LP2980-ADJ [TI]

具有使能功能的 50mA、16V、可调节低压降稳压器;
LP2980-ADJ
型号: LP2980-ADJ
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的 50mA、16V、可调节低压降稳压器

稳压器
文件: 总37页 (文件大小:2714K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
LP2980-ADJ 16V50mA、低功耗、可调节低压降稳压器  
1 特性  
3 说明  
VIN 范围  
LP2980-ADJ 是一款可调输出、宽输入、低压降稳压  
支持高达 16V 的输入电压和高达 50mA 的负载电  
流。LP2980-ADJ 支持 1.2V 15.0V新芯片和  
1.23V 15.0V旧芯片的输出范围。  
– 旧芯片2.2V 16V  
– 新芯片2.5V 16V  
VOUT 范围:  
– 旧芯片1.23V 15.0V  
– 新芯片1.2V 15.0V  
VOUT 精度典型值):  
此外LP2980-ADJ新芯片在整个负载和温度范围  
内具有 1% 的输出精度可满足低压微控制器 (MCU)  
和处理器的需求。  
– 旧芯片±1%  
– 新芯片±0.5%  
• 在整个负载和温度范围内的输出精度:  
在该新芯片中高带宽 PSRR 性能在 1kHz 时大于  
70dB1MHz 时大于 45dB因此有助于衰减上游  
直流/直流转换器的开关频率并尽可能地减少后置稳  
压器滤波。  
– 旧芯片±3.5%  
– 新芯片±1%  
内部软启动时间和电流限制保护可减小启动期间的浪涌  
电流从而尽可能降低输入电容。还包括标准保护特  
例如过流和过热保护。  
• 输出电流50mA  
• 静态电流IQ新芯片):  
ILOAD = 0 mA 55μA  
ILOAD = 50 mA 350μA  
• 关断电流与温度间的关系:  
LP2980-ADJ 采用 5 引脚、2.9mm × 1.6mm SOT-23  
(DBV) 封装。  
– 旧芯片< 1μA  
– 新芯片0.8μA  
• 输出电流限制和热保护  
• 使2.2µF 陶瓷电容器实现稳定工作新芯片)  
PSRR新芯片):  
1kHz 频率下70dB1MHz 频率下42dB  
• 工作结温40°C +125°C  
封装信息  
封装(1)  
封装尺寸(2)  
器件型号  
LP2980-ADJ  
DBVSOT-235)  
2.9mm × 2.8mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 封装尺寸x 为标称值并包括引脚如适用。  
• 封装5 SOT-23 (DBV)  
2 应用  
家用断路器  
固态硬(SSD)  
电表  
电器  
楼宇自动化  
250  
VOUT  
VIN  
1mA  
10mA  
50mA  
IN  
OUT  
ADJ  
200  
150  
100  
50  
LP2980-ADJ  
R1  
R2  
CFF  
ON/  
OFF  
COUT  
CIN  
GND  
GND  
GND  
GND  
0
-75 -50 -25  
0
25 50 75 100 125 150  
GND  
Temperature (°C)  
典型应用电路  
新芯片的压降电压与温度间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVS001  
 
 
 
 
 
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................19  
8 Application and Implementation..................................21  
8.1 Application Information............................................. 21  
8.2 Typical Application.................................................... 25  
8.3 Power Supply Recommendations.............................28  
8.4 Layout....................................................................... 28  
9 Device and Documentation Support............................29  
9.1 Device Support......................................................... 29  
9.2 接收文档更新通知..................................................... 29  
9.3 支持资源....................................................................29  
9.4 Trademarks...............................................................29  
9.5 静电放电警告............................................................ 29  
9.6 术语表....................................................................... 29  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Typical Characteristics................................................9  
7 Detailed Description......................................................17  
7.1 Overview...................................................................17  
7.2 Functional Block Diagram.........................................17  
7.3 Feature Description...................................................17  
Information.................................................................... 29  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision E (April 2013) to Revision F (July 2023)  
Page  
• 添加ESD 表、部分、特性说部分、器件功能模部分、应用和实部分、典型应部分、电  
源建部分、部分、器件和文档支持 部分以及机械、封装和可订购信息 部分......................................1  
• 在文档中添加了新芯片M3 后缀信息............................................................................................................1  
• 更改了文档标题以及特性应用 说明 部分.....................................................................................................1  
• 删除了应用提示 部分..........................................................................................................................................1  
Changed Pin Configuration and Functions title and section...............................................................................3  
Changed title, condition statement, and curve titles and added curves for new chip in Typical Characteristics  
section................................................................................................................................................................ 9  
Changed Functional Block Diagram figure....................................................................................................... 17  
Added Device Nomenclature section................................................................................................................29  
Changes from Revision D (April 2013) to Revision E (April 2013)  
Page  
Changed layout of National Data Sheet to TI format........................................................................................26  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVS001  
2
Submit Document Feedback  
Product Folder Links: LP2980-ADJ  
 
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
5
VOUT  
VIN  
1
2
3
GND  
ON/OFF  
ADJ  
4
5-1. DBV Package, 5-Pin SOT-23 (Top View)  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
ADJ  
NO.  
4
Feedback pin to set the output voltage with help of the feedback divider. See the  
Recommended Operating Conditions section for more information.  
I/O  
GND  
2
Ground  
Enable pin for the LDO. Driving the ON/OFF pin high enables the device. Driving this pin low  
disables the device. High and low thresholds are listed in the Electrical Characteristics table.  
Tie this pin to VIN if unused.  
ON/OFF  
VIN  
3
1
5
I
I
Input supply pin. Use a capacitor with a value of 1 µF or larger from this pin to ground. See  
the Input and Output Capacitor Requirements section for more information.  
Output of the regulator. Use a capacitor with a value of 4.7 µF (for legacy chip) and 2.2 μF  
(for new chip) or larger from this pin to ground.(1) See the Input and Output Capacitor  
Requirements section for more information.  
VOUT  
O
(1) The nominal output capacitance must be greater than 1 μF (for the new chip) and 2.2 μF (for the legacy chip). Throughout this  
document, the nominal derating on these capacitors is 50%. Make sure that the effective capacitance at the pin is greater than 1 μF  
(for the new chip) and 2.2 μF (for the legacy chip).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LP2980-ADJ  
English Data Sheet: SNVS001  
 
 
 
