LP38691QSDX-ADJ/NOPB [TI]

汽车类 500mA、10V、可调节低压降稳压器 | NGG | 6 | -40 to 125;
LP38691QSDX-ADJ/NOPB
型号: LP38691QSDX-ADJ/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 500mA、10V、可调节低压降稳压器 | NGG | 6 | -40 to 125

稳压器
文件: 总27页 (文件大小:1677K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
LP3869x-ADJ/Q1 500mA 低压降 CMOS 线性稳压器  
使用陶瓷输出电容器可保持稳定  
1 特性  
3 说明  
1
宽输入电压范围:2.7V 10V  
LP3869x-ADJ 低压降 CMOS 线性稳压器具有精度为  
2% 的基准电压和极低压降(在负载电流为 500mA、  
VOUT = 5V 时为 250mV),并且采用超低等效串联电  
(ESR) 陶瓷输出电容,可提供出色的交流性能。  
所有超薄型小外形尺寸无引线封装 (WSON) 选项均  
作为 AEC-Q100 1 级器件可用  
输出电压范围:1.25V 9V  
2% 调节 (ADJ) 引脚电压精度 (25°C)  
此稳压器采用低热阻的 WSON SOT-223 封装,即  
使在周围温度较高的环境下也可实现满电流运行。  
低压降电压:500mA 时为 250mV  
5V 输出典型值)  
精密(已调整)带隙基准  
P 型金属氧化物半导体 (PMOS) 功率晶体管的使用意  
味着无需直流基极驱动电流对其进行偏置,因此无论负  
载电流、输入电压或者运行温度为何,接地引脚电流均  
可保持在 100μA 以下。  
可保证 –40°C +125°C 温度范围内的技术规格  
1µA 关闭状态静态电流  
热过载保护  
折返电流限制  
器件信息(1)  
接地 (GND) 引脚电流:满载时为 55µA(典型值)  
使能 (EN) 引脚 (LP38693-ADJ)  
器件型号  
封装  
WSON (6)  
封装尺寸(标称值)  
3.00mm × 3.00mm  
6.50mm x 3.56mm  
3.00mm × 3.00mm  
LP38691-ADJ  
SOT-223 (5)  
WSON (6)  
2 应用范围  
LP38693-ADJ  
硬盘驱动器  
笔记本电脑  
电池供电设备  
便携式仪表  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
典型应用电路  
V
IN  
V
OUT  
IN  
OUT  
ADJ  
[t38691  
-!5W  
R1  
GND  
1 mF *  
1 mF *  
R2  
V
IN  
V
OUT  
IN  
OUT  
ADJ  
[t38693  
-!5W  
R1  
EN  
V
EN  
GND  
1 mF *  
1 mF *  
R2  
VOUT = VADJ × (1 + R1/R2)  
* 稳定状态下的最小值  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVS324  
 
 
 
 
 
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 12  
Application and Implementation ........................ 13  
8.1 Application Information............................................ 13  
8.2 Typical Applications ............................................... 13  
Power Supply Recommendations...................... 18  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings: LP38691-ADJ, LP38693-ADJ............. 4  
6.3 ESD Ratings: LP38691-ADJ-Q1, LP38693-ADJ-Q1. 4  
6.4 Recommended Operating Conditions....................... 4  
6.5 Thermal Information.................................................. 4  
6.6 Electrical Characteristics........................................... 5  
6.7 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagrams ..................................... 11  
7.3 Feature Description................................................. 12  
8
9
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Examples................................................... 18  
10.3 WSON Mounting ................................................... 19  
11 器件和文档支持 ..................................................... 20  
11.1 文档支持................................................................ 20  
11.2 相关链接................................................................ 20  
11.3 社区资源................................................................ 20  
11.4 ....................................................................... 20  
11.5 静电放电警告......................................................... 20  
11.6 Glossary................................................................ 20  
12 机械、封装和可订购信息....................................... 20  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision J (October 2015) to Revision K  
Page  
Added Caution note to Foldback Current Limiting subsection ............................................................................................ 12  
Changes from Revision I (April 2013) to Revision J  
Page  
已添加 器件信息引脚配置与功能部分,ESD 额定值表,已更新;已添加特性描述器件功能模式应用和实施电  
源相关建议布局器件和文档支持以及机械、封装和可订购信息部分;已将文本和图片中的 VinVout Ven 引脚  
名更新为 INOUT EN;已修正说明中的文字冗余问题;已为参考设计添加顶部导航图标........................................... 1  
Changes from Revision H (April 2013) to Revision I  
Page  
Changed layout of National Data Sheet to TI format ........................................................................................................... 15  
Changed layout of National Data Sheet to TI format .......................................................................................................... 19  
2
Copyright © 2005–2016, Texas Instruments Incorporated  
 
