LP3971 [TI]

Power Management Unit for Advanced Application Processors;
LP3971
型号: LP3971
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Power Management Unit for Advanced Application Processors

文件: 总54页 (文件大小:1380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
LP3971 Power Management Unit for Advanced Application Processors  
Check for Samples: LP3971  
1
FEATURES  
KEY SPECIFICATIONS  
2
Compatible with Advanced Applications  
Processors Requiring DVM (Dynamic Voltage  
Management)  
Buck Regulators  
Programmable VOUT from 0.725 to 3.3V  
Up to 95% Efficiency  
Three Buck Regulators for Powering High  
Current Processor Functions or I/O's  
Up to 1.6A Output Current  
±3% Output Voltage Accuracy  
6 LDO's for Powering RTC, Peripherals, and  
I/O's  
LDO’s  
Programmable VOUT of 1.0V–3.3V  
Backup Battery Charger with Automatic  
Switch for Lithium-Manganese Coin Cell  
Batteries and Super Capacitors  
I2C Compatible High Speed Serial Interface  
±3% output voltage accuracy  
150/300/370 mA output currents  
LDO RTC 30 mA  
LDO 1 300 mA  
LDO 2 150 mA  
LDO 3 150 mA  
LDO 4 150 mA  
LDO 5 370 mA  
Software Control of Regulator Functions and  
Settings  
Precision Internal Reference  
Thermal Overload Protection  
Current Overload Protection  
Tiny 40-pin 5x5 mm WQFN Package  
100 mV (typ) dropout  
APPLICATIONS  
DESCRIPTION  
The LP3971 is a multi-function, programmable Power  
Management Unit, designed especially for advanced  
application processors. The LP3971 is optimized for  
low power handheld applications and provides 6 low  
dropout, low noise linear regulators, three DC/DC  
magnetic buck regulators, a back-up battery charger  
and two GPIO’s. A high speed serial interface is  
included to program individual regulator output  
voltages as well as on/off control.  
PDA Phones  
Smart Phones  
Personal Media Players  
Digital Cameras  
Application Processors  
Marvell PXA  
Freescale  
Samsung  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2006–2013, Texas Instruments Incorporated  
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
Simplified Application Circuit  
V
IN  
Back-up  
Battery  
+
-
LDO1  
BUCK1  
BUCK2  
BUCK3  
LDO2  
LDO3  
LP3971 PMU  
LDO4  
LDO5  
RTC  
Figure 1.  
2
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
 
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
Li-ion/polymer cell  
+
See notes  
Cvdd  
4.7 mF  
LP3971 PMIC  
SYNC  
35  
VIN VDDA  
APPLICATION  
PROCESSOR  
DC SOURCE  
4.5 œ 5.5V  
27  
20  
6
40  
26 14  
31  
Cchg_det  
4.7 mF  
Clock  
divider  
37  
PWR_EN  
Lsw1 2.2 mH  
COMP  
39  
CPU  
SW1  
CORE  
BUCK1  
BUCK2  
EOC  
10 mF  
VBUCK2  
10 mF  
VFB1  
5
VinBUBATT  
15  
Lsw2 2.2 mH  
19  
VoutLDO_RTC  
Vout  
Switch  
SW2  
VFB2  
USB  
23  
32  
Lsw3 2.2 mH  
PWR_ON  
1
UART  
SW3  
BUCK3  
VFB3  
10 mF  
28  
OSC  
SYS_EN  
36  
VoutLDO1  
BG  
MVT  
VIN  
GPIO1/nCHG_EN  
29  
LDO1  
Wake up  
7
Cldo2  
0.47 mF  
2
30  
3
nTEST_JIG  
GPIO2  
AP_IO  
Power  
ON-OFF  
Logic  
VoutLDO3  
LDO3  
LDO4  
12  
Cldo3  
0.47 mF  
SPARE  
nRSTI  
VoutLDO4  
VinLDO4  
VinLDO5  
PLL  
9
13  
Cldo4  
0.47 mF  
RESET  
PWR_EN  
Logic Control  
and registers  
Internal HW reset for  
test purposes  
VoutLDO5  
SRAM  
RTC  
LDO5  
25  
Cldo5  
0.47 mF  
SYS_EN  
VIN  
VoutLDO_RTC  
16  
LDORTC  
CldoRTC  
VoutLDO2  
8
1.0 mF  
See notes  
LDO2  
CODEC  
Cldo1  
1.0 mF  
Power On  
Reset  
3.3V  
Vout Switch  
VDDA  
10k  
I2C_SCL  
22  
21  
I2C  
Thermal  
Shutdown  
10k  
I2C_SDA  
BIAS  
vref  
24  
nRSTO  
4
EXT_WAKEUP  
nBATT_FLT  
17  
11  
18  
33  
34  
38  
VREF  
10  
Cvrefh  
10 nF  
PGND1 PGND2 PGND3  
BGND1,2,3 GND1  
The I2C lines are pulled up via a I/O source  
VINLDO4, 5 can either be powered from main battery source, or by a buck regulator or VIN  
.
Figure 2.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LP3971  
 
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
Connection Diagrams  
Figure 3. 40-Pin WQFN  
Package Number RSB0040A  
30 29 28 27 26 25 24 23 22 21  
21 22 23 24 25 26 27 28 29 30  
31  
32  
20  
19  
18  
20  
19  
18  
31  
32  
33  
34  
33  
34  
17  
16  
15  
14  
17  
16  
15  
14  
35  
36  
37  
35  
36  
37  
38  
39  
40  
13  
12  
11  
13  
12  
11  
38  
39  
40  
1
2
3
4
5
6
7
8
9
10  
10  
9
8
7
6
5
4
3
2
1
Top View  
Bottom View  
Note: Circle marks Pin 1 position.  
Table 1. Default VOUT Coding  
Z
0
1
2
3
4
5
6
7
8
9
A
Y
Default VOUT  
1.3  
1.8  
2.5  
2.8  
3.0  
3.3  
1.0  
1.4  
1.2  
1.25  
1.35  
Default Enable Option:  
SYS_EN or PWR_EN  
Pin Descriptions(1)  
Pin #  
Name  
I/O  
Type  
Description  
1
PWR_ON  
I
D
This is an active HI push button input which can be used to signal PWR_ON  
and PWR_OFF events to the CPU by controlling the ext_wakup [pin4] and  
select contents of register 8H'02  
2
3
nTEST_JIG  
SPARE  
I
I
D
D
This is an active LOW input signal used for detecting an external HW event. The  
response is seen in the ext_wakup [pin4] and select contents of register 8H'02  
This is an input signal used for detecting a external HW event. The response is  
seen in the ext_wakup [pin4] and select contents of register 8H'02. The polarity  
on this pin is assignable  
4
EXT_WAKEUP  
O
D
This pin generates a single 10mS pulse output to CPU in response to input from  
pin[s] 1, 2, and 3. Flags CPU to interrogate register 8H'02  
5
6
7
8
FB1  
VIN  
I
A
Buck1 input feedback terminal  
Battery Input (Internal circuitry and LDO1-3 power input)  
LDO1 output  
I
PWR  
PWR  
PWR  
VOUT LDO1  
VOUT LDO2  
O
O
LDO2 output  
(1) A: Analog Pin D: Digital Pin G: Ground Pin P: Power Pin I: Input Pin I/O: Input/Output Pin O: Output Pin  
Note: In this document active low logic items are prefixed with a lowercase “n”  
4
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
Pin Descriptions(1) (continued)  
Pin #  
Name  
I/O  
Type  
Description  
9
nRSTI  
I
D
Active low Reset pin. Signal used to reset the IC (by default is pulled high  
internally). Typically a push button reset.  
10  
11  
12  
13  
14  
GND1  
VREF  
G
O
O
O
I
G
Ground  
A
Bypass Cap. for the high internal impedance reference.  
VOUT LDO3  
VOUT LDO4  
VIN LDO4  
PWR  
PWR  
PWR  
LDO3 output  
LDO4 output  
Power input to LDO4, this can be connected to either from a 1.8V supply to  
main Battery supply.  
15  
16  
17  
VIN BUBATT  
VOUT LDO_RTC  
nBATT_FLT  
I
PWR  
PWR  
D
Back Up Battery input supply.  
O
O
LDO_RTC output supply to the RTC of the application processor.  
Main Battery fault output, indicates the main battery is low  
(discharged) or the dc source has been removed from the system. This gives  
the processor an indicator that the power will shut down. During this time the  
processor will operate from the back up coin cell.  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
PGND2  
SW2  
G
O
I
G
PWR  
PWR  
D
Buck2 NMOS Power Ground  
Buck2 switcher output  
VIN Buck2  
SDA  
Battery input power to Buck2  
I2C Data (Bidirectional)  
I2C Clock  
I/O  
I
SCL  
D
FB2  
I
A
Buck2 input feedback terminal  
Reset output from the PMIC to the processor  
LDO5 output  
nRSTO  
VOUT LDO5  
VIN LDO5  
VDDA  
O
O
I
D
PWR  
PWR  
PWR  
A
Power input to LDO5, this can be connected to VIN or to a separate 1.8V supply.  
Analog Power for VREF, BIAS  
Buck3 Feedback  
I
FB3  
I
GPIO1 /  
nCHG_EN  
I/O  
D
General Purpose I/O / Ext. backup battery charger enable pin. This pin enables  
the main battery / DC source power to charge the backup battery. This pin  
toggled via the application processor. By grounding this pin the DC source  
continuously charges the backup battery  
30  
31  
32  
33  
34  
35  
GPIO2  
VIN Buck3  
SW3  
I/O  
I
D
PWR  
PWR  
G
General Purpose I/O  
Battery input power to Buck3  
Buck3 switcher output  
O
G
G
I
PGND3  
BGND1,2,3  
SYNC  
Buck3 NMOS Power Ground  
Bucks 1, 2 and 3 analog Ground  
G
D
Frequency Synchronization: Connection to an external clock signal PLL to  
synchronize the PMIC internal oscillator.  
Input Digital enable pin for the high voltage power domain supplies. Output from  
the Monahans processor.  
36  
SYS_EN  
I
D
Digital enable pin for the Low Voltage domain supplies. Output signal from the  
Monahans processor  
37  
38  
39  
40  
PWR_EN  
PGND1  
SW1  
I
D
G
O
I
G
Buck1 NMOS Power Ground  
Buck1 Switcher output  
PWR  
PWR  
VIN Buck1  
Battery input power to Buck1  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LP3971  
 
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
Absolute Maximum Ratings(1)(2)  
All Inputs  
0.3V to +6.5V  
±0.3V  
GND to GND SLUG  
Junction Temperature (TJ-MAX  
Storage Temperature  
Power Dissipation  
)
150°C  
65°C to +150°C  
(3)  
(TA = 70°C)  
3.2W  
Junction-to-Ambient Thermal  
(3)  
Resistance θJA  
25°C/W  
260°C  
Maximum Lead Temp (Soldering)  
(4)  
ESD Rating  
Human Body Model  
Machine Model  
2 kV  
200V  
(1) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.  
(2) Absolute Maximum Ratings are limits beyond which damage to the device may occur. Operating Ratings are conditions under which  
operation of the device is specified. Operating Ratings do not imply performance limits. For performance limits and associated test  
conditions, see the Electrical Characteristics tables.  
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-  
OP = 125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance  
of the part/package in the application (θJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (θJA x PD-MAX).  