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
0.3  
0.3  
0.3  
MAX  
UNIT  
Continuous input voltage range (for legacy chip)  
16  
18  
16  
VIN  
Continuous input voltage range (for new chip)  
Output voltage range (for legacy chip)  
VOUT  
VIN + 0.3 or 18 (whichever  
is smaller)  
Output voltage range (for new chip)  
0.3  
V
VADJ  
ADJ pin voltage range (for new chip)  
Input Output voltage (for legacy chip)  
ON/OFF pin voltage range (for legacy chip)  
ON/OFF pin voltage range (for new chip)  
Maximum output  
3
16  
16  
18  
0.3  
0.3  
0.3  
0.3  
(3)  
VIN VOUT  
VON/OFF  
Current  
Internally limited  
55  
A
Operating junction, TJ  
150  
150  
Temperature  
°C  
Storage, Tstg  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltages with respect to GND.  
(3) In legacy chip, the output PNP structure contains a diode between the VIN and VOUT terminals that is normally reverse-biased.  
Reversing the polarity from VIN to VOUT will turn on this diode  
6.2 ESD Ratings  
VALUE  
(Legacy  
Chip)  
VALUE  
(New  
Chip)  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
NA  
±3000  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 2-kV HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 500-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVS001  
4
Submit Document Feedback  
Product Folder Links: LP2980-ADJ  
 
 
 
 
 
 
 
 
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
MIN  
2.2  
NOM  
MAX  
16  
UNIT  
Supply input voltage (for legacy chip)  
VIN  
Supply input voltage (for new chip)  
2.5  
16  
Output voltage (for legacy chip)  
1.225  
1.2  
15.0  
15.0  
VOUT  
Output voltage (for new chip)  
V
ADJ voltage (for legacy chip)  
1.225  
1.2  
VADJ  
ADJ voltage (for new chip)  
Enable voltage (for legacy chip)  
VON/OFF  
0
0
0
VIN  
16  
50  
Enable voltage (for new chip)  
IOUT  
Output current  
mA  
(3)  
CIN  
Input capacitor  
1
4.7  
2.2  
7
Output capacitor (for legacy chip) (2)  
Output capacitance (for new chip) (1)  
Feed-forward capacitor (for legacy chip)  
Feed-forward capacitor (for new chip)  
Operating junction temperature  
2.2  
1
μF  
COUT  
200  
125  
(4)  
CFF  
TJ  
pF  
°C  
10  
40  
(1) For new chip, all capacitor values are assumed to derate to 50% of the nominal capacitor value. Maintain an effective output  
capacitance of 1 μF minimum for stability.  
(2) For legacy chip, minimum output capacitance of 2.2 μF is required with ESR range suggested in the Recommended Capacitor Types  
section  
(3) For legacy chip, an input capacitor of value 1 μF is required. It must be located not more than 0.5from the input pin and returned  
to a clean analog ground.  
(4) Regarding the requirement of feed-forward capacitor (CFF), see the Feed-Forward Capacitor section.  
6.4 Thermal Information  
Legacy Chip  
DBV (SOT23-5)  
5 PINS  
205.4  
New Chip  
DBV (SOT23-5)  
5 PINS  
178.6  
THERMAL METRIC (2) (1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
78.8  
77.9  
46.7  
47.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
8.3  
15.9  
46.3  
46.9  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
note.  
(2) Thermal performance results are based on the JEDEC standard of 2s2p PCB configuration. These thermal metric parameters can be  
further improved by 35-55% based on thermally optimized PCB layout designs. See the analysis of the Impact of board layout on LDO  
thermal performance application report.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LP2980-ADJ  
English Data Sheet: SNVS001  
 
 
 
 
 
 
 
 
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics  
specified at TJ = 25°C, VIN = VOUT(nom) + 1.0 V or VIN = 2.5 V (whichever is greater), IOUT = 1 mA, VON/OFF = 2 V, CIN = 1.0  
µF, and COUT = 2.2 µF (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
1.213 1.225 1.237  
1.194 1.2 1.206  
1.206 1.225 1.243  
1.1928 1.2 1.206  
1.182 1.225 1.268  
1.1892 1.2 1.2108  
TYP  
MAX UNIT  
Legacy Chip  
New Chip  
IL = 1mA  
Legacy Chip  
New Chip  
1 mA < IL < 50 mA, VOUT + 1 VIN ≤  
16V, TJ = 25°C  
VREF  
Reference Voltage  
V
Legacy Chip  
New Chip  
1 mA < IL < 50 mA, VOUT + 1 VIN ≤  
16V, 40°C TJ 125°C  
Legacy Chip  
New Chip  
3.0  
6.0  
4.0  
15.0  
4.25  
3
2.5V VIN 16V, TJ = 25°C  
0.5  
ΔVREF/ Reference Voltage  
Line Regulation  
mV  
ΔVIN  
Legacy Chip  
New Chip  
2.5V VIN 16V, 40°C TJ ≤  
125°C  
Legacy Chip  
New Chip  
1
1
IL = 0mA  
3.5  
5
Legacy Chip  
New Chip  
IL = 0mA, 40°C TJ 125°C  
IL = 1mA  
5.5  
10  
Legacy Chip  
New Chip  
7
10.5  
15.5  
15  
Legacy Chip  
New Chip  
IL = 1mA, 40°C TJ 125°C  
IL = 10mA  
18.5  
60  
VIN  
-
Dropout voltage  
mV  
VOUT  
Legacy Chip  
New Chip  
40  
95  
115  
90  
Legacy Chip  
New Chip  
IL = 10mA, 40°C TJ 125°C  
IL = 50mA  
148  
150  
145  
225  
184  
Legacy Chip  
New Chip  
120  
120  
Legacy Chip  
New Chip  
IL = 50mA, 40°C TJ 125°C  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVS001  
6
Submit Document Feedback  
Product Folder Links: LP2980-ADJ  
 
