LP3907SQ-PXPP/NOPB [TI]

Dual High-Current Step-Down DC/DC and Dual Linear Regulator with I2C-Compatible Interface 24-WQFN -40 to 85;
LP3907SQ-PXPP/NOPB
型号: LP3907SQ-PXPP/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Dual High-Current Step-Down DC/DC and Dual Linear Regulator with I2C-Compatible Interface 24-WQFN -40 to 85

开关
文件: 总57页 (文件大小:3508K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
Dual High-Current Step-Down DC/DC and Dual Linear Regulator with I2C-Compatible  
Interface  
Check for Samples: LP3907  
1
FEATURES  
KEY SPECIFICATIONS  
2
Compatible with Advanced Applications  
Processors and FPGAs  
Step-Down DC/DC Converter (Buck)  
Programmable VOUT from:  
2 LDOs for Powering Internal Processor  
Functions and I/Os  
Buck1 : 0.8V - 2.0V @ 1A  
Buck2 : 1.0V - 3.5V @ 600mA  
High-Speed Serial Interface for Independent  
Control of Device Functions and Settings  
Up to 96% Efficiency  
2.1MHz PWM Switching Frequency  
Precision Internal Reference  
Thermal Overload Protection  
Current Overload Protection  
PWM to PFM Automatic Mode Change  
Under Low Loads  
±3% Output Voltage Accuracy  
Automatic Soft Start  
24-Lead 4 × 4 × 0.8mm WQFN or  
25-Bump 2.5 x 2.5mm DSBGA Package  
Linear Regulators (LDO)  
Software Programmable Regulators  
Programmable VOUT of 1.0V to 3.5V  
(except “JJ11” and “FX6W” options)  
External Power-On-Reset Function for Buck1  
and Buck2 (i.e., Power Good with Delay  
Function)  
±3% Output Voltage Accuracy  
300mA Output Current  
30mV (Typ) Dropout  
Undervoltage Lock-Out Detector to Monitor  
Input Supply Voltage  
LP3907-Q1 is an Automotive-Grade Product  
that is AECQ-100 Grade 1 Qualified  
DESCRIPTION  
The LP3907 is a multi-function, programmable Power  
Management Unit, optimized for low power FPGAs,  
microprocessors, and DSPs. This device integrates  
two highly efficient 1A/600mA step-down DC/DC  
converters with dynamic voltage management (DVM),  
two 300mA linear regulators, and a 400kHz I2C \-  
compatible interface to allow a host controller access  
to the internal control registers of the LP3907. The  
LP3907 additionally features programmable power-on  
sequencing. Package options include a tiny 4 x 4 x  
0.8mm WQFN 24-pin package and an even smaller  
2.5 x 2.5mm DSBGA 25-bump package.  
APPLICATIONS  
FPGA, DSP Core Power  
Applications Processors  
Peripheral I/O Power  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2007–2013, Texas Instruments Incorporated  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
Typical Application Circuits  
VINLDO12  
EN_T  
VDD  
100k  
1 PF  
ENLDO1  
ENLDO2  
nPOR  
VIN1  
ENSW1  
ENSW2  
LDO1  
10 PF  
2.2 PH  
SW1  
FB1  
10 PF  
0.47 PF  
VINLDO1  
VINLDO2  
LDO2  
GND_SW1  
1 PF  
1 PF  
LP3907  
VIN2  
10 PF  
2.2 PH  
0.47 PF  
SW2  
FB2  
SDA  
SCL  
10 PF  
GND_SW2  
AVDD  
GND_L  
GND_C  
DAP  
1 PF  
Figure 1.  
2
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
DC SOURCE  
4.5V - 5.5V  
+
Li-ion/polymer cell 3.3V - 4.2V  
Cvdd  
4.7PF  
LP3907 PMIC  
1PF  
1PF  
1PF  
1uF  
PF  
10 PF  
10  
1
19  
13  
24  
10  
6
ULVO  
Lsw1 2.2 PH  
1.2V  
OSC  
VBUCK1  
5
SW1  
10 PF  
Vin OK  
BUCK1  
AVDD  
VFB1  
8
21  
ENLDO1  
22  
7
2.2 PH  
Lsw1  
14  
ENLDO2  
ENSW 1  
3.3V  
VBUCK2  
Power  
ON-OFF  
Logic  
SW2  
10 PF  
BUCK2  
AVDD  
VFB2  
11  
12  
2
ENSW 2  
EN_T  
VINLDO1  
Thermal  
Shutdown  
3.3V  
LDO1  
LDO1  
20  
Cldo1  
0.47 PF  
RESET  
VinLDO12  
17  
16  
VINLDO2  
2
I C_SCL  
BIAS  
I2C  
1.8V  
LDO2  
2
I C_SDA  
LDO2  
23  
Cldo2  
0.47 PF  
RDY1 RDY2  
VDD  
Logic Control  
and  
Registers  
100k  
nPOR  
Power On  
Reset  
3
4
15  
9
18  
GND_L  
GND_SW1  
GND_SW2  
GND_C  
Figure 2.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LP3907  
 