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
www.ti.com.cn  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
5 Pin Configuration and Functions  
NGG Package  
6-Pin WSON With Exposed Thermal Pad  
LP38691-ADJ Top View  
NGG Package  
6-Pin WSON With Exposed Thermal Pad  
LP38693-ADJ Top View  
IN  
IN  
6
5
4
6 IN  
IN  
1
1
2
Exposed Pad  
on Bottom  
(DAP)  
Exposed Pad  
on Bottom  
(DAP)  
OUT  
ADJ  
OUT  
5
4
GND 2  
GND  
ADJ  
N/C 3  
EN  
3
NC - No internal connection  
NDC Package  
5-Pin SOT-223  
LP38693-ADJ Top View  
EN  
ADJ  
OUT  
IN  
1
2
3
4
5 GND  
Pin Functions  
PIN  
LP38691-ADJ  
WSON  
LP38693-ADJ  
I/O  
DESCRIPTION  
NAME  
WSON  
SOT-223  
WSON Only - The DAP (exposed pad) functions as a thermal  
connection when soldered to a copper plane. See WSON Mounting  
section for more information.  
DAP  
2
3
2
I
The EN pin allows the part to be turned to an ON or OFF state by  
pulling this pin high or low.  
EN  
1
5
Circuit ground for the regulator. For the SOT-223 package this is  
thermally connected to the die and functions as a heat sink when the  
soldered down to a large copper plane.  
GND  
This is the input supply voltage to the regulator. For WSON devices,  
both IN pins must be tied together for full current operation (250 mA  
maximum per pin).  
IN  
1, 6  
1, 6  
4
I
N/C  
3
4
5
4
2
O
I
No internal connection.  
The ADJ pin is used to set the regulated output voltage by connecting  
it to the external resistors R1 and R2 (see 典型应用电路).  
ADJ  
OUT  
5
3
Regulated output voltage.  
Copyright © 2005–2016, Texas Instruments Incorporated  
3
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
MAX  
UNIT  
V(MAX) All pins (with respect to GND)  
–0.3  
12  
V
V
V
(3)  
IOUT  
Internally limited  
Internally limited  
Power dissipation(4)  
Junction temperature  
Storage temperature, Tstg  
–40  
65  
150  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(3) If used in a dual-supply system where the regulator load is returned to a negative supply, the OUT pin must be diode clamped to  
ground.  
(4) At elevated temperatures, device power dissipation must be derated based on package thermal resistance and heatsink values (if a  
heatsink is used). When using the WSON package, refer to Leadless Leadframe Package (LLP) (SNOA401) and the WSON Mounting  
section in this data sheet. If power dissipation causes the junction temperature to exceed specified limits, the device will go into thermal  
shutdown.  
6.2 ESD Ratings: LP38691-ADJ, LP38693-ADJ  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
6.3 ESD Ratings: LP38691-ADJ-Q1, LP38693-ADJ-Q1  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human-body model (HBM), per AEC Q100-002(1)  
2000  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.4 Recommended Operating Conditions  
MIN  
2.7  
NOM  
MAX  
10  
UNIT  
V
VIN supply voltage  
Operating junction temperature  
40  
125  
°C  
6.5 Thermal Information  
LP3869x-ADJ  
WSON  
6 PINS  
50.6  
LP38693-ADJ  
THERMAL METRIC(1)  
SOT-223  
5 PINS  
68.5(3)  
52.2  
UNIT  
(2)  
RθJA  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance, High-K  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
44.4  
24.9  
13.0  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
5.5  
ψJB  
25.1  
12.8  
RθJC(bot)  
5.4  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) Thermal resistance value RθJA is based on the EIA/JEDEC High-K printed circuit board defined by: JESD51-7 - High Effective Thermal  
Conductivity Test Board for Leaded Surface Mount Packages.  
(3) The PCB for the WSON (NGN) package RθJA includes thermal vias under the exposed thermal pad per EIA/JEDEC JESD51-5.  
4
Copyright © 2005–2016, Texas Instruments Incorporated  
 
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
www.ti.com.cn  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
6.6 Electrical Characteristics  
Unless otherwise specified, limits apply for TJ = 25°C, VIN = VOUT + 1 V, CIN = COUT = 10 µF, ILOAD = 10 mA. Minimum and  
maximum limits are specified through testing, statistical correlation, or design.  
PARAMETER  
TEST CONDITIONS  
VIN = 2.7 V  
MIN  
TYP(1)  
MAX  
UNIT  
1.225  
1.25  
1.275  
3.2 V VIN 10 V, 100 µA < IL < 0.5 A  
1.25  
VADJ  
ADJ pin voltage  
V
3.2 V VIN 10 V, 100 µA < IL < 0.5 A  
Full operating temperature range  
1.2  
1.3  
0.1  
VOUT + 0.5 V VIN 10 V  
IL = 25 mA  
0.03  
1.8  
Output voltage line  
regulation(2)  
ΔVOUT/ΔVIN  
%/V  
%/A  
VOUT + 0.5 V VIN 10 V  
IL = 25 mA  
Full operating temperature range  
1 mA < IL < 0.5 A  
VIN = VOUT + 1 V  
Output voltage load  
regulation(3)  
ΔVOUT/ΔIL  
1 mA < IL < 0.5 A  
VIN = VOUT + 1 V  
5
Full operating temperature range  
IL = 0.1 A  
(VOUT = 2.5 V)  
80  
IL = 0.5 A  
430  
(VOUT = 2.5 V)  
Full operating temperature  
range  
IL = 0.1 A  
IL = 0.5 A  
145  
725  
IL = 0.1 A  
IL = 0.5 A  
IL = 0.1 A  
65  
(VOUT = 3.3 V)  
330  
VDO  
Dropout voltage(4)  
mV  
(VOUT = 3.3 V)  
Full operating temperature  
range  
110  
550  
IL = 0.5 A  
IL = 0.1 A  
IL = 0.5 A  
IL = 0.1 A  
45  
(VOUT = 5 V)  
250  
(VOUT = 5 V)  
Full operating temperature  
range  
100  
450  
IL = 0.5 A  
VIN 10 V, IL =100 µA – 0.5 A  
55  
VIN 10 V, IL =100 µA – 0.5 A  
Full operating temperature range  
IQ  
Quiescent current  
100  
1
µA  
VEN 0.4 V, (LP38693 Only)  
0.001  
VIN – VOUT 4 V  
Full operating temperature range  
IL(MIN)  
IFB  
Minimum load current  
100  
VIN – VOUT > 5 V  
VIN – VOUT < 4 V  
350  
850  
Foldback current limit  
Ripple rejection  
mA  
dB  
VIN = VOUT + 2 V(DC), with 1 V(p-p) /  
120-Hz Ripple  
PSRR  
TSD  
55  
Thermal shutdown activation  
(junction temp)  
160  
°C  
Thermal shutdown hysteresis  
(junction temp)  
TSD (HYST)  
IADJ  
10  
0.01  
0.7  
ADJ input leakage current  
VADJ = 0 V to 1.5 V, VIN = 10 V  
–100  
100  
2
nA  
µV/Hz  
µA  
BW = 10 Hz to 10 kHz  
VOUT = 3.3 V  
en  
Output noise  
VOUT (LEAK)  
Output leakage current  
VOUT = VOUT(NOM) + 1 V at 10 VIN  
0.5  
(1) Typical numbers represent the most likely parametric norm for 25°C operation.  
(2) Output voltage line regulation is defined as the change in output voltage from nominal value resulting from a change in input voltage.  
(3) Output voltage load regulation is defined as the change in output voltage from nominal value as the load current increases from 1 mA to  
full load.  
(4) Dropout voltage is defined as the minimum input to output differential required to maintain the output within 100 mV of nominal value.  
Copyright © 2005–2016, Texas Instruments Incorporated  
5
 
