedforward capacitor, CFF, be placed in parallel with the top resistor divider, RFBT for optimum  
transient performance. The value for CFF can be calculated using Equation 2.  
1000  
CFF  
=
pF  
(
)
«
÷
8.32  
4p  
ìR  
FBT  
VOUT ìCOUT ◊  
(2)  
where  
COUT is the value after derating in µF  
RFBT is in kΩ  
Refer to 7-1 for the recommended CFF value for several output voltages.  
7.3.3 Voltage Dropout  
Voltage dropout is the difference between the input voltage and output voltage that is required to maintain output  
voltage regulation while providing the rated output current.  
To ensure the LMZM33602 maintains output voltage regulation at the recommended switching frequency, over  
the operating temperature range, the following requirements apply:  
For output voltages 5 V, the minimum VIN is 4 V or (VOUT + 1.5 V), whichever is greater.  
For output voltages > 5 V, the minimum VIN is (1.3 × VOUT).  
However, if fixed switching frequency operation is not required, the LMZM33602 operates in a frequency  
foldback mode when the dropout voltage is less than the recommendations above. Frequency foldback reduces  
the switching frequency to allow the output voltage to maintain regulation as input voltage decreases. 7-2  
through 7-7 show typical dropout voltage and frequency foldback curves for 3.3-V, 5-V, and 12-V outputs at TA  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LMZM33602  
 
 
 
 
 