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
Connection Diagrams  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
24-Lead WQFN Package (top view)  
25-Bump Thin DSBGA Package, Large Bump  
25-Bump Thin DSBGA Package, Large Bump  
Package Number YZR0025, Bottom View  
Package Number YZR0025, Top View  
VIN  
LDO12  
VIN  
LDO12  
VIN  
LDO2  
VIN  
LDO2  
GND_S  
W1  
GND_S  
W1  
5
4
3
SW1  
VIN1  
VIN1  
FB1  
SW1  
5
4
VIN  
LDO12  
VIN  
LDO12  
EN_S  
W1  
EN_S  
W1  
EN_T  
LDO2  
EN_T  
FB1  
AVDD  
FB2  
LDO2  
EN_  
LDO2  
EN_  
LDO1  
EN_  
LDO1  
EN_  
LDO2  
GND_C  
nPOR  
SDA  
AVDD  
FB2  
nPOR  
SDA  
GND_C  
3
2
1
EN_  
SW2  
EN_  
SW2  
SCL  
SCL  
LDO1  
LDO1  
2
1
VIN  
LDO1  
VIN  
LDO1  
GND_  
SW2  
GND_  
L
GND_  
SW2  
GND_  
L
SW2  
D
VIN2  
E
VIN2  
E
SW2  
D
A
B
C
C
B
A
Package Type  
24-lead WQFN  
25-bump DSBGA  
Default I2C Address  
60  
61  
4
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
Table 1. Pin Descriptions(1)  
WQFN  
Pin No.  
DSBGA pin  
no.  
Name  
I/O  
Type  
Description  
1
2
B4, B5  
C4  
VINLDO12  
EN_T  
I
I
PWR  
D
Analog Power for Internal Functions (VREF, BIAS, I2C, Logic)  
Enable for preset power on sequence. (See Power-Up  
Sequencing using the EN_T Function.)  
3
C3  
nPOR  
O
D
nPOR Power on reset pin for both Buck1 and Buck 2. Open drain  
logic output 100K pull-up resistor. nPOR is pulled to ground when  
the voltages on these supplies are not good. See nPOR section  
for more info.  
4
C5  
D5  
E5  
D4  
E4  
D3  
E3  
E2  
D2  
E1  
D1  
C1  
C2  
B2  
B1  
A1  
GND_SW1  
SW1  
G
O
I
G
PWR  
PWR  
D
Buck1 NMOS Power Ground  
5
Buck1 switcher output pin  
6
VIN1  
Power in from either DC source or Battery to Buck1  
Enable Pin for Buck1 switcher, a logic HIGH enables Buck1  
Buck1 input feedback terminal  
7
ENSW1  
FB1  
I
8
I
A
9
GND_C  
AVDD  
FB2  
G
I
G
Non switching core ground pin  
Analog Power for Buck converters  
Buck2 input feedback terminal  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
PWR  
A
I
ENSW2  
VIN2  
I
D
Enable Pin for Buck2 switcher, a logic HIGH enables Buck2  
Power in from either DC source or Battery to Buck2  
Buck2 switcher output pin  
I
PWR  
PWR  
G
SW2  
O
G
I/O  
I
GND_SW2  
SDA  
Buck2 NMOS Power ground  
I2C Data (bidirectional)  
I2C Clock  
D
SCL  
D
GND_L  
VINLDO1  
G
I
G
LDO ground  
PWR  
Power in from either DC source or battery to input terminal to  
LDO1  
20  
21  
22  
23  
24  
A2  
B3  
A3  
A4  
A5  
LDO1  
ENLDO1  
ENLDO2  
LDO2  
O
I
PWR  
D
LDO1 Output  
LDO1 enable pin, a logic HIGH enables the LDO1  
LDO2 enable pin, a logic HIGH enables the LDO2  
LDO2 Output  
I
D
O
I
PWR  
PWR  
VINLDO2  
Power in from either DC source or battery to input terminal to  
LDO2.  
DAP  
DAP  
GND  
GND  
Connection isn't necessary for electrical performance, but it is  
recommended for better thermal dissipation.  
(1) A: Analog Pin  
D: Digital Pin  
G: Ground Pin  
PWR: Power Pin  
I: Input Pin  
Note  
I/O: Input/Output Pin  
O: Output Pin.  
Power Block Operation  
Power Block Input  
VINLDO12  
AVDD  
Enabled  
VIN+(1)  
Disabled  
VIN+  
VIN+  
Always Powered  
Always Powered  
VIN+  
VIN+  
VIN1  
VIN+ or 0V  
VIN+ or 0V  
VIN+  
VIN2  
VIN+  
LDO 1  
VIN+  
VIN+  
If Enabled, Min Vin is 1.74V  
If Enabled, Min Vin is 1.74V  
LDO 2  
VIN+  
(1) VIN+ is the largest potential voltage on the device.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
Default Voltage Options(1)(2)  
Part Number  
Buck1  
1.5V  
1.5V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.0V  
1.0V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.0V  
1.0V  
1.2V  
1.2V  
1.8V  
1.8V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.2V  
1.8V  
1.8V  
1.3V  
1.3V  
Buck2  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.4V  
3.4V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.4V  
3.4V  
3.3V  
3.3V  
3.3V  
3.3V  
1.8V  
1.8V  
2.7V  
2.7V  
1.8V  
1.8V  
2.8V  
2.8V  
1.8V  
1.8V  
3.3V  
3.3V  
2.2V  
2.2V  
LDO1  
2.5V  
2.5V  
1.8V  
1.8V  
1.8V  
1.8V  
1.8V  
1.8V  
2.6V  
2.6V  
2.6V  
2.6V  
1.8V  
1.8V  
1.8V  
1.8V  
2.65V(3)  
2.65V(3)  
2.6V  
2.6V  
2.6V  
2.6V  
1.8V  
1.8V  
1.8V  
1.8V  
3.3V  
3.3V  
3.5V  
3.5V  
2.85V(3)  
2.85V(3)  
3.3V  
3.3V  
1.2V  
1.2V  
2.8V  
2.8V  
2.9V  
2.9V  
LDO2  
2.5V  
2.5V  
2.5V  
2.5V  
2.5V  
2.5V  
2.5V  
2.5V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
2.5V  
2.5V  
3.3V  
3.3V  
2.85V(3)  
2.85V(3)  
2.8V  
2.8V  
2.5V  
2.5V  
2.8V  
2.8V  
2.4V  
2.4V  
LP3907SQ-PXPP/NOPB  
LP3907SQX-PXPP/NOPB  
LP3907SQ-TJXIP/NOPB  
LP3907SQX-TJXIP/NOPB  
LP3907QSQ-JXIP/NOPB  
LP3907QSQX-JXIP/NOPB  
LP3907QSQ-JXI7/NOPB  
LP3907QSQX-JXI7/NOPB  
LP3907SQ-JXQX/NOPB  
LP3907SQX-JXQX/NOPB  
LP3907SQ-JYQX/NOPB  
LP3907SQX-JYQX/NOPB  
LP3907SQ-PJXIX/NOPB  
LP3907SQX-PJXIX/NOPB  
LP3907SQ-PFX6W/NOPB  
LP3907SQX-PFX6W/NOPB  
LP3907SQ-BJX6X/NOPB  
LP3907SQX-BJX6X/NOPB  
LP3907SQ-BJXQX/NOPB  
LP3907SQX-BJXQX/NOPB  
LP3907SQ-BJYQX/NOPB  
LP3907SQX-BJYQX/NOPB  
LP3907SQ-BJXIX/NOPB  
LP3907SQX-BJXIX/NOPB  
LP3907SQ-BFX6W/NOPB  
LP3907SQX-BFX6W/NOPB  
LP3907SQ-JJXP/NOPB  
LP3907SQX-JJXP/NOPB  
LP3907SQ-VRZX/NOPB  
LP3907SQX-VRZX/NOPB  
LP3907TL-JJ11/NOPB  
LP3907TLX-JJ11/NOPB  
LP3907TL-JSXS/NOPB  
LP3907TLX-JSXS/NOPB  
LP3907TL-JJCP/NOPB  
LP3907TLX-JJCP/NOPB  
LP390QTL-VXSS/NOPB  
LP3907QTLX-VXSS/NOPB  
LP3907TL-PLNTO/NOPB  
LP3907TLX-PLNTO/NOPB  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
(3) Voltage is fixed and not programmable.  
6
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
ABSOLUTE MAXIMUM RATINGS(1)(2)  
VIN, SDA, SCL  
0.3V to +6V  
GND to GND SLUG  
±0.3V  
Power Dissipation (PD_MAX  
)
(TA=85°C, TMAX=125°C, )(3)  
1.43W  
150°C  
Junction Temperature (TJ-MAX  
Storage Temperature Range  
Maximum Lead Temperature (Soldering)  
ESD Ratings  
)
65°C to +150°C  
260°C  
Human Body Model  
(4)  
2kV  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under  
which operation of the device is ensured. Operating Ratings do not imply ensured performance limits. For ensured performance limits  
and associated test conditions, see the Electrical Characteristics.  
(2) All voltages are with respect to the potential at the GND pin.  
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
=
125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to-ambient thermal resistance of the  
part/package in the application (θJA), as given by the following equation: TA-MAX = TJ-MAX-OP (θJA × PD-MAX). See APPLICATION  
DESCRIPTION.  
(4) The Human body model is a 100pF capacitor discharged through a 1.5kresistor into each pin. (MILSTD - 883 3015.7)  
OPERATING RATINGS: BUCKS(1)(2)(3)(4)  
VIN  
2.8V to 5.5V  
0 to (VIN + 0.3V)  
40°C to +125°C  
40°C to +85°C  
VEN  
Junction Temperature (TJ) Range  
Ambient Temperature (TA) Range  
(5)  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under  
which operation of the device is ensured. Operating Ratings do not imply ensured performance limits. For ensured performance limits  
and associated test conditions, see the Electrical Characteristics.  
(2) All voltages are with respect to the potential at the GND pin.  
(3) Min and Max limits are ensured by design, test, or statistical analysis. Typical numbers are not ensured, but do represent the most likely  
norm.  
(4) Buck VIN VOUT + 1V.  
(5) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power  
dissipation exists, special care must be paid to thermal dissipation issues in board design.  
THERMAL PROPERTIES(1)(2)(3)  
Junction-to-Ambient Thermal Resistance (θJA) RTW0024A  
28°C/W  
51°C/W  
Junction-to-Ambient Thermal Resistance (θJA) YZR0025  
(1) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 160°C (typ.) and  
disengages at TJ = 140°C (typ.)  
(2) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
=
125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to-ambient thermal resistance of the  
part/package in the application (θJA), as given by the following equation: TA-MAX = TJ-MAX-OP (θJA × PD-MAX). See APPLICATION  
DESCRIPTION.  
(3) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power  
dissipation exists, special care must be paid to thermal dissipation issues in board design.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
GENERAL ELECTRICAL CHARACTERISTICS(1)(2)(3)(4)(5)  
Unless otherwise noted, VIN = 3.6V. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing  
in boldface type apply over the entire junction temperature range for operation, 40°C to +125°C.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
3
Max  
Units  
µA  
V
IQ  
VINLDO12 Shutdown Current  
Power-On Reset Threshold  
Thermal Shutdown Threshold  
Themal Shutdown Hysteresis  
Under Voltage Lock Out  
VIN = 3.6V  
VDD Falling Edge(5)  
VPOR  
TSD  
1.9  
160  
20  
°C  
TSDH  
UVLO  
°C  
Rising  
Falling  
2.9  
2.7  
V
(1) Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under  
which operation of the device is ensured. Operating Ratings do not imply ensured performance limits. For ensured performance limits  
and associated test conditions, see the Electrical Characteristics.  
(2) All voltages are with respect to the potential at the GND pin.  
(3) Min and Max limits are ensured by design, test, or statistical analysis. Typical numbers are not ensured, but do represent the most likely  
norm.  
(4) This specification is ensured by design.  
(5) VPOR is voltage at which the EPROM resets. This is different from the UVLO on VINLDO12, which is the voltage at which the  
regulators shut off; and is also different from the nPOR function, which signals if the regulators are in a specified range.  
(1)  
I2C-COMPATIBLE INTERFACE ELECTRICAL SPECIFICATIONS  
Unless otherwise noted, VIN = 3.6V. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing  
in boldface type apply over the entire junction temperature range for operation, 40°C to +125°C  
Symbol  
FCLK  
Parameter  
Clock Frequency  
Conditions  
Min  
Typ  
Max  
Units  
kHz  
µs  
400  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
tBF  
Bus-Free Time Between Start and Stop  
Hold Time Repeated Start Condition  
CLK Low Period  
1.3  
0.6  
1.3  
0.6  
0.6  
0
tHOLD  
tCLKLP  
tCLKHP  
tSU  
µs  
µs  
CLK High Period  
µs  
Set Up Time Repeated Start Condition  
Data Hold time  
µs  
tDATAHLD  
tDATASU  
TSU  
µs  
Data Set Up Time  
100  
0.6  
ns  
Set Up Time for Start Condition  
µs  
TTRANS  
Maximum Pulse Width of Spikes that  
Must be Suppressed by the Input Filter of  
Both DATA & CLK Signals.  
50  
ns  
(1) This specification is ensured by design.  
LOW DROPOUT REGULATORS, LDO1 and LDO2  
Unless otherwise noted, VIN = 3.6V, CIN = 1.0µF, COUT = 0.47µF. Typical values and limits appearing in normal type apply for  
TJ = 25°C. Limits appearing in boldface type apply over the entire junction temperature range for operation, 40°C to  
(1)(2)(3)(4)(5)(6)(7)  
+125°C.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
5.5  
Units  
VIN  
Operational Voltage Range  
VINLDO1 and VINLDO2 PMOS  
1.74  
V
(8)  
pins  
(1) All voltages are with respect to the potential at the GND pin.  
(2) Min and Max limits are ensured by design, test, or statistical analysis. Typical numbers are not ensured, but do represent the most likely  
norm.  
(3) CIN, COUT: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.  
(4) The device maintains a stable, regulated output voltage without a load.  
(5) Dropout voltage is the voltage difference between the input and the output at which the output voltage drops to 100mV below its nominal  
value.  
(6) Quiescent current is defined here as the difference in current between the input voltage source and the load at VOUT  
.
(7) VIN minimum for line regulation values is 1.8V.  
(8) Pins 24, 19 can operate from VIN min of 1.74 to a VIN max of 5.5V. This rating is only for the series pass PMOS power FET. It allows the  
system design to use a lower voltage rating if the input voltage comes from a buck output.  
8
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
LOW DROPOUT REGULATORS, LDO1 and LDO2 (continued)  
Unless otherwise noted, VIN = 3.6V, CIN = 1.0µF, COUT = 0.47µF. Typical values and limits appearing in normal type apply for  
TJ = 25°C. Limits appearing in boldface type apply over the entire junction temperature range for operation, 40°C to  
(1)(2)(3)(4)(5)(6)(7)  
+125°C.  
Symbol  
VOUT Accuracy  
ΔVOUT  
Parameter  
Output Voltage Accuracy (Default VOUT  
Line Regulation  
Conditions  
Min  
Typ  
Max  
3
Units  
)
Load current = 1 mA  
3  
%
VIN = (VOUT + 0.3V) to 5.0V,  
(7), Load Current = mA  
0.15  
%/V  
Load Regulation  
VIN = 3.6V,  
Load Current = 1mA to IMAX  
0.011  
%/mA  
mA  
ISC  
Short Circuit Current Limit  
Dropout Voltage  
LDO1-2, VOUT = 0V  
500  
30  
VIN – VOUT  
Load Current = 50mA  
200  
mV  
(5)  
PSRR  
Power Supply Ripple Rejection  
Supply Output Noise  
Quiescent Current “On”  
Quiescent Current “On”  
Quiescent Current “Off”  
Turn On Time  
F = 10kHz, Load Current = IMAX  
10Hz < F < 100KHz  
IOUT = 0mA  
45  
80  
dB  
µVrms  
µA  
θn  
(6) (9)  
IQ  
40  
IOUT = IMAX  
EN is de-asserted(10)  
60  
µA  
0.03  
300  
µA  
TON  
Start up from shut-down  
µs  
COUT  
Output Capacitor  
Capacitance for stability 0°C TJ  
125°C  
0.33  
0.47  
1.0  
µF  
40°C TJ 125°C  
0.68  
5
µF  
ESR  
500  
mΩ  
(9) The IQ can be defined as the standing current of the LP3907 when the I2C bus is active and all other power blocks have been disabled  
via the I2C bus, or it can be defined as the I2C bus active, and the other power blocks are active under no load condition. These two  
values can be used by the system designer when the LP3907 is powered using a battery.  
(10) The IQ exhibits a higher current draw when the EN pin is de-asserted because the I22 buffer pins draw an additional 2µA.  
BUCK CONVERTERS SW1, SW2  
Unless otherwise noted, VIN = 3.6V, CIN = 10µF, COUT = 10µF, LOUT = 2.2µH ceramic. Typical values and limits appearing in  
normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire junction temperature range for  
(1)(2)(3)(4)(5)(6)  
operation, 40°C to +125°C.  
Symbol  
VFB  
Parameter  
Feedback Voltage  
Conditions  
Min  
Typ  
Max  
+3  
Units  
%
3  
VOUT  
Line Regulation  
2.8< VIN < 5.5  
0.089  
%/V  
IO =10mA  
Load Regulation  
100mA < IO < IMAX  
Load Current = 250mA  
EN is de-asserted  
0.0013  
96  
%/mA  
%
Eff  
Efficiency  
ISHDN  
fOSC  
IPEAK  
Shutdown Supply Current  
Internal Oscillator Frequency  
Buck1 Peak Switching Current Limit  
Buck2 Peak Switching Current Limit  
Quiescent Current “On”  
Pin-Pin Resistance PFET  
Pin-Pin Resistance NFET  
0.01  
2.1  
µA  
1.7  
MHz  
A
1.5  
1.0  
(7)  
IQ  
No load PFM Mode  
33  
µA  
mΩ  
mΩ  
RDSON (P)  
RDSON (N)  
200  
180  
(1) All voltages are with respect to the potential at the GND pin.  
(2) Min and Max limits are ensured by design, test, or statistical analysis. Typical numbers are not ensured, but do represent the most likely  
norm.  
(3) CIN, COUT: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics.  
(4) The device maintains a stable, regulated output voltage without a load.  
(5) Quiescent current is defined here as the difference in current between the input voltage source and the load at VOUT  
.
(6) Buck VIN VOUT + 1V.  
(7) The IQ can be defined as the standing current of the LP3907 when the I2C bus is active and all other power blocks have been disabled  
via the I2C bus, or it can be defined as the I2C bus active, and the other power blocks are active under no load condition. These two  
values can be used by the system designer when the LP3907 is powered using a battery.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LP3907  
 