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
Unless otherwise specified, limits apply for TJ = 25°C, VIN = VOUT + 1 V, CIN = COUT = 10 µF, ILOAD = 10 mA. Minimum and  
maximum limits are specified through testing, statistical correlation, or design.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
Output = OFF state  
Full operating temperature range  
0.4  
Output = ON state, VIN = 4 V  
Full operating temperature range  
1.8  
3
Enable voltage (LP38693  
Only)  
VEN  
V
Output = ON state, VIN = 6 V  
Full operating temperature range  
Output = ON state, VIN = 10 V  
Full operating temperature range  
4
EN pin leakage  
(LP38693 only)  
IEN  
VEN = 0 V or 10 V, VIN = 10 V  
–1  
0.001  
1
µA  
=
6.7 Typical Characteristics  
Unless otherwise specified: TJ = 25°C, CIN = COUT = 10 µF, EN pin is tied to IN (LP38693-ADJ only), VOUT = 1.25 V, VIN  
VOUT 1 V, ILOAD = 10 mA.  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
C
= 10 mF  
OUT  
C
= 1 mF  
OUT  
0.2  
0.0  
10  
100  
1k  
Cw9vÜ9b/ò (Iz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 1. Noise vs Frequency  
Figure 2. Noise vs Frequency  
70  
60  
50  
40  
30  
20  
10  
0
1.5  
C
OUT  
= 100 mF  
1.0  
0.5  
0.0  
V
V
(DC) = 3.25V  
IN  
IN  
(AC) = 1V(p-p)  
C
= 10 mF  
OUT  
10  
100  
1k  
Cw9vÜ9b/ò (Iz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
Cw9vÜ9b/ò (Iz)  
Figure 3. Noise vs Frequency  
Figure 4. Ripple Rejection  
6
Copyright © 2005–2016, Texas Instruments Incorporated  
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
www.ti.com.cn  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
Typical Characteristics (continued)  
Unless otherwise specified: TJ = 25°C, CIN = COUT = 10 µF, EN pin is tied to IN (LP38693-ADJ only), VOUT = 1.25 V, VIN  
=
VOUT 1 V, ILOAD = 10 mA.  
70  
60  
70  
60  
50  
40  
30  
50  
40  
30  
20  
10  
0
V
V
(DC) = 3.25V  
IN  
IN  
V
V
(DC) = 3.25V  
20  
10  
0
IN  
IN  
(AC) = 1V(p-p)  
(AC) = 1V(p-p)  
C
OUT  
= 1 mF  
C
= 100 mF  
OUT  
10  
100  
1k  
Cw9vÜ9b/ò (Iz)  
10k  
100k  
10  
100  
1k  
Cw9vÜ9b/ò (Iz)  
10k  
100k  
Figure 5. Ripple Rejection  
Figure 6. Ripple Rejection  
= 1.25V  
0.4  
0.2  
0
V
OUT  
20  
10  
0
C
OUT  
= 100 mF  
V
OUT  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-10  
-20  
4
3
2
1
V
IN  
-50 -25  
0
25  
50  
75 100 125  
200 ms/DIV  
TEMPERATURE (oC)  
Figure 8. Line Transient Response  
Figure 7. VREF vs Temperature  
V
OUT  
= 3.3V  
V
OUT  
= 1.25V  
20  
10  
0
40  
C
OUT  
= 100 mF  
C
OUT  
= 10 mF  
V
OUT  
20  
0
V
OUT  
-10  
-20  
-20  
-40  
4
3
2
1
V
IN  
5
4
3
V
IN  
200 ms/DIV  
200 ms/DIV  
Figure 9. Line Transient Response  
Figure 10. Line Transient Response  
Copyright © 2005–2016, Texas Instruments Incorporated  
7
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
Unless otherwise specified: TJ = 25°C, CIN = COUT = 10 µF, EN pin is tied to IN (LP38693-ADJ only), VOUT = 1.25 V, VIN  
VOUT 1 V, ILOAD = 10 mA.  
=
V
OUT  
= 3.3V  
V
OUT  
= 1.25V  
100  
50  
100  
50  
C
OUT  
= 10 mF  
C
OUT  
= 1 mF  
V
OUT  
V
OUT  
0
0
-50  
-100  
-50  
-100  
4
3
2
1
V
IN  
5
4
3
V
IN  
100 ms/DIV  
40 ms/DIV  
Figure 11. Line Transient Response  
Figure 12. Line Transient Response  
200  
100  
0
V
= 3.3V  
OUT  
C
= 10 mF  
OUT  
100  
C
OUT  
= 1 mF  
50  
0
V
OUT  
V
OUT  
-100  
-200  
-50  
-100  
0.5  
I
LOAD  
5
4
3
V
IN  
0.01  
100 ms/DIV  
40 ms/DIV  
Figure 13. Line Transient Response  
= 1 mF  
Figure 14. Load Transient Response  
400  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
C
OUT  
V
= 10V  
IN  
200  
0
V
OUT  
-200  
-400  
V
IN  
= 6V  
= 4V  
0.5  
I
LOAD  
V
IN  
0.01  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (oC)  
10 ms/DIV  
Figure 15. Load Transient Response  
Figure 16. EN Voltage vs Temperature  
8
Copyright © 2005–2016, Texas Instruments Incorporated  
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
www.ti.com.cn  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
Typical Characteristics (continued)  
Unless otherwise specified: TJ = 25°C, CIN = COUT = 10 µF, EN pin is tied to IN (LP38693-ADJ only), VOUT = 1.25 V, VIN  
=
VOUT 1 V, ILOAD = 10 mA.  
-1.0  
0.034  
0.032  
0.03  
-1.5  
-2.0  
-2.5  
-3.0  
0.028  
0.026  
0.024  
0.022  
0.02  
-3.5  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (oC)  
TEMPERATURE (oC)  
Figure 18. Line Regulation vs Temperature  
Figure 17. Load Regulation vs Temperature  
VOUT = 1.25 V  
VOUT = 1.8 V  
Figure 19. VOUT vs VIN  
Figure 20. VOUT vs VIN  
Figure 21. VOUT vs. VIN, Power-up  
Figure 22. VOUT vs. VEN, On (LP38693-ADJ only)  
Copyright © 2005–2016, Texas Instruments Incorporated  
9
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
Unless otherwise specified: TJ = 25°C, CIN = COUT = 10 µF, EN pin is tied to IN (LP38693-ADJ only), VOUT = 1.25 V, VIN  
VOUT 1 V, ILOAD = 10 mA.  
=
2.6  
2.5  
2.4  
-40°C  
2.3  
125°C  
2.2  
2.1  
25°C  
2
0
100  
200  
300  
400  
500  
I
(mA)  
OUT  
Figure 24. MIN VOUT vs. IOUT  
Figure 23. VOUT vs. VEN, Off (LP38693-ADJ only)  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
-40°C  
125°C  
25°C  
0
100  
200  
300  
(mA)  
400  
500  
I
OUT  
VOUT = 1.8 V  
Figure 25. Dropout Voltage vs. IOUT  
10  
Copyright © 2005–2016, Texas Instruments Incorporated  
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
www.ti.com.cn  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
7 Detailed Description  
7.1 Overview  
The LP3869x-ADJ devices are designed to meet the requirements of portable, battery-powered digital systems  
providing an accurate output voltage with fast start-up. When disabled via a low logic signal at the enable pin  
(EN), the power consumption is reduced to virtually zero (LP38693-ADJ only).  
These LP3869x-ADJ devices perform well with a single 1-μF input capacitor and a single 1-μF ceramic output  
capacitor.  
7.2 Functional Block Diagrams  
IN  
P-FET  
P-FET  
-
MOSFET  
DRIVER  
+
ENABLE  
LOGIC  
N/C  
FOLDBACK  
CURRENT  
LIMITING  
OUT  
THERMAL  
SHUTDOWN  
1.25-V  
REFERENCE  
ADJ  
GND  
Figure 26. LP38691 Functional Diagram (WSON)  
IN  
P-FET  
P-FET  
-
MOSFET  
DRIVER  
+
ENABLE  
LOGIC  
EN  
FOLDBACK  
CURRENT  
LIMITING  
OUT  
ADJ  
THERMAL  
SHUTDOWN  
1.25-V  
REFERENCE  
GND  
Figure 27. LP38693 Functional Diagram (SOT-223, WSON)  
Copyright © 2005–2016, Texas Instruments Incorporated  
11  
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Enable (EN)  
The LP38693-ADJ has an enable pin (EN) which allows an external control signal to turn the regulator output to  
either an ON or OFF state. The Enable on/off threshold has no hysteresis. The voltage signal must rise and fall  
cleanly, and promptly, through the on and off voltage thresholds. The EN pin voltage must be higher than the  
VEN(MIN) threshold to ensure that the device is fully enabled under all operating conditions. The EN pin voltage  
must be lower than the VEN(MAX) threshold to ensure that the device is fully disabled. The EN pin has no internal  
pullup or pulldown to establish a default condition and, as a result, this pin must be terminated either actively or  
passively. If the EN pin is driven from a source that actively pulls high and low, the drive voltage should not be  
allowed to go below ground potential or higher than VIN. If the application does not require the enable function,  
the EN pin should be connected directly to the IN pin.  
7.3.2 Thermal Overload Protection (TSD  
)
Thermal shutdown disables the output when the junction temperature rises to approximately 160°C which allows  
the device to cool. When the junction temperature cools to approximately 150°C, the output circuitry enables.  
Based on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may  
cycle on and off. This thermal cycling limits the dissipation of the regulator and protects it from damage as a  
result of overheating. The TSD circuitry of the LP38693 has been designed to protect against temporary thermal  
overload conditions.  
The TSD circuitry was not intended to replace proper heat-sinking. Continuously running the LP38693 device into  
thermal shutdown degrades device reliability.  
7.3.3 Foldback Current Limiting  
Foldback current limiting is built into the LP3869x-ADJ devices which reduces the amount of output current the  
part can deliver as the output voltage is reduced. The amount of load current is dependent on the differential  
voltage between the VIN and VOUT. Typically, when this differential voltage exceeds 5 V, the load current will limit  
at about 350 mA. When the VIN – VOUT differential is reduced below 4 V, load current is limited to about 850 mA.  
CAUTION  
When toggling the LP38693 Enable (EN) after the input voltage (VIN) is applied, the  
foldback current limit circuitry is functional the first time that the EN pin is taken high.  
The foldback current limit circuitry is non-functional the second, and subsequent, times  
that the EN pin is taken high. Depending on the input and output capacitance values  
the input inrush current may be higher than expected which can cause the input  
voltage to droop.  
If the EN pin is connected to the IN pin, the foldback current limit circuitry is functional  
when VIN is applied if VIN starts from less than 0.4 V.  
7.4 Device Functional Modes  
7.4.1 Enable (EN)  
The LP38693-ADJ may be switched to the ON or OFF state by logic input at the EN pin. A logic-high voltage on  
the EN pin turns the device to the ON state. A logic-low voltage on the EN pin turns the device to the OFF state.  
If the application does not require the shutdown feature, the EN pin must be tied to VIN to keep the regulator  
output permanently in the ON state when power is applied.  
To ensure proper operation, the signal source used to drive the EN input must be able to swing above and below  
the specified turnon or turnoff voltage thresholds listed in the Electrical Characteristics section under VEN  
.
12  
Copyright © 2005–2016, Texas Instruments Incorporated  
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
www.ti.com.cn  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LP3869x-ADJ can provide 500 mA output current with 2.7 V to 10 V input. Adjustable output voltage in the  
range of 1.25 V to 9 V. LP3869x-ADJ is stable with a 1-μF ceramic output capacitor. Typical output noise is  
0.7 μVRMS at frequencies from 10 Hz to 10 kHz. Typical PSSR is 55 dB at 1 kHz.  
8.2 Typical Applications  
V
IN  
V
OUT  
IN  
OUT  
ADJ  
[t38691  
-!5W  
R1  
GND  
1 mF *  
1 mF *  
R2  
* Minimum value required for stability  
Figure 28. LP38691-ADJ Typical Application  
V
IN  
V
OUT  
IN  
OUT  
ADJ  
[t38693  
-!5W  
R1  
EN  
V
EN  
GND  
1 mF *  
1 mF *  
R2  
* Minimum value required for stability  
Figure 29. LP38693-ADJ Typical Application  
8.2.1 Design Requirements  
For typical LDO CMOS linear regulators , use the parameters listed in Table 1.  
Table 1. Design Parameters  
DESIGN PARAMETERS  
Input voltage range  
Output range  
EXAMPLE VALUE  
2.7 V to 10 V  
Adjustable  
Output current  
500 mA (maximum)  
1 µF  
Output capacitor range  
Copyright © 2005–2016, Texas Instruments Incorporated  
13  
 