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
specified at TJ = 25°C, VIN = VOUT(nom) + 1.0 V or VIN = 2.5 V (whichever is greater), IOUT = 1 mA, VON/OFF = 2 V, CIN = 1.0  
µF, and COUT = 2.2 µF (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Legacy Chip  
New Chip  
60  
95  
70  
IL = 0mA  
55  
Legacy Chip  
New Chip  
125  
90  
IL = 0mA, 40°C TJ 125°C  
IL = 1mA  
Legacy Chip  
New Chip  
80  
70  
110  
82  
Legacy Chip  
New Chip  
170  
105  
220  
IL = 1mA, 40°C TJ 125°C  
IL = 10mA  
Legacy Chip  
New Chip  
120  
150  
188  
µA  
IGND  
Ground Pin Current  
Legacy Chip  
New Chip  
460  
220  
600  
420  
1200  
600  
1
IL = 10mA, 40°C TJ 125°C  
IL = 50mA  
Legacy Chip  
New Chip  
320  
350  
Legacy Chip  
New Chip  
IL = 50mA, 40°C TJ 125°C  
Legacy Chip  
New Chip  
0.01  
0.2  
VON/OFF < 0.18V, VIN 4.3V, 40°C ≤  
TJ 125°C  
0.8  
VON/OFF < 0.18V, VIN = 16V, 40°C TJ  
125°C  
New Chip  
2.5  
Legacy Chip  
New Chip  
150  
0.35  
2.2  
350  
nA  
30  
IADJ  
ADJ Pin Bias Current  
1 mA IL 50 mA  
VUVLO+ Rising bias supply UVLO  
2.4  
VIN rising, 40°C TJ 125°C  
VIN falling, 40°C TJ 125°C  
VUVLO-  
Falling bias supply UVLO  
UVLO hysteresis  
1.9  
2.07  
New Chip  
V
VUVLO(HY  
0.130  
40°C TJ 125°C  
ST)  
High = O/P ON  
Low = O/P OFF  
High = O/P ON  
Low = O/P OFF  
VON/OFF = 0  
1.6  
1.6  
1.4  
0.55  
0.82  
0.7  
Legacy Chip  
New Chip  
0.18  
V
VON/OFF ON/OFF input voltage  
0.18  
0.01  
5
1  
Legacy Chip  
New Chip  
VON/OFF = 5V  
VON/OFF = 0  
15  
ION/OFF  
ON/OFF input Current  
Peak Output Current  
µA  
0.35 0.7  
VON/OFF = 5V  
0.008  
150  
150  
150  
160  
160  
160  
220  
0.5  
Legacy Chip  
New Chip  
100  
130  
IO(PK)  
V
OUT VO(NOM) 5%  
mA  
µV  
Legacy Chip  
New Chip  
IO(MAX) Short Circuit Current  
RL = 0 (Steady State)  
Legacy Chip  
BW = 300 Hz to 50 kHz, COUT = 10µF  
BW = 300 Hz to 50 kHz, COUT = 2.2µF  
BW = 10 Hz to 100 kHz, COUT = 2.2µF  
en  
Output Noise Voltage (RMS)  
New Chip  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LP2980-ADJ  
English Data Sheet: SNVS001  
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
specified at TJ = 25°C, VIN = VOUT(nom) + 1.0 V or VIN = 2.5 V (whichever is greater), IOUT = 1 mA, VON/OFF = 2 V, CIN = 1.0  
µF, and COUT = 2.2 µF (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Legacy Chip  
New Chip  
f = 1 kHz, COUT = 10µF  
68  
ΔVOUT  
ΔVIN  
/
Ripple Rejection  
f = 1 kHz, COUT = 2.2µF  
68  
dB  
f = 100 kHz, COUT = 2.2µF  
45  
Tsd(shutdo  
Shutdown, temperature increasing  
Reset, temperature decreasing  
170  
150  
wn)  
Thermal shutdown threshold  
New Chip  
°C  
Tsd(reset)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVS001  
8
Submit Document Feedback  
Product Folder Links: LP2980-ADJ  
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
6.6 Typical Characteristics  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 1.0 V or 2.5 V (whichever is greater), IOUT = 1 mA, ON/OFF pin tied to  
VIN, CIN = 1.0 µF, and COUT = 4.7 µF (unless otherwise noted)  
3.315  
3.31  
VI = 4.3 V  
VO = 3.3 V  
Iout = 1mA  
CO = 4.7uF  
3.305  
3.3  
3.295  
3.29  
3.285  
3.28  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
Temp C  
VIN = 4.3 V, VOUT = 3.3 V  
6-1. Output Voltage vs Temperature for Legacy Chip  
6-2. Output Voltage vs Temperature for New Chip  
4
3.5  
3
2.5  
2
1.5  
1
RLOAD  
3.3 k  
66   
0.5  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
VIN ( V )  
6-3. Output Voltage vs VIN for Legacy Chip  
6-4. Output Voltage vs VIN for New Chip  
160  
220  
200  
180  
160  
140  
120  
100  
80  
TEMPERATURE  
IOUT = 50 mA  
IOUT  
1 mA  
-55 C  
-40 C  
0 C  
25 C  
85 C  
125 C  
150 C  
140  
120  
100  
80  
50 mA  
60  
40  
20  
0
2
4
6
8
10  
12  
14  
16  
2
4
6
8
10  
12  
14  
16  
VIN ( V )  
VIN ( V )  
6-5. Dropout Voltage vs VIN for New Chip  
6-6. Dropout Voltage vs VIN and Temperature for New Chip  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LP2980-ADJ  
English Data Sheet: SNVS001  
 