(4) The Human body model is a 100 pF capacitor discharged through a 1.5 k resistor into each pin. (MIL-STD-883 3015.7) The machine  
model is a 200 pF capacitor discharged directly into each pin. (EAIJ)  
Operating Ratings  
VIN LDO 4,5  
2.7V to 5.5V  
1.74 to (VIN  
VEN  
Junction Temperature (TJ)  
Operating Temperature (TA)  
Maximum Power Dissipation  
40°C to +125°C  
40°C to +85°C  
(1) (2)  
(TA = 70°C)  
2.2W  
(1) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-  
OP = 125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance  
of the part/package in the application (θJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (θJA x PD-MAX).  
(2) Junction-to-ambient thermal resistance (θJA) is taken from a thermal modeling result, performed under the conditions and guidelines set  
forth in the JEDEC standard JESD51–7. The test board is a 4-layer FR-4 board measuring 102 mm x 76 mm x 1.6 mm with a 2x1 array  
of thermal vias. The ground plane on the board is 50 mm x 50 mm. Thickness of copper layers are 36 µm/1.8 µm/18 µm/36 µm (1.5 oz/1  
oz/1 oz/1.5 oz). Ambient temperature in simulation is 22°C, still air. Power dissipation is 1W. Junction-to-ambient thermal resistance is  
highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid  
to thermal dissipation issues in board design. The value of θJA of this product can vary significantly, depending on PCB material, layout,  
and environmental conditions. In applications where high maximum power dissipation exists (high VIN, high IOUT), special care must be  
paid to thermal dissipation issues. For more information on these topics, please refer to Application Note 1187: Leadless Leadframe  
Package (LLP) and the Power Efficiency and Power Dissipation section of this datasheet.  
General Electrical Characteristics(1)  
Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the  
(3)  
entire junction temperature range for operation, 40°C to +125°C.(2)  
Symbol  
Parameter  
Conditions  
Min  
2.7  
Typ  
Max  
5.5  
Units  
VIN, VDDA, VIN Buck1, 2 Battery Voltage  
and 3  
3.6  
V
VINLDO4, VINLDO5  
Power Supply for LDO 4 and 5  
1.74  
3.6  
5.5  
V
(1) No input supply should be higher then VDDA  
(2) All voltages are with respect to the potential at the GND pin.  
(3) All limits specified at room temperature and at temperature extremes. All room temperature limits are production tested, specified  
through statistical analysis or by design. All limits at temperature extremes are specified via correlation using standard Statistical Quality  
Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).  
6
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
General Electrical Characteristics(1) (continued)  
Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the  
entire junction temperature range for operation, 40°C to +125°C.(2) (3)  
Symbol  
Parameter  
(4)  
Conditions  
Temperature  
Hysteresis  
Min  
Typ  
160  
20  
Max  
Units  
TSD  
Thermal Shutdown  
°C  
(4) Specified by design.Not prodution tested.  
Supply Specification(1)(2)  
Supply  
IMAX  
VOUT (Volts)  
Maximum Output  
(3)  
Range (V)  
Resolution (mV)  
N/A  
Current (mA)  
(4)  
LDO_RTC  
LDO1  
Tracking  
30 or 10  
300  
1.8 to 3.3  
1.8 to 3.3  
1.8 to 3.3  
1.0 to 3.3  
1.0 to 3.3  
0.8 to 3.3  
0.8 to 3.3  
0.8 to 3.3  
100  
LDO2  
100  
150  
LDO3  
100  
150  
LDO4  
50-600  
50-600  
50-600  
50-600  
50-600  
150  
LDO5  
370  
BUCK 1  
BUCK 2  
BUCK 3  
1600  
1600  
1600  
(1) All voltages are with respect to the potential at the GND pin.  
(2) All limits specified at room temperature and at temperature extremes. All room temperature limits are production tested, specified  
through statistical analysis or by design. All limits at temperature extremes are specified via correlation using standard Statistical Quality  
Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).  
(3) Specified by design. Not production tested. design.  
(4) LDO_RTC voltage can track LDO1 voltage. LP3971 has a tracking function (nIO_TRACK). When enabled, LDO_RTC voltage will track  
LDO1 voltage within 200mV down to 2.8V when LDO1 is enabled  
Default Voltage Options  
Version  
LP3971SQ-B410  
Version B  
--  
LP3971SQ-D510  
Version C  
LP3971Q-F211  
Version A  
LP3971SQ-W416  
Version SW  
Enable  
LDO_RTC  
2.8  
--  
2.8  
--  
2.8  
--  
2.8  
3.0 (w/  
Trkg)  
3.3 (w/  
Trkg)  
LDO1  
SYS_EN  
SYS_EN  
SYS_EN  
PWR_EN  
PWR_EN  
PWR_EN  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
PWR_EN  
PWR_EN  
PWR_EN  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
PWR_EN  
PWR_EN  
SYS_EN  
SYS_EN  
3.3  
3.3  
3.3  
1.8  
3.3  
1.5  
2.5  
1.8  
SYS_EN  
SYS_EN  
PWR_EN  
SYS_EN  
PWR_EN  
PWR_EN  
SYS_EN  
SYS_EN  
3.0  
3.3  
2.5  
1.0  
1.0  
1.2  
3.0  
1.8  
LDO2  
3.0  
3.0  
1.3  
1.1  
1.4  
3.0  
1.8  
3.3  
3.3  
1.3  
1.1  
1.4  
3.3  
1.8  
LDO3  
LDO4  
LDO5  
BUCK1  
BUCK2  
BUCK3  
Version  
LP3971SQ-N510  
LP3971SQ-P55A  
LP3971SQ-B510  
LP3971SQ-O509  
Enable  
set to default 00 on system  
enable delay  
LDO_RTC  
LDO1  
Track  
2.8  
No Track  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
PWR_EN  
2.8  
Track  
2.8  
3.0  
3.0  
3.0  
1.3  
1.1  
NoTrack  
SYS_EN  
SYS_EN  
PWR_EN  
SYS_EN  
SYS_EN  
2.8  
3.3  
SYS_EN  
SYS_EN  
SYS_EN  
PWR_EN  
PWR_EN  
3.3  
3.0  
3.0  
1.3  
1.1  
3.3  
3.3  
3.3  
SYS_EN  
SYS_EN  
SYS_EN  
PWR_EN  
PWR_EN  
LDO2  
3.3  
LDO3  
3.3  
LDO4  
1.35  
1.8  
1.25  
1.25  
LDO5  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LP3971  
 
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
BUCK1  
BUCK2  
BUCK3  
PWR_EN  
SYS_EN  
SYS_EN  
1.4  
3.3  
1.8  
PWR_EN  
SYS_EN  
SYS_EN  
1.35  
3.3  
PWR_EN  
SYS_EN  
SYS_EN  
1.4  
3.3  
1.8  
PWR_EN  
SYS_EN  
SYS_EN  
3.3  
3.3  
1.3  
3.3  
Version  
LP3971SQ-G824  
LP3971SQ-Q418  
LP3971SQ-2G16  
Enable  
LDO_RTC  
No  
Track  
2.8  
2.5  
2.5  
3.3  
3.0  
2.5  
3.3  
1.2  
2.5  
No Track  
2.8  
3.0  
3.0  
3.3  
1.2  
1.2  
1.35  
3.0  
1.8  
No Track  
2.8  
3.3  
3.3  
3.3  
1.0  
1.0  
1.0  
1.1  
1.8  
LDO1  
LDO2  
SYS_  
EN  
SYS_EN  
SYS_EN  
PWR_EN  
SYS_EN  
PWR_EN  
PWR_EN  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
PWR_EN  
SYS_EN  
PWR_EN  
PWR_EN  
PWR_EN  
SYS_EN  
SYS_  
EN  
LDO3  
SYS_  
EN  
LDO4  
SYS_  
EN  
LDO5  
PWR_  
EN  
BUCK1  
BUCK2  
BUCK3  
PWR_  
EN  
SYS_  
EN  
SYS_  
EN  
Version  
LP3971SQ-7848  
Enable  
LDO_RTC  
LDO1  
No Track  
2.8  
3.0  
2.6  
3.3  
1.2  
1.8  
1.2  
1.2  
3.0  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
PWR_EN  
PWR_EN  
SYS_EN  
LDO2  
LDO3  
LDO4  
LDO5  
BUCK1  
BUCK2  
BUCK3  
Version  
Enable  
LDO_RTC  
LDO1  
LP3971SQ-8858  
No Track  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
SYS_EN  
PWR_EN  
PWR_EN  
SYS_EN  
2.8  
3.3  
3.3  
3.3  
1.2  
1.8  
1.2  
1.2  
3.3  
LDO2  
LDO3  
LDO4  
LDO5  
BUCK1  
BUCK2  
BUCK3  
8
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
LDO RTC  
Unless otherwise noted, VIN = 3.6V, CIN = 1.0 μF, COUT = 0.47 µF, COUT (VRTC) = 1.0 μF ceramic. Typical values and limits  
appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire junction temperature  
(1)(2)  
(4)  
range for operation, 40°C to +125°C.  
(3) and  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
VOUT  
Output Voltage Accuracy  
VIN Connected, Load Current = 1 mA  
2.632  
2.8  
2.968  
V
Accuracy  
ΔVOUT  
Line Regulation  
VIN = (VOUT nom + 1.0V) to 5.5V (5) Load  
Current = 1 mA  
0.15  
0.05  
0.5  
%/V  
Load Regulation  
From Main Battery  
Load Current = 1 mA to 30 mA  
%/mA  
From Backup Battery  
VIN = 3.0V  
Load Current = 1 mA to 10 mA  
ISC  
Short Circuit Current Limit  
From Main Battery  
VIN = VOUT +0.3V to 5.5V  
100  
30  
mA  
From Backup Battery  
Load Current = 10 mA  
IOUT = 0 mA  
VIN - VOUT  
IQ_Max  
TP1  
Dropout Voltage  
375  
mV  
μA  
V
Maximum Quiescent Current  
30  
RTC LDO Input Switched from Main Battery VIN Falling  
to Backup Battery  
2.9  
TP2  
CO  
RTC LDO Input Switched from Backup  
Battery to Main Battery  
VIN Rising  
3.0  
1.0  
V
Output Capacitor  
Capacitance for Stability  
ESR  
0.7  
5
μF  
500  
mΩ  
(1) All voltages are with respect to the potential at the GND pin.  
(2) All limits specified at room temperature and at temperature extremes. All room temperature limits are production tested, specified  
through statistical analysis or by design. All limits at temperature extremes are specified via correlation using standard Statistical Quality  
Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).  
(3) Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value.  
(4) LDO_RTC voltage can track LDO1 voltage. LP3971 has a tracking function (nIO_TRACK). When enabled, LDO_RTC voltage will track  
LDO1 voltage within 200mV down to 2.8V when LDO1 is enabled.  
(5) VIN minimum for line regulation values is 2.7V for LDOs 1–3 and 1.8V for LDOs 4 and 5. Condition does not apply to input voltages  
below the minimum input operating voltage.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LP3971  
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
LDO 1 to 5  
Unless otherwise noted, VIN = 3.6V, CIN = 1.0 μF, COUT = 0.47 µF, COUT (VRTC) = 1.0 μF ceramic. Typical values and limits  
appearing in normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire junction temperature  
(7)  
range for operation, 40°C to +125°C. (1)(2)(3)(4)(5)(6) and  
.