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
BUCK CONVERTERS SW1, SW2 (continued)  
Unless otherwise noted, VIN = 3.6V, CIN = 10µF, COUT = 10µF, LOUT = 2.2µH ceramic. Typical values and limits appearing in  
normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire junction temperature range for  
(1)(2)(3)(4)(5)(6)  
operation, 40°C to +125°C.  
Symbol  
TON  
Parameter  
Conditions  
Start up from shut-down  
Capacitance for stability  
Capacitance for stability  
Min  
Typ  
Max  
Units  
µs  
Turn On Time  
Input Capacitor  
500  
CIN  
CO  
10  
10  
µF  
Output Capacitor  
µF  
I/O ELECTRICAL CHARACTERISTICS  
Unless otherwise noted: Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface  
(1)  
type apply over the entire junction temperature range for operation, TJ = 40°C to +125°C.  
Limit  
Symbol  
Parameter  
Conditions  
Units  
Min  
1.2  
Max  
0.4  
VIL  
VIH  
Input Low Level  
Input High Level  
V
V
(1) This specification is ensured by design.  
POWER-ON RESET THRESHOLD/FUNCTION (POR)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
nPOR  
nPOR = Power on reset forBuck1 and  
Buck2  
Default  
50  
ms  
nPOR  
threshold  
Percentage of Target voltage Buck1 or  
Buck2  
VBUCK1 AND VBUCK2 rising  
VBUCK1 OR VBUCK2 falling  
Load = IoL = 500mA  
94  
85  
%
V
VOL  
Output Level Low  
0.23  
0.5  
10  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
 