 
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 1.0 V or 2.5 V (whichever is greater), IOUT = 1 mA, ON/OFF pin tied to  
VIN, CIN = 1.0 µF, and COUT = 4.7 µF (unless otherwise noted)  
250  
1mA  
10mA  
50mA  
200  
150  
100  
50  
0
-75 -50 -25  
0
25 50 75 100 125 150  
Temperature (°C)  
6-7. Dropout Voltage vs Temperature for Legacy Chip  
6-8. Dropout Voltage vs Temperature for New Chip  
200  
VO = 3.3 V  
CO = 4.7 F  
175  
150  
125  
100  
75  
50  
Temperature  
25 °C  
-55 °C  
-40 °C  
0 °C  
150 °C  
45  
25  
85 °C  
125 °C  
0
0
5
10  
15  
20  
25  
30  
35  
40  
50  
IOUT (mA)  
6-9. Dropout Voltage vs Load Current for Legacy Chip  
6-10. Dropout Voltage vs Load Current for New Chip  
0
-2  
-4  
-6  
-8  
-10  
-12  
VOUT  
-14  
-16  
2.5 V  
30  
3.3 V  
5 V  
45  
0
5
10  
15  
20  
25  
35  
40  
50  
IOUT ( mA )  
6-11. Output Regulation vs Load Current for Legacy Chip  
6-12. Output Regulation vs Load Current for New Chip  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LP2980-ADJ  
English Data Sheet: SNVS001  
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 1.0 V or 2.5 V (whichever is greater), IOUT = 1 mA, ON/OFF pin tied to  
VIN, CIN = 1.0 µF, and COUT = 4.7 µF (unless otherwise noted)  
1.5  
Temperature  
VO = 3.3 V  
-55C  
-40C  
0C  
85C  
1
0.5  
0
Iout= 1mA  
125C  
150C  
CO = 4.7uF  
25C  
-0.5  
-1  
-1.5  
-2  
4
6
8
10  
VIN (V)  
12  
14  
16  
6-13. Output Regulation vs Load Current and Temperature  
6-14. Output Regulation vs Input Voltage for New Chip  
for New Chip  
6-15. Ground-Pin Current vs Temperature for Legacy Chip  
6-16. Ground-Pin Current vs Temperature for New Chip  
700  
Temperature  
-55 °C  
-40 °C  
0 °C  
25 °C  
85 °C  
125 °C  
150 °C  
600  
500  
400  
300  
200  
100  
0
VI = 4.3 V  
VO = 3.3 V  
CO = 4.7 F  
0
10  
20  
30  
40  
50  
IOUT  
6-17. Ground Pin Current vs Load Current for Legacy Chip  
6-18. Ground Pin Current vs Load Current for New Chip  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LP2980-ADJ  
English Data Sheet: SNVS001  
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 1.0 V or 2.5 V (whichever is greater), IOUT = 1 mA, ON/OFF pin tied to  
VIN, CIN = 1.0 µF, and COUT = 4.7 µF (unless otherwise noted)  
1000  
Temperature  
-55 °C  
-40 °C  
0 °C  
25 °C  
85 °C  
125 °C  
150 °C  
800  
600  
400  
200  
0
VO = 3.3 V  
CO = 4.7uF  
-200  
0
2
4
6
8
10  
12  
14  
16  
VIN  
6-19. Input Current vs Input Voltage for Legacy Chip  
6-20. Input Current vs Input Voltage for New Chip  
5
4
3000  
2700  
2400  
2100  
1800  
1500  
1200  
900  
VO  
I SC  
VIN = 6 V  
VO = 3.3 V  
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
600  
300  
0
-300  
0
200  
400  
600  
800  
1000  
200s/div  
VIN = 6 V  
6-22. Short-Circuit Current vs Time for New Chip  
6-21. Short-Circuit Current vs Time for Legacy Chip  
5
3000  
2700  
2400  
2100  
1800  
1500  
1200  
900  
VIN = 16 V  
VOUT = 3.3 V  
VO  
I SC  
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
600  
300  
0
-300  
0
200  
400  
600  
800  
1000  
200s/div  
6-23. Short-Circuit Current vs Time for Legacy Chip  
6-24. Short-Circuit Current vs Time for New Chip  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVS001  
12  
Submit Document Feedback  
Product Folder Links: LP2980-ADJ  
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 1.0 V or 2.5 V (whichever is greater), IOUT = 1 mA, ON/OFF pin tied to  
VIN, CIN = 1.0 µF, and COUT = 4.7 µF (unless otherwise noted)  
320  
166  
V
O
= 3.3 V  
VIN = 4.3 V  
164  
162  
160  
158  
156  
154  
152  
150  
148  
146  
300  
280  
260  
240  
Temperature  
220  
200  
-55 C  
-40 C  
0 C  
85 C  
125 C  
150 C  
25 C  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
VOUT (V)  
Output Voltage − (V)  
6-25. Short-Circuit Current vs Output Voltage for Legacy  
6-26. Short-Circuit Current vs Output Voltage for New Chip  
Chip  
165  
VIN = 4.3 V  
COUT = 4.7 F  
164  
163  
162  
161  
-55  
-25  
5
35  
65  
95  
125  
150  
TEMPERATURE (C)  
6-27. Short-Circuit Current vs Temperature for New Chip  
6-28. ADJ Pin Bias Current vs. Load Current for Legacy Chip  
30  
Temp (C)  
-55  
-40  
0
25  
50  
85  
100  
125  
150  
25  
20  
15  
10  
5
0
-5  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
ILOAD (mA)  
6-29. ADJ Pin Bias Current vs Load Current for New Chip  
6-30. ADJ Pin Bias Current vs Temperature for Legacy Chip  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LP2980-ADJ  
English Data Sheet: SNVS001  
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 1.0 V or 2.5 V (whichever is greater), IOUT = 1 mA, ON/OFF pin tied to  
VIN, CIN = 1.0 µF, and COUT = 4.7 µF (unless otherwise noted)  
18  
ILOAD  
1 mA  
50 mA  
14  
10  
6
2
-2  
-75  
-50  
-25  
0
25  
50  
75  
100 125 150  
TEMPERATURE (C)  
6-31. ADJ Pin Bias Current vs Temperature for New Chip  
6-32. ON/OFF Threshold vs Temperature for Legacy Chip  
6-33. ON/OFF Threshold vs Temperature for New Chip  
6-34. Output Noise Density for Legacy Chip  
3.5  
3.5  
CFF (pF)  
0
10  
COUT  
2.2 F  
10 F  
IOUT = 50 mA  
COUT = 2.2 uF  
IOUT = 50 mA  
CFF = 10 pF  
100  
1000  
3
2.5  
2
3
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
1x101  
1x102  
1x103  
1x104  
1x105  
1x106  
1x107  
1x101  
1x102  
1x103  
1x104  
1x105  
1x106  
1x107  
FREQUENCY ( Hz)  
FREQUENCY ( Hz)  
VIN = 4.3 V, VOUT = 3.3 V, IOUT = 50 mA, CFF = 10 pF  
VIN = 4.3 V, VOUT = 3.3 V, IOUT = 50 mA, COUT = 2.2 μF  
6-35. Output Noise Density vs CFF for New Chip  
6-36. Output Noise Density vs COUT for New Chip  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LP2980-ADJ  
English Data Sheet: SNVS001  
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 1.0 V or 2.5 V (whichever is greater), IOUT = 1 mA, ON/OFF pin tied to  
VIN, CIN = 1.0 µF, and COUT = 4.7 µF (unless otherwise noted)  
3.5  
IOUT  
1 mA  
50 mA  
COUT = 2.2 F  
CFF = 10 pF  
3
2.5  
2
1.5  
1
0.5  
0
1x101  
1x102  
1x103  
1x104  
1x105  
1x106  
1x107  
FREQUENCY ( Hz )  
VIN = 4.3 V, VOUT = 3.3 V, COUT = 2.2 μF, CFF = 10 pF  
6-38. Ripple Rejection for Legacy Chip  
6-37. Output Noise Density vs IOUT for New Chip  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
CFF (pF)  
0
10  
COUT  
10 uF  
2.2 uF  
90  
100  
1000  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 3.3V  
CFF = 10pF  
IOUT = 50mA  
102  
103  
104  
105  
106  
1x102  
1x103  
1x104  
1x105  
1x106  
Frequency (Hz)  
FREQUENCY (Hz)  
VIN = 4.3 V, VOUT = 3.3 V, IOUT = 50 mA, CFF = 10 pF  
VIN = 4.3 V, VOUT = 3.3 V, IOUT = 50 mA, COUT = 2.2 μF  
6-39. Ripple Rejection vs CFF for New Chip  
6-40. Ripple Rejection vs COUT for New Chip  
120  
IOUT  
1 mA  
50 mA  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 3.3V  
COUT = 2.2uF  
CFF = 10 pF  
1x102  
1x103  
1x104  
1x105  
1x106  
FREQUENCY (Hz)  
VIN = 4.3 V, VOUT = 3.3 V, COUT = 2.2 μF, CFF = 10 pF  
6-41. Ripple Rejection vs IOUT for New Chip  
6-42. 2.2-μF ESR Curves for Legacy Chip  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LP2980-ADJ  
English Data Sheet: SNVS001  
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
6.6 Typical Characteristics (continued)  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 1.0 V or 2.5 V (whichever is greater), IOUT = 1 mA, ON/OFF pin tied to  
VIN, CIN = 1.0 µF, and COUT = 4.7 µF (unless otherwise noted)  
6-43. 4.7-μF ESR Curves for Legacy Chip  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVS001  
16  
Submit Document Feedback  
Product Folder Links: LP2980-ADJ  
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LP2980-ADJ is an adjustable-output, low-dropout regulator that offers exceptional, cost-effective  
performance for both portable and nonportable applications. The LP2980-ADJ has an output tolerance of 1%  
across line, load, and temperature variation (for the new chip) and is capable of delivering 50 mA of continuous  
load current.  
This device features integrated overcurrent protection, thermal shutdown, output enable, and internal output  
pulldown and has a built-in soft-start mechanism for controlled inrush current. This device delivers excellent line  
and load transient performance. The operating ambient temperature range of the device is 40°C to +125°C.  
7.2 Functional Block Diagram  
VIN  
VOUT  
Current  
Limit  
CFF  
UVLO  
R1  
ADJ  
CF  
RF  
R2  
Internal  
Controller  
Bandgap  
Reference  
Output  
Pull-down  
ON/OFF  
VREF = 1.2 V  
GND  
GND  
Thermal  
Shutdown  
GND  
7.3 Feature Description  
7.3.1 Output Enable  
The ON/OFF pin for the device is an active-high pin. The output voltage is enabled when the voltage of the ON/  
OFF pin is greater than the high-level input voltage of the ON/OFF pin and disabled when the ON/OFF pin  
voltage is less than the low-level input voltage of the ON/OFF pin. If independent control of the output voltage is  
not needed, connect the ON/OFF pin to the input of the device.  
For the new chip, the device has an internal pulldown circuit that activates when the device is disabled by pulling  
the ON/OFF pin voltage lower than the low-level input voltage of the ON/OFF pin, to actively discharge the  
output voltage.  
7.3.2 Dropout Voltage  
Dropout voltage (VDO) is defined as the input voltage minus the output voltage (VIN VOUT) at the rated output  
current (IRATED), where the pass transistor is fully on. IRATED is the maximum IOUT listed in the Recommended  
Operating Conditions table. The pass transistor is in the ohmic or triode region of operation, and acts as a  
switch. The dropout voltage indirectly specifies a minimum input voltage greater than the nominal programmed  
output voltage at which the output voltage is expected to stay in regulation. If the input voltage falls to less than  
the nominal output regulation, then the output voltage falls as well.  
For a CMOS regulator, the dropout voltage is determined by the drain-source on-state resistance (RDS(ON)) of the  
pass transistor. Therefore, if the linear regulator operates at less than the rated current, the dropout voltage for  
that current scales accordingly. The following equation calculates the RDS(ON) of the device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LP2980-ADJ  
English Data Sheet: SNVS001  
 