 
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
= 25°C. (Note: As ambient temperature increases, dropout voltage and frequency foldback occur at higher input  
voltage.)  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
350  
325  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
Iout  
0.5 A  
1.0 A  
2.0 A  
Iout  
0.5 A  
1.0 A  
2.0 A  
50  
3.3  
3.4  
3.5  
3.6  
3.7 3.8  
Input Voltage (V)  
3.9  
4.0  
4.1  
4.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
Input Voltage (V)  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
D017  
D018  
VOUT = 3.3 V  
fSW = 300 kHz  
VOUT = 3.3 V  
fSW = 300 kHz  
7-2. Voltage Dropout  
7-3. Frequency Foldback  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
500  
450  
400  
350  
300  
250  
200  
150  
100  
Iout  
0.5 A  
1.0 A  
2.0 A  
Iout  
0.5 A  
1.0 A  
2.0 A  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
Input Voltage (V)  
5.2  
5.4  
5.6  
5.8  
6.0  
6.2  
6.4  
4.0  
4.3  
4.6  
4.9  
5.2  
5.5  
Input Voltage (V)  
5.8  
6.1  
6.4  
6.7  
7.0  
D019  
D020  
VOUT = 5 V  
fSW = 450 kHz  
VOUT = 5 V  
fSW = 450 kHz  
7-4. Voltage Dropout  
7-5. Frequency Foldback  
12.4  
12.2  
12.0  
11.8  
11.6  
11.4  
11.2  
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
9.8  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Iout  
0.5 A  
1.0 A  
2.0 A  
Iout  
0.5 A  
1.0 A  
2.0 A  
11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2 13.4  
Input Voltage (V)  
11.0  
11.5  
12.0  
12.5  
13.0  
13.5  
Input Voltage (V)  
14.0  
14.5  
15.0  
15.5  
16.0  
D021  
D022  
VOUT = 12 V  
fSW = 900 kHz  
VOUT = 12 V  
fSW = 900 kHz  
7-6. Voltage Dropout  
7-7. Frequency Foldback  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LMZM33602  
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
7.3.4 Switching Frequency (RT)  
The switching frequency range of the LMZM33602 is 200 kHz to 1.2 MHz. The switching frequency can easily be  
set by connecting a resistor (RRT) between the RT pin and AGND. Additionally, the RT pin can be left floating  
and the LMZM33602 will operate at 400 kHz default switching frequency. Use Equation 3 to calculate the RRT  
value for a desired frequency or simply select from 7-3.  
The switching frequency must be selected based on the output voltage setting of the device and the operating  
input voltage. See 7-3 for RRT resistor values and the allowable output voltage range for a given switching  
frequency for three common input voltages.  
40200  
RRT  
=
- 0.6 kW  
(
)
÷
÷
fSW kHz  
(
)
«
(3)  
7-3. Switching Frequency vs Output Voltage  
VIN = 5 V (±5%)  
VIN = 12 V (±5%)  
VIN = 24 V (±5%)  
VOUT RANGE (V)  
RRT  
RESISTOR  
(kΩ)  
SWITCHING  
FREQUENCY  
(kHz)  
VOUT RANGE (V)  
VOUT RANGE (V)  
MIN  
1
MAX  
3.4  
MIN  
1
MAX  
5.5  
MIN  
1
MAX  
6.2  
200  
250  
300  
350  
200  
158  
133  
113  
1
3.5  
1
6.2  
1
10.6  
10.6  
10.7  
1
3.5  
1
6.8  
1
1
3.5  
1
7.4  
1
100 or  
(RT pin  
open)  
400  
1
3.5  
1
7.9  
1
11.4  
450  
500  
88.7  
78.7  
71.5  
66.5  
60.4  
56.2  
52.3  
49.9  
46.4  
44.2  
41.2  
39.2  
37.4  
35.7  
34.0  
33.2  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3.5  
3.5  
3.4  
3.4  
3.4  
3.3  
3.3  
3.3  
3.2  
3.2  
3.2  
3.1  
3.1  
3.1  
3
1
1
8.4  
8.9  
9.3  
9.5  
9.4  
9.3  
9.2  
9.1  
9.0  
9.0  
8.9  
8.8  
8.7  
8.6  
8.5  
8.5  
1.2  
1.3  
1.4  
1.6  
1.7  
1.8  
2.0  
2.1  
2.2  
2.3  
2.5  
2.6  
2.7  
2.9  
3
12.1  
12.8  
13.4  
14.1  
14.6  
15.2  
15.8  
16.3  
16.8  
17.3  
17.8  
18  
550  
1
600  
1
650  
1
700  
1
750  
1
800  
1
850  
1.1  
1.2  
1.2  
1.3  
1.4  
1.4  
1.5  
1.6  
900  
950  
1000  
1050  
1100  
1150  
1200  
18  
18  
18  
3
3.1  
18  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LMZM33602  
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
7.3.5 Synchronization (SYNC)  
The LMZM33602 switching frequency can also be synchronized to an external clock from 200 kHz to 1.2 MHz.  
To implement the synchronization feature, couple an AC signal to the EN/SYNC pin (pin 2) with a peak-to-peak  
amplitude of at least 2.8 V, not to exceed 5.5 V. The minimum SYNC clock ON and OFF time must be longer  
than 100ns. The AC signal must be coupled through a small capacitor (1 nF) as shown in 7-8. RENT is  
required for this synchronization circuit, but RENB is not required if an external UVLO adjustment is not needed.  
Before the external clock is present, or when a valid clock signal is removed, the device works in RT mode and  
the switching frequency is set by RRT resistor. Select RRT so that it sets the frequency close to the external  
synchronization frequency. When the external clock is present, the SYNC mode overrides the RT mode.  
The synchronization frequency must be selected based on the output voltages of the devices being  
synchronized. 7-3 shows the allowable frequencies for a given range of output voltages. For the most efficient  
solution, always select the lowest allowable frequency.  
VIN  
VIN  
RENT  
CSYNC  
EN/SYNC  
1 nF  
RENB  
Clock  
Source  
PGND  
7-8. AC Coupled SYNC Signal  
7.3.6 Input Capacitors  
The LMZM33602 requires a minimum input capacitance of 9.4 μF (2 × 4.7 μF) of ceramic type. High-quality,  
ceramic-type X5R or X7R capacitors with sufficient voltage rating are recommended. TI recommends an  
additional 100 µF of non-ceramic capacitance for applications with transient load requirements. The voltage  
rating of input capacitors must be greater than the maximum input voltage.  
7-4. Recommended Input Capacitors  
CAPACITOR CHARACTERISTICS  
ESR(1)  
(m)  
CAPACITANCE (2)  
(µF)  
VENDOR  
SERIES  
PART NUMBER  
WORKING VOLTAGE  
(V)  
Murata  
X7R  
X5R  
X7R  
X7R  
ZA  
GRM32ER71H475KA88L  
C3225X5R1H106K250AB  
GRM32ER71H106KA12  
C3225X7R1H106M250AB  
EEHZA1H101P  
50  
50  
50  
50  
50  
4.7  
10  
2
3
TDK  
Murata  
TDK  
10  
2
10  
3
Panasonic  
100  
28  
(1) Maximum ESR @ 100 kHz, 25°C.  
(2) Standard capacitance values  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LMZM33602  
 