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
TYPICAL PERFORMANCE CHARACTERISTICS — LDO  
TA = 25°C unless otherwise noted  
Output Voltage Change  
vs  
Output Voltage Change  
vs  
Temperature (LDO2)  
VIN = 3.6V, VOUT = 3.3V, 100mA load  
Temperature (LDO1)  
VIN = 3.6V, VOUT = 2.6V, 100mA load  
2.00  
1.50  
1.00  
0.50  
0.00  
-0.50  
-1.00  
-1.50  
-2.00  
2.00  
1.50  
1.00  
0.50  
0.00  
-0.50  
-1.00  
-1.50  
-2.00  
-50 -35 -20 -5 10 25 40 55 70 85 100  
-50 -35 -20 -5 10 25 40 55 70 85 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 3.  
Figure 4.  
Load Transient (LDO1)  
3.6 VIN, 2.6VOUT, 0 – 150mA load  
Load Transient (LDO2)  
3.6 VIN, 3.3 VOUT, 0 – 150mA load  
Figure 5.  
Figure 6.  
Line Transient (LDO1)  
3.6 - 4.2 VIN, 2.6 VOUT, 300mA load  
Line Transient (LDO2)  
3.6 – 4.2 VIN, 3.3VOUT, 300mA load  
Figure 7.  
Figure 8.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS — LDO (continued)  
TA = 25°C unless otherwise noted  
Enable Start-up time (LDO1) )  
0-3.6 VIN, 2.6 VOUT, 1mA load  
Enable Start-up time (LDO2)  
0 – 3.6 VIN, 3.3 VOUT, 1 mA load  
Figure 9.  
Figure 10.  
LDO Maximum Load  
VIN = 1.74V  
300  
VIN = 1.74V  
250  
200  
150  
100  
1.00 1.10 1.20 1.30 1.40 1.50 1.60  
OUT(V)  
V
Figure 11.  
12  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
TYPICAL PERFORMANCE CHARACTERISTICS — BUCKS  
VIN= 2.8V to 5.5V, TA = 25°C  
Output Voltage  
vs.  
Supply Voltage  
(VOUT = 1.0V)  
Shutdown Current  
vs.  
Temp  
0.15  
0.12  
0.09  
0.06  
0.03  
0.00  
1.05  
1.03  
1.01  
0.99  
0.97  
0.95  
I
= 20 mA  
OUT  
I
= 750 mA  
OUT  
VIN = 5.5V  
VIN = 3.6V  
I
= 1.0A  
OUT  
VIN = 2.7V  
-40  
-20  
0
20  
40  
60  
80  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 12.  
Figure 13.  
Output Voltage  
vs.  
Supply Voltage  
(VOUT = 1.8V)  
Output Voltage  
vs.  
Supply Voltage  
(VOUT = 3.5V)  
1.85  
1.83  
1.81  
1.79  
1.77  
1.75  
3.35  
3.33  
3.31  
3.29  
3.27  
3.25  
I
= 20 mA  
OUT  
I
= 20 mA  
OUT  
I
= 300 mA  
OUT  
I
= 750 mA  
OUT  
I
= 600 mA  
OUT  
I
= 1.0A  
4.4  
OUT  
2.7  
3.3  
3.8  
4.9  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 14.  
Figure 15.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS — BUCK1  
VIN= 2.8V to 5.5V, TA = 25°C, VOUT = 1.2V, 2.0V  
Efficiency  
vs  
Efficiency  
vs  
Output Current  
Output Current  
(VOUT =1.2V, L= 2.2µH —(Forced PWM mode)  
100  
(VOUT =2.0V, L= 2.2µH — Forced PWM mode)  
100  
90  
80  
90  
80  
70  
60  
50  
40  
30  
20  
10  
= 2.8V  
V
IN  
= 2.8V  
VIN  
70  
60  
50  
40  
30  
20  
10  
= 3.6V  
VIN  
V
= 3.6V  
IN  
= 5.5V  
VIN  
V
= 5.5V  
IN  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 16.  
Figure 17.  
Efficiency  
vs  
Efficiency  
vs  
Output Current  
Output Current  
(VOUT =1.2V, L= 2.2µH — PWM mode to PFM mode)  
(VOUT =2.0V, L= 2.2µH — PWM mode to PFM mode)  
100  
100  
90  
90  
= 2.8V  
VIN  
V
= 2.8V  
IN  
80  
70  
60  
50  
40  
= 3.6V  
VIN  
80  
70  
60  
50  
40  
V
= 3.6V  
IN  
= 5.5V  
VIN  
V
= 5.5V  
IN  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 18.  
Figure 19.  
14  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
TYPICAL PERFORMANCE CHARACTERISTICS — BUCK2  
VIN= 4.5V to 5.5V, TA = 25°C, VOUT = 1.8V, 3.3V  
Efficiency  
vs  
Efficiency  
vs  
Output Current  
Output Current  
(VOUT =3.3V, L= 2.2µH — Forced PWM mode)  
100  
( VOUT =1.8V, L= 2.2µH —Forced PWM mode)  
100  
90  
80  
70  
90  
80  
= 4.5V  
VIN  
70  
60  
50  
40  
30  
20  
10  
= 4.5V  
VIN  
60  
50  
40  
30  
20  
10  
= 5.5V  
VIN  
= 5.5V  
VIN  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 20.  
Figure 21.  
TYPICAL PERFORMANCE CHARACTERISTICS — BUCK2  
VIN= 4.3V to 5.5V, TA = 25°C, VOUT = 1.8V, 3.3V  
Efficiency  
vs  
Efficiency  
vs  
Output Current  
Output Current  
(VOUT =1.2V, L= 2.2µH — PWM mode to PFM mode)  
100  
(VOUT =2.0V, L= 2.2µH — PWM mode to PFM mode)  
100  
90  
90  
= 4.5V  
VIN  
= 5.5V  
VIN  
= 4.5V  
VIN  
80  
70  
60  
50  
40  
80  
70  
60  
50  
40  
= 5.5V  
VIN  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 22.  
Figure 23.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS — BUCKS  
VIN= 3.6V, TA = 25°C, VOUT = 1.2V unless otherwise noted  
Load Transient Response  
VOUT = 1.2V, ILOAD = 300–500mA (PWM Mode)  
Mode Change by Load Transient  
VOUT = 1.2V, ILOAD = 50–150mA (PFM to PWM Mode)  
Figure 24.  
Figure 25.  
Line Transient Response  
VIN = 3.6 – 4.2V, VOUT = 1.2V, 250mA load  
Line Transient Response  
VIN = 3.6 – 4.2V, VOUT = 3.3V, 250 mA load  
Figure 26.  
Figure 27.  
Start up into PWM Mode  
VOUT = 1.2V, 1.0A load  
Start up into PWM Mode  
VOUT = 3.3 V, 600mA load  
Figure 28.  
Figure 29.  
16  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
TYPICAL PERFORMANCE CHARACTERISTICS — BUCKS (continued)  
VIN= 3.6V, TA = 25°C, VOUT = 1.2V unless otherwise noted  
Start up into PFM Mode  
VOUT = 1.2V, 30mA load  
Start up into PFM Mode  
VOUT = 3.3V, 30mA load  
Figure 30.  
Figure 31.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
DC/DC CONVERTERS  
Overview  
The LP3907 supplies the various power needs of the application by means of two Linear Low Drop Regulators  
(LDO1 and LDO2) and two Buck converters (SW1 and SW2). The following table lists the output characteristics  
of the various regulators.  
Table 2. Supply Specification  
Output  
(1)  
Supply  
Load  
IMAX  
VOUT Range(V)  
Resolution (mV)  
Maximum Output Current (mA)  
LDO1  
LDO2  
SW1  
analog  
analog  
digital  
digital  
1.0 to 3.5  
1.0 to 3.5  
0.8 to 2.0  
1.0 to 3.5  
100  
100  
50  
300  
300  
1000  
600  
SW2  
100  
(1) *For default values of the regulators, please consult Figure 2.  
Linear Low Dropout Regulators (LDOS)  
LDO1 and LDO2 are identical linear regulators targeting analog loads characterized by low noise requirements.  
LDO1 and LDO2 are enabled through the ENLDO pin or through the corresponding LDO1 or LDO2 control  
register. The output voltages of both LDOs are register programmable. The default output voltages are factory  
programmed during Final Test, which can be tailored to the specific needs of the system designer.  
VLDO  
VIN  
LDO  
Register  
controlled  
+
-
ENLDO  
Vref  
GND  
Figure 32.  
No-Load Stability  
The LDOs will remain stable and in regulation with no external load. This is an important consideration in some  
circuits, for example, CMOS RAM keep-alive applications.  
LDO1 and LDO2 Control Registers  
LDO1 and LDO2 can be configured by means of the LDO1 and LDO2 control registers. The output voltage is  
programmable in steps of 100mV from 1.0V to 3.5V by programming bits D4-0 in the LDO Control registers. Both  
LDO1 and LDO2 are enabled by applying a logic 1 to the ENLDO1 and ENLDO2 pin. Enable/disable control is  
also provided through enable bit of the LDO1 and LDO2 control registers. The value of the enable LDO bit in the  
register is logic 1 by default. The output voltage can be altered while the LDO is enabled.  
18  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
SW1, SW2: Synchronous Step-Down Magnetic DC/DC Converters  
Functional Description  
The LP3907 incorporates two high-efficiency synchronous switching buck regulators, SW1 and SW2, that deliver  
a constant voltage from a single Li-Ion battery to the portable system processors. Using a voltage mode  
architecture with synchronous rectification, both bucks have the ability to deliver up to 1000mA and 600mA,  
respectively, depending on the input voltage and output voltage (voltage head room), and the inductor chosen  
(maximum current capability).  
There are three modes of operation depending on the current required - PWM, PFM, and shutdown. PWM mode  
handles current loads of approximately 70mA or higher, delivering voltage precision of ±3% with 90% efficiency  
or better. Lighter output current loads cause the device to automatically switch into PFM for reduced current  
consumption (IQ = 15µA typ.) and a longer battery life. The Standby operating mode turns off the device, offering  
the lowest current consumption. PWM or PFM mode is selected automatically or PWM mode can be forced  
through the setting of the buck control register.  
Both SW1 and SW2 can operate up to a 100% duty cycle (PMOS switch always on) for low drop out control of  
the output voltage. In this way the output voltage will be controlled down to the lowest possible input voltage.  
Additional features include soft-start, under-voltage lock-out, current overload protection, and thermal overload  
protection.  
Circuit Operation Description  
A buck converter contains a control block, a switching PFET connected between input and output, a synchronous  
rectifying NFET connected between the output and ground (BCKGND pin) and a feedback path. During the first  
portion of each switching cycle, the control block turns on the internal PFET switch. This allows current to flow  
from the input through the inductor to the output filter capacitor and load. The inductor limits the current to a  
ramp with a slope of  
VIN - VOUT  
L
(1)  
by storing energy in a magnetic field. During the second portion of each cycle, the control block turns the PFET  
switch off, blocking current flow from the input, and then turns the NFET synchronous rectifier on. The inductor  
draws current from ground through the NFET to the output filter capacitor and load, which ramps the inductor  
current down with a slope of  
-VOUT  
L
(2)  
The output filter stores charge when the inductor current is high, and releases it when low, smoothing the voltage  
across the load.  
PWM Operation  
During PWM operation the converter operates as a voltage-mode controller with input voltage feed forward. This  
allows the converter to achieve excellent load and line regulation. The DC gain of the power stage is proportional  
to the input voltage. To eliminate this dependence, feed forward voltage inversely proportional to the input  
voltage is introduced.  
Internal Synchronous Rectification  
While in PWM mode, the buck uses an internal NFET as a synchronous rectifier to reduce rectifier forward  
voltage drop and associated power loss. Synchronous rectification provides a significant improvement in  
efficiency whenever the output voltage is relatively low compared to the voltage drop across an ordinary rectifier  
diode.  
Current Limiting  
A current limit feature allows the converter to protect itself and external components during overload conditions.  
PWM mode implements current limiting using an internal comparator that trips at 1.5A for Buck1 and at 1.0A for  
Buck2 (typ). If the output is shorted to ground the device enters a timed current limit mode where the NFET is  
turned on for a longer duration until the inductor current falls below a low threshold, ensuring inductor current has  
more time to decay, thereby preventing runaway.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
PFM Operation  
At very light loads, the converter enters PFM mode and operates with reduced switching frequency and supply  
current to maintain high efficiency.  
The part will automatically transition into PFM mode when either of two conditions occurs for a duration of 32 or  
more clock cycles:  
1. The inductor current becomes discontinuous  
or  
2. The peak PMOS switch current drops below the IMODE level  
VIN  
(Typically IMODE < 66 mA +  
)
160:  
(3)  
During PFM operation, the converter positions the output voltage slightly higher than the nominal output voltage  
during PWM operation, allowing additional headroom for voltage drop during a load transient from light to heavy  
load. The PFM comparators sense the output voltage via the feedback pin and control the switching of the output  
FETs such that the output voltage ramps between 0.8% and 1.6% (typical) above the nominal PWM output  
voltage. If the output voltage is below the ‘low’ PFM comparator threshold, the PMOS power switch is turned on.  
It remains on until the output voltage exceeds the ‘high’ PFM threshold or the peak current exceeds the IPFM level  
set for PFM mode. The typical peak current in PFM mode is:  
VIN  
IPFM = 66 mA +  
80:  
(4)  
Once the PMOS power switch is turned off, the NMOS power switch is turned on until the inductor current ramps  
to zero. When the NMOS zero-current condition is detected, the NMOS power switch is turned off. If the output  
voltage is below the ‘high’ PFM comparator threshold (see Figure 33), the PMOS switch is again turned on and  
the cycle is repeated until the output reaches the desired level. Once the output reaches the ‘high’ PFM  
threshold, the NMOS switch is turned on briefly to ramp the inductor current to zero and then both output  
switches are turned off and the part enters an extremely low power mode. Quiescent supply current during this  
‘sleep’ mode is less than 30µA, which allows the part to achieve high efficiencies under extremely light load  
conditions. When the output drops below the ‘low’ PFM threshold, the cycle repeats to restore the output voltage  
to ~1.6% above the nominal PWM output voltage.  
If the load current should increase during PFM mode (see Figure 33) causing the output voltage to fall below the  
‘low2’ PFM threshold, the part will automatically transition into fixed-frequency PWM mode.  
SW1, SW2 Operation  
SW1 and SW2 have selectable output voltages ranging from 0.8V to 3.5V (typ.). Both SW1 and SW2 in the  
LP3907 are I2C register controlled and are enabled by default through the internal state machine of the LP3907  
following a Power-On event that moves the operating mode to the Active state. (See Flexible Power Sequencing  
of Multiple Power Supplies.) The SW1 and SW2 output voltages revert to default values when the power on  
sequence has been completed. The default output voltage for each buck converter is factory programmable.  
(See APPLICATION DESCRIPTION).  
SW1, SW2 Control Registers  
SW1, SW2 can be enabled/disabled through the corresponding control register.  
The Modulation mode PWM/PFM is by default automatic and depends on the load as described above in the  
functional description. The modulation mode can be overridden by setting I2C bit to a logic 1 in the corresponding  
buck control register, forcing the buck to operate in PWM mode regardless of the load condition.  
20  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
High PFM Threshold  
PFM Mode at Light Load  
~1.016 * Vout  
Load current  
increases  
Low1 PFM Threshold  
~1.008 * Vout  
Current load  
increases,  
draws Vout  
towards  
Low2 PFM  
Threshold  
High PFM  
Nfet on  
Low PFM  
Threshold,  
turn on  
Pfet on  
until  
Ipfm limit  
reached  
Voltage  
drains  
Threshold  
inductor  
reached,  
current  
PFET  
go into  
until  
Low2 PFM Threshold  
Vout  
sleep mode  
I inductor = 0  
PWM Mode at  
Moderate to Heavy  
Loads  
Low2 PFM Threshold,  
switch back to PWMmode  
Figure 33.  
Shutdown Mode  
During shutdown the PFET switch, reference, control and bias circuitry of the converters are turned off. The  
NFET switch will be on in shutdown to discharge the output. When the converter is enabled, soft start is  
activated. It is recommended to disable the converter during the system power up and under voltage conditions  
when the supply is less than 2.8V.  
Soft Start  
The soft-start feature allows the power converter to gradually reach the initial steady state operating point, thus  
reducing startup stresses and surges. The two LP3907 buck converters have a soft-start circuit that limits in-rush  
current during startup. During startup the switch current limit is increased in steps. Soft start is activated only if  