 
 
 
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
V
DO  
R
=
(1)  
DS ON  
I
RATED  
7.3.3 Current Limit  
The device has an internal current limit circuit that protects the regulator during transient high-load current faults  
or shorting events. The current limit is a brick-wall scheme. In a high-load current fault, the brick-wall scheme  
limits the output current to the current limit (ICL). ICL is listed in the Electrical Characteristics table.  
The output voltage is not regulated when the device is in current limit. When a current limit event occurs, the  
device begins to heat up because of the increase in power dissipation. When the device is in brick-wall current  
limit, the pass transistor dissipates power [(VIN VOUT) × ICL]. If thermal shutdown is triggered, the device turns  
off. After the device cools down, the internal thermal shutdown circuit turns the device back on. If the output  
current fault condition continues, the device cycles between current limit and thermal shutdown. For more  
information on current limits, see the Know Your Limits application note.  
7-1 shows a diagram of the current limit.  
VOUT  
Brick-wall  
VOUT(NOM)  
0 V  
0 mA  
IRATED  
ICL  
7-1. Current Limit  
7.3.4 Undervoltage Lockout (UVLO)  
For the new chip, the device has an independent undervoltage lockout (UVLO) circuit that monitors the input  
voltage, allowing a controlled and consistent turn on and off of the output voltage. To prevent the device from  
turning off if the input drops during turn on, the UVLO has hysteresis as specified in the Electrical Characteristics  
table.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVS001  
18  
Submit Document Feedback  
Product Folder Links: LP2980-ADJ  
 
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
7.3.5 Output Pulldown  
The new chip has an output pulldown circuit. The output pulldown activates in the following conditions:  
When the device is disabled (VON/OFF < VON/OFF(LOW)  
)
If 1.0 V < VIN < VUVLO  
Do not rely on the output pulldown circuit for discharging a large amount of output capacitance after the input  
supply has collapsed because reverse current can flow from the output to the input. This reverse current flow  
can cause damage to the device. See the Reverse Current section for more details.  
7.3.6 Thermal Shutdown  
The device contains a thermal shutdown protection circuit to disable the device when the junction temperature  
(TJ) of the pass transistor rises to TSD(shutdown) (typical). Thermal shutdown hysteresis assures that the device  
resets (turns on) when the temperature falls to TSD(reset) (typical).  
The thermal time-constant of the semiconductor die is fairly short, thus the device can cycle on and off when  
thermal shutdown is reached until power dissipation is reduced. Power dissipation during start up can be high  
from large VIN VOUT voltage drops across the device or from high inrush currents charging large output  
capacitors. Under some conditions, the thermal shutdown protection disables the device before start-up  
completes.  
For reliable operation, limit the junction temperature to the maximum listed in the Recommended Operating  
Conditions table. Operation above this maximum temperature causes the device to exceed operational  
specifications. Although the internal protection circuitry of the device is designed to protect against thermal  
overall conditions, this circuitry is not intended to replace proper heat sinking. Continuously running the device  
into thermal shutdown or above the maximum recommended junction temperature reduces long-term reliability.  
7.4 Device Functional Modes  
7.4.1 Device Functional Mode Comparison  
7-1 shows the conditions that lead to the different modes of operation. See the Electrical Characteristics table  
for parameter values.  
7-1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VON/OFF  
IOUT  
TJ  
Normal operation  
Dropout operation  
VIN > VOUT(nom) + VDO and VIN > VIN(min)  
VIN(min) < VIN < VOUT(nom) + VDO  
VON/OFF > VON/OFF(HI)  
VON/OFF > VON/OFF(HI)  
IOUT < IOUT(max)  
IOUT < IOUT(max)  
TJ < TSD(shutdown)  
TJ < TSD(shutdown)  
Disabled  
(any true condition  
disables the device)  
VON/OFF < VON/  
VIN < VUVLO  
Not applicable  
TJ > TSD(shutdown)  
OFF(LOW)  
7.4.2 Normal Operation  
The device regulates to the nominal output voltage when the following conditions are met:  
The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(nom) + VDO  
The output voltage is set by using ADJ pin (see External Feedback Resistors)  
The output current is less than the current limit (IOUT < ICL)  
)
The device junction temperature is less than the thermal shutdown temperature (TJ < TSD  
)
The ON/OFF voltage has previously exceeded the ON/OFF rising threshold voltage and has not yet  
decreased to less than the enable falling threshold  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LP2980-ADJ  
English Data Sheet: SNVS001  
 