 
 
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
7.3.7 Output Capacitors  
The LMZM33602 minimum and maximum output capacitance listed in 7-1 and 7-2 represents the amount  
of effective capacitance. The effects of DC bias and temperature variation must be considered when using  
ceramic capacitance. For ceramic capacitors, the package size, voltage rating, and dielectric material will  
contribute to differences between the standard rated value and the actual effective value of the capacitance.  
When adding additional capacitance, above COUT(min), the capacitance can be ceramic type, low-ESR polymer  
type, or a combination of the two. See 7-5 for a preferred list of output capacitors by vendor.  
7-5. Recommended Output Capacitors  
CAPACITOR CHARACTERISTICS  
CAPACITANCE (3)  
(µF)  
VENDOR  
SERIES  
PART NUMBER(1)  
WORKING  
ESR(2) (m)  
VOLTAGE (V)  
Murata  
X7R  
X5R  
GRM32ER71E226KE15L  
25  
6.3  
16  
22  
2
2
TDK  
C3225X5R0J476K  
GRM32ER61C476K  
C3225X5R0J107M  
GRM32ER60J107M  
GRM32ER61A107M  
C1210C107M4PAC7800  
6TPE100MI  
47  
Murata  
X5R  
47  
3
TDK  
X5R  
6.3  
6.3  
10  
100  
100  
100  
100  
100  
150  
150  
220  
220  
330  
330  
470  
2
Murata  
X5R  
2
Murata  
X5R  
2
Kemet  
X5R  
16  
2
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
POSCAP  
POSCAP  
POSCAP  
POSCAP  
POSCAP  
POSCAP  
POSCAP  
POSCAP  
6.3  
6.3  
10  
18  
15  
15  
9
6TPE150MF  
10TPF150ML  
6TPF220M9L  
6.3  
6.3  
4
6TPE220ML  
12  
12  
9
4TPF330ML  
6TPF330M9L  
6.3  
6.3  
6TPE470MAZU  
35  
(1) Capacitor Supplier Verification , RoHS, Lead-free and Material Details Consult capacitor suppliers regarding availability, material  
composition, RoHS and lead-free status, and manufacturing process requirements for any capacitors identified in this table.  
(2) Maximum ESR @ 100 kHz, 25°C.  
(3) Standard capacitance values.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LMZM33602  
 
 
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
7.3.8 Output On/Off Enable (EN)  
The voltage on the EN/SYNC pin provides electrical ON/OFF control of the device. Once the EN pin voltage  
exceeds the threshold voltage, the device starts operation. If the EN pin voltage is pulled below the threshold  
voltage, the regulator stops switching and enters low quiescent current state.  
The EN pin cannot be open circuit or floating. The simplest way to enable the operation of the LMZM33602 is to  
connect the EN pin to VIN directly as shown in 7-9. This allows self-start-up of the LMZM33602 when VIN is  
within the operation range.  
If an application requires controlling the EN pin, an external logic signal can be used to drive EN/SYNC pin as  
shown in 7-10. Applications using an open drain/collector device to interface with this pin require a pullup  
resistor to a voltage above the enable threshold.  
7-11 and 7-12 show typical turn-ON and turn-OFF waveforms using the enable control.  
VIN  
VIN  
EN/SYNC  
EN/SYNC  
PGND  
PGND  
7-10. Typical Enable Control  
7-9. Enabling the Device  
7-12. Enable Turn-OFF  
7-11. Enable Turn-ON  
7.3.9 Programmable Undervoltage Lockout (UVLO)  
The LMZM33602 implements internal UVLO circuitry on the VIN pin. The device is disabled when the VIN pin  
voltage falls below the internal VIN UVLO threshold. The internal VIN UVLO rising threshold is 3.9 V (maximum)  
with a typical hysteresis of 300 mV.  
If an application requires a higher UVLO threshold, a resistor divider can be placed on the EN/SYNC pin as  
shown in 7-13. 7-6 lists recommended resistor values for RENT and RENB to adjust the ULVO voltage.  
To ensure proper start-up and reduce input current surges, the UVLO threshold must be set to at least  
(VOUT + 1.5 V) for output voltages 5 V and at least (1.3 × VOUT) for output voltages > 5 V. TI recommends to  
set the UVLO threshold to approximately 80% to 85% of the minimum expected input voltage.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LMZM33602  
 