EN goes from logic low to logic high after VIN reaches 2.8V. Soft start is implemented by increasing switch  
current limit in steps of 180mA, 300mA, and 720mA for Buck1; 161mA, 300mA and 536mA for Buck2 (typ.  
Switch current limit). The start-up time thereby depends on the output capacitor and load current demanded at  
start-up.  
Low Dropout Operation  
The LP3907 can operate at 100% duty cycle (no switching; PMOS switch completely on) for low dropout support  
of the output voltage. In this way the output voltage will be controlled down to the lowest possible input voltage.  
When the device operates near 100% duty cycle, output voltage ripple is approximately 25mV. The minimum  
input voltage needed to support the output voltage is  
VIN, MIN = ILOAD * (RDSON, PFET + RINDUCTOR) + VOUT  
Load current  
ILOAD  
Drain to source resistance of  
PFET switch in the triode region  
RDSON, PFET  
Inductor resistance  
RINDUCTOR  
Flexible Power Sequencing of Multiple Power Supplies  
The LP3907 provides several options for power on sequencing. The two bucks can be individually controlled with  
ENSW1 and ENSW2. The two LDOs can also be individually controlled with ENLDO1 and ENLDO2.  
If the user desires a set power on sequence, he can program the chip through I2C and raise EN_T from LOW to  
HIGH to activate the power on sequencing.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
Power-Up Sequencing using the EN_T Function  
EN_T assertion causes the LP3907 to emerge from Standby mode to Full Operation mode at a preset timing  
sequence. By default, the enables for the LDOs and Bucks (ENLDO1, ENLDO2, EN_T, ENSW1, ENSW2) are  
500K internally pulled down, which causes the part to stay OFF until enabled. If the user wishes to use the  
preset timing sequence to power on the regulators, transition the EN_T pin from Low to High. Otherwise, simply  
tie the enables of each specific regulator HIGH to turn on automatically.  
EN_T is edge triggered with rising edge signaling the chip to power on. The EN_T input is deglitched and the  
default is set at 1ms. As shown in the next 2 diagrams, a rising EN_T edge will start a power-on sequence, while  
a falling EN_T edge will start a shutdown sequence. If EN_T is high, toggling the external enables of the  
regulators will have no effect on the chip.  
The regulators can also be programmed through I2C to turn on and off. By default, I2C enables for the regulators  
on ON.  
The regulators are on following the pattern below:  
Regulators on = (I2C enable) AND (External pin enable OR EN_T high).  
NOTE  
The EN_T power-up sequencing may also be employed immediately after VIN is applied to  
the device. However, VIN must be stable for approximately 8ms minimum before EN_T be  
asserted high to ensure internal bias, reference, and the Flexible POR timing are  
stabilized. This initial EN_T delay is necessary only upon first time device power on for  
power sequencing function to operate properly.  
2
I C  
Regulator ON  
Ext_Enable  
Pins  
0
1
Start Programmed  
Timing Sequence  
EN_T  
Figure 34.  
EN_T  
t
1
Vout Buck1  
Vout Buck2  
t
2
t
3
Vout LDO1  
Vout LDO2  
t
4
Figure 35. LP3907 Default Power-Up Sequence  
22  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
Table 3. Power-On Timing Specification  
Symbol  
Description  
Min  
Typ  
1.5  
2
Max  
Units  
ms  
t1  
t2  
t3  
t4  
Programmable Delay from EN_T assertion to VCC_Buck1 On  
Programmable Delay from EN_T assertion to VCC_Buck2 On  
Programmable Delay from EN_T assertion to VCC_LDO1 On  
Programmable Delay from EN_T assertion to VCC_LDO2 On  
ms  
3
ms  
6
ms  
NOTE  
The LP3907 default Power on delays can be reprogrammed at final test or I2C to 1, 1.5, 2,  
3, 6, or 11ms.  
EN_T  
Vout Buck1  
t
1
Vout Buck2  
Vout LDO1  
t
2
t
3
Vout LDO2  
t
4
Figure 36. LP3907 Default Power-Off Sequence  
Symbol  
Description  
Min  
Typ  
1.5  
2
Max  
Units  
ms  
t1  
t2  
t3  
t4  
Programmable Delay from EN_T deassertion to VCC_Buck1 Off  
Programmable Delay from EN_T deassertion to VCC_Buck2 Off  
Programmable Delay from EN_T deassertion to VCC_LDO1 Off  
Programmable Delay from EN_T deassertion to VCC_LDO2 Off  
ms  
3
ms  
6
ms  
NOTE  
The LP3907 default Power on delays can be reprogrammed at final test to 0, .5, 1, 2, 5, or  
10ms. Default setting is the same as the on sequence.  
Flexible Power-On Reset (i.e., Power Good with delay)  
The LP3907 is equipped with an internal Power-On-Reset (“POR”) circuit which monitors the output voltage  
levels on bucks 1 and 2. The nPOR is an open drain logic output which is logic LOW when either of the buck  
outputs are below 91% of the rising value , or when one or both outputs fall below 82% of the desired value. The  
time delay between output voltage level and nPOR is enabled is (50µs, 50ms, 100ms, 200ms) 50ms by default.  
The system designer can choose the external pull-up resistor (i.e. 100k) for the nPOR pin.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
t2  
t1  
Case1  
EN1  
EN2  
RDY1  
RDY2  
nPOR  
0V  
Counter  
delay  
t2  
t1  
Case2  
EN1  
EN2  
RDY1  
0V  
RDY2  
nPOR  
Counter  
delay  
t2  
t1  
Case3  
EN1  
EN2  
RDY1  
RDY2  
nPOR  
Counter  
delay  
Figure 37. NPOR With Counter Delay  
The above diagram shows the simplest application of the Power On Reset, where both switcher enables are tied  
together. In Case 1, EN1 causes nPOR to transition LOW and triggers the nPOR delay counter. If the power  
supply for Buck2 does not come on within that period, nPOR will stay LOW, indicating a power fail mode. Case 2  
indicates the vice versa scenario if Buck1 supply did not come on. In both cases the nPOR remains LOW.  
Case 3 shows a typical application of the Power On Reset, where both switcher enables are tied together. Even  
if RDY1 ramps up slightly faster than RDY2 (or vice versa), then nPOR signal will trigger a programmable delay  
before going HIGH, as explained below.  
24  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
t0 t1  
t2  
t3  
t4  
EN1  
RDY1  
Counter  
delay  
Counter  
delay  
nPOR  
EN2  
RDY2  
Figure 38. Faults Occurring in Counter Delay After Startup  
The above timing diagram details the Power good with delay with respect to the enable signals EN1, and EN2.  
The RDY1, RDY2 are internal signals derived from the output of two comparators. Each comparator has been  
trimmed as follows:  
Comparator Level  
Buck Supply Level  
HIGH  
LOW  
Greater than 94%  
Less than 85%  
The circuits for EN1 and RDY1 is symmetrical to EN2 and RDY2, so each reference to EN1 and RDY1 will also  
work for EN2 and RDY2 and vice versa.  
If EN1 and RDY1 signals are High at time t1, then the RDY1 signal rising edge triggers the programmable delay  
counter (50μs, 50ms, 100ms, 200ms). This delay forces nPOR LOW between time interval t1 and t2. nPOR is  
then pulled high after the programmable delay is completed. Now if EN2 and RDY2 are initiated during this  
interval the nPOR signal ignores this event.  
If either RDY1or RDY2 were to go LOW at t3 then the programmable delay is triggered again.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
t0 t1  
t2  
t3  
t4  
EN1  
RDY1  
nPOR  
Counter  
delay  
Case 1:  
EN2  
RDY2  
Mask Time  
nPOR  
Mask  
Window  
Counter  
delay  
Case 2:  
EN2  
RDY2  
0V  
Mask  
Window  
Mask Time  
Counter  
delay  
nPOR  
Figure 39. NPOR Mask Window  
If the EN1 and RDY1 are initiated in normal operation, then nPOR is asserted and deasserted as explained  
above.  
In Case 1, we see that case where EN2 and RDY2 are initiated after triggered programmable delay. To prevent  
the nPOR being asserted again, a masked window ( 5ms ) counter delay is triggered off the EN2 rising edge.  
nPOR is still held HIGH for the duration of the mask, whereupon the nPOR status afterwards will depend on the  
status of both RDY1 and RDY2 lines.  
In Case 2, we see the case where EN2 is initiated after the RDY1 triggered programmable delay, but RDY2  
never goes HIGH (Buck2 never turns on). Normal operation operation of nPOR occurs wilth respect to EN1 and  
RDY1, and the nPOR signal is held HIGH for the duration of the mask window. We see that nPOR goes LOW  
after the masking window has timed out because it is now dependent on RDY1 and RDY2, where RDY2 is LOW.  
26  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
Delay Mask Counter  
EN1  
RDY1  
S
R
Q
Q
EN2  
nPOR  
RDY2  
Delay  
POR  
Delay Mask Counter  
Figure 40. Design Implementation of the Flexible Power-On Reset  
An internal Power-on reset of the IC is used with EN1, and EN2 to produce a reset signal (LOW) to the delay  
timer nPOR. EN1 and RDY1 or EN2 and RDY2 are used to generate the set signal (HIGH) to the delay timer.  
S=R=1 never occurs. The mask timers are triggered off EN1 and EN2 which are gated with RDY1, and RDY2 to  
generate outputs to the final AND gate to generate the nPOR.  
Under-Voltage Lock-Out  
The LP3907 features an under-voltage lock-out circuit. The function of this circuit is to continuously monitor the  
raw input supply voltage (VINLDO12) and automatically disables the four voltage regulators whenever this supply  
voltage is less than 2.8VDC.  
The circuit incorporates a bandgap based circuit that establishes the reference used to determine the 2.8VDC  
trip point for a VIN OK – Not OK detector. This VIN OK signal is then used to gate the enable signals to the four  
regulators of the LP3907. When VINLDO12 is greater than 2.8VDC the four enables control the four regulators,  
when VINLDO12 is less than 2.8VDC the four regulators are disabled by the VIN detector being in the “Not OK”  
state. The circuit has built in hysteresis to prevent chattering occurring.  
I2C-Compatible Serial Interface  
I2C SIGNALS  
The LP3907 features an I2C-compatible serial interface, using two dedicated pins: SCL and SDA for I2C clock  
and data respectively. Both signals need a pull-up resistor according to the I2C specification. The LP3907  
interface is an I2C slave that is clocked by the incoming SCL clock.  
Signal timing specifications are according to the I2C bus specification. The maximum bit rate is 400kbit/s. See I2C  
specification from Philips for further details.  
I2C DATA VALIDITY  
The data on the SDA line must be stable during the HIGH period of the clock signal (SCL), e.g.- the state of the  
data line can only be changed when CLK is LOW.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
2
I C_SCL  
2
I C_SDA  
data  
change  
allowed  
data  
valid  
data  
change  
allowed  
data  
valid  
data  
change  
allowed  
Figure 41. I2C Signals: Data Validity  
I2C Start and Stop Conditions  
START and STOP bits classify the beginning and the end of the I2C session. START condition is defined as the  
SDA signal transitioning from HIGH to LOW while the SCL line is HIGH. STOP condition is defined as the SDA  
2
transitioning from LOW to HIGH while the SCL is HIGH. The C master always generates START and STOP  
bits. The I2C bus is considered to be busy after START condition and free after STOP condition. During data  
transmission, I2C master can generate repeated START conditions. First START and repeated START  
conditions are equivalent, function-wise.  
2
I C_SDA  
2
I C_SCL  
S
P
START condition  
STOP condition  
Figure 42. START and STOP Conditions  
Transferring Data  
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first.  
Each byte of data has to be followed by an acknowledge bit. The acknowledged related clock pulse is generated  
by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver  
must pull down the SDA line during the 9th clock pulse, signifying acknowledgment. A receiver which has been  
addressed must generate an acknowledgment (“ACK”) after each byte has been received.  
After the START condition, the I2C master sends a chip address. This address is seven bits long followed by an  
eighth bit which is a data direction bit (R/W).  
NOTE  
Please note that according to industry I2C standards for 7-bit addresses, the MSB of an 8-  
bit address is removed, and communication actually starts with the 7th most significant bit.  
For the eighth bit (LSB), a “0” indicates a WRITE and a “1” indicates a READ. The second  
byte selects the register to which the data will be written. The third byte contains data to  
write to the selected register.  
The LP3907 has factory-programmed I2C addresses. The WQFN chip has a chip address of 60'h, while the  
DSBGA chip has a chip address of 61'h.  
MSB  
LSB  
ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 ADR0  
R/W  
bit0  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
1
1
0
0
0
0
0
I2C SLAVE address (chip address)  
Figure 43. I2C Chip Address (see note above)  
28  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
ack from slave  
www.ti.com  
ack from slave  
ack from slave  
start msb Chip Address lsb  
w
ack msb Register Add lsb ack msb  
DATA  
lsb ack stop  
SCL  
SDA  
1
3 4 5 6  
2
7
8
9
1 2 3 ...  
start  
id = 60  
w
ack  
addr = 02  
ack  
DGGUHVVꢀK¶$$ꢀGDWD  
ack stop  
w = write (SDA = “0”)  
r = read (SDA = “1”)  
ack = acknowledge (SDA pulled down by either master or slave)  
rs = repeated start  
id = LP3907 WQFN chip address: 0x60; DSBGA chip address: 0x61  
Figure 44. I2C Write Cycle  
When a READ function is to be accomplished, a WRITE function must precede the READ function, as shown in  
the Read Cycle waveform.  
ack from slave  
ack from slave repeated start  
ack from slave data from slave ack from master  
start msb Chip Address lsb  
w
ack msb Register Add lsb ack rs  
msb Chip Address lsb  
r
ack msb  
DATA  
lsb ack stop  
.
SCL  
SDA  
start  
id = 60  
w
ack  
register addr = 10  
ack rs  
id = 60  
r
ack  
GDWDꢀDGGUꢀK¶6A  
ack stop  
Figure 45. I2C Read Cycle  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
LP3907 Control Registers  
Register  
Address  
Register  
Name  
Read/Write  
Register Description  
0x02  
0x07  
0x10  
0x11  
0x20  
0x23  
0x24  
0x25  
0x29  
0x2A  
0x2B  
0x38  
0x39  
0x3A  
ICRA  
SCR1  
R
Interrupt Status Register A  
System Control 1 Register  
R/W  
R/W  
R
BKLDOEN  
BKLDOSR  
VCCR  
Buck and LDO Output Voltage Enable Register  
Buck and LDO Output Voltage Status Register  
Voltage Change Control Register 1  
Buck1 Target Voltage 1 Register  
Buck1 Target Voltage 2 Register  
Buck1 Ramp Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
B1TV1  
B1TV2  
B1RC  
B2TV1  
Buck2 Target Voltage 1 Register  
Buck2 Target Voltage 2 Register  
Buck2 Ramp Control  
B2TV2  
B2RC  
BFCR  
Buck Function Register  
LDO1VCR  
LDO2VCR  
LDO1 Voltage control Registers  
LDO2 Voltage control Registers  
Interrupt Status Register (ISRA) 0X02  
This register informs the System Engineer of the temperature status of the chip.  
D7-2  
D1  
D0  
Name  
Access  
Data  
Temp 125°C  
R
Reserved  
0
Status bit for thermal warning  
PMIC T>125°C  
0 – PMIC Temp. < 125°C  
1 – PMIC Temp. > 125°C  
Reserved  
0
Reset  
0
Control 1 Register (SCR1) 0X07  
This register allows the user to select the preset delay sequence for power-on timing, to switch between PFM  
and PWM mode for the bucks, and also to select between an internal and external clock for the bucks.  
D7  
D6-4  
D3  
D2  
D1  
D0  
Name  
Access  
Data  
EN_DLY  
R/W  
FPWM2  
R/W  
FPWM1  
R/W  
ECEN  
R/W  
Reserved  
Selects the preset  
delay sequence from  
EN_T assertion  
Reserved  
Buck2 PWM /PFM Mode Buck 1 PWM /PFM  
select  
0 – Auto Switch PFM -  
PWM operation  
1 – PWM Mode Only  
Reserved  
Mode select  
0 – Auto Switch PFM -  
PWM operation  
(shown below)  
1 – PWM Mode Only  
Reset  
0
Factory-Programmed  
Default  
1
Factory-Programmed  
Default  
Factory-Programmed  
Default  
0
30  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
 