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
3
Units  
VOUT  
Output Voltage Accuracy (Default VOUT  
)
Load Current = 1 mA  
3  
%
Accuracy  
ΔVOUT  
Line Regulation  
Load Regulation  
VIN =3.1V to 5.0V, (8) Load Current = 1 mA  
0.15  
%/V  
VIN = 3.6V,  
0.011 %/mA  
Load Current = 1 mA to IMAX  
ISC  
Short Circuit Current Limit  
LDO1–4, VOUT = 0V  
LDO5, VOUT = 0V  
400  
500  
mA  
(3)  
VIN - VOUT  
PSRR  
IQ  
Dropout Voltage  
Load Current = 50 mA  
150  
mV  
dB  
Power Supply Ripple Rejection  
Quiescent Current “On”  
Quiescent Current “On”  
Quiescent Current “Off”  
Turn On Time  
f = 10 kHz, Load Current = IMAX  
IOUT = 0 mA  
45  
40  
IOUT = IMAX  
60  
µA  
EN is de-asserted  
Start up from Shut-down  
0.03  
300  
0.47  
TON  
μsec  
µF  
COUT  
Output Capacitor  
Capacitance for Stability  
0.33  
0°C TJ 125°C  
40°C TJ 125°C  
0.68  
5
1.0  
ESR  
500  
mΩ  
(1) All voltages are with respect to the potential at the GND pin.  
(2) All limits specified at room temperature and at temperature extremes. All room temperature limits are production tested, specified  
through statistical analysis or by design. All limits at temperature extremes are specified via correlation using standard Statistical Quality  
Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).  
(3) Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value.  
(4) LDO_RTC voltage can track LDO1 voltage. LP3971 has a tracking function (nIO_TRACK). When enabled, LDO_RTC voltage will track  
LDO1 voltage within 200mV down to 2.8V when LDO1 is enabled.  
(5) VIN minimum for line regulation values is 2.7V for LDOs 1–3 and 1.8V for LDOs 4 and 5. Condition does not apply to input voltages  
below the minimum input operating voltage.  
(6) An increase in the load current results in a slight decrease in the output voltage and vice versa.  
(7) Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This  
specification does not apply for input voltages below 2.7V for LDOs 1–3 and 1.8V for LDOs 4 and 5.  
(8) VIN minimum for line regulation values is 2.7V for LDOs 1–3 and 1.8V for LDOs 4 and 5. Condition does not apply to input voltages  
below the minimum input operating voltage.  
LDO Dropout Voltage vs. Load Current Collect Data For All LDO’s  
Dropout Voltage  
vs.  
Load Current  
Change in Output Voltage  
vs.  
Load Current  
300  
250  
200  
150  
100  
50  
200  
150  
100  
50  
REG1 3.3V OUTPUT  
REG2 2.5V OUTPUT  
REG3 1.3V OUTPUT  
0
REG1 3.3V OUTPUT  
-50  
-100  
V
= 3.6V  
IN  
0
0
200  
400  
600  
800  
1000 1200  
0
200  
400  
600  
800  
1000 1200  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 4.  
Figure 5.  
10  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
LDO1 Line Regulation  
VOUT = 1.8 volts VIN 3 to 4 volts Load = 100 mA  
LDO1 Load Transient  
VIN = 4.1 volts VOUT = 1.8 volts no-load-100 mA  
4.03 ms  
4.0 ms  
Figure 6.  
Figure 7.  
Enable Start-up time (LDO1)  
LDO1 channel 2 LDO4 Channel 1 Sys_enable from 0 volts Load = 100mA  
4.03 ms  
Figure 8.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LP3971  
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
Buck Converters SW1, SW2, SW3  
Unless otherwise noted, VIN = 3.6V, CIN = 10 μF, COUT = 10 μF, LOUT = 2.2 μH ceramic. Typical values and limits appearing in  
normal type apply for TJ = 25°C. Limits appearing in boldface type apply over the entire junction temperature range for  
(4)  
operation, 40°C to +125°C. (1)(2)(3) and  
.
Symbol  
VOUT  
Parameter  
Output Voltage Accuracy  
Efficiency  
Conditions  
Default VOUT  
Min  
Typ  
Max  
Units  
%
3  
+3  
Eff  
Load Current = 500 mA  
EN is de-asserted  
95  
0.1  
13  
%
ISHDN  
Shutdown Supply Current  
Sync Mode Clock Frequency  
μA  
Synchronized from 13 MHz System  
Clock  
10.4  
15.6  
2.4  
MHz  
fOSC  
IPEAK  
IQ  
Internal Oscillator Frequency  
Peak Switching Current Limit  
Quiescent Current “On”  
2.0  
2.1  
21  
MHz  
A
No Load PFM Mode  
No Load PWM Mode  
μA  
200  
240  
200  
500  
RDSON (P)  
RDSON (N)  
TON  
Pin-Pin Resistance PFET  
Pin-Pin Resistance NFET  
Turn On Time  
mΩ  
mΩ  
μsec  
µF  
Start up from Shut-down  
Capacitance for Stability  
Capacitance for Stability  
CIN  
Input Capacitor  
8
8
CO  
Output Capacitor  
µF  
(1) All voltages are with respect to the potential at the GND pin.  
(2) All limits specified at room temperature and at temperature extremes. All room temperature limits are production tested, specified  
through statistical analysis or by design. All limits at temperature extremes are specified via correlation using standard Statistical Quality  
Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).  
(3) The input voltage range recommended for ideal applications performance for the specified output voltages is given below:VIN = 2.7V to  
5.5V for 0.80V < VOUT < 1.8VVIN = (VOUT+ 1V) to 5.5V for 1.8V VOUT 3.3V  
(4) Test condition: for VOUT less than 2.7V, VIN = 3.6V; for VOUT greater than or equal to 2.7V, VIN = VOUT+ 1V.  
Buck 1 Output Efficiency vs. Load Current Varied from 1mA to 1.5 Amps  
VIN = 3, 3.5 volts VOUT = 1.4 volts Forced PWM  
VIN = 4.0, 4.5 volts VOUT = 1.4 volts Forced PWM  
100.00  
90.00  
V
IN  
= 3V  
V
= 4V  
IN  
80.00  
60.00  
40.00  
20.00  
0.00  
72.00  
54.00  
36.00  
18.00  
0.00  
V
= 3.5V  
IN  
V
= 4.5V  
IN  
1
1e1  
1e2  
1e3  
1e4  
1
1e1  
1e2  
1e3  
1e4  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 9.  
Figure 10.  
12  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
Line Transient Response  
VIN = 3, 3.6 V, VOUT = 1.2 V, 250 mA load  
VIN = 3, 3.5 volts VOUT = 1.4 volts Forced PWM  
90.00  
V
= 5.5V  
IN  
72.00  
54.00  
36.00  
18.00  
0.00  
V
= 5V  
IN  
4.03 ms  
1
1e1  
1e2  
1e3  
1e4  
OUTPUT CURRENT (mA)  
Figure 11.  
Figure 12.  
Mode Change  
Load transients 20 mA to 560 mA  
VOUT = 1.4 volts [PFM to PWM] VIN = 4.1 volts  
Load Transient  
3.6 VIN, 3.3 VOUT, 0 – 100 mA load  
4.03 ms  
4.0 ms  
Figure 13.  
Figure 14.  
Startup  
Startup into PWM Mode 980 mA [channel 2]  
VOUT = 1.4 volts VIN = 4.1 volts  
4.03 ms  
Figure 15.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LP3971  
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
Back-Up Charger Electrical Characteristics  
Unless otherwise noted, VIN = VBATT = 3.6V. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits  
(3)  
appearing in boldface type apply over the entire junction temperature range for operation, 40°C to +125°C. (1)(2) and  
.
Symbol  
VIN  
Parameter  
Operational Voltage Range  
Backup Battery Charging Current  
Conditions  
Min  
3.3  
Typ  
Max  
5.5  
Units  
V
Voltage at VIN  
IOUT  
VIN = 3.6V, Backup_Bat = 2.5V, Backup  
190  
3.1  
9
μA  
(3)  
Battery Charger Enabled  
VOUT  
Charger Termination Voltage  
VIN = 5.0V Backup Battery Charger  
Enabled. Programmable  
2.91  
V
Backup Battery Charger Short Circuit  
Current  
Backup_Bat = 0V, Backup Battery Charger  
Enabled  
mA  
dB  
PSRR  
Power Supply Ripple Rejection Ratio  
I
OUT 50 μA, VOUT = 3.15V  
15  
VOUT + 0.4 VBATT = VIN 5.0V  
f < 10 kHz  
IQ  
Quiescent Current  
IOUT < 50 μA  
25  
μA  
μF  
COUT  
Output Capacitance  
Output Capacitor ESR  
0 μA IOUT 100 μA  
0.1  
5
500  
mΩ  
(1) All voltages are with respect to the potential at the GND pin.  
(2) All limits specified at room temperature and at temperature extremes. All room temperature limits are production tested, specified  
through statistical analysis or by design. All limits at temperature extremes are specified via correlation using standard Statistical Quality  
Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).  
(3) Back-up battery charge current is programmable via the I2C compatible interface. Refer to the Application Section for more information.  
LP3971 Battery Switch Operation  
The LP3971 has provisions for two battery connections, the main battery Vbat and Backup Battery.  
The function of the battery switch is to connect power to the RTC LDO from the appropriate battery, depending  
on conditions described below:  
If only the backup battery is applied, the switch will automatically connect the RTC LDO power to this battery.  
If only the main battery is applied, the switch will automatically connect the RTC LDO power to this battery.  
If both batteries are applied, and the main battery is sufficiently charged (Vbat > 3.1V), the switch will  
automatically connect the RTC LDO power to the main battery.  
As the main battery is discharged a separate circuit called nBATT_FLT will warn the system. Then if no action  
is taken to restore the charge on the main battery, and discharging is continued the battery switch will  
disconnect the input of the RTC_LDO from the main battery and connect to the backup battery.  
The main battery voltage at which the RTC LDO is switched over from main to backup battery is 2.8V  
typically.  
There is a hysteric voltage in this switch operation so; the RTC LDO will not be reconnected to main battery  
until main battery voltage is greater than 3.1V typically.  
The system designer may wish to disable the battery switch when only a main battery is used. This is  
accomplished by setting the “no back up battery bit” in the control register 8h’0B bit 7 NBUB. With this bit set  
to “1”, the above described switching will not occur, that is the RTC LDO will remain connected to the main  
battery even as it is discharged below the 2.9V threshold. The Backup battery input should also be connected  
to main battery.  
14  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
(1)  
Logic Inputs and Outputs DC Operating Conditions  
Logic Inputs (SYS_EN, PWR_EN, SYNC, nRSTI, PWR_ON, nTEST_JIG, SPARE and GPI's)  
Symbol  
VIL  
Parameter  
Low Level Input Voltage  
Conditions  
Min  
Max  
0.5  
Units  
V
V
VIH  
High Level Input Voltage  
VRTC  
0.5V  
ILEAK  
Input Leakage Current  
1  
+1  
µA  
(1) All voltages are with respect to the potential at the GND pin.  