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
VIN  
VIN  
RENT  
EN/SYNC  
PGND  
RENB  
7-13. Adjustable UVLO  
7-6. Resistor Values for Adjusting UVLO  
VIN UVLO (V)  
RENT (kΩ)  
6.5  
100  
35.7  
10  
15  
20  
25  
30  
100  
20.5  
100  
12.7  
100  
9.31  
100  
7.32  
100  
6.04  
RENB (kΩ)  
7.3.10 Power Good (PGOOD)  
The LMZM33602 has a built-in power-good signal (PGOOD) which indicates whether the output voltage is within  
its regulation range. The PGOOD pin is an open-drain output that requires a pullup resistor to a nominal voltage  
source of 12 V or less. The maximum recommended PGOOD sink current is 1 mA. A typical pullup resistor value  
is between 10 kΩand 100 kΩ.  
Once the output voltage rises above 94% of the set voltage, the PGOOD pin rises to the pullup voltage level.  
The PGOOD pin is pulled low when the output voltage drops lower than 92.5% or rises higher than 107% of the  
nominal set voltage. See 7-14 for typical power-good thresholds.  
VFB  
107%  
105.5%  
94%  
92.5%  
PGOOD  
High  
Low  
7-14. Power Good Flag  
7.3.11 Overcurrent Protection (OCP)  
The LMZM33602 is protected from overcurrent conditions. Hiccup mode is activated if a fault condition persists  
to prevent overheating. In hiccup mode, the regulator is shut down and kept off for 10 ms typical before the  
LMZM33602 tries to start again. If overcurrent or short-circuit fault condition still exist, hiccup repeats until the  
fault condition is removed. Hiccup mode reduces power dissipation under severe overcurrent conditions, and  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LMZM33602  
 
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
prevents overheating and potential damage to the device. Once the fault is removed, the module automatically  
recovers and returns to normal operation as shown in 7-16.  
7-15. Overcurrent Limiting  
7.3.12 Thermal Shutdown  
7-16. Removal of Overcurrent  
The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds  
170°C typically. The device reinitiates the power up sequence when the junction temperature drops below 155°C  
typically.  
7.4 Device Functional Modes  
7.4.1 Active Mode  
The LMZM33602 is in active mode when VIN is above the UVLO threshold and the EN/SYNC pin voltage is  
above the EN high threshold. The simplest way to enable the LMZM33602 is to connect the EN/SYNC pin to  
VIN. This allows self start-up of the LMZM33602 when the input voltage is in the operation range: 4 V to 36 V. In  
active mode, the LMZM33602 is in continuous conduction mode (CCM) with fixed switching frequency.  
7.4.2 Shutdown Mode  
The EN/SYNC pin provides electrical ON and OFF control for the LMZM33602. When the EN/SYNC pin voltage  
is below the EN low threshold, the device is in shutdown mode. In shutdown mode the standby current is 2 μA  
typical. The LMZM33602 also employs input UVLO protection. If VIN is below the UVLO level, the output of the  
regulator is turned off.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LMZM33602  
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
8 Application and Implementation  
Note  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The LMZM33602 is a synchronous, step-down, DC-DC power module. It is used to convert a higher DC voltage  
to a lower DC voltage with a maximum output current of 2 A. The LMZM33602 can be configured in an inverting  
buck-boost (IBB) topology with the output voltage inverted or negative with respect to ground. For more details,  
see TI Application Report Inverting Application for the LMZM33602/03. The following design procedure can be  
used to select components for the LMZM33602. Alternately, the WEBENCH® software may be used to generate  
complete designs. When generating a design, the WEBENCH® software utilizes an iterative design procedure  
and accesses comprehensive databases of components. See www.ti.com for more details.  
8.2 Typical Application  
The LMZM33602 only requires a few external components to convert from a wide input voltage supply range to a  
wide range of output voltages. 8-1 shows a basic LMZM33602 schematic with only the minimum required  
components.  
PGOOD  
VIN  
VIN  
VOUT  
EN/SYNC  
VOUT  
CIN  
CFF  
LMZM33602  
RFBT  
COUT  
RT  
FB  
PGND  
RRT  
RFBB  
Copyright © 2017, Texas Instruments Incorporated  
8-1. LMZM33602 Typical Schematic  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 8-1 as the input parameters and follow the design  
procedures in 8.2.2.  
8-1. Design Example Parameters  
DESIGN PARAMETER  
VALUE  
24 V typical  
5 V  
Input voltage VIN  
Output voltage VOUT  
Output current rating  
Operating frequency  
2 A  
450 kHz  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LMZM33602  
 