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
EN_DLY Preset Delay Sequence after EN_T Assertion  
Delay (ms)  
EN_DLY<2:0>  
Buck1  
1
Buck2  
LDO1  
LDO2  
000  
001  
010  
011  
100  
101  
110  
111  
1
1.5  
2
1
2
3
1
3
2
1
6
1
2
1
1.5  
1.5  
1.5  
1.5  
3
6
2
1
2
6
1.5  
2
2
1.5  
11  
2
3
Buck and LDO Output Voltage Enable Register (BKLDOEN) – 0X10  
This register controls the enables for the Bucks and LDOs.  
D7  
D6  
LDO2EN  
R/W  
D5  
D4  
LDO1EN  
R/W  
D3  
D2  
D1  
D0  
BK1EN  
R/W  
Name  
Access  
Data  
BK2EN  
R/W  
Reserved  
0 – Disable  
1 – Enable  
Reserved  
0 – Disable  
1 – Enable  
Reserved  
0 – Disable  
1 – Enable  
Reserved  
0 – Disable  
1 – Enable  
Reset  
0
1
1
1
0
1
0
1
Buck AND LDO Status Register (BKLDOSR) – 0X11  
This register monitors whether the Bucks and LDOs meet the voltage output specifications.  
D7  
BKS_OK  
R
D6  
LDOS_OK  
R
D5  
LDO2_OK  
R
D4  
LDO1_OK  
R
D3  
D2  
BK2_OK  
D1  
D0  
Name  
Access  
Data  
BK1_OK  
R
R
0 – Buck 1-2  
Not Valid  
0 – LDO 1-2  
Not Valid  
0 – LDO2 Not  
Valid  
0 – LDO1 Not  
Valid  
Reserve 0 – Buck2 Not  
Reserve 0 – Buck1 Not  
d
Valid  
d
Valid  
1 – Bucks Valid 1 – LDOs Valid 1 – LDO2 Valid 1 – LDO1 Valid  
1 – Buck2 Valid  
1 – Buck1 Valid  
Reset  
0
0
0
0
0
0
0
0
Buck Voltage Change Control Register 1 (VCCR) – 0X20  
This register selects and controls the output target voltages for the buck regulators.  
D7-6  
D5  
D4  
D3-2  
D1  
D0  
Name  
Access  
Data  
B2VS  
R/W  
B2GO  
R/W  
B1VS  
R/W  
B1GO  
R/W  
Reserved  
Buck2 Target Voltage  
Select  
Buck2 Voltage Ramp  
CTRL  
Reserved  
Buck1 Target Voltage  
Select  
Buck1 Voltage Ramp  
CTRL  
0 – B2VT1  
0 – Hold  
0 – B1VT1  
0 – Hold  
1 – B2VT2  
1 – Ramp to B2VS  
selection  
1 – B1VT2  
1 – Ramp to B1VS  
selection  
Reset  
00  
0
0
00  
0
0
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
Buck1 Target Voltage 1 Register (B1TV1) – 0X23  
This register allows the user to program the output target voltage of Buck1.  
D7-5  
D4-0  
BK1_VOUT1  
Name  
Access  
Data  
R/W  
Reserved  
Buck1 Output Voltage (V)  
5’h00  
5’h01  
5’h02  
5’h03  
5’h04  
5’h05  
5’h06  
5’h07  
5’h08  
5’h09  
5’h0A  
5’h0B  
5’h0C  
5’h0D  
5’h0E  
5’h0F  
5’h10  
5’h11  
5’h12  
5’h13  
5’h14  
5’h15  
5’h16  
5’h17  
5’h18  
5’h19  
5’h1A–5’h1F  
Ext Ctrl  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.00  
Reset  
000  
Factory-Programmed Default  
32  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
Buck1 Target Voltage 2 Register (B1TV2) – 0X24  
This register allows the user to program the output target voltage of Buck1.  
D7-5  
D4-0  
BK1_VOUT2  
Name  
Access  
Data  
R/W  
Reserved  
Buck1 Output Voltage (V)  
(1)  
5’h00  
5’h01  
5’h02  
5’h03  
5’h04  
5’h05  
5’h06  
5’h07  
5’h08  
5’h09  
5’h0A  
5’h0B  
5’h0C  
5’h0D  
5’h0E  
5’h0F  
5’h10  
5’h11  
5’h12  
5’h13  
5’h14  
5’h15  
5’h16  
5’h17  
5’h18  
5’h19  
5’h1A–5’h1F  
Ext Ctrl  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.00  
Reset  
000  
Factory-Programmed Default  
(1) If using Ext Ctrl, contact TI Sales for support.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
Buck1 Ramp Control Register (B1RC) - 0x25  
This register allows the user to program the rate of change between the target voltages of Buck1.  
D7  
- - - -  
D6-4  
- - - -  
D3-0  
B1RS  
R/W  
Name  
Access  
Data  
- - - -  
- - - -  
Reserved  
Reserved  
Data Code  
4h'0  
Ramp Rate mV/us  
Instant  
4h'1  
1
2
4h'2  
4h'3  
3
4h'4  
4
4h'5  
5
4h'6  
6
4h'7  
7
4h'8  
8
4h'9  
9
4h'A  
10  
10  
4h'B - 4h'F  
Reset  
0
010  
1000  
34  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
Buck2 Target Voltage 1 Register (B2TV1) – 0X29  
This register allows the user to program the output target voltage of Buck2.  
D7-5  
D4-0  
Name  
Access  
Data  
BK2_VOUT1  
R/W  
Reserved  
Buck2 Output Voltage (V)  
5’h00  
5’h01  
5’h02  
5’h03  
5’h04  
5’h05  
5’h06  
5’h07  
5’h08  
5’h09  
5’h0A  
5’h0B  
5’h0C  
5’h0D  
5’h0E  
5’h0F  
5’h10  
5’h11  
5’h12  
5’h13  
5’h14  
5’h15  
5’h16  
5’h17  
5’h18  
5’h19  
5’h1A–5’h1F  
Ext Ctrl  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.5  
Reset  
000  
Factory-Programmed Default  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
Buck2 Target Voltage 2 Register (B2TV2) – 0X2A  
This register allows the user to program the output target voltage of Buck2.  
D7-5  
D4-0  
BK2_VOUT2  
Name  
Access  
Data  
R/W  
Reserved  
Buck2 Output Voltage (V)  
(1)  
5’h00  
5’h01  
5’h02  
5’h03  
5’h04  
5’h05  
5’h06  
5’h07  
5’h08  
5’h09  
5’h0A  
5’h0B  
5’h0C  
5’h0D  
5’h0E  
5’h0F  
5’h10  
5’h11  
5’h12  
5’h13  
5’h14  
5’h15  
5’h16  
5’h17  
5’h18  
5’h19  
5’h1A–5’h1F  
Ext Ctrl  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.5  
Reset  
000  
Factory-Programmed Default  
(1) If using Ext Ctrl, contact TI Sales for support.  
36  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
Buck2 Ramp Control Register (B2RC) - 0x2B  
This register allows the user to program the rate of change between the target voltages of Buck2.  
D7  
- - - -  
D6-4  
- - - -  
D3-0  
B2RS  
R/W  
Name  
Access  
Data  
- - - -  
- - - -  
Reserved  
Reserved  
Data Code  
4h'0  
Ramp Rate mV/us  
Instant  
4h'1  
1
2
4h'2  
4h'3  
3
4h'4  
4
4h'5  
5
4h'6  
6
4h'7  
7
4h'8  
8
4h'9  
9
4h'A  
10  
10  
4h'B - 4h'F  
Reset  
0
010  
1000  
Buck Runction Register (BFCR) – 0x38  
This register allows the Buck switcher clock frequency to be spread across a wider range, allowing for less  
Electro-magnetic Interference (EMI). The spread spectrum modulation frequency refers to the rate at which the  
frequency ramps up and down, centered at 2MHz.  
Spread Spectrum  
frequency  
Peak frequency deviation  
2 kHz triangle  
wave  
10 kHz triangle  
wave  
2 MHz  
Time  
Figure 46.  
This register also allows dynamic scaling of the nPOR Delay Timing. The LP3907 is equipped with an internal  
Power-On-Reset (“POR”) circuit which monitors the output voltage levels on the buck regulators, allowing the  
user to more actively monitor the power status of the chip.  
The Under Voltage Lock-Out feature continuously monitor the raw input supply voltage (VINLDO12) and  
automatically disables the four voltage regulators whenever this supply voltage is less than 2.8VDC. This  
prevents the user from damaging the power source (i.e. battery), but can be disabled if the user wishes.  
Note that if the supply to VDD_M is close to 2.8V with a heavy load current on the regulators, the chip is in  
danger of powering down due to UVLO. If the user wishes to keep the chip active under those conditions, enable  
the “Bypass UVLO” feature.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
D7-2  
D4  
BP_UVLO  
D3  
D1  
BK_SLOMOD  
D0  
Name  
Access  
Data  
TPOR  
R/w  
BK_SSEN  
R/W  
R/W  
R/W  
Reserved  
Bypass UVLO  
monitoring  
nPOR Delay Timing  
00 - 50µs  
Buck Spread Spectrum  
Modulation  
Spread Spectrum  
Function Output  
0 - Allow UVLO  
1 - Disable UVLO  
01 - 50ms  
10 - 100ms  
11 - 200ms  
0 – 10 kHz triangular wave 0 – Disabled  
1 – 2 kHz triangular wave  
1 – Enabled  
Reset  
000  
Factory-Programmed  
Default  
01  
1
0
LDO1 Control Register (LDO1VCR) – 0X39  
This register allows the user to program the output target voltage of LDO 1.  
For “JJ11” voltage options LDO1 has a fixed output voltage of 2.85V.  
D7-5  
D4-0  
LDO1_OUT  
R/W  
Name  
Access  
Data  
Reserved  
LDO1 Output voltage (V)  
5’h00  
5’h01  
5’h02  
5’h03  
5’h04  
5’h05  
5’h06  
5’h07  
5’h08  
5’h09  
5’h0A  
5’h0B  
5’h0C  
5’h0D  
5’h0E  
5’h0F  
5’h10  
5’h11  
5’h12  
5’h13  
5’h14  
5’h15  
5’h16  
5’h17  
5’h18  
5’h19  
5’h1A–5’h1F  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.5  
Reset  
000  
Factory-Programmed Default  
38  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
LDO2 Control Register (LDO2VCR) – 0X3A  
This register allows the user to program the output target voltage of LDO 2.  
For “JJ11” voltage options LDO2 has a fixed output voltage of 2.85V.  
D7-5  
D4-0  
Name  
Access  
Data  
LDO2_OUT  
R/W  
Reserved  
LDO2 Output voltage (V)  
5’h00  
5’h01  
5’h02  
5’h03  
5’h04  
5’h05  
5’h06  
5’h07  
5’h08  
5’h09  
5’h0A  
5’h0B  
5’h0C  
5’h0D  
5’h0E  
5’h0F  
5’h10  
5’h11  
5’h12  
5’h13  
5’h14  
5’h15  
5’h16  
5’h17  
5’h18  
5’h19  
5’h1A–5’h1F  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.5  
Reset  
000  
Factory-Programmed Default  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
APPLICATION DESCRIPTION  
Analog Power Signal Routing  
All power inputs should be tied to the main VDD source (for example, battery), unless the user wishes to power it  
from another source. (i.e. external LDO output).  
The analog VDD inputs power the internal bias and error amplifiers, so they should be tied to the main VDD. The  
analog VDD inputs must have an input voltage between 2.8 and 5.5V, as specified in the Electrical  
Characteristics Section in the front of the datasheet.  
The other VINs (VINLDO1, VINLDO2, VIN1, VIN2) can actually have inputs lower than 2.8V, as long as it's higher  
than the programmed output (+0.3V, to be safe).  
The analog and digital grounds should be tied together outside of the chip to reduce noise coupling.  
Component Selection  
Inductors for SW1 and SW2  
There are two main considerations when choosing an inductor; the inductor should not saturate and the inductor  
current ripple is small enough to achieve the desired output voltage ripple. Care should be taken when reviewing  
the different saturation current ratings that are specified by different manufacturers. Saturation current ratings are  
typically specified at 25ºC, so ratings at maximum ambient temperature of the application should be requested  
from the manufacturer.  
There are two methods to choose the inductor saturation current rating:  
Method 1:  
The saturation current is greater than the sum of the maximum load current and the worst case average to peak  
inductor current. This can be written as follows:  
Isat > Ioutmax + Iripple  
VIN - VOUT  
2L  
· x §VOUT  
·
¹
1
§ ·  
§
©
x
where  
Iripple  
= © f ¹  
V
¹ ©  
IN  
(5)  
IRIPPLE: Average to peak inductor current  
IOUTMAX: Maximum load current  
VIN: Maximum input voltage to the buck  
L:  
f:  
Min inductor value including worse case tolerances (30% drop can be considered for method 1)  
Minimum switching frequency (1.6 MHz)  
VOUT: Buck Output voltage  
Method 2:  
A more conservative and recommended approach is to choose an inductor that has saturation current rating  
greater than the maximum current limit of 1250mA for Buck1 and 1750mA for Buck2.  
Given a peak-to-peak current ripple (IPP) the inductor needs to be at least  
VIN - VOUT  
IPP  
· x §VOUT  
·
¹
§ ·  
1
© f ¹  
§
©
x
L t  
V
¹ ©  
IN  
(6)  
Inductor  
Value  
2.2  
Unit  
Description  
Notes  
LSW1,2  
µH  
SW1,2 inductor  
D.C.R. 70mΩ  
40  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
External Capacitors  
The regulators on the LP3907 require external capacitors for regulator stability. These are specifically designed  
for portable applications requiring minimum board space and smallest components. These capacitors must be  
correctly selected for good performance.  
LDO Capacitor Selection  
Input Capacitor  
An input capacitor is required for stability. It is recommended that a 1.0μF capacitor be connected between the  
LDO input pin and ground (this capacitance value may be increased without limit).  
This capacitor must be located a distance of not more than 1cm from the input pin and returned to a clean  
analog ground. Any good quality ceramic, tantalum, or film capacitor may be used at the input.  
Important: Tantalum capacitors can suffer catastrophic failures due to surge currents when connected to a low  
impedance source of power (like a battery or a very large capacitor). If a tantalum capacitor is used at the input,  
it must be ensured by the manufacturer to have a surge current rating sufficient for the application.  
There are no requirements for the ESR (Equivalent Series Resistance) on the input capacitor, but tolerance and  
temperature coefficient must be considered when selecting the capacitor to ensure the capacitance will remain  
approximately 1.0μF over the entire operating temperature range.  
Output Capacitor  
The LDOs on the LP3907 are designed specifically to work with very small ceramic output capacitors. A 0.47µF  
ceramic capacitor (temperature types Z5U, Y5V or X7R) with ESR between 5 mto 500m, is suitable in the  
application circuit.  
It is also possible to use tantalum or film capacitors at the device output, COUT (or VOUT), but these are not as  
attractive for reasons of size and cost.  
The output capacitor must meet the requirement for the minimum value of capacitance and also have an ESR  
value that is within the range 5 mto 500 mfor stability.  
Capacitor Characteristics  
The LDOs are designed to work with ceramic capacitors on the output to take advantage of the benefits they  
offer. For capacitance values in the range of 0.47µF to 4.7µF, ceramic capacitors are the smallest, least  
expensive and have the lowest ESR values, thus making them best for eliminating high frequency noise. The  
ESR of a typical 1.0µF ceramic capacitor is in the range of 20mto 40m, which easily meets the ESR  
requirement for stability for the LDOs.  
For both input and output capacitors, careful interpretation of the capacitor specification is required to ensure  
correct device operation. The capacitor value can change greatly, depending on the operating conditions and  
capacitor type.  
In particular, the output capacitor selection should take account of all the capacitor parameters, to ensure that the  
specification is met within the application. The capacitance can vary with DC bias conditions as well as  
temperature and frequency of operation. Capacitor values will also show some decrease over time due to aging.  
The capacitor parameters are also dependent on the particular case size, with smaller sizes giving poorer  
performance figures in general. As an example, below is typical graph comparing different capacitor case sizes in  
a Capacitance vs. DC Bias plot.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
0603, 10V, X5R  
100%  
80%  
60%  
40%  
20%  
0402, 6.3V, X5R  
0
1.0  
2.0  
3.0  
4.0  
5.0  
DC BIAS (V)  
Figure 47. Graph Showing a Typical Variation in Capacitance vs. DC Bias  
As shown in the graph, increasing the DC Bias condition can result in the capacitance value that falls below the  
minimum value given in the recommended capacitor specifications table. Note that the graph shows the  
capacitance out of spec for the 0402 case size capacitor at higher bias voltages. It is therefore recommended  
that the capacitor manufacturers' specifications for the nominal value capacitor are consulted for all conditions,  
as some capacitor sizes (e.g. 0402) may not be suitable in the actual application.  
The ceramic capacitor’s capacitance can vary with temperature. The capacitor type X7R, which operates over a  
temperature range of 55°C to +125°C, will only vary the capacitance to within ±15%. The capacitor type X5R  
has a similar tolerance over a reduced temperature range of 55°C to +85°C. Many large value ceramic  
capacitors, larger than 1µF are manufactured with Z5U or Y5V temperature characteristics. Their capacitance  
can drop by more than 50% as the temperature varies from 25°C to 85°C. Therefore X7R is recommended over  
Z5U and Y5V in applications where the ambient temperature will change significantly above or below 25°C.  
Tantalum capacitors are less desirable than ceramic for use as output capacitors because they are more  
expensive when comparing equivalent capacitance and voltage ratings in the 0.47µF to 4.7µF range.  
Another important consideration is that tantalum capacitors have higher ESR values than equivalent size  
ceramics. This means that while it may be possible to find a tantalum capacitor with an ESR value within the  
stable range, it would have to be larger in capacitance (which means bigger and more costly) than a ceramic  
capacitor with the same ESR value. It should also be noted that the ESR of a typical tantalum will increase about  
2:1 as the temperature goes from 25°C down to 40°C, so some guard band must be allowed.  
Input Capacitor Selection for SW1 and SW2  
A ceramic input capacitor of 10µF, 6.3V is sufficient for the magnetic dc/dc converters. Place the input capacitor  
as close as possible to the input of the device. A large value may be used for improved input voltage filtering.  
The recommended capacitor types are X7R or X5R. Y5V type capacitors should not be used. DC bias  
characteristics of ceramic capacitors must be considered when selecting case sizes like 0805 and 0603. The  
input filter capacitor supplies current to the PFET switch of the dc/dc converter in the first half of each cycle and  
reduces voltage ripple imposed on the input power source. A ceramic capacitor’s low ESR (Equivalent Series  
Resistance) provides the best noise filtering of the input voltage spikes due to fast current transients. A capacitor  
with sufficient ripple current rating should be selected. The Input current ripple can be calculated as:  
r2  
VOUT  
§
©
·
¹
(Vin ± Vout) x Vout  
Irms = Ioutmax  
1 +  
where  
r =  
VIN  
12  
L x f x Ioutmax x Vin  
(7)  
The worse case is when VIN = 2VOUT  
.
42  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
Output Capacitor Selection for SW1, SW2  
A 10μF, 6.3V ceramic capacitor should be used on the output of the sw1 and sw2 magnetic dc/dc converters.  
The output capacitor needs to be mounted as close as possible to the output of the device. A large value may be  
used for improved input voltage filtering. The recommended capacitor types are X7R or X5R. Y5V type  
capacitors should not be used. DC bias characteristics of ceramic capacitors must be considered when selecting  
case sizes like 0805 and 0603. DC bias characteristics vary from manufacturer to manufacturer and DC bias  
curves should be requested from them and analyzed as part of the capacitor selection process.  
The output filter capacitor of the magnetic dc/dc converter smooths out current flow from the inductor to the load,  
helps maintain a steady output voltage during transient load changes and reduces output voltage ripple. These  
capacitors must be selected with sufficient capacitance and sufficiently low ESD to perform these functions.  
The output voltage ripple is caused by the charging and discharging of the output capacitor and also due to its  
ESR and can be calculated as follows:  
Iripple  
Vpp-c  
=
4 x f x C  
(8)  
(9)  
Voltage peak-to-peak ripple due to ESR can be expressed as follows:  
VPP–ESR = 2 × IRIPPLE × RESR  
Because the VPP-C and VPP-ESR are out of phase, the rms value can be used to get an approximate value of the  
peak-to-peak ripple:  
Vpp-c2 + Vpp-esr  
2
Vpp-rms  
=
(10)  
Note that the output voltage ripple is dependent on the inductor current ripple and the equivalent series  
resistance of the output capacitor (RESR). The RESR is frequency dependent as well as temperature dependent.  
The RESR should be calculated with the applicable switching frequency and ambient temperature.  
Capacitor  
Min Value  
0.47  
Unit  
µF  
Description  
LDO1 output capacitor  
LDO2 output capacitor  
SW1 output capacitor  
SW2 output capacitor  
Recommended Type  
Ceramic, 6.3V, X5R  
CLDO1  
CLDO2  
CSW1  
CSW2  
0.47  
µF  
Ceramic, 6.3V, X5R  
Ceramic, 6.3V, X5R  
Ceramic, 6.3V, X5R  
10.0  
µF  
10.0  
µF  
I2C Pull-up Resistor  
Both SDA and SCL terminals need to have pull-up resistors connected to VINLDO12 or to the power supply of  
the I2C master. The values of the pull-up resistors (typ. 1.8k) are determined by the capacitance of the bus.  
Too large of a resistor combined with a given bus capacitance will result in a rise time that would violate the max.  
rise time specification. A too small resistor will result in a contention with the pull-down transistor on either  
slave(s) or master.  
Operation without I2C Interface  
Operation of the LP3907 without the I2C interface is possible if the system can operate with default values for the  
LDO and Buck regulators. (Read below: Factory programmable options). The I2C-less system must rely on the  
correct default output values of the LDO and Buck converters.  
Factory Programmable Options  
The following options are EPROM programmed during final test of the LP3907. The system designer that needs  
specific options is advised to contact the TI sales office.  
Factory programmable options  
Enable delay for power on  
Current value  
code 010 (see Control 1 Register (SCR1) 0X07)  
SW1 ramp speed  
SW2 ramp speed  
8 mV/µs  
8 mV/µs  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: LP3907  
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
The I2C Chip ID address is offered as a metal mask option. The current address for the WQFN chip equals 0x60,  
while the address for the DSBGA chip is 0x61.  
High VIN High-Load Operation  
Additional information is provided when the IC is operated at extremes of VIN and regulator loads. These are  
described in terms of the Junction temperature and, Buck output ripple management.  
Junction Temperature  
The maximum junction temperature TJ-MAX-OP of 125°C of the IC package.  
The following equations demonstrate junction temperature determination, ambient temperature TA-MAX and Total  
chip power must be controlled to keep TJ below this maximum:  
TJ-MAX-OP = TA-MAX + (θJA) [°C/ Watt] * (PD-MAX) [Watts]  
Total IC power dissipation PD-MAX is the sum of the individual power dissipation of the four regulators plus a minor  
amount for chip overhead. Chip overhead is Bias, TSD & LDO analog.  
PD-MAX = PLDO1 + PLD02 + PBUCK1 + PBUCK2 + (0.0001A * VIN) [Watts].  
Power dissipation of LDO1  
PLDO1 = (VINLDO1- VOUTLDO1) * IoutLDO1 [V*A]  
Power dissipation of LDO2  
PLDO2 = (VINLDO2 - VoutLDO2) * IoutLDO2 [V*A]  
Power dissipation of Buck1  
PBuck1 = PIN – POUT  
=
VoutBuck1* IoutBuck1 * (1 -η1) / η1 [V*A]  
η1 = efficiency of buck 1  
Power dissipation of Buck2  
PBuck2 = PIN – POUT  
=
VoutBuck2 * IoutBuck2 * (1 - η2) / η2 [V*A]  
η2 = efficiency of Buck2  
Where η is the efficiency for the specific condition taken from efficiency graphs.  
44  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
LP3907  
www.ti.com  
SNVS511O JUNE 2007REVISED MAY 2013  
Thermal Performance of the WQFN Package  
The LP3907 is a monolithic device with integrated power FETs. For that reason, it is important to pay special  
attention to the thermal impedance of the WQFN package and to the PCB layout rules in order to maximize  
power dissipation of the WQFN package.  
The WQFN package is designed for enhanced thermal performance and features an exposed die attach pad at  
the bottom center of the package that creates a direct path to the PCB for maximum power dissipation.  
Compared to the traditional leaded packages where the die attach pad is embedded inside the molding  
compound, the WQFN reduces one layer in the thermal path.  
The thermal advantage of the WQFN package is fully realized only when the exposed die attach pad is soldered  
down to a thermal land on the PCB board with thermal vias planted underneath the thermal land. Based on  
thermal analysis of the WQFN package, the junction-to-ambient thermal resistance (θJA) can be improved by a  
factor of two when the die attach pad of the WQFN package is soldered directly onto the PCB with thermal land  
and thermal vias, as opposed to an alternative with no direct soldering to a thermal land. Typical pitch and outer  
diameter for thermal vias are 1.27mm and 0.33mm respectively. Typical copper via barrel plating is 1oz, although  
thicker copper may be used to further improve thermal performance. The LP3907 die attach pad is connected to  
the substrate of the IC, and therefore, the thermal land and vias on the PCB board need to be connected to  
ground (GND pin).  
For more information on board layout techniques, refer to Application Note AN–1187 “Leadless Lead Frame  
Package (LLP)” SNOA401 on http://www.ti.com This application note also discusses package handling, solder  
stencil and the assembly process.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: LP3907  
 