Logic Outputs (nRSTO, EXT_WAKEUP and GPO's)  
Symbol  
VOL  
Parameter  
Conditions  
Load = +0.2 mA = IOL Max  
Load = 0.1 mA = IOL Max  
Min  
Max  
0.5  
Units  
Output Low Level  
Output High Level  
V
V
VOH  
VRTC  
0.5V  
ILEAK  
Output Leakage Current  
VON = VIN  
+5  
µA  
Logic Output (nBATT_FLT)  
Symbol  
Parameter  
Conditions  
Min  
2.4  
Typ  
2.8  
Max  
Units  
nBATT_FLT Threshold Voltage  
Programmable via Serial Interface Default =  
2.8V  
3.4  
V
VOL  
VOH  
Output Low Level  
Output High Level  
Load = +0.4 mA = IOL Max  
0.5  
V
V
Load = 0.2 mA = IOH Max  
VRTC  
0.5V  
ILEAK  
Input Leakage Current  
+5  
μA  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LP3971  
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
I2C Compatible Serial Interface Electrical Specifications (SDA and SCL)  
Unless otherwise noted, VIN = 3.6V. Typical values and limits appearing in normal type apply for TJ = 25°C. Limits appearing  
(3)  
in boldface type apply over the entire junction temperature range for operation, 40°C to +125°C. (1)(2) and  
Symbol  
Parameter  
Low Level Input Voltage  
Conditions  
Min  
Typ  
Max  
Units  
(4)  
(4)  
(4)  
VIL  
0.5  
0.3  
VRTC  
V
VIH  
High Level Input Voltage  
Low Level Output Voltage  
0.7  
VRTC  
VRTC  
VOL  
0
0.2  
VTRC  
(4)  
IOL  
Low Level Output Current  
Clock Frequency  
VOL = 0.4V  
(4)  
3.0  
mA  
kHz  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
FCLK  
400  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
tBF  
Bus-Free Time Between Start and Stop  
Hold Time Repeated Start Condition  
CLK Low Period  
1.3  
0.6  
1.3  
0.6  
0.6  
0
tHOLD  
tCLKLP  
tCLKHP  
tSU  
CLK High Period  
Set Up Time Repeated Start Condition  
Data Hold Time  
tDATAHLD  
tCLKSU  
TSU  
Data Set Up Time  
100  
0.6  
Set Up Time for Start Condition  
μs  
ns  
TTRANS  
Maximum Pulse Width of Spikes that Must  
be Suppressed by the Input Filter of Both  
DATA & CLK Signals  
50  
(1) All voltages are with respect to the potential at the GND pin.  
(2) All limits specified at room temperature and at temperature extremes. All room temperature limits are production tested, specified  
through statistical analysis or by design. All limits at temperature extremes are specified via correlation using standard Statistical Quality  
Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).  
(3) The I2C signals behave like open-drain outputs and require an external pull-up resistor on the system module in the 2 kto 20 kΩ  
range.  
(4) Specified by design. Not production tested  
16  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
BUCK CONVERTER OPERATION  
DEVICE INFORMATION  
The LP3971 includes three high efficiency step down DC-DC switching buck converters. Using a voltage mode  
architecture with synchronous rectification, the buck converters have the ability to deliver up to 1600 mA  
depending on the input voltage, output voltage, ambient temperature and the inductor chosen.  
There are three modes of operation depending on the current required - PWM, PFM, and shutdown. The device  
operates in PWM mode at load currents of approximately 100 mA or higher, having voltage tolerance of ±3%  
with 95% efficiency or better. Lighter load currents cause the device to automatically switch into PFM for reduced  
current consumption. Shutdown mode turns off the device, offering the lowest current consumption (IQ, SHUTDOWN  
= 0.01 µA typ).  
Additional features include soft-start, under voltage protection, current overload protection, and thermal shutdown  
protection.  
The part uses an internal reference voltage of 0.5V. It is recommended to keep the part in shutdown until the  
input voltage is 2.7V or higher.  
CIRCUIT OPERATION  
The buck converter operates as follows. During the first portion of each switching cycle, the control block turns  
on the internal PFET switch. This allows current to flow from the input through the inductor to the output filter  
capacitor and load. The inductor limits the current to a ramp with a slope of (VIN–VOUT)/L, by storing energy in a  
magnetic field.  
During the second portion of each cycle, the controller turns the PFET switch off, blocking current flow from the  
input, and then turns the NFET synchronous rectifier on. The inductor draws current from ground through the  
NFET to the output filter capacitor and load, which ramps the inductor current down with a slope of –VOUT/L.  
The output filter stores charge when the inductor current is high, and releases it when inductor current is low,  
smoothing the voltage across the load.  
The output voltage is regulated by modulating the PFET switch on time to control the average current sent to the  
load. The effect is identical to sending a duty-cycle modulated rectangular wave formed by the switch and  
synchronous rectifier at the SW pin to a low-pass filter formed by the inductor and output filter capacitor. The  
output voltage is equal to the average voltage at the SW pin.  
PWM OPERATION  
During PWM operation the converter operates as a voltage mode controller with input voltage feed forward. This  
allows the converter to achieve good load and line regulation. The DC gain of the power stage is proportional to  
the input voltage. To eliminate this dependence, feed forward inversely proportional to the input voltage is  
introduced.  
While in PWM (Pulse Width Modulation) mode, the output voltage is regulated by switching at a constant  
frequency and then modulating the energy per cycle to control power to the load. At the beginning of each clock  
cycle the PFET switch is turned on and the inductor current ramps up until the comparator trips and the control  
logic turns off the switch. The current limit comparator can also turn off the switch in case the current limit of the  
PFET is exceeded. Then the NFET switch is turned on and the inductor current ramps down. The next cycle is  
initiated by the clock turning off the NFET and turning on the PFET.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LP3971  
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
V
SW  
2V/DIV  
I
L
200 mA/DIV  
V
V
= 3.6V  
IN  
I
= 400 mA  
OUT  
= 1.5V  
OUT  
V
OUT  
10 mV/DIV  
AC Coupled  
TIME (200 ns/DIV)  
Figure 16. Typical PWM Operation  
Internal Synchronous Rectification  
While in PWM mode, the converters uses an internal NFET as a synchronous rectifier to reduce rectifier forward  
voltage drop and associated power loss. Synchronous rectification provides a significant improvement in  
efficiency whenever the output voltage is relatively low compared to the voltage drop across an ordinary rectifier  
diode.  
Current Limiting  
A current limit feature allows the converters to protect itself and external components during overload conditions.  
PWM mode implements current limiting using an internal comparator that trips at 2.0 A (typ). If the output is  
shorted to ground the device enters a timed current limit mode where the NFET is turned on for a longer duration  
until the inductor current falls below a low threshold, ensuring inductor current has more time to decay, thereby  
preventing runaway.  
PFM OPERATION  
At very light loads, the converter enters PFM mode and operates with reduced switching frequency and supply  
current to maintain high efficiency.  
The part will automatically transition into PFM mode when either of two conditions occurs for a duration of 32 or  
more clock cycles:  
A:  
B:  
The inductor current becomes discontinuous.  
The peak PMOS switch current drops below the IMODE level, (Typically IMODE < 30 mA + VIN/42).  
2V/DIV  
V
SW  
I
L
200 mA/DIV  
VIN = 3.6V  
I
= 20 mA  
OUT  
VOUT = 1.5V  
V
OUT  
20 mV/DIV  
AC Coupled  
TIME (4 ms/DIV)  
Figure 17. Typical PFM Operation  
18  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
During PFM operation, the converter positions the output voltage slightly higher than the nominal output voltage  
during PWM operation, allowing additional headroom for voltage drop during a load transient from light to heavy  
load. The PFM comparators sense the output voltage via the feedback pin and control the switching of the output  
FETs such that the output voltage ramps between <0.6% and <1.7% above the nominal PWM output voltage. If  
the output voltage is below the “high” PFM comparator threshold, the PMOS power switch is turned on. It  
remains on until the output voltage reaches the ‘high’ PFM threshold or the peak current exceeds the IPFM level  
set for PFM mode. The typical peak current in PFM mode is: IPFM = 112 mA + VIN/27. Once the PMOS power  
switch is turned off, the NMOS power switch is turned on until the inductor current ramps to zero. When the  
NMOS zero-current condition is detected, the NMOS power switch is turned off. If the output voltage is below the  
‘high’ PFM comparator threshold (see Figure 18), the PMOS switch is again turned on and the cycle is repeated  
until the output reaches the desired level. Once the output reaches the ‘high’ PFM threshold, the NMOS switch is  
turned on briefly to ramp the inductor current to zero and then both output switches are turned off and the part  
enters an extremely low power mode. Quiescent supply current during this ‘sleep’ mode is 21 μA (typ), which  
allows the part to achieve high efficiencies under extremely light load conditions. When the output drops below  
the ‘low’ PFM threshold, the cycle repeats to restore the output voltage (average voltage in PFM mode) to  
<1.15% above the nominal PWM output voltage. If the load current should increase during PFM mode (see  
Figure 18) causing the output voltage to fall below the ‘low2’ PFM threshold, the part will automatically transition  
into fixed-frequency PWM mode. Typically when VIN = 3.6V the part transitions from PWM to PFM mode at 100  
mA output current .  
High PFM Threshold  
~1.017*Vout  
PFM Mode at Light Load  
Load current  
increases  
Low1 PFM Threshold  
~1.006*Vout  
Current load  
increases,  
draws Vout  
towards  
Low2 PFM  
Threshold  
High PFM  
Voltage  
Threshold  
reached,  
go into  
Nfet on  
drains  
conductor  
current  
until  
I inductor=0  
Low PFM  
Threshold,  
turn on  
Pfet on  
until  
Ipfm limit  
reached  
PFET  
Low2 PFM Threshold  
Vout  
sleep mode  
PWM Mode at  
Moderate to Heavy  
Loads  
Low2 PFM Threshold,  
switch back to PWMmode  
Figure 18. Operation in PFM Mode and Transfer to PWM Mode  
SHUTDOWN MODE  
During shutdown the PFET switch, reference, control and bias circuitry of the converters are turned off. The  
NFET switch will be open in shutdown to discharge the output. When the converter is enabled, EN, soft start is  
activated. It is recommended to disable the converter during the system power up and undervoltage conditions  
when the supply is less than 2.7V.  
SOFT START  
The buck converter has a soft-start circuit that limits in-rush current during start-up. During start-up the switch  
current limit is increased in steps. Soft start is activated only if EN goes from logic low to logic high after VIN  
reaches 2.7V. Soft start is implemented by increasing switch current limit in steps of 213 mA, 425 mA, 850 mA  
and 1700 mA (typ. Switch current limit). The start-up time thereby depends on the output capacitor and load  
current demanded at start-up. Typical start-up times with 10 μF output capacitor and 1000 mA load current is 390  
μs and with 1 mA load current is 295 μs.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LP3971  
 
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
LDO - LOW DROP OUT OPERATION  
The LP3971 can operate at 100% duty cycle (no switching; PMOS switch completely on) for low drop out support  
of the output voltage. In this way the output voltage will be controlled down to the lowest possible input voltage.  
When the device operates near 100% duty cycle, output voltage ripple is approximately 25 mV. The minimum  
input voltage needed to support the output voltage is  
VIN, MIN = ILOAD * (RDSON, PFET + RINDUCTOR) + VOUT  
(1)  
ILOAD  
RDSON, PFET  
RINDUCTOR  
Load Current  
Drain to source resistance of PFET switch in the triode region  
Inductor resistance  
SPREAD SPECTRUM FEATURE  
Periodic switching in the buck regulator is inherently a noisier function block compared to an LDO. It can be  
challenging in some critical applications to comply with stringent regulatory standards or simply to minimize  
interference to sensitive circuits in space limited portable systems. The regulator’s switching frequency and  
harmonics can cause “noise” in the signal spectrum. The magnitude of this noise is measured by its power  
spectral density. The power spectral density of the switching frequency, FC, is one parameter that system  
designers want to be as low as practical to reduce interference to the environment and subsystems within their  
products. The LP3971 has a user selectable function on chip, wherein a noise reduction technique known as  
“spread spectrum” can be employed to ease customer’s design and production issues.  
The principle behind spread spectrum is to modulate the switching frequency slightly and slowly, and spread the  
signal frequency over a broader bandwidth. Thus, its power spectral density becomes attenuated, and the  
associated interference electro-magnetic energy is reduced. The clock used to modulate the LP3971 buck  
regulator can be used as a spread spectrum clock via 2 I2C control register (System Control Register 1 (SCR1)  
8h’80) bits bk_ssen, and slomod. With this feature enabled, the intense energy of the clock frequency can be  
spread across a small band of frequencies in the neighborhood of the center frequency. This results in a  
reduction of the peak energy!  