 
 
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LMZM33602 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Output Voltage Setpoint  
The output voltage of the LMZM33602 device is externally adjustable using a resistor divider. The recommended  
value of RFBB is 10.0 kΩ. The value for RFBT can be selected from 7-6 or calculated using Equation 4:  
RFBT = 10ì V  
-1 kW  
)(  
(
)
OUT  
(4)  
For the desired output voltage of 5.0 V, the formula yields a value of 40 kΩ. Choose the closest available value  
of 40.2 kΩfor RFBT  
.
8.2.2.3 Feedforward Capacitor (CFF)  
TI recommends placing an external feedforward capacitor, CFF in parallel with the top resistor divider, RFBT for  
optimum transient performance. The value for CFF can be calculated using Equation 2 or selected from 7-1.  
The recommended CFF value for 5-V application is 100 pF.  
8.2.2.4 Setting the Switching Frequency  
The recommended switching frequency for a 5-V application is 450 kHz. To set the swtiching frequency to  
450 kHz, a 88.7-kΩRRT resistor is required.  
8.2.2.5 Input Capacitors  
The LMZM33602 requires a minimum input capacitance of 10 µF (or 2 × 4.7 μF) ceramic type. High-quality  
ceramic type X5R or X7R capacitors with sufficient voltage rating are recommended. An additional 100 µF of  
non-ceramic capacitance is recommended for applications with transient load requirements. The voltage rating  
of input capacitors must be greater than the maximum input voltage.  
For this design, a 10-µF, 50-V, ceramic capacitor was selected.  
8.2.2.6 Output Capacitor Selection  
The LMZM33602 requires a minimum amount of output capacitance for proper operation. The minimum amount  
of required output varies depending on the output voltage. See 7-1 for the required output capacitance.  
For this design example, four 22-µF, 25-V ceramic capacitors are used.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LMZM33602  
 
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
8.2.2.7 Application Curves  
VIN = 24 V  
VOUT = 5 V  
IOUT = 0.5 A to 1 A  
Slew rate: 1 A/µs  
VIN = 24 V  
VOUT = 5 V  
COUT = 4 × 22 µF  
COUT = 4 × 22 µF  
8-3. Enable Turn-on  
8-2. Transient Response  
Power Supply Recommendations  
The LMZM33602 is designed to operate from an input voltage supply range between 4 V and 36 V. This input  
supply must be well regulated and able to withstand maximum input current and maintain a stable voltage. The  
resistance of the input supply rail must be low enough that an input current transient does not cause a high  
enough drop at the LMZM33602 supply voltage that can cause a false UVLO fault triggering and system reset.  
If the input supply is located more than a few inches from the LMZM33602 additional bulk capacitance may be  
required in addition to the ceramic bypass capacitors. The typical amount of bulk capacitance is a 100-µF  
electrolytic capacitor.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LMZM33602  
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
Layout  
The performance of any switching power supply depends as much upon the layout of the PCB as the component  
selection. The following guidelines will help users design a PCB with the best power conversion performance,  
optimal thermal performance, and minimized generation of unwanted EMI.  
9.1 Layout Guidelines  
To achieve optimal electrical and thermal performance, an optimized PCB layout is required. 9-1 through 图  
9-4 show a typical PCB layout. Some considerations for an optimized layout are:  
Use large copper areas for power planes (VIN, VOUT, and PGND) to minimize conduction loss and thermal  
stress.  
Connect PGND pins 14 and 15 directly to pin 18 using thick copper traces.  
Connect the SW pins together using a small copper island under the device for thermal relief.  
Place ceramic input and output capacitors close to the device pins to minimize high frequency noise.  
Locate additional output capacitors between the ceramic capacitor and the load.  
Keep AGND and PGND separate from one another.  
Place RFBT, RFBB, RRT, and CFF as close as possible to their respective pins.  
Use multiple vias to connect the power planes to internal layers.  
9.2 Layout Examples  
9-1. Typical Top-Layer Layout  
9-2. Typical Layer-2 Layout  
9-3. Typical Layer 3 Layout  
9-4. Typical Bottom-Layer Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LMZM33602  
 