 
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
7.4.3 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout mode. In this mode, the output voltage  
tracks the input voltage. During this mode, the transient performance of the device becomes significantly  
degraded because the pass transistor is in the ohmic or triode region, and acts as a switch. Line or load  
transients in dropout can result in large output-voltage deviations.  
When the device is in a steady dropout state (defined as when the device is in dropout, VIN < VOUT(NOM) + VDO  
,
directly after being in a normal regulation state, but not during start up), the pass transistor is driven into the  
ohmic or triode region. When the input voltage returns to a value greater than or equal to the nominal output  
voltage plus the dropout voltage (VOUT(NOM) + VDO), the output voltage can overshoot for a short period of time  
while the device pulls the pass transistor back into the linear region.  
7.4.4 Disabled  
The output of the device can be shutdown by forcing the voltage of the ON/OFF pin to less than the maximum  
ON/OFF pin low-level input voltage (see the Electrical Characteristics table). When disabled, the pass transistor  
is turned off, internal circuits are shutdown, and the output voltage is actively discharged to ground by an internal  
discharge circuit from the output to ground.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVS001  
20  
Submit Document Feedback  
Product Folder Links: LP2980-ADJ  
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
8.1.1 External Feedback Resistors  
The output voltage is set using the ADJ pin with help of the external feedback resistors, R1 and R2 (see 8-2),  
according to the following equation:  
V
= V  
×
1 + R / R  
2
(2)  
OUT  
ADJ  
1
For the legacy chip, use a resistor from the ADJ pin to ground with a value of 51.1 k.  
For the new chip, to ignore the ADJ pin current error term in the VOUT equation, set the feedback divider current  
to 100 times the ADJ pin current listed in the Electrical Characteristics table. This setting provides the maximum  
feedback divider series resistance, as shown in the following equation:  
R
+ R V  
/ I × 100  
ADJ  
(3)  
1
2
OUT  
8.1.2 Recommended Capacitor Types  
This section describes the recommended capacitors for both the new chip and the legacy chip.  
8.1.2.1 Recommended Capacitors for the New Chip  
The new chip is designed to be stable using low equivalent series resistance (ESR) ceramic capacitors at the  
input and output. Multilayer ceramic capacitors have become the industry standard for these types of  
applications and are recommended, but must be used with good judgment. Ceramic capacitors that employ  
X7R-, X5R-, and C0G-rated dielectric materials provide relatively good capacitive stability across temperature,  
whereas the use of Y5V-rated capacitors is discouraged because of large variations in capacitance.  
Regardless of the ceramic capacitor type selected, the effective capacitance varies with operating voltage and  
temperature. Generally, expect the effective capacitance to decrease by as much as 50%. The input and output  
capacitors listed in the Recommended Operating Conditions table account for an effective capacitance of  
approximately 50% of the nominal value.  
8.1.2.2 Recommended Capacitors for the Legacy Chip  
The ESR of a good-quality tantalum capacitor is almost directly centered in the middle of the stable range of the  
ESR curve (approximately 0.5 1 ). The temperature stability of tantalum capacitors is typically very good,  
with a total variation of only approximately 2:1 over the temperature range of 40°C to +125°C (ESR increases  
at colder temperatures). Avoid off-brand capacitors because some poor-quality tantalum capacitors are available  
with ESR values greater than 10 , which usually causes oscillation problems. One caution regarding tantalum  
capacitors is that if used on the input, the ESR is low enough to be destroyed by a surge current if the capacitor  
is powered up from a low impedance source (such as a battery) that has no limit on inrush current. In this case,  
use a ceramic input capacitor that does not have this problem.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LP2980-ADJ  
English Data Sheet: SNVS001  
 
 
 
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
Ceramic capacitors are generally larger and more costly than tantalum capacitors for a given amount of  
capacitance. These capacitors also have a very low ESR that is quite stable with temperature. However, the  
ESR of a ceramic capacitor is typically low enough to make an LDO oscillate. A 2.2-μF ceramic demonstrated  
an ESR of approximately 15 mwhen tested. If used as an output capacitor, this ESR can cause instability (see  
the ESR curves in the Typical Characteristics section). If a ceramic capacitor is used on the output of an LDO,  
place a small resistor (approximately 1 ) in series with the capacitor. If used as an input capacitor, no resistor is  
needed because there is no requirement for ESR on capacitors used on the input.  
8.1.3 Input and Output Capacitor Requirements  
For the legacy chip, an input capacitor (CIN) 1 μF is required (the amount of capacitance can be increased  
without limit). Any good-quality tantalum or ceramic capacitor can be used. The capacitor must be located no  
more than half an inch from the input pin and returned to a clean analog ground.  
For the new chip, although an input capacitor is not required for stability, good analog design practice is to  
connect a capacitor from IN to GND. This capacitor counteracts reactive input sources and improves transient  
response, input ripple, and PSRR. Use an input capacitor if the source impedance is more than 0.5 Ω. A higher  
value capacitor can be necessary if large, fast rise-time load or line transients are anticipated or if the device is  
located several inches from the input power source.  
Dynamic performance of the device is improved with the use of an output capacitor. Use an output capacitor  
within the range specified in the Recommended Operating Conditions table for stability.  
8.1.4 Feed-Forward Capacitor (CFF)  
A feed-forward capacitor (CFF) can be connected from the VOUT pin to the ADJ pin. CFF improves transient,  
noise, and PSRR performance, but is not required for regulator stability. Recommended CFF values are listed in  
the Recommended Operating Conditions table. A higher capacitance CFF can be used; however, the start-up  
time increases. For a detailed description of CFF tradeoffs, see the Pros and Cons of Using a Feedforward  
Capacitor with a Low-Dropout Regulator application note.  
CFF and R1 form a zero in the loop gain at frequency fZ, whereas CFF, R1, and R2 form a pole in the loop gain at  
frequency fP. CFF zero and pole frequencies can be calculated from the following equations:  
fZ = 1 / (2 × π× CFF × R1)  
(4)  
(5)  
fP = 1 / (2 × π× CFF × (R1 || R2))  
For the legacy chip, a feed-forward capacitor (CFF) of 7 pF is required, because this capacitor provides the lead  
compensation necessary for loop stability. Use a temperature-stable ceramic capacitor (NPO or COG type).  
For the new chip, a CFF 10 pF is required for stability only if the feedback divider current is less than 5 μA.  
The following equation calculates the feedback divider current.  
IFB_Divider = VOUT / (R1 + R2)  
(6)  
To avoid start-up time increases from CFF, limit the product CFF × R1 < 50 µs.  
For an output voltage of 1.2 V with the ADJ pin tied to the VOUT pin, no CFF is used.  
8.1.5 Reverse Current  
Excessive reverse current can damage this device. Reverse current flows through the intrinsic body diode of the  
pass transistor instead of the normal conducting channel. At high magnitudes, this current flow degrades the  
long-term reliability of the device.  
Conditions where reverse current can occur are outlined in this section, all of which can exceed the absolute  
maximum rating of VOUT VIN + 0.3 V.  
If the device has a large COUT and the input supply collapses with little or no load current  
The output is biased when the input supply is not established  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVS001  
22  
Submit Document Feedback  
Product Folder Links: LP2980-ADJ  
 