LP3907  
SNVS511O JUNE 2007REVISED MAY 2013  
www.ti.com  
REVISION HISTORY  
Changes from Revision N (May 2013) to Revision O  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 45  
46  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LP3907  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-May-2013  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
LP3907QSQ-JJXP/NOPB  
LP3907QSQ-JXI7/NOPB  
LP3907QSQ-JXIP/NOPB  
LP3907QSQX-JJXP/NOPB  
LP3907QSQX-JXI7/NOPB  
LP3907QSQX-JXIP/NOPB  
LP3907QTL-VXSS/NOPB  
LP3907QTLX-VXSS/NOPB  
LP3907SQ-BFX6W/NOPB  
LP3907SQ-BJX6X/NOPB  
LP3907SQ-BJXIX/NOPB  
LP3907SQ-BJXQX/NOPB  
LP3907SQ-BJYQX/NOPB  
LP3907SQ-JXQX/NOPB  
LP3907SQ-PFX6W/NOPB  
LP3907SQ-PJXIX/NOPB  
LP3907SQ-PXPP/NOPB  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
DSBGA  
DSBGA  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RTW  
24  
24  
24  
24  
24  
24  
25  
25  
24  
24  
24  
24  
24  
24  
24  
24  
24  
1000  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
SNAGCU  
SNAGCU  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
07QJJXP  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
RTW  
RTW  
RTW  
RTW  
RTW  
YZR  
1000  
1000  
4500  
4500  
4500  
250  
Green (RoHS  
& no Sb/Br)  
07QJXI7  
07QJXIP  
07QJJXP  
07QJXI7  
07QJXIP  
V025  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
YZR  
3000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
Green (RoHS  
& no Sb/Br)  
V025  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
Green (RoHS  
& no Sb/Br)  
7BFX6W  
07BJX6X  
07BJXIX  
07BJXQX  
07BJYQX  
07-JXQX  
7PFX6W  
07PJXIX  
07-PXPP  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-May-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
LP3907SQ-VRZX/NOPB  
LP3907SQX-BFX6W/NOPB  
LP3907SQX-BJX6X/NOPB  
LP3907SQX-BJXIX/NOPB  
LP3907SQX-BJXQX/NOPB  
LP3907SQX-BJYQX/NOPB  
LP3907SQX-JXQX/NOPB  
LP3907SQX-PFX6W/NOPB  
LP3907SQX-PJXIX/NOPB  
LP3907SQX-PXPP/NOPB  
LP3907SQX-VRZX/NOPB  
LP3907TL-JJ11/NOPB  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
RTW  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
25  
25  
25  
25  
25  
25  
25  
1000  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
07-VRZX  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
250  
Green (RoHS  
& no Sb/Br)  
7BFX6W  
07BJX6X  
07BJXIX  
07BJXQX  
07BJYQX  
07-JXQX  
7PFX6W  
07PJXIX  
07-PXPP  
07-VRZX  
V013  
Green (RoHS  
& no Sb/Br)  
CU SN  
Green (RoHS  
& no Sb/Br)  
CU SN  
Green (RoHS  
& no Sb/Br)  
CU SN  
Green (RoHS  
& no Sb/Br)  
CU SN  
Green (RoHS  
& no Sb/Br)  
CU SN  
Green (RoHS  
& no Sb/Br)  
CU SN  
Green (RoHS  
& no Sb/Br)  
CU SN  
Green (RoHS  
& no Sb/Br)  
CU SN  
Green (RoHS  
& no Sb/Br)  
CU SN  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
LP3907TL-JJCP/NOPB  
250  
Green (RoHS  
& no Sb/Br)  
V016  
LP3907TL-JSXS/NOPB  
LP3907TL-PLNTO/NOPB  
LP3907TLX-JJ11/NOPB  
LP3907TLX-JJCP/NOPB  
LP3907TLX-JSXS/NOPB  
250  
Green (RoHS  
& no Sb/Br)  
V012  
250  
Green (RoHS  
& no Sb/Br)  
V027  
3000  
3000  
3000  
Green (RoHS  
& no Sb/Br)  
V013  
Green (RoHS  
& no Sb/Br)  
V016  
Green (RoHS  
& no Sb/Br)  
V012  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-May-2013  
Orderable Device  
LP3907TLX-PLNTO/NOPB  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Top-Side Markings  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4)  
ACTIVE  
DSBGA  
YZR  
25  
3000  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
V027  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4)  
Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LP3907, LP3907-Q1 :  
Catalog: LP3907  
Automotive: LP3907-Q1  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-May-2013  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Oct-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP3907QSQ-JJXP/NOPB WQFN  
LP3907QSQ-JXI7/NOPB WQFN  
LP3907QSQ-JXIP/NOPB WQFN  
RTW  
RTW  
RTW  
RTW  
24  
24  
24  
24  
1000  
1000  
1000  
4500  
178.0  
178.0  
178.0  
330.0  
12.4  
12.4  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
1.3  
1.3  
1.3  
1.3  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
LP3907QSQX-JJXP/NOP WQFN  
B
LP3907QSQX-JXI7/NOPB WQFN  
LP3907QSQX-JXIP/NOPB WQFN  
LP3907QTL-VXSS/NOPB DSBGA  
RTW  
RTW  
YZR  
YZR  
24  
24  
25  
25  
4500  
4500  
250  
330.0  
330.0  
178.0  
178.0  
12.4  
12.4  
8.4  
4.3  
4.3  
4.3  
4.3  
1.3  
1.3  
8.0  
8.0  
4.0  
4.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q1  
Q1  
2.69  
2.69  
2.69  
2.69  
0.76  
0.76  
LP3907QTLX-VXSS/NOP DSBGA  
B
3000  
8.4  
8.0  
LP3907SQ-BFX6W/NOPB WQFN  
LP3907SQ-BJX6X/NOPB WQFN  
LP3907SQ-BJXIX/NOPB WQFN  
LP3907SQ-BJXQX/NOPB WQFN  
LP3907SQ-BJYQX/NOPB WQFN  
LP3907SQ-JXQX/NOPB WQFN  
LP3907SQ-PFX6W/NOPB WQFN  
LP3907SQ-PJXIX/NOPB WQFN  
LP3907SQ-PXPP/NOPB WQFN  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
24  
24  
24  
24  
24  
24  
24  
24  
24  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Oct-2013  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP3907SQ-VRZX/NOPB WQFN  
RTW  
RTW  
24  
24  
1000  
4500  
178.0  
330.0  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
1.3  
1.3  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
LP3907SQX-BFX6W/NOP WQFN  
B
LP3907SQX-BJX6X/NOP WQFN  
B
RTW  
24  
4500  
330.0  
12.4  
4.3  
4.3  
1.3  
8.0  
12.0  
Q1  
LP3907SQX-BJXIX/NOPB WQFN  
RTW  
RTW  
24  
24  
4500  
4500  
330.0  
330.0  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
1.3  
1.3  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
LP3907SQX-BJXQX/NOP WQFN  
B
LP3907SQX-BJYQX/NOP WQFN  
B
RTW  
24  
4500  
330.0  
12.4  
4.3  
4.3  
1.3  
8.0  
12.0  
Q1  
LP3907SQX-JXQX/NOPB WQFN  
RTW  
RTW  
24  
24  
4500  
4500  
330.0  
330.0  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
1.3  
1.3  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
LP3907SQX-PFX6W/NOP WQFN  
B
LP3907SQX-PJXIX/NOPB WQFN  
LP3907SQX-PXPP/NOPB WQFN  
LP3907SQX-VRZX/NOPB WQFN  
LP3907TL-JJ11/NOPB DSBGA  
LP3907TL-JJCP/NOPB DSBGA  
LP3907TL-JSXS/NOPB DSBGA  
LP3907TL-PLNTO/NOPB DSBGA  
LP3907TLX-JJ11/NOPB DSBGA  
LP3907TLX-JJCP/NOPB DSBGA  
LP3907TLX-JSXS/NOPB DSBGA  
RTW  
RTW  
RTW  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
24  
24  
24  
25  
25  
25  
25  
25  
25  
25  
25  
4500  
4500  
4500  
250  
330.0  
330.0  
330.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
12.4  
12.4  
12.4  
8.4  
4.3  
4.3  
4.3  
4.3  
1.3  
1.3  
8.0  
8.0  
8.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
12.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
4.3  
4.3  
1.3  
2.69  
2.69  
2.69  
2.69  
2.69  
2.69  
2.69  
2.69  
2.69  
2.69  
2.69  
2.69  
2.69  
2.69  
2.69  
2.69  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
250  
8.4  
8.0  
250  
8.4  
8.0  
250  
8.4  
8.0  
3000  
3000  
3000  
3000  
8.4  
8.0  
8.4  
8.0  
8.4  
8.0  
LP3907TLX-PLNTO/NOP DSBGA  
B
8.4  
8.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Oct-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP3907QSQ-JJXP/NOPB  
LP3907QSQ-JXI7/NOPB  
LP3907QSQ-JXIP/NOPB  
LP3907QSQX-JJXP/NOPB  
LP3907QSQX-JXI7/NOPB  
LP3907QSQX-JXIP/NOPB  
LP3907QTL-VXSS/NOPB  
LP3907QTLX-VXSS/NOPB  
LP3907SQ-BFX6W/NOPB  
LP3907SQ-BJX6X/NOPB  
LP3907SQ-BJXIX/NOPB  
LP3907SQ-BJXQX/NOPB  
LP3907SQ-BJYQX/NOPB  
LP3907SQ-JXQX/NOPB  
LP3907SQ-PFX6W/NOPB  
LP3907SQ-PJXIX/NOPB  
LP3907SQ-PXPP/NOPB  
LP3907SQ-VRZX/NOPB  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
DSBGA  
DSBGA  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
YZR  
24  
24  
24  
24  
24  
24  
25  
25  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
1000  
1000  
1000  
4500  
4500  
4500  
250  
210.0  
210.0  
210.0  
367.0  
367.0  
367.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
367.0  
185.0  
185.0  
185.0  
367.0  
367.0  
367.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
YZR  
3000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
4500  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
RTW  
LP3907SQX-BFX6W/NOP  
B
LP3907SQX-BJX6X/NOPB  
WQFN  
RTW  
24  
4500  
367.0  
367.0  
35.0  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Oct-2013  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP3907SQX-BJXIX/NOPB  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
4500  
4500  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
LP3907SQX-BJXQX/NOP  
B
LP3907SQX-BJYQX/NOP  
B
WQFN  
RTW  
24  
4500  
367.0  
367.0  
35.0  
LP3907SQX-JXQX/NOPB  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
4500  
4500  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
LP3907SQX-PFX6W/NOP  
B
LP3907SQX-PJXIX/NOPB  
LP3907SQX-PXPP/NOPB  
LP3907SQX-VRZX/NOPB  
LP3907TL-JJ11/NOPB  
WQFN  
WQFN  
RTW  
RTW  
RTW  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
24  
24  
24  
25  
25  
25  
25  
25  
25  
25  
25  
4500  
4500  
4500  
250  
367.0  
367.0  
367.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
367.0  
367.0  
367.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
WQFN  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
LP3907TL-JJCP/NOPB  
LP3907TL-JSXS/NOPB  
LP3907TL-PLNTO/NOPB  
LP3907TLX-JJ11/NOPB  
LP3907TLX-JJCP/NOPB  
LP3907TLX-JSXS/NOPB  
LP3907TLX-PLNTO/NOPB  
250  
250  
250  
3000  
3000  
3000  
3000  
Pack Materials-Page 4  
MECHANICAL DATA  
RTW0024A  
SQA24A (Rev B)  
www.ti.com  
MECHANICAL DATA  
YZR0025xxx  
0.600±0.075  
D
E
TLA25XXX (Rev D)  
D: Max = 2.521 mm, Min = 2.46 mm  
E: Max = 2.521 mm, Min = 2.46 mm  
4215055/A  
12/12  
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.  
B. This drawing is subject to change without notice.  
NOTES:  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