 
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Setting the Output Voltage  
The output voltage is set using the external resistors R1 and R2 (see Typical Applications . The output voltage  
will be given by Equation 1:  
VOUT = VADJ × (1 + ( R1 / R2 ))  
(1)  
Because the part has a minimum load current requirement of 100 μA, it is recommended that R2 always be 12  
kΩ or less to provide adequate loading. Even if a minimum load is always provided by other means, it is not  
recommended that very high value resistors be used for R1 and R2 because it can make the ADJ node  
susceptible to noise pickup. A maximum Ohmic value of 100 kΩ is recommended for R2 to prevent this from  
occurring.  
8.2.2.2 External Capacitors  
In common with most regulators, the LP3869x-ADJ devices require an external capacitors for regulator stability.  
The devices are specifically designed for portable applications requiring minimum board space and smallest  
components. These capacitors must be correctly selected for good performance.  
8.2.2.3 Input Capacitor  
An input capacitor of at least 1 μF is required (ceramic recommended). The capacitor must be located not more  
than one centimeter from the input pin and returned to a clean analog ground.  
8.2.2.4 Output Capacitor  
An output capacitor is required for loop stability. It must be located less than 1 centimeter from the device and  
connected directly to the output and ground pins using traces which have no other currents flowing through them.  
The minimum amount of output capacitance that can be used for stable operation is 1 μF. Ceramic capacitors  
are recommended; the LP3869x-ADJ devices were designed for use with ultra-low equivalent series resistance  
(ESR) capacitors. The LP3869x-ADJ is stable with any output capacitor ESR between 5 mΩ to 500 mΩ.  
8.2.2.5 Capacitor Characteristics  
It is important that capacitance tolerance and variation with temperature be taken into consideration when  
selecting a capacitor so that the minimum required amount of capacitance is provided over the full operating  
temperature range.  
8.2.2.5.1 Ceramic Capacitors  
For values of capacitance in the 10- to 100-μF range, ceramics are usually larger and more costly than tantalums  
but give superior AC performance for bypassing high frequency noise because of very low ESR (typically less  
than 10 mΩ). However, some dielectric types do not have good capacitance characteristics as a function of  
voltage and temperature.  
The LP3869x-ADJ is designed to work with ceramic capacitors on the output to take advantage of the benefits  
they offer. For capacitance values in the range of 0.47 µF to 4.7 µF, ceramic capacitors are the smallest, least  
expensive and have the lowest ESR values, thus making them best for eliminating high frequency noise. The  
ESR of a typical 1-µF ceramic capacitor is in the range of 20 mto 40 m, which easily meets the ESR  
requirement for stability for the LP3869x.  
Z5U and Y5V dielectric ceramics have capacitance that drops severely with applied voltage. A typical Z5U or  
Y5V capacitor can lose 60% of its rated capacitance with half of the rated voltage applied to it. The Z5U and Y5V  
also exhibit a severe temperature effect, losing more than 50% of nominal capacitance at high and low limits of  
the temperature range.  
X7R and X5R dielectric ceramic capacitors are strongly recommended if ceramics are used, as they typically  
maintain a capacitance range within ±20% of nominal over full operating ratings of temperature and voltage. Of  
course, they are typically larger and more costly than Z5U/Y5U types for a given voltage and capacitance.  
14  
Copyright © 2005–2016, Texas Instruments Incorporated  
 