The LP3971 spread spectrum clock uses a triangular modulation profile with equal rise and fall slopes. The  
modulation has the following characteristics:  
The center frequency: FC = 2 MHz, and  
The modulating frequency, fM = 6.8 kHz or 12 kHz.  
Peak frequency deviation: Δ_f = ±100 kHz (or ±5%)  
Modulation index β = Δ_f/fM = 14.7 or 8.3  
Figure 19. Switching Energy RBW = 300 Hz  
0
-10  
-20  
-30  
-40  
-50  
-60  
2040  
2060  
2080  
2100  
2120  
2140  
FREQUENCY (kHz)  
20  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
I2C Compatible Interface  
I2C DATA VALIDITY  
The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of  
the data line can only be changed when CLK is LOW.  
SCL  
SDA  
data  
change  
allowed  
data valid  
data  
change  
allowed  
data  
change  
allowed  
data valid  
I2C START AND STOP CONDITIONS  
START and STOP bits classify the beginning and the end of the I2C session. START condition is defined as SDA  
signal transitioning from HIGH to LOW while SCL line is HIGH. STOP condition is defined as the SDA  
transitioning from LOW to HIGH while SCL is HIGH. The I2C master always generates START and STOP bits.  
The I2C bus is considered to be busy after START condition and free after STOP condition. During data  
transmission, I2C master can generate repeated START conditions. First START and repeated START  
conditions are equivalent, function-wise.  
SDA  
SCL  
S
P
START condition  
STOP condition  
TRANSFERRING DATA  
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first.  
The number of bytes that can be transmitted per transfer is unrestricted. Each byte of data has to be followed by  
an acknowledge bit. The acknowledge related clock pulse is generated by the master. The transmitter releases  
the SDA line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDA line during the  
9th clock pulse, signifying an acknowledge. A receiver which has been addressed must generate an  
acknowledge after each byte has been received.  
After the START condition, a chip address is sent by the I2C master. This address is seven bits long followed by  
an eighth bit which is a data direction bit (R/W). The LP3971 address is 34h. For the eighth bit, a “0” indicates a  
WRITE and a “1” indicates a READ. The second byte selects the register to which the data will be written. The  
third byte contains data to write to the selected register.  
I2C CHIP ADDRESS - 7h'34  
MSB  
ADR6  
Bit7  
ADR5  
Bit6  
ADR4  
Bit5  
ADR3  
Bit4  
ADR2  
Bit3  
ADR1  
Bit2  
ADR0  
Bit1  
R/W  
Bit0  
0
1
1
0
1
0
0
R/W  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LP3971  
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
Write Cycle  
Figure 20. Write cycle  
start  
msb Chip Address lsb  
w
ack  
Msb Register Add lsb  
ack  
msb  
DATA  
lsb  
ack stop  
SCL  
SDA  
start  
Id = 34h  
w
ack  
addr = 02h  
ack  
address h‘02 data  
ack stop  
Read Cycle  
When a READ function is to be accomplished, a WRITE function must precede the READ function as follows.  
Figure 21. Read Cycle  
start msb Chip Address lsb  
w
msb Register Add lsb  
rs  
msb Chip Address lsb  
r
msb  
DATA  
lsb  
stop  
ack  
ack  
ack  
ack  
SCL  
SDA  
start  
Id = 34h  
w
ack  
addr = 00h  
ack rs  
Id = 34h  
r
ack  
Address h‘00 data  
ack stop  
w = write (SDA = “0”)  
r = read (SDA = “1”)  
ack = acknowledge (SDA pulled down by either master or slave)  
rs = repeated start  
id = 34h (Chip Address)  
Figure 22. I2C DVM Timing for VCC_APPS (Buck1)  
DATA OUTPUT  
BY TRANSMITTER  
DATA OUTPUT  
BY RECEIVER  
acknowledge  
8
SCL FROM  
MASTER  
1
9
S
clock pulse for  
acknowledgement  
I2C - bus.  
Voltage ””B‘‘  
START  
condition  
5 ms TYP  
Voltage ””A‘‘  
V
_APPS  
CC  
LP3971 I2C Register Definitions  
I2C CONTROL REGISTERS  
Register  
Address  
Register  
Name  
Read/  
Write  
Register Description  
8h'02  
8h'07  
ISR  
R
Interrupt Status Register A  
System Control Register 1  
SCR1  
R/W  
22  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
Register  
Address  
Register  
Name  
Read/  
Write  
Register Description  
Backup Battery Charger Control Register  
8h'0B  
8h'0E  
8h'10  
8h'11  
8h'12  
8h'13  
8h'20  
8h'23  
8h'24  
8h'25  
8h'29  
8h'2A  
8h'2B  
8h'32  
8h'33  
8h'34  
8h'38  
8h'39  
8h'3A  
8h'3B  
BBCC  
SCR2  
R/W  
R/W  
R/W  
R
System Control Register 2  
BOVEN  
BOVSR  
LDOEN  
LDOVS  
Buck Output Voltage Enable Register  
Buck Output Voltage Status Register  
LDO Output Voltage Enable Register  
LDO Output Voltage Status Register  
Voltage Change Control Register 1  
Buck 1 Target Voltage 1 Register  
Buck 1 Target Voltage 2 Register  
Buck 1 Ramp Control  
R/W  
R
VCC1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
B1TV1  
B1TV2  
B1RC  
B2TV1  
B2TV2  
B2RC  
Buck 2 Target Voltage 1 Register  
Buck 2 Target Voltage 2 Register  
Buck 2 Voltage Ramp Control  
B3TV1  
B3TV2  
B3RC  
Buck 3 Target Voltage 1 Register  
Buck 3 Target Voltage 2 Register  
Buck 3 Voltage Ramp Control  
BFR  
Buck Function Register  
L21VCR  
L43VCR  
L5VCR  
LDO2 & 1 Voltage Control Registers  
LDO4 & LDO3 Voltage Control Registers  
LDO5 Voltage Control Registers  
INTERRUPT STATUS REGISTER (ISR) 8H'02  
Bit  
7
T100  
0
6
T125  
0
5
GPI2  
0
4
GPI1  
0
3
WUP3  
0
2
WUP2  
0
1
WUPT  
0
0
WUPS  
0
Designation  
Reset Value  
INTERRUPT STATUS REGISTER (ISR) 8H'02 DEFINITIONS  
Bit  
7
Access  
Name  
Description  
R
Reserved  
6
T125  
Status bit for thermal warming PMIC T>125°C  
0 = PMIC Temp. <125°C  
1 = PMIC Temp. >125°C  
5
4
3
2
1
0
R
R
R
R
R
R
GPI2  
GPI1  
Status bit for the input read in from GPIO 2 when set as Input  
0 = GPI2 Logic Low  
1 = GPI2 Logic High  
Status bit for the input read in from GPIO 1 when set as Input  
0 = GPI1 Logic Low  
1 = GPI1 Logic High  
WUP3  
WUP2  
WUPT  
WUPS  
PWR_ON Pin Long Pulse Wake Up Status  
0 = 1 No wake up event  
1 = Long pulse wake up event  
PWR_ON Pin Short Pulse Wake Up Status  
0 = No wake up event  
1 = Short pulse wake up event  
TEST_JIG Pin Wake Up Status  
0 = No wake up event  
1 = Wake up event  
SPARE Pin Wake Up Status  
0 = No wake up event  
1 = Wake up event  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LP3971  
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
SYSTEM CONTROL REGISTER 1 (SCR1) 8H'07  
Bit  
7
BPSEN  
0
6
Reserved  
1
5
4
3
FPWM3  
0
2
FPWM2  
0
1
FPWM1  
0
0
ECEN  
0
Designation  
Reset Value  
SENDL**  
1**  
0**  
SYSTEM CONTROL REGISTER 1 (SCR1) 8H'07 DEFINITIONS  
Bit  
Access  
Name  
Description  
7
R/W  
BPSEN  
Bypass System enable safety Lock. Prevents activation of PWR_EN when SYS_EN is low.  
0 = PWR_EN “AND” with SYS_EN signal  
1 = PWR_EN independent of SYS_EN  
6
Reserved  
5:4  
R/W  
SENDL  
Delay time for High Voltage Power Domains LDO2, LDO3, LDO4, Buck2, and Buck3 after activation  
of SYS_EN. VCC_LDO1 has no delay.  
Data Code  
Delay mS  
0.0  
Notes  
2h'0  
2h'1  
0.5  
2h'2  
1.0  
Default  
2h'3  
1.4  
3
2
1
0
R/W  
R/W  
R/W  
R/W  
FPWM3  
FPWM2  
FPWM1  
ECEN  
Buck 3 PWM/PFM Mode Select  
0 - Auto Switch between PFM and PWM operation  
1 - PWM Mode Only will not switch to PFM  
Buck 2 PWM/PFM Mode Select  
0 - Auto Switch between PFM and PWM operation  
1 - PWM Mode Only will not switch to PFM  
Buck 1 PWM/PFM Mode Select  
0 - Auto Switch between PFM and PWM operation  
1 - PWM Mode Only will not switch to PFM  
External Clock Select  
0 = Internal Oscillator clock for Buck Converters  
1 = External 13 MHz Oscillator clock for Buck Converters  
BACKUP BATTERY CHARGER CONTROL REGISTER (BBCC) 8H'0B  
Bit  
7
NBUB  
0
6
CNBFL  
0
5
4
nBFLT  
1
3
2
BUCEN  
0
1
0
Designation  
Reset Value  
IBUC  
0
0
0
1
BACKUP BATTERY CHARGER CONTROL REGISTER (BBCC) 8H'0B DEFINITIONS  
Bit  
Access  
Name  
Description  
7
R/W  
NBUB  
No back-up battery default setting. Logic will not allow switch over to back-up  
battery.  
0 = Back up Battery Enabled  
1 = Back up Battery Disabled  
6
---  
---  
Reserved  
5:3  
R/W  
BFLT  
nBATT_FLT monitors the battery voltage and can be set to the De-assert  
voltages listed below.  