LP3907SQ-TJXIP/NOPB

LP3907 具有 I2C 接口的双路 1A 和 600mA 降压转换器和双路 300mA LDO | RTW | 24 | -40 to 85
TI

LP3907SQX-JIXI

Dual High-Current Step-Down DC/DC and Dual Linear Regulator with I2C Compatible Interface
INTERSIL

LP3907SQX-JXQX

Dual High-Current Step-Down DC/DC and Dual Linear Regulator with I2C Compatible Interface
NSC

LP3907SQX-JXQX

Dual High-Current Step-Down DC/DC and Dual Linear Regulator with I2C Compatible Interface
INTERSIL

LP3907SQX-PXPP

Dual High-Current Step-Down DC/DC and Dual Linear Regulator with I2C Compatible Interface
INTERSIL

LP3907TL-JJ11/NOPB

LP3907 具有 I2C 接口的双路 1A 和 600mA 降压转换器和双路 300mA LDO | YZR | 25 | -40 to 85
TI

LP3907TL-JJCP/NOPB

LP3907 具有 I2C 接口的双路 1A 和 600mA 降压转换器和双路 300mA LDO | YZR | 25 | -40 to 85
TI

LP3907TL-JSXS

Dual High-Current Step-Down DC/DC and Dual Linear Regulator with I2C Compatible Interface
INTERSIL

LP3907TL-JSXS/NOPB

LP3907 具有 I2C 接口的双路 1A 和 600mA 降压转换器和双路 300mA LDO | YZR | 25 | -40 to 85
TI

LP3907TL-PLNTO/NOPB

LP3907 具有 I2C 接口的双路 1A 和 600mA 降压转换器和双路 300mA LDO | YZR | 25 | -40 to 85
TI

LP3907TLX-JJ11/NOPB

LP3907 具有 I2C 接口的双路 1A 和 600mA 降压转换器和双路 300mA LDO | YZR | 25 | -40 to 85
TI

LP3907TLX-JSXS/NOPB

IC 1.5 A DUAL SWITCHING CONTROLLER, 2100 kHz SWITCHING FREQ-MAX, PBGA25, 2.50 X 2.50 MM, MICRO, SMD-25, Switching Regulator or Controller
NSC