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
www.ti.com.cn  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
8.2.2.5.2 Tantalum Capacitors  
Solid tantalum capacitors have good temperature stability: a high-quality tantalum capacitor typically shows a  
capacitance value that varies less than 10-15% across the full temperature range of -40°C to 125°C. ESR will  
vary only about 2× going from the high to low temperature limits.  
The increasing ESR at lower temperatures can cause oscillations when marginal quality capacitors are used (if  
the ESR of the capacitor is near the upper limit of the stability range at room temperature).  
8.2.2.6 RFI/EMI Susceptibility  
Radio frequency interference (RFI) and electromagnetic interference (EMI) can degrade the performance of any  
integrated circuit because of the small dimensions of the geometries inside the device. In applications where  
circuit sources are present which generate signals with significant high frequency energy content (> 1 MHz), care  
must be taken to ensure that this does not affect the device regulator.  
If RFI/EMI noise is present on the input side of the regulator (such as applications where the input source comes  
from the output of a switching regulator), good ceramic bypass capacitors must be used at the input pin of the  
device.  
If a load is connected to the device output which switches at high speed (such as a clock), the high-frequency  
current pulses required by the load must be supplied by the capacitors on the device output. Because the  
bandwidth of the regulator loop is less than 100 kHz, the control circuitry cannot respond to load changes above  
that frequency. This means the effective output impedance of the device at frequencies above 100 kHz is  
determined only by the output capacitors.  
In applications where the load is switching at high speed, the output of the device may need RF isolation from  
the load. It is recommended that some inductance be placed between the output capacitor and the load, and  
good RF bypass capacitors be placed directly across the load.  
PCB layout is also critical in high noise environments, because RFI/EMI is easily radiated directly into PC traces.  
Noisy circuitry should be isolated from clean circuits where possible, and grounded through a separate path. At  
MHz frequencies, ground planes begin to look inductive and RFI/ EMI can cause ground bounce across the  
ground plane. In multi-layer PCB applications, care should be taken in layout so that noisy power and ground  
planes do not radiate directly into adjacent layers which carry analog power and ground.  
8.2.2.7 Output Noise  
Noise is specified in two ways:  
Spot Noise or Output Noise Density is the RMS sum of all noise sources, measured at the regulator  
output, at a specific frequency (measured with a 1-Hz bandwidth). This type of noise is usually plotted on  
a curve as a function of frequency.  
Total Output Noise or Broad-Band Noise is the RMS sum of spot noise over a specified bandwidth,  
usually several decades of frequencies.  
Attention should be paid to the units of measurement. Spot noise is measured in units µVHz or nVHz, and total  
output noise is measured in µVRMS  
.
The primary source of noise in low-dropout regulators is the internal reference. Noise can be reduced in two  
ways: by increasing the transistor area or by increasing the current drawn by the internal reference. Increasing  
the area will decrease the chance of fitting the die into a smaller package. Increasing the current drawn by the  
internal reference increases the total supply current (GND pin current).  
8.2.2.8 Power Dissipation  
Knowing the device power dissipation and proper sizing of the thermal plane connected to the tab or pad is  
critical to ensuring reliable operation. Device power dissipation depends on input voltage, output voltage, and  
load conditions and can be calculated with Equation 2.  
PD(MAX) = (VIN(MAX) – VOUT) × IOUT(MAX)  
(2)  
Power dissipation can be minimized, and greater efficiency can be achieved, by using the lowest available  
voltage drop option that would still be greater than the dropout voltage (VDO). However, keep in mind that higher  
voltage drops result in better dynamic (that is, PSRR and transient) performance.  
Copyright © 2005–2016, Texas Instruments Incorporated  
15  
 