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
9.3 Theta JA versus PCB Area  
The amount of PCB copper effects the thermal performance of the device. 9-5 shows the effects of copper  
area on the junction-to-ambient thermal resistance (RθJA) of the LMZM33602. The junction-to-ambient thermal  
resistance is plotted for a 2-layer PCB and a 4-layer PCB with PCB area from 16 cm2 to 49 cm2.  
To determine the required copper area for an application:  
1. Determine the maximum power dissipation of the device in the application by referencing the power  
dissipation graphs in 6.7 to 6.9.  
2. Calculate the maximum θJA using Equation 5 and the maximum ambient temperature of the application.  
(125˘C œ TA(max)  
)
JA  
=
(˘C/W)  
PD(max)  
(5)  
3. Reference 9-5 to determine the minimum required PCB area for the application conditions.  
32  
2-layer PCB  
4-layer PCB  
30  
28  
26  
24  
22  
20  
18  
16  
15  
20  
25  
30  
35  
40  
45  
50  
PCB Area (cm²)  
ThJA  
9-5. θJA vs PCB Area  
9.4 EMI  
The LMZM33602 is compliant with EN55011 Class B radiated emissions. 9-6, 9-7, and 9-8 show typical  
examples of radiated emissions plots for the LMZM33602. The graphs include the plots of the antenna in the  
horizontal and vertical positions.  
9.4.1 EMI Plots  
EMI plots were measured using the standard LMZM33602EVM with no input filter.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LMZM33602  
 
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
9-6. Radiated Emissions 24-V Input, 5-V Output, 2-A Load (EN55011 Class B)  
9-7. Radiated Emissions 24-V Input, 12-V Output, 2-A Load (EN55011 Class B)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LMZM33602  
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
9-8. Radiated Emissions 12-V Input, 5-V Output, 2-A Load (EN55011 Class B)  
9.5 Package Specifications  
LMZM33602  
VALUE  
UNIT  
Weight  
0.74  
grams  
Flammability  
Meets UL 94 V-O  
MTBF Calculated Reliability  
Per Bellcore TR-332, 50% stress, TA = 40°C, ground benign  
98.0  
MHrs  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LMZM33602  
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Development Support  
9.1.1.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LMZM33602 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2 Documentation Support  
9.2.1 Related Documentation  
For related documentation see the following:  
TI Application Report Inverting Application for the LMZM33602/03  
9.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
9.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
9.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
9.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LMZM33602  
 
 
 
 
 
 
 