 
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
The output is biased above the input supply  
If reverse current flow is expected in the application, use external protection to protect the device. Reverse  
current is not limited in the device, so external limiting is required if extended reverse voltage operation is  
anticipated.  
8-1 shows one approach for protecting the device.  
Schottky Diode  
Internal Body Diode  
IN  
OUT  
CIN  
COUT  
GND  
GND  
GND  
GND  
8-1. Example Circuit for Reverse Current Protection Using a Schottky Diode  
8.1.6 Power Dissipation (PD)  
Circuit reliability requires consideration of the device power dissipation, location of the circuit on the printed  
circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must have few  
or no other heat-generating devices that cause added thermal stress.  
To first-order approximation, power dissipation in the regulator depends on the input-to-output voltage difference  
and load conditions. The following equation calculates power dissipation (PD).  
PD = (VIN VOUT) × IOUT  
(7)  
备注  
Power dissipation can be minimized, and therefore greater efficiency can be achieved, by correct  
selection of the system voltage rails. For the lowest power dissipation use the minimum input voltage  
required for correct output regulation.  
For devices with a thermal pad, the primary heat conduction path for the device package is through the thermal  
pad to the PCB. Solder the thermal pad to a copper pad area under the device. This pad area must contain an  
array of plated vias that conduct heat to additional copper planes for increased heat dissipation.  
The maximum power dissipation determines the maximum allowable ambient temperature (TA) for the device.  
According to the following equation, power dissipation and junction temperature are most often related by the  
junction-to-ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of  
the ambient air (TA).  
TJ = TA + (RθJA × PD)  
(8)  
Thermal resistance (RθJA) is highly dependent on the heat-spreading capability built into the particular PCB  
design, and therefore varies according to the total copper area, copper weight, and location of the planes. The  
junction-to-ambient thermal resistance listed in the Thermal Information table is determined by the JEDEC  
standard PCB and copper-spreading area, and is used as a relative measure of package thermal performance.  
As mentioned in the An empirical analysis of the impact of board layout on LDO thermal performance application  
note, RθJA can be improved by 35% to 55% compared to the Thermal Information table value with the PCB  
board layout optimization.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LP2980-ADJ  
English Data Sheet: SNVS001  
 
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
8.1.7 Estimating Junction Temperature  
The JEDEC standard now recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures  
of the linear regulator when in-circuit on a typical PCB board application. These metrics are not thermal  
resistance parameters and instead offer a practical and relative way to estimate junction temperature. These psi  
metrics are determined to be significantly independent of the copper area available for heat-spreading. The  
Thermal Information table lists the primary thermal metrics, which are the junction-to-top characterization  
parameter (ψJT) and junction-to-board characterization parameter (ψJB). These parameters provide two  
methods for calculating the junction temperature (TJ), as described in the following equations. Use the junction-  
to-top characterization parameter (ψJT) with the temperature at the center-top of device package (TT) to  
calculate the junction temperature. Use the junction-to-board characterization parameter (ψJB) with the PCB  
surface temperature 1 mm from the device package (TB) to calculate the junction temperature.  
TJ = TT + ψJT × PD  
(9)  
where:  
PD is the dissipated power  
TT is the temperature at the center-top of the device package  
TJ = TB + ψJB × PD  
(10)  
where:  
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package  
edge  
For detailed information on the thermal metrics and how to use them, see the Semiconductor and IC Package  
Thermal Metrics application note.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVS001  
24  
Submit Document Feedback  
Product Folder Links: LP2980-ADJ  
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
8.2 Typical Application  
8-2 shows the standard usage of the LP2980-ADJ as a low-dropout regulator.  
VOUT  
VIN  
IN  
OUT  
LP2980-ADJ  
R1  
R2  
CFF  
ON/  
COUT  
CIN  
ADJ  
OFF  
GND  
GND  
GND  
GND  
GND  
8-2. LP2980-ADJ Typical Application  
8.2.1 Design Requirements  
For this design, use the minimum COUT value for stability (which can be increased without limit for improved  
stability and transient response). The ON/OFF pin must be actively terminated. Connect this pin to VIN if the  
shutdown feature is not used. Set the output voltage using a feedback divider between the VOUT pin and the ADJ  
pin. Use an optional CFF capacitor for improved transient, noise, and PSRR performance.  
For the new chip, 8-1 summarizes the design requirements for 8-2.  
8-1. Design Parameters  
PARAMETER  
Input voltage  
DESIGN REQUIREMENT  
12 V  
2.5 V  
Output voltage  
Output current  
50 mA  
R1 (feedback resistance)  
R2 (feedback resistance)  
108.33 kΩ  
100.00 kΩ  
8.2.2 Detailed Design Procedure  
8.2.2.1 Setting VOUT For the LP2980-ADJ LDO  
As illustrated in 8-2, the LP2980-ADJ uses the feedback divider to set the output voltage. The output voltage  
operating range is 1.2 V to 15 V, and is calculated using:  
V
= V  
×
1 + R /R  
2
(11)  
OUT  
ADJ  
1
where:  
VREF = 1.2 V (typical)  
Choose resistors R1 and R2 as suggested in the External Feedback Resistors section.  
8-2 depicts this configuration.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LP2980-ADJ  
English Data Sheet: SNVS001  
 
 
 
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
8.2.2.2 ON/OFF Input Operation  
The LP2980-ADJ is shut off by driving the ON/OFF input low, and turned on by pulling the ON/OFF input high. If  
this feature is not used, the ON/OFF input must be tied to VIN to keep the regulator output on at all times (the  
ON/OFF input must not be left floating).  
To ensure proper operation, the signal source used to drive the ON/OFF input must be able to swing above and  
below the specified turn-on/turn-off voltage thresholds that specify an ON or OFF state (see the Electrical  
Characteristics table).  
For the legacy chip, the turn-on (and turn-off) voltage signals applied to the ON/OFF input must have a slew rate  
which is greater than 40 mV/μs.  
For the new chip, there is no restriction on the slew rate of the voltage signals applied to the ON/OFF input. Both  
fast and slow ramping voltage signals can be used to drive the ON/OFF pin.  
备注  
For the legacy chip only, the ON/OFF function does not operate correctly if a slow-moving signal is  
used to drive the ON/OFF input.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVS001  
26  
Submit Document Feedback  
Product Folder Links: LP2980-ADJ  
 