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
www.ti.com.cn  
On the WSON (DRV) package, the primary conduction path for heat is through the exposed power pad to the  
PCB. To ensure the device does not overheat, connect the exposed pad, through thermal vias, to an internal  
ground plane with an appropriate amount of copper PCB area .  
On the VSSOP (DGK) and SOT-223 (NDC) packages, the primary conduction path for heat is through the pins to  
the PCB.  
The maximum allowable junction temperature (TJ(MAX)) determines maximum power dissipation allowed (PD(MAX)  
)
for the device package.  
Power dissipation and junction temperature are most often related by the junction-to-ambient thermal resistance  
(RθJA) of the combined PCB and device package and the temperature of the ambient air (TA), according to  
Equation 3 or Equation 4:  
TJ(MAX) = TA(MAX) + (RθJA × PD(MAX)  
PD(MAX) = (TJ(MAX) - TA(MAX)) / RθJA  
)
(3)  
(4)  
Unfortunately, this RθJA is highly dependent on the heat-spreading capability of the particular PCB design, and  
therefore varies according to the total copper area, copper weight, and location of the planes. The RθJA recorded  
in Thermal Information is determined by the specific EIA/JEDEC JESD51-7 standard for PCB and copper-  
spreading area, and is to be used only as a relative measure of package thermal performance. For a well-  
designed thermal layout, RθJA is actually the sum of the package junction-to-case (bottom) thermal resistance  
(RθJCbot) plus the thermal resistance contribution by the PCB copper area acting as a heat sink.  
8.2.2.9 Estimating Junction Temperature  
The EIA/JEDEC standard recommends the use of psi (Ψ) thermal characteristics to estimate the junction  
temperatures of surface mount devices on a typical PCB board application. These characteristics are not true  
thermal resistance values, but rather package specific thermal characteristics that offer practical and relative  
means of estimating junction temperatures. These psi metrics are determined to be significantly independent of  
copper-spreading area. The key thermal characteristics (ΨJT and ΨJB) are given in Thermal Information and are  
used in accordance with Equation 5 or Equation 6.  
TJ(MAX) = TTOP + (ΨJT × PD(MAX)  
)
where  
PD(MAX) is explained in Equation 2.  
TTOP is the temperature measured at the center-top of the device package.  
(5)  
TJ(MAX) = TBOARD + (ΨJB × PD(MAX)  
)
where  
PD(MAX) is explained in Equation 2.  
TBOARD is the PCB surface temperature measured 1-mm from the device package and centered on the  
package edge.  
(6)  
For more information about the thermal characteristics ΨJT and ΨJB, see the TI Application Report  
Semiconductor and IC Package Thermal Metrics (SPRA953), available for download at www.ti.com.  
For more information about measuring TTOP and TBOARD, see the TI Application Report Using New Thermal  
Metrics (SBVA025), available for download at www.ti.com.  
For more information about the EIA/JEDEC JESD51 PCB used for validating RθJA, see the TI Application Report  
Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs (SZZA017), available for  
download at www.ti.com.  
16  
Copyright © 2005–2016, Texas Instruments Incorporated  
 
 
 