 
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
10.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
LMZM33602RLRR  
B3QFN  
RLR  
18  
500  
330.0  
24.4  
7.35  
9.35  
4.35  
12.0  
24.0  
Q1  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LMZM33602  
LMZM33602  
ZHCSHL8D DECEMBER 2017 REVISED AUGUST 2020  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
B3QFN  
Package Drawing Pins  
RLR 18  
SPQ  
Length (mm) Width (mm)  
383.0 353.0  
Height (mm)  
LMZM33602RLRR  
500  
58.0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LMZM33602  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LMZM33602RLRR  
ACTIVE  
B3QFN  
RLR  
18  
500  
RoHS & Green  
NIPDAU  
Level-3-250C-168 HR  
-40 to 105  
LMZM33602  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Oct-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LMZM33602RLRR  
B3QFN  
RLR  
18  
500  
330.0  
24.4  
7.35  
9.35  
4.35  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Oct-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
B3QFN RLR 18  
SPQ  
Length (mm) Width (mm) Height (mm)  
383.0 353.0 58.0  
LMZM33602RLRR  
500  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RLR0018A  
B3QFN - 4.1 mm max height  
S
C
A
L
E
1
.
3
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
A
7.15  
6.85  
B
PIN 1 INDEX AREA  
9.15  
8.85  
4.1 MAX  
C
SEATING PLANE  
0.05  
0.00  
0.08 C  
2X 5.551  
2X  
(0.2) TYP  
(0.255) TYP  
36X 0.5  
EXPOSED  
THERMAL PAD  
PKG  
8
10  
7
6
11  
2X 3.48 0.05  
2X 0.77 0.05  
2X  
PKG  
7.5  
5
12  
15  
2X 1.6  
0.05  
0.3  
46X  
0.2  
0.1  
C A B  
0.05  
1
18  
0.6  
PIN 1 ID  
(OPTIONAL)  
TYP  
0.4  
2X 1.33  
2X 0.105  
2X 1  
4223378/C 05/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pads must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RLR0018A  
B3QFN - 4.1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
METAL UNDER  
SOLDER MASK  
TYP  
2X (1.6)  
PKG  
(0.5) TYP  
4X (0.595)  
12X (0.7)  
6X  
(0.45)  
SOLDER MASK  
OPENING  
TYP  
18  
(4.35)  
(4.33) TYP  
4X (0.62)  
15  
(3.8)  
1
(3.42) TYP  
2X (3.48)  
(
0.2) VIA  
46X (0.25)  
TYP  
(2.51) TYP  
(1.6) TYP  
12  
0.05 MIN  
TYP  
(0.69) TYP  
5
PKG  
0.000  
(0.175) TYP  
(0.825) TYP  
(0.15) TYP  
11  
(1.6) TYP  
(R0.05) TYP  
6
(2.51) TYP  
(3.42) TYP  
7X (0.25)  
(3.8)  
4X (3.935)  
(4.33) TYP  
10  
7
(4.35)  
8
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE: 12X  
4223378/C 05/2018  
NOTES: (continued)  
4. This package designed to be soldered to a thermal pads on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RLR0018A  
B3QFN - 4.1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
16X (0.67)  
16X (0.71)  
6X (0.29)  
8X (0.265)  
5X (0.7)  
18  
(4.568)  
(4.35)  
(3.875)  
15  
1
2X (3.75)  
(2.965)  
(2.055)  
46X (0.25)  
EXPOSED METAL  
TYP  
12  
(1.145)  
5
(R0.05) TYP  
0.000 PKG  
(1.145)  
(2.055)  
11  
(0.25) TYP  
6
7
4X (0.585)  
(2.965)  
METAL UNDER  
SOLDER MASK  
TYP  
2X (3.75)  
(3.875)  
4X (3.93)  
10  
(4.35)  
SOLDER MASK EDGE  
TYP  
2X (4.568)  
8
4X (0.61)  
7X (0.7)  
EXPOSED  
METAL  
TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 8 & 18:  
68% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4223378/C 05/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021,德州仪器 (TI) 公司  

相关型号:

LMZM33602RLRR

采用紧凑型 7x9x4mm QFN 封装的 4V 至 36V、2A 降压直流/直流电源模块 | RLR | 18 | -40 to 105
TI

LMZM33603

采用紧凑型 7x9x4mm QFN 封装的 4V 至 36V、3A 降压直流/直流电源模块
TI

LMZM33603RLRR

采用紧凑型 7x9x4mm QFN 封装的 4V 至 36V、3A 降压直流/直流电源模块 | RLR | 18 | -40 to 105
TI

LMZM33604

3.5V 至 36V 输入、1V 至 20V 输出、4A 电源模块
TI

LMZM33604RLXR

3.5V 至 36V 输入、1V 至 20V 输出、4A 电源模块 | RLX | 41 | -40 to 105
TI

LMZM33606

3.5V 至 36V 输入、1V 至 20V 输出、6A 电源模块
TI

LMZM33606RLXR

3.5V 至 36V 输入、1V 至 20V 输出、6A 电源模块 | RLX | 41 | -40 to 105
TI

LN

Series Round Type
ETC

LN-104.000MHZ

Oscillator, 104MHz Min, 350MHz Max, 104MHz Nom,
DIODES

LN-1A11

INFRARED EMITTING DIODE
ETC

LN-45-15

45W Single Output LED Power Supply
MEANWELL

LN01-12B05

AC/DC converter
MORNSUN