Data Code  
3h'00  
Asserted  
2.4  
De-Asserted  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3h'01  
2.6  
3h'02  
2.8  
3h'03  
3.0  
3h'04  
3.2  
3h'05  
3.4  
24  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
Bit  
Access  
Name  
Description  
2
R/W  
BUCEN  
Enables backup battery charger  
0 = Back up Battery Charger Disabled  
1 = Back up Battery Charger Enabled  
1:0  
R/W  
IBUC  
Charger current setting for back-up battery  
Data Code  
2h'00  
BU Charger I (µA)  
260  
190  
325  
390  
2h'01  
2h'02  
2h'03  
SYSTEM CONTROL REGISTER (SCR2) 8H'0E  
Bit  
7
6
5
4
3
2
1
0
Designation  
BBCS  
SEB2  
BPTR**  
WUP3_  
sense  
GPIO2  
GPIO1  
Reset Value  
1
0
0**  
1
0
0
0
0
SYSTEM CONTROL REGISTER (SCR2) 8H'0E DEFINITIONS  
Bit  
Access  
Name  
Description  
7
R/W  
BBCS  
Sets GPIO1 as control input for Back Up battery charger  
0 = Back Up battery Charger GPIO Disabled  
1 = Back Up battery Charger GPIO Pin Enabled  
6
5
R/W  
R/W  
R/W  
R/W  
SEB2  
BPTR  
PWR_EN soft Low voltage Supply Enabled OR'ed with PWR_EN Pin  
0 = Low voltage Supply Output Enabled  
1 = Low voltage Supply Output Disabled  
Bypass RTC_LDO Output Voltage to LDO1 Output Voltage Tracking  
0 = RTC_LDO1 Tracking enabled  
1 = RTC-LDO1 Tracking disabled  
4
WUP3_  
sense  
Spare Wakeup control input  
0 = Active High  
1 = Active Low  
3:2  
GPIO2  
Configure direction and output sense of GPIO2 Pin  
Data Code  
2h'00  
GPIO2  
Hi-Z  
2h'01  
Output Low  
Input  
2h'02  
2h'03  
Output high  
1:0  
R/W  
GPIO1  
Configure direction and output sense of GPIO1 Pin  
Data Code  
2h'00  
GPIO1  
Hi-Z  
2h'01  
Output Low  
Input  
2h'02  
2h'03  
Output high  
BUCKS OUTPUT VOLTAGE ENABLE REGISTER (BOVEN) 8H'10  
Bit  
7
Reserved  
0
6
5
Reserved  
0
4
3
Reserved  
0
2
B2EN  
1
1
Reserved  
0
0
B1EN  
1
Designation  
Reset Value  
B2ENC**  
1**  
B3EN  
1
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LP3971  
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
BUCKS ENABLE REGISTER (BOVEN) 8H'10 DEFINITIONS  
Bit  
7
Access  
Name  
Description  
Reserved  
6
R/W  
B2ENC  
Connects Buck 2 enable to SYS_EN or PWR_EN Logic Control pin  
0 = Buck 2 enable connected to PWR_EN  
1 = Buck 2 enable connected to SYS_EN  
5
4
Reserved  
R/W  
B3EN  
VCC_Buck3 Supply Output Enabled  
0 = VCC_Buck3 Supply Output Disabled  
1 = VCC_Buck3 Supply Output Enabled  
3
2
Reserved  
R/W  
B2EN  
VCC_Buck2 Supply Output Enabled  
0 = VCC_Buck2 Supply Output Disabled  
1 = VCC_Buck2 Supply Output Enabled  
1
0
Reserved  
R/W  
B1EN  
VCC_Buck1 Supply Output Enabled  
0 = VCC_Buck1 Supply Output Disabled  
1 = VCC_Buck1 Supply Output Enabled  
BUCK STATUS REGISTER (BOVSR) 8H'11  
Bit  
7
BT_OK  
0
6
Reserved  
0
5
Reserved  
0
4
3
Reserved  
0
2
B2_OK  
0
1
0
B1_OK  
0
Designation  
Reset Value  
B3_OK  
0
0
BUCK STATUS REGISTER (BOVSR) 8H'11 DEFINITIONS  
Bit  
Access  
Name  
Description  
7
R
BT_OK  
Buck 1–3 Supply Output Voltage Status  
0 = (Buck 1–3) output voltage <90% Default value  
1 = (Buck 1–3) output voltage >90% Default value  
6:5  
4
R
Reserved  
B3_OK  
Buck 3 Supply Output Voltage Status  
0 = (Buck 3) output voltage <90% Default value  
1 = (Buck 3) output voltage >90% Default value  
3
2
R
Reserved  
B2_OK  
Buck 2 Supply Output Voltage Status  
0 = (Buck 2) output voltage <90% Default value  
1 = (Buck 2) output voltage >90% Default value  
1
0
R
Reserved  
B1_OK  
Buck 1 Supply Output Voltage Status  
0 = (Buck 1) output voltage <90% Default value  
1 = (Buck 1) output voltage >90% Default value  
LDO OUTPUT VOLTAGE ENABLE REGISTER (LDOEN) 8H'12  
Bit  
7
6
5
LDO5_EN  
1
4
LDO4_EN  
1
3
LDO3_EN  
1
2
LDO2_EN  
1
1
LDO1_EN  
1
0
Reserved  
0
Designation  
Reset Value  
L5EC**  
0**  
L4EC**  
0**  
LDO OUTPUT VOLTAGE ENABLE REGISTER (LDOEN) 8H'12 DEFINITIONS  
Bit  
Access  
Name  
Description  
7
R/W  
L5EC  
Connects LDO5 enable to SYS_EN or PWR_EN Logic Control pin  
0 = LDO 5 enable connected to PWR_EN  
1 = LDO 5 enable connected to SYS_EN  
26  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
Bit  
Access  
Name  
Description  
6
R/W  
L4EC  
Connects LDO4 enable to SYS_EN or PWR_EN Logic Control pin  
0 = LDO 4 enable connected to PWR_EN  
1 = LDO 4 enable connected to SYS_EN  
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
LDO5_EN  
LDO4_EN  
LDO3_EN  
LDO2_EN  
LDO1_EN  
LDO_5 Output Voltage Enable  
0 = LDO5 Supply Output Disabled  
1 = LDO5 Supply Output Enabled  
LDO_4 Output Voltage Enable  
0 = LDO4 Supply Output Disabled  
1 = LDO4 Supply Output Enabled  
LDO_3 Output Voltage Enable  
0 = LDO3 Supply Output Disabled  
1 = LDO3 Supply Output Enabled  
LDO_2 Output Voltage Enable  
0 = LDO2 Supply Output Disabled  
1 = LDO2 Supply Output Enabled  
LDO_1 Output Voltage Enable  
0 = LDO1 Supply Output Disabled  
1 = LDO1 Supply Output Enabled  
Reserved  
LDO OUTPUT VOLTAGE STATUS REGISTER (LDOVS) 8H'13  
Bit  
7
LDOS_OK  
0
6
N/A  
0
5
LDO5_0K  
0
4
LDO4_OK  
0
3
LDO3_OK  
0
2
LDO2_OK  
0
1
LDO1_OK  
0
0
N/A  
0
Designation  
Reset Value  
LDO OUTPUT VOLTAGE STATUS REGISTER (LDOVS) 8H'13 DEFINITIONS  
Bit  
Access  
Name  
Description  
7
R
LDO_OK  
LDO 1–5 Supply Output Voltage Status  
0 = (LDO 1–5) output voltage <90% of selected value  
1 = (LDO 1–5) output voltage >90% of selected value  
6
5
R
Reserved  
LDO5_OK  
LDO_5 Output Voltage Status  
0 = (VCC_LDO5) output voltage <90% of selected value  
1 = (VCC_LDO5) output voltage >90% of selected value  
4
3
2
1
0
R
R
LDO4_OK  
LDO3_OK  
LDO2_OK  
LDO1_OK  
LDO_4 Output Voltage Status  
0 = (VCC_LDO4) output voltage <90% of selected value  
1 = (VCC_LDO4) output voltage >90% of selected value  
LDO_3 Output Voltage Status  
0 = (VCC_LDO3) output voltage <90% of selected value  
1 = (VCC_LDO3) output voltage >90% of selected value  
R
LDO_2 Output Voltage Status  
0 = (VCC_LDO2) output voltage <90% of selected value  
1 = (VCC_LDO2) output voltage >90% of selected value  
R
LDO_1 Output Voltage Status  
0 = (VCC_LDO1) output voltage <90% of selected value  
1 = (VCC_LDO1) output voltage >90% of selected value  
Reserved  
VOLTAGE CHANGE CONTROL REGISTER 1 (VCC1) 8H'20  
Bit  
7
B3VS  
0
6
B3GO  
0
5
B2VS  
0
4
3
2
1
B2VS  
0
0
B2GO  
0
Designation  
Reset Value  
B2GO  
Reserved  
0
0
0
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LP3971  
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
VOLTAGE CHANGE CONTROL REGISTER 1 (VCC1) 8H'20 DEFINITIONS  
Bit  
Access  
Name  
Description  
7
R/W  
B3VS  
Buck 3 Target Voltage Select  
0 = Buck 3 Output Voltage to B3TV1  
1 = Buck 3 Output Voltage to B3TV2  
6
5
4
R/W  
R/W  
R/W  
B3GO  
B2VS  
B2GO  
Start Buck 3 Voltage Change  
0 = Hold Buck 3 Output Voltage at current level  
1 = Ramp Buck 3 Output Voltage as selected by B3VS  
Buck 2 Target Voltage Select  
0 = Buck 2 Output Voltage to B2TV1  
1 = Buck 2 Output Voltage to B2TV2  
Start Buck 2 Voltage Change  
0 = Hold Buck 2 Output Voltage at current level  
1 = Ramp Buck 2 Output Voltage as selected by B2VS  
3:2  
1
Reserved  
R/W  
B1VS  
Buck 1 Target Voltage Select  
0 = Buck 1 Output Voltage to B1TV1  
1 = Buck 1 Output Voltage to B1TV2  
0
R/W  
B1GO  
Start Buck 1 Voltage Change  
0 = Hold Buck 1 Output Voltage at current level  
1 = Ramp Buck 1 Output Voltage as selected by B1VS  
BUCK1 TARGET VOLTAGE 1 REGISTER (B1TV1) 8H'23  
Bit  
7
6
Reserved  
0
5
4
3
2
1
0
Designation  
Reset Value  
Buck 1 Output Voltage (B1OV)**  
0
0**  
0**  
1**  
1**  
0**  
1**  
BUCK1 TARGET VOLTAGE 1 REGISTER (B1TV1) 8H'23 DEFINITIONS  
Bit  
7:5  
4:0  
Access  
Name  
Description  
Reserved  
Output Voltage  
Data Code  
5h'01  
R/W  
B1OV  
(V)  
Data Code  
5h'0D  
5h'0E  
5h'0F  
5h'11  
5h'12  
5h'13  
5h'14  
5h'15  
5h'16  
5h'17  
5h'18  
5h'19  
(V)  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.60  
1.65  
1.70  
1.80  
1.90  
2.50  
2.80  
3.00  
3.30  
5h'02  
5h'03  
5h'04  
5h'05  
5h'06  
5h'07  
5h'08  
5h'09  
5h'0A  
5h'0B  
5h'0C  
BUCK1 TARGET VOLTAGE 2 REGISTER (B1TV2) 8H'24  
Bit  
7
6
Reserved  
0
5
4
3
2
1
0
Designation  
Reset Value  
Buck 1 Output Voltage (B1OV)**  
1** 1** 0**  
0
0
0**  
1**  
28  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
BUCK1 TARGET VOLTAGE 2 REGISTER (B1TV2) 8H'24 DEFINITIONS  
Bit  
7:5  
4:0  
Access  
Name  
Description  
Reserved  
Output Voltage  
Data Code  
5h'01  
R/W  
B1OV  
(V)  
Data Code  
5h'0D  
5h'0E  
5h'0F  
5h'11  
5h'12  
5h'13  
5h'14  
5h'15  
5h'16  
5h'17  
5h'18  
5h'19  
(V)  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.60  
1.65  
1.70  
1.80  
1.90  
2.50  
2.80  
3.00  
3.30  
5h'02  
5h'03  
5h'04  
5h'05  
5h'06  
5h'07  
5h'08  
5h'09  
5h'0A  
5h'0B  
5h'0C  
BUCK 1 VOLTAGE RAMP CONTROL REGISTER (B1RC) 8H'25  
Bit  
7
6
5
4
3
2
1
0
Designation  
Reset Value  
Reserved  
Ramp Rate  
0
0
0
0
1
0
1
0
BUCK 1 VOLTAGE RAMP CONTROL REGISTER (B1RC) 8H'25 DEFINITIONS  
Bit  
7:5  
4:0  
Access  
Name  
Description  