 
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
www.ti.com.cn  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
8.2.2.10 Reverse Voltage  
A reverse voltage condition will exist when the voltage at the OUT pin is higher than the voltage at the IN pin.  
Typically this will happen when VIN is abruptly taken low and COUT continues to hold a sufficient charge such that  
the input to output voltage becomes reversed. A less common condition is when an alternate voltage source is  
connected to the output.  
There are two possible paths for current to flow from the OUT pin back to IN during a reverse voltage condition.  
1. While VIN is high enough to keep the control circuity alive, and the EN pin (LP38693-ADJ only) is above the  
VEN(ON) threshold, the control circuitry will attempt to regulate the output voltage. If the input voltage is less  
than the programmed output voltage, the control circuit will drive the gate of the pass element to the full ON  
condition. In this condition, reverse current will flow from the OUT to the IN pin, limited only by the RDS(ON) of  
the pass element and the output to input voltage differential. Discharging an output capacitor up to 1000 μF  
in this manner will not damage the device as the current will rapidly decay. However, continuous reverse  
current should be avoided. When the EN pin is low, this condition will be prevented.  
2. The internal PFET pass element has an inherent parasitic diode. During normal operation, the input voltage  
is higher than the output voltage and the parasitic diode is reverse biased. However, when VIN is below the  
value where the control circuity is alive, or the EN pin is low (LP38693-ADJ only), and the output voltage is  
more than 500 mV (typical) above the input voltage the parasitic diode becomes forward biased and current  
flows from the output pin to the input pin through the diode. The current in the parasitic diode should be  
limited to less than 1-A continuous and 5-A peak.  
If used in a dual-supply system where the regulator output load is returned to a negative supply, the OUT pin  
must be diode clamped to ground to limit the negative voltage transition. A Schottky diode is recommended  
for this protective clamp.  
8.2.3 Application Curve  
V
OUT  
= 1.25V  
40  
20  
0
C
OUT  
= 10 mF  
V
OUT  
-20  
-40  
4
3
2
1
V
IN  
200 ms/DIV  
Figure 30. Line Transient Response  
Copyright © 2005–2016, Texas Instruments Incorporated  
17  
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
www.ti.com.cn  
9 Power Supply Recommendations  
The LP3869x-ADJ devices are designed to operate from an input supply voltage range of 2.7 V to 10 V. The  
input supply should be well regulated and free of spurious noise. To ensure that the device output voltage is well  
regulated, input supply should be at least VOUT + 0.5 V, or 2.7 V, whichever is higher. A minimum capacitor value  
of 1-μF is required to be within 1 cm of the IN pin.  
10 Layout  
10.1 Layout Guidelines  
Good PC layout practices must be used or instability can be induced because of ground loops and voltage drops.  
The input and output capacitors must be directly connected to the input, output, and ground pins of the regulator  
using traces which do not have other currents flowing in them (Kelvin connect).  
The best way to do this is to lay out CIN and COUT near the device with short traces to the IN, OUT, and GND  
pins. The regulator ground pin should be connected to the external circuit ground so that the regulator and its  
capacitors have a "single point ground."  
It should be noted that stability problems have been seen in applications where "vias" to an internal ground plane  
were used at the ground points of the device and the input and output capacitors. This was caused by varying  
ground potentials at these nodes resulting from current flowing through the ground plane. Using a single point  
ground technique for the regulator and its capacitors fixed the problem. Because high current flows through the  
traces going into VIN and coming from VOUT, Kelvin connect the capacitor leads to these pins so there is no  
voltage drop in series with the input and output capacitors.  
10.2 Layout Examples  
VIA connect to ground  
layer  
VIA connect to  
ground layer  
GND  
IN  
GND  
EN  
1
2
3
8
7
6
IN  
COUT  
CIN  
Exposed Pad  
on Bottom  
(DAP)  
OUT  
ADJ  
CIN  
R1  
R2  
R2  
R1  
COUT  
Figure 31. SOT-223 Layout  
Figure 32. WSON LP38693 Layout  
18  
Copyright © 2005–2016, Texas Instruments Incorporated  
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
www.ti.com.cn  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
10.3 WSON Mounting  
The NGG0006A (No Pullback) 6-Lead WSON package requires specific mounting techniques which are detailed  
in the TI Application ReportLeadless Leadframe Package (LLP) SNOA401. Referring to the section PCB Design  
Recommendations, it should be noted that the pad style which should be used with the WSON package is the  
NSMD (non-solder mask defined) type. Additionally, it is recommended the PCB terminal pads to be 0.2 mm  
longer than the package pads to create a solder fillet to improve reliability and inspection.  
The thermal dissipation of the WSON package is directly related to the printed circuit board construction and the  
amount of additional copper area connected to the DAP. The DAP (exposed pad) on the bottom of the WSON  
package is connected to the die substrate with a conductive die attach adhesive. The DAP has no direct  
electrical (wire) connection to any of the pins. There is a parasitic PN junction between the die substrate and the  
device ground. As such, it is strongly recommend that the DAP be connected directly to the ground at device pin  
2 (GND). Alternatively, but not recommended, the DAP may be left floating (no electrical connection). The DAP  
must not be connected to any potential other than ground.  
版权 © 2005–2016, Texas Instruments Incorporated  
19  
LP38691-ADJ, LP38693-ADJ, LP38691-ADJ-Q1, LP38693-ADJ-Q1  
ZHCSAZ8K JANUARY 2005REVISED JANUARY 2016  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
相关文档如下:  
《无引线框架封装 (LLP)(文献编号:SNOA401)  
《半导体和 IC 封装热指标》(SPRA953)  
《使用新的热指标》文献编号:SBVA025)  
《采用 JEDEC PCB 设计的线性和逻辑封装散热特性》(SZZA017)  
11.2 相关链接  
2 列出了快速访问链接。范围包括技术文档、支持和社区资源、工具和软件,以及样片或购买的快速访问。  
2. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
LP38691-ADJ  
LP38693-ADJ  
LP38691-ADJ-Q1  
LP38693-ADJ-Q1  
11.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
20  
版权 © 2005–2016, Texas Instruments Incorporated  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP38691QSD-ADJ/NOPB  
LP38691QSDX-ADJ/NOPB  
LP38691SD-ADJ  
ACTIVE  
ACTIVE  
NRND  
WSON  
WSON  
WSON  
NGG  
NGG  
NGG  
6
6
6
1000 RoHS & Green  
4500 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
L251B  
Samples  
Samples  
SN  
L251B  
L117B  
1000  
Non-RoHS  
& Green  
Call TI  
LP38691SD-ADJ/NOPB  
LP38691SDX-ADJ/NOPB  
LP38693MP-ADJ/NOPB  
LP38693MPX-ADJ/NOPB  
LP38693QSD-ADJ/NOPB  
LP38693QSDX-ADJ/NOPB  
LP38693SD-ADJ/NOPB  
LP38693SDX-ADJ/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
SOT-223  
SOT-223  
WSON  
WSON  
WSON  
WSON  
NGG  
NGG  
NDC  
NDC  
NGG  
NGG  
NGG  
NGG  
6
6
5
5
6
6
6
6
1000 RoHS & Green  
4500 RoHS & Green  
1000 RoHS & Green  
2000 RoHS & Green  
1000 RoHS & Green  
4500 RoHS & Green  
1000 RoHS & Green  
4500 RoHS & Green  
NIPDAU | SN  
NIPDAU | SN  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
L117B  
L117B  
LJUB  
LJUB  
LLRB  
LLRB  
L127B  
L127B  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
SN  
SN  
SN  
NIPDAU | SN  
NIPDAU | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LP38691-ADJ, LP38691-ADJ-Q1, LP38693-ADJ, LP38693-ADJ-Q1 :  
Catalog : LP38691-ADJ, LP38693-ADJ  
Automotive : LP38691-ADJ-Q1, LP38691-Q1, LP38691-Q1, LP38693-ADJ-Q1, LP38693-Q1, LP38693-Q1  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP38691QSD-ADJ/NOPB WSON  
NGG  
NGG  
6
6
1000  
4500  
178.0  
330.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.0  
1.0  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
LP38691QSDX-  
ADJ/NOPB  
WSON  
LP38691SD-ADJ  
WSON  
NGG  
NGG  
NGG  
6
6
6
5
5
6
6
1000  
1000  
4500  
1000  
2000  
1000  
4500  
178.0  
178.0  
330.0  
330.0  
330.0  
178.0  
330.0  
12.4  
12.4  
12.4  
16.4  
16.4  
12.4  
12.4  
3.3  
3.3  
3.3  
7.0  
7.0  
3.3  
3.3  
3.3  
3.3  
3.3  
7.5  
7.5  
3.3  
3.3  
1.0  
1.0  
1.0  
2.2  
2.2  
1.0  
1.0  
8.0  
8.0  
12.0  
12.0  
12.0  
16.0  
16.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q3  
Q3  
Q1  
Q1  
LP38691SD-ADJ/NOPB WSON  
LP38691SDX-ADJ/NOPB WSON  
8.0  
LP38693MP-ADJ/NOPB SOT-223 NDC  
LP38693MPX-ADJ/NOPB SOT-223 NDC  
12.0  
12.0  
8.0  
LP38693QSD-ADJ/NOPB WSON  
NGG  
NGG  
LP38693QSDX-  
ADJ/NOPB  
WSON  
8.0  
LP38693SD-ADJ/NOPB WSON  
LP38693SDX-ADJ/NOPB WSON  
NGG  
NGG  
6
6
1000  
4500  
178.0  
330.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.0  
1.0  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP38691QSD-ADJ/NOPB  
LP38691QSDX-ADJ/NOPB  
LP38691SD-ADJ  
WSON  
WSON  
WSON  
WSON  
WSON  
SOT-223  
SOT-223  
WSON  
WSON  
WSON  
WSON  
NGG  
NGG  
NGG  
NGG  
NGG  
NDC  
NDC  
NGG  
NGG  
NGG  
NGG  
6
6
6
6
6
5
5
6
6
6
6
1000  
4500  
1000  
1000  
4500  
1000  
2000  
1000  
4500  
1000  
4500  
208.0  
367.0  
208.0  
208.0  
367.0  
367.0  
367.0  
208.0  
367.0  
208.0  
367.0  
191.0  
367.0  
191.0  
191.0  
367.0  
367.0  
367.0  
191.0  
367.0  
191.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
LP38691SD-ADJ/NOPB  
LP38691SDX-ADJ/NOPB  
LP38693MP-ADJ/NOPB  
LP38693MPX-ADJ/NOPB  
LP38693QSD-ADJ/NOPB  
LP38693QSDX-ADJ/NOPB  
LP38693SD-ADJ/NOPB  
LP38693SDX-ADJ/NOPB  
Pack Materials-Page 2  
MECHANICAL DATA  
NDC0005A  
www.ti.com  
MECHANICAL DATA  
NGG0006A  
SDE06A (Rev A)  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LP38691SD-1.8