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
8.2.3 Application Curves  
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 1.0 V or 2.5 V (whichever is greater), IOUT = 1 mA, ON/  
OFF pin tied to VIN, CIN = 1.0 µF, and COUT = 4.7 µF (unless otherwise noted)  
3.82  
3.76  
3.7  
300  
250  
200  
150  
100  
50  
VOUT  
ILOAD  
ILOAD = 50 mA  
VOUT = 3.3 V  
3.64  
3.58  
3.52  
3.46  
3.4  
0
-50  
3.34  
3.28  
3.22  
3.16  
3.1  
-100  
-150  
-200  
-250  
-300  
0
20  
40  
60  
80  
100  
120  
140150  
TIME ( s )  
dI/dt = 1 A/μF  
8-3. Load Transient Response for Legacy Chip  
8-4. Load Transient Response for New Chip  
3.41  
3.39  
3.37  
3.35  
3.33  
3.31  
3.29  
3.27  
6.5  
VOUT  
VIN  
VOUT = 3.3 V  
IOUT = 50 mA  
VIN = 1 V  
6
5.5  
5
4.5  
4
3.5  
3
0
40  
80  
120  
160  
200  
240  
280  
TIME ( s )  
VOUT = 3.3 V, ΔVIN = 1 V, IOUT = 50 mA, dV/dt = 1 V/μs  
8-5. Line Transient Response for Legacy Chip  
8-6. Line Transient Response for New Chip  
25  
VIN  
10 pF  
1 nF  
10 nF  
20  
15  
10  
5
0
-5  
0
2
4
6
8
10  
12  
14  
16  
TIME (ms)  
VOUT = 3.3 V, dV/dt = 1 V/μs  
8-7. Start-Up vs CFF for New Chip  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LP2980-ADJ  
English Data Sheet: SNVS001  
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
8.3 Power Supply Recommendations  
A power supply can be used at the input voltage within the ranges given in the Recommended Operating  
Conditions table. Use bypass capacitors as described in the Layout Guidelines section.  
8.4 Layout  
8.4.1 Layout Guidelines  
Bypass the input pin to ground with a bypass capacitor.  
The optimum placement of the bypass capacitor is closest to the VIN of the device and GND of the system.  
Care must be taken to minimize the loop area formed by the bypass capacitor connection, the VIN pin, and  
the GND pin of the system.  
For operation at full-rated load, use wide trace lengths to eliminate IR drop and heat dissipation.  
8.4.2 Layout Example  
CIN  
5
COUT  
OUT  
5
5
IN  
GND  
EN  
1
2
5
4
R1  
R2  
CFF  
FB  
5
5
3
GND PLANE  
8-8. Layout Diagram  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNVS001  
28  
Submit Document Feedback  
Product Folder Links: LP2980-ADJ  
 
 
 
LP2980-ADJ  
ZHCSSD8F APRIL 2000 REVISED JULY 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 Device Nomenclature  
9-1. Available Options(1)  
PRODUCT  
VOUT  
A is for higher accuracy and non-A is for standard grade. c is the accuracy specification.  
xxx is the package designator. z is the package quantity. X is for large quantity reel and  
non-X is for small quantity reel.  
LP2980cxxxz-ADJ/NOPB  
Legacy chip  
A is for higher accuracy and non-A is for standard grade. xxx is the package designator.  
z is the package quantity. X is for large quantity reel and non-X is for small quantity reel.  
M3 is a suffix designator for newer chip redesigns, fabricated on the latest TI process  
technology.  
LP2980Axxxz-ADJ/M3  
New chip  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or visit the  
device product folder at www.ti.com.  
9.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LP2980-ADJ  
English Data Sheet: SNVS001  
 
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP2980IM5-ADJ  
NRND  
SOT-23  
DBV  
5
1000  
Non-RoHS  
& Green  
Call TI  
Level-1-260C-UNLIM  
-40 to 125  
L06B  
LP2980IM5-ADJ/NOPB  
LP2980IM5X-ADJ  
ACTIVE  
NRND  
SOT-23  
SOT-23  
DBV  
DBV  
5
5
1000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
L06B  
L06B  
Samples  
Samples  
3000  
Non-RoHS  
& Green  
Call TI  
LP2980IM5X-ADJ/NOPB  
ACTIVE  
SOT-23  
DBV  
5
3000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
-40 to 125  
L06B  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
19-Jun-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP2980IM5-ADJ  
SOT-23  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
1000  
1000  
3000  
3000  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
LP2980IM5-ADJ/NOPB SOT-23  
LP2980IM5X-ADJ SOT-23  
LP2980IM5X-ADJ/NOPB SOT-23  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP2980IM5-ADJ  
LP2980IM5-ADJ/NOPB  
LP2980IM5X-ADJ  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
1000  
1000  
3000  
3000  
208.0  
208.0  
208.0  
208.0  
191.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
LP2980IM5X-ADJ/NOPB  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LP2980-ADJEP

Micropower SOT, 50 mA Ultra Low-Dropout Adjustable Voltage Regulator
NSC

LP2980-N

Micropower 50 mA Ultra Low-Dropout Regulator In SOT-23 Package
TI

LP2980AIBP-3.3

Micropower 50 mA Ultra Low-Dropout Regulator
NSC

LP2980AIBP-3.3/NOPB

3.3 V FIXED POSITIVE LDO REGULATOR, 0.225 V DROPOUT, PBGA5
TI

LP2980AIBP-5.0

Micropower 50 mA Ultra Low-Dropout Regulator
NSC

LP2980AIBP-5.0/NOPB

5V FIXED POSITIVE LDO REGULATOR, 0.225V DROPOUT, PBGA5, MICRO, BUMP, SMD-5
TI

LP2980AIBPX-3.3

Micropower 50 mA Ultra Low-Dropout Regulator
NSC

LP2980AIBPX-3.3/NOPB

3.3V FIXED POSITIVE LDO REGULATOR, 0.225V DROPOUT, PBGA5, MICRO, BUMP, SMD-5
TI

LP2980AIBPX-5.0

Micropower 50 mA Ultra Low-Dropout Regulator
NSC

LP2980AIBPX-5.0

5V FIXED POSITIVE LDO REGULATOR, 0.225V DROPOUT, PBGA5, MICRO, BUMP, SMD-5
TI

LP2980AIBPX-5.0/NOPB

5V FIXED POSITIVE LDO REGULATOR, 0.225V DROPOUT, PBGA5, MICRO, BUMP, SMD-5
TI

LP2980AIM5

Micropower 50 mA Ultra Low-Dropout Regulator In SOT-23 Package
TI