Reserved  
R/W  
B1RS  
DVM Ramp Speed  
Ramp Rate  
(mV/µs)  
Data Code  
4h'0  
4h'1  
4h'2  
4h'3  
4h'4  
4h'5  
4h'6  
4h'7  
4h'8  
4h'9  
4h'A  
Instant  
1
2
3
4
5
6
7
8
9
10  
BUCK 2 TARGET VOLTAGE 1 REGISTER (B2TV1) 8H'29  
Bit  
7
6
Reserved  
0
5
4
3
2
1
0
Designation  
Reset Value  
Buck 2 Output Voltage (B2OV)**  
1** 0** 0**  
0
0
1**  
0**  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LP3971  
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
BUCK 2 TARGET VOLTAGE 1 REGISTER (B2TV1) 8H'29 DEFINITIONS  
Bit  
7:5  
4:0  
Access  
Name  
Description  
Reserved  
Output Voltage  
Data Code  
5h'01  
R/W  
B2OV  
(V)  
Data Code  
5h'0D  
5h'0E  
5h'0F  
5h'11  
5h'12  
5h'13  
5h'14  
5h'15  
5h'16  
5h'17  
5h'18  
5h'19  
(V)  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.60  
1.65  
1.70  
1.80  
1.90  
2.50  
2.80  
3.00  
3.30  
5h'02  
5h'03  
5h'04  
5h'05  
5h'06  
5h'07  
5h'08  
5h'09  
5h'0A  
5h'0B  
5h'0C  
BUCK 2 TARGET VOLTAGE 2 REGISTER (B2TV2) 8H'2A  
Bit  
7
6
Reserved  
0
5
4
3
2
1
0
Designation  
Reset Value  
Buck 2 Output Voltage (B2OV)**  
0
0
1**  
1**  
0**  
0**  
0**  
BUCK 2 TARGET VOLTAGE 2 REGISTER (B2TV2) 8H'2A DEFINITIONS  
Bit  
7:5  
4:0  
Access  
Name  
Description  
Reserved  
Output Voltage  
Data Code  
5h'01  
R/W  
B2OV  
(V)  
Data Code  
5h'0D  
5h'0E  
5h'0F  
5h'11  
5h'12  
5h'13  
5h'14  
5h'15  
5h'16  
5h'17  
5h'18  
5h'19  
(V)  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.60  
1.65  
1.70  
1.80  
1.90  
2.50  
2.80  
3.00  
3.30  
5h'02  
5h'03  
5h'04  
5h'05  
5h'06  
5h'07  
5h'08  
5h'09  
5h'0A  
5h'0B  
5h'0C  
BUCK 2 VOLTAGE RAMP CONTROL REGISTER (B2RC) 8H'2B  
Bit  
7
6
5
4
3
2
1
0
Designation  
Reset Value  
Reserved  
Ramp Rate  
0
0
0
0
1
0
1
0
30  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
BUCK 2 VOLTAGE RAMP CONTROL REGISTER (B2RC) 8H'2B DEFINITIONS  
Bit  
7:5  
4:0  
Access  
Name  
Description  
Reserved  
R/W  
B2RS  
DVM Ramp Speed  
Ramp Rate  
(mV/µs)  
Data Code  
4h'0  
4h'1  
4h'2  
4h'3  
4h'4  
4h'5  
4h'6  
4h'7  
4h'8  
4h'9  
4h'A  
Instant  
1
2
3
4
5
6
7
8
9
10  
BUCK 3 TARGET VOLTAGE 1 REGISTER (B3TV1) 8H'32  
Bit  
7
6
Reserved  
0
5
4
3
2
1
0
Designation  
Reset Value  
Buck 3 Output Voltage (B3OV)**  
0
0
1**  
0**  
1**  
0**  
0**  
BUCK 3 TARGET VOLTAGE 1 REGISTER (B3TV1) 8H'32 DEFINITIONS  
Bit  
7:5  
4:0  
Access  
Name  
Description  
Reserved  
Output Voltage  
Data Code  
5h'01  
R/W  
B3OV  
(V)  
Data Code  
5h'0D  
5h'0E  
5h'0F  
5h'11  
5h'12  
5h'13  
5h'14  
5h'15  
5h'16  
5h'17  
5h'18  
5h'19  
(V)  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.60  
1.65  
1.70  
1.80  
1.90  
2.50  
2.80  
3.00  
3.30  
5h'02  
5h'03  
5h'04  
5h'05  
5h'06  
5h'07  
5h'08  
5h'09  
5h'0A  
5h'0B  
5h'0C  
BUCK 3 TARGET VOLTAGE 2 REGISTER (B3TV2) 8H'33  
Bit  
7
6
Reserved  
0
5
4
3
2
1
0
Designation  
Reset Value  
Buck 2 Output Voltage (B2OV)**  
0** 1** 0**  
0
0
1**  
0**  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LP3971  
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
BUCK 3 TARGET VOLTAGE 2 REGISTER (B3TV2) 8H'33 DEFINITIONS  
Bit  
7:5  
4:0  
Access  
Name  
Description  
Reserved  
Output Voltage  
Data Code  
5h'01  
R/W  
B2OV  
(V)  
Data Code  
5h'0D  
5h'0E  
5h'0F  
5h'11  
5h'12  
5h'13  
5h'14  
5h'15  
5h'16  
5h'17  
5h'18  
5h'19  
(V)  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.60  
1.65  
1.70  
1.80  
1.90  
2.50  
2.80  
3.00  
3.30  
5h'02  
5h'03  
5h'04  
5h'05  
5h'06  
5h'07  
5h'08  
5h'09  
5h'0A  
5h'0B  
5h'0C  
BUCK 3 VOLTAGE RAMP CONTROL REGISTER (B3RC) 8H'34  
Bit  
7
6
5
4
3
2
1
0
Designation  
Reset Value  
Reserved  
Ramp Rate  
0
0
0
0
1
0
1
0
BUCK 3 VOLTAGE RAMP CONTROL REGISTER (B3RC) 8H'34 DEFINITIONS  
Bit  
7:5  
4:0  
Access  
Name  
Description  
Reserved  
R/W  
B3RC  
DVM Ramp Speed  
Ramp Rate  
(mV/µs)  
Data Code  
4h'0  
4h'1  
4h'2  
4h'3  
4h'4  
4h'5  
4h'6  
4h'7  
4h'8  
4h'9  
4h'A  
Instant  
1
2
3
4
5
6
7
8
9
10  
BUCK FUNCTION REGISTER (BFR) 8H'38  
Bit  
7
6
5
Reserved  
0
4
3
2
1
0
Designation  
Reset Value  
SHBU  
BK_SLOMOD BK_SSEN  
0
0
0
0
0
1
0
32  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
BUCK FUNCTION REGISTER (BFR) 8H'38 DEFINITIONS  
Bit  
Access  
Name  
Description  
7:3  
Reserved  
SHBU  
Shut down Back up battery to prevent battery drain during shipping  
0 = Back up Battery Enabled  
1 = Back up Battery Disabled  
1
0
R
R
BK_SLOMOD Buck Spread Spectrum Modulation Buck 1–3  
0 = 10 kHz triangular wave spread spectrum modulation  
1 = 2 kHz triangular wave spread spectrum modulation  
BK_SSEN  
Spread spectrum function Buck 1–3  
0 = SS Output Disabled  
1 = SS Output Enabled  
LDO2–LDO1 VOLTAGE CONTROL REGISTER (L21VCR) 8H'39  
Bit  
7
6
5
4
3
2
1
0
Designation  
Reset Value  
LDO 2 Output Voltage (L20V)**  
1** 0**  
LDO 1 Output Voltage (L1OV)**  
1** 0**  
1**  
0**  
1**  
0**  
LDO2–LDO1 VOLTAGE CONTROL REGISTER (L21VCR) 8H'39 DEFINITIONS  
Bit  
Access  
Name  
Description  
Output Voltage  
7:4  
R/W  
L2OV  
Data Code  
4h'0  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
4h'1  
4h'2  
4h'3  
4h'4  
4h'5  
4h'6  
4h'7  
4h'8  
4h'9  
4h'A  
4h'B  
4h'C  
4h'D  
4h'E  
4h'F  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LP3971  
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
Bit  
Access  
Name  
Description  
3:0  
R/W  
L1OV  
4h'0  
4h'1  
4h'2  
4h'3  
4h'4  
4h'5  
4h'6  
4h'7  
4h'8  
4h'9  
4h'A  
4h'B  
4h'C  
4h'D  
4h'E  
4h'F  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
LDO4–LDO3 VOLTAGE CONTROL REGISTER (L43VCR) 8H'3A  
Bit  
7
6
5
4
3
2
1
0
Designation  
Reset Value  
LDO 4 Output Voltage (L4OV)**  
1** 1**  
LDO 3 Output Voltage (L3OV)**  
1** 0**  
0**  
0**  
1**  
0**  
LDO4–LDO3 VOLTAGE CONTROL REGISTER (L43VCR) 8H'3A DEFINITIONS  
Bit  
Access  
Name  
Description  
Output Voltage  
7:4  
R/W  
L4OV  
Data Code  
4h'0  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.50  
1.80  
1.90  
2.50  
2.80  
3.00  
3.30  
4h'1  
4h'2  
4h'3  
4h'4  
4h'5  
4h'6  
4h'7  
4h'8  
4h'9  
4h'A  
4h'B  
4h'C  
4h'D  
4h'E  
4h'F  
34  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
Bit  
Access  
Name  
Description  
3:0  
R/W  
L3OV  
4h'0  
4h'1  
4h'2  
4h'3  
4h'4  
4h'5  
4h'6  
4h'7  
4h'8  
4h'9  
4h'A  
4h'B  
4h'C  
4h'D  
4h'E  
4h'F  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
VCC_LDO5 VOLTAGE CONTROL REGISTER (L5VCR) 8H'3B  
Bit  
7
6
5
4
3
2
1
0
Designation  
Reset Value  
Reserved  
LDO 5 Output Voltage (L5OV)**  
0** 1**  
0
0
0
0
0**  
0**  
VCC_LDO5 VOLTAGE CONTROL REGISTER (L5VCR) 8H'3B DEFINITIONS  
Bit  
7:5  
4:0  
Access  
Name  
Description  
Reserved  
Data Code  
R/W  
B1OV  
Output Voltage  
4h'0  
4h'1  
4h'2  
4h'3  
4h'4  
4h'5  
4h'6  
4h'7  
4h'8  
4h'9  
4h'A  
4h'B  
4h'C  
4h'D  
4h'E  
4h'F  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.50  
1.80  
1.90  
2.50  
2.80  
3.00  
3.30  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: LP3971  
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
Register Programming Examples  
Example 1. Setting register 8h'12 value to 8h'3E' will enable LDOs 1–5.  
Example 2. Setting register 8h'39 to 8h'CC' will set LDOs 1 and 2 to 3.0V. These voltages will appear at the LDO  
outputs if the corresponding LDO has been enabled. Programming a voltage value to a LDO, which is off, will  
affect the LDO output voltage after the LDO is enabled. Enabling and programming the output voltage are  
separate operations.  
DIGITAL INTERFACE CONTROL SIGNALS  
Signal  
SYS_EN  
Definition  
Active State  
High  
Signal Direction  
Input  
High Voltage Power Enable  
Low Voltage Power Enable  
Serial Bus Clock Line  
PWR_EN  
SCL  
High  
Input  
Clock  
Input  
SDA  
Serial Bus Data Line  
Bidirectional  
Input  
nRSTI  
Forces an Unconditional Hardware Reset  
Forces an Unconditional Hardware Reset  
Main Battery Removed or Discharged Indicator  
Wakeup Input to CPU  
Low  
Low  
nRSTO  
Output  
nBATT_FLT  
PWR_ON  
nTEST_JIG  
SPARE  
Low  
Output  
High  
Low  
Input  
Wakeup Input to CPU  
Input  
Wakeup Input to CPU  
High/Low*  
High  
-/Low  
-
Input  
EXT_WAKEUP  
GPIO1/nCHG_EN  
GPIO2  
Wake-Up Output for Application Processor  
General Purpose I/O/External Back-Up Battery Charger  
General Purpose I/O  
Output  
Bidirectional/Input  
Bidirectional  
POWER DOMAIN ENABLES  
PMU Output  
LDO_RTC  
LDO1  
HW Enable  
-
SW Enable  
-
SYS_EN  
LDO1_EN  
LDO2_EN  
LDO3_EN  
LDO4_EN  
LDO5_EN  
B1_EN  
LDO2  
SYS_EN  
LDO3  
SYS_EN  
LDO4  
PWR_EN/SYS_EN  
PWR_EN/SYS_EN  
PWR_EN  
LDO5  
BUCK1  
BUCK2  
BUCK3  
SYS_EN/PWR_EN  
SYS_EN  
B2_EN  
B3_EN  
LDO_RTC TRACKING (nIO_TRACK)  
LP3971 has a tracking function (nIO_TRACK). When enabled, LDO_RTC voltage will track LDO1 voltage within  
200 mV down to 2.8V when LDO1 is enabled. This function can be switched on/off by BPTR (8h'0E) register bit.  