500mA Low Dropout CMOS Linear Regulators Stable with Ceramic Output Capacitors
NSC

LP38691SD-1.8

LP38693 500mA Low Dropout CMOS Linear Regulators Stable with Ceramic Output Capacitors
TI

LP38691SD-1.8/NOPB

500mA、10V、低压降稳压器 | NGG | 6 | -40 to 125
TI

LP38691SD-2.5

500mA Low Dropout CMOS Linear Regulators Stable with Ceramic Output Capacitors
NSC

LP38691SD-2.5

LP38693 500mA Low Dropout CMOS Linear Regulators Stable with Ceramic Output Capacitors
TI

LP38691SD-2.5/NOPB

500mA、10V、低压降稳压器 | NGG | 6 | -40 to 125
TI

LP38691SD-3.3

500mA Low Dropout CMOS Linear Regulators Stable with Ceramic Output Capacitors
NSC

LP38691SD-3.3

LP38693 500mA Low Dropout CMOS Linear Regulators Stable with Ceramic Output Capacitors
TI

LP38691SD-3.3/NOPB

500mA、10V、低压降稳压器 | NGG | 6 | -40 to 125
TI

LP38691SD-5.0

500mA Low Dropout CMOS Linear Regulators Stable with Ceramic Output Capacitors
NSC

LP38691SD-5.0

LP38693 500mA Low Dropout CMOS Linear Regulators Stable with Ceramic Output Capacitors
TI

LP38691SD-5.0/NOPB

500-mA, 10-V, low-dropout voltage regulator 6-WSON -40 to 125
TI