LDO4, LDO5 AND BUCK 2 ENABLE SELECTION (LDO4_ESEL, LDO5_ESEL AND BUCK2_ESEL)  
LDO4, 5 and BUCK2 power domain enable is possible to change between SYS_EN and PWR_EN by register  
bits.  
36  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
WAKE-UP FUNCTIONALITY (PWR_ON, nTEST_JIG, SPARE AND EXT_WAKEUP)  
Three input pins can be used to assert wakeup output for 10 ms for application processor notification to wakeup.  
SPARE Input can be programmed through I2C compatible interface to be active low or high (SPARE bit, Default  
is active low ‘1’). A reason for wakeup event can be read through I2C compatible interface also. Additionally  
wakeup inputs have 30 ms de-bounce filtering. Furthermore PWR_ON have distinguishing between short and  
long (1s) pulses (push button input). LP3971 also has an internal Thermal Shutdown early warning that  
generates a wakeup to the system also. This is generated usually at 125°C.  
PWR_ON  
nTEST_JIG  
SPARE  
OR  
EXT_WAKEUP  
PWR_ON  
nTEST_JIG  
SPARE  
EXT_WAKEUP  
10 ms  
Internal Thermal Early Warning  
WAKEUP register bits  
WUP0  
Reason for WAKEUP  
SPARE  
WUP1  
TEST_JIG  
WUP2  
PWR_ON short pulse  
PWR_ON long pulse  
TSD Early Warning  
WUP3  
TSD_EW  
INTERNAL THERMAL SHUTDOWN PROCEDURE  
Thermal shutdown is build to generate early warning (typ. 125°C) which triggers the EXT_WAKEUP for the  
processor acknowledge. When a thermal shutdown triggers (typ. 160°C) the PMU will reset the system until the  
device cools down.  
BATTERY SWITCH AND BACK UP BATTERY CHARGER  
When Back-Up battery is connected but the main battery has been removed or its supply voltage too low,  
LP3971 uses Back-Up Battery for generating LDO_RTC voltage. When Main Battery is available the battery fet  
switches over to the main battery for LDO_RTC voltage. When Main battery voltage is too low or removed  
nBATT_FLT is asserted. If no back up battery exists, the battery switch to back up can be switched off by  
nBU_BAT_EN bit. User can set the battery fault determination voltage and battery charger current via I2C  
compatible interface. Enabling of back up battery charger can be done via serial interface (nBAT_CHG_EN) or  
external charger enable pin (nCHG_EN). Pin 29 is set as external charger enable input by default. A  
SHUTBKUPBAT register bit can be used to avoid discharging back up battery during storage etc. By setting this  
bit before removing main battery the back up battery connection will not draw any current and stays like this until  
the bit is set to default or the system is reset.  
GENERAL PURPOSE I/O FUNCTIONALITY (GPIO1 AND GPIO2)  
LP3971 has 2 general purpose I/Os for system control. I2C compatible interface will be used for setting any of the  
pins to input, output or hi-Z mode. Inputs value can be read via serial interface (GPI1,2 bits). The pin 29  
functionality needs to be set to GPIO by serial interface register bit nEXTCHGEN. (GPIO/CHG)  
Controls  
Nextchgen_sel  
Port Function  
GPIO1  
Reg  
batmonchg  
Function  
GPIO<1>  
GPIO<1>  
bucen  
Gpin 1  
X
X
1
X
X
0
1
1
1
0
0
X
Input = 0  
Input = 1  
X
0
0
0
Enabled  
Not Enabled  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: LP3971  
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
Controls  
Port Function  
GPIO1  
Reg  
batmonchg  
GPIO<1>  
GPIO<1>  
Nextchgen_sel  
bucen  
Gpin 1  
Function  
Enabled  
X
0
1
0
1
X
0
0
1
1
X
0
0
0
0
1
X
X
X
X
X
HiZ  
Input (dig)->  
Output = 0  
Output = 1  
Input  
0
0
GPIO<1>  
GPIO<1>  
Factory fm disabled  
GPIO_tstiob  
GPIO2  
gpin2  
0
1
0
1
0
0
1
1
1
1
1
1
HiZ  
0
input  
0
Input (dig)->  
Output = 0  
Output = 1  
0
The LP3971 has provision for two battery connections, the main battery Vbat and Backup Battery (See  
Applications Schematic Diagrams Figure 1 and Figure 2).  
The function of the battery switch is to connect power to the RTC LDO from the appropriate battery, depending  
on conditions described below:  
If only the backup battery is applied, the switch will automatically connect the RTC LDO power to this battery.  
If only the main battery is applied, the switch will automatically connect the RTC LDO power to this battery.  
If both batteries are applied, and the main battery is sufficiently charged (VBAT > 3.1V), the switch will  
automatically connect the RTC LDO power to the main battery.  
As the main battery is discharged by use, the user will be warned by a separate circuit called nBATT_FLT.  
Then if no action is taken to restore the charge on the main battery, and discharging is continued the battery  
switch will protect the RTC LDO by disconnecting from the main battery and connecting to the backup battery.  
The main battery voltage at which the RTC LDO is switched from main to backup battery is 2.9V typically.  
There is a hysterisis voltage in this switch operation so, the RTC LDO will not be reconnected to main  
battery until main battery voltage is greater than 3.1V typically.  
Additionally, the user may wish to disable the battery switch, such as, in the case when only a main battery is  
used. This is accomplished by setting the “no back up battery bit” in the control register 8h’89 bit 7 NBUB.  
With this bit set to “1”, the above described switching will not occur, that is the RTC LDO will remain  
connected to the main battery even as it is discharged below the 2.9 Volt threshold.  
REGULATED VOLTAGES OK  
All the power domains have own register bit (X_OK) that processor can read via serial interface to be sure that  
enabled powers are OK (regulating). Note that these read only bits are only valid when regulators are settled  
(avoid reading these bits during voltage change or power up).  
THERMAL MANAGEMENT  
Application: There is a mode wherein all 6 comparators (flags) can be turned on via the “enallflags” control  
register bit. This mode allows the user to interrogate the device or system temperature under the set operating  
conditions. Thus, the rate of temperature change can also be estimated. The system may then negotiate for  
speed and power trade off, or deploy cooling maneuvers to optimize system performance. The “enallflags” bit  
needs enabled only when the “bct<2:0> bits are read to conserve power.  
Note: The thermal management flags have been verified functional. Presently these registers are accessible by  
factory only. If there is a demand for this function, the relevant register controls may be shifted into the user  
programmable bank; the temperature range and resolution of these flags, might also be refined/redefined.  
Application Note - LP3971 Reset Sequence  
INITIAL COLD START POWER ON SEQUENCE  
1. The Back up battery is connected to the PMU, power is applied to the back-up battery pin, the RTC_LDO  
38  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
turns on and supplies a stable output voltage to the VCC_BATT pin of the Applications processor (initiating  
the power-on reset event) with nRSTO asserted from the LP3971 to the processor.  
2. nRSTO de-asserts after a minimum of 50 mS.  
3. The Applications processor waits for the de-assertion of nBATT_FLT to indicate system power (VIN) is  
available.  
4. After system power (VIN) is applied, the LP3971 de-asserts nBATT_FLT. Note that BOTH nRSTO and  
nBATT_FLT need to be de-asserted before SYS_EN is enabled. The sequence of the two signals is  
independent of each other.  
5. The Applications processor asserts SYS_EN, the LP3971 enables the system high-voltage power supplies.  
The Applications processor starts its countdown timer set to 125 mS.  
6. The LP3971 enables the high-voltage power supplies.  
LDO1 power for VCC_MVT (Power for internal logic and I/O Blocks), BG (Bandgap reference voltage),  
OSC13M (13 MHz oscillator voltage) and PLL enabled first, followed by others if delay is on.  
7. Countdown timer expires; the Applications processor asserts PWR_EN to enable the low-voltage power  
supplies. The processor starts the countdown timer set to 125 mS period.  
8. The Applications processor asserts PWR_EN (ext. pin or I2C), the LP3971 enables the low-voltage  
regulators.  
9. Countdown timer expires; If enabled power domains are OK (I2C read) the power up sequence continues by  
enabling the processors 13 MHz oscillator and PLL’s.  
10. The Applications processor begins the execution of code.  
t
t
3
t
4
1
BU Batt  
V
IN  
1.  
VCC_RTC  
nRSTO  
2.  
V
Main Batt  
IN  
3,4.  
nBATT_FLT  
5.  
6.  
SYS_EN  
PXA27x Output  
High-Volt_PD  
PWR_EN  
7.  
PXA27x Output  
8.  
Low-Volt_PD  
t
2
t
5
nRESET_OUT  
13 MHZ_OSC  
PXA27x Output  
PXA27x Output  
9,10.  
Note that BOTH nRSTO and nBATT_FLT need to be de-asserted before SYS_EN is enabled. The sequence of the  
two signals is independent of each other and can occur is either order.  
POWER-ON TIMING  
Symbol  
Description  
Min  
Typ  
Max  
Units  
mS  
t1  
t2  
Delay from VCC_RTC assertion to nRSTO de-assertion  
Delay from nBATT_FLT de-assertion to nRSTI assertion  
50  
100  
µS  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: LP3971  
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
Symbol  
Description  
Min  
Typ  
10  
Max  
Units  
mS  
t3  
t4  
t5  
Delay from nRST de-assertion to SYS_EN assertion  
Delay from SYS_EN assertion to PWR_EN assertion  
Delay from PWR_EN assertion to nRSTO de-assertion  
125  
125  
mS  
mS  
HARDWARE RESET SEQUENCE  
Hardware reset initiates when the nRSTI signal is asserted (low). Upon assertion of nRST the processor enters  
hardware reset state. The LP3971 holds the nRST low long enough (50 ms typ.) to allow the processor time to  
initiate the reset state.  
RESET SEQUENCE  
1. nRSTI is asserted.  
2. nRSTO is asserted and will de-asserts after a minimum of 50 mS  
3. The Applications processor waits for the de-assertion of nBATT_FLT to indicate system power (VIN) is  
available.  
4. After system power (VIN) is turned on, the LP3971 de-asserts nBATT_FLT.  
5. The Applications processor asserts SYS_EN, the LP3971 enables the system high-voltage power supplies.  
The Applications processor starts its countdown timer.  
6. The LP3971 enables the high-voltage power supplies.  
7. Countdown timer expires; the Applications processor asserts PWR_EN to enable the low-voltage power  
supplies. The processor starts the countdown timer.  
8. The Applications processor asserts PWR_EN, the LP3971 enables the low-voltage regulators.  
9. Countdown timer expires; If enabled power domains are OK (I2C read) the power up sequence continues by  
enabling the processors 13 MHz oscillator and PLL’s.  
10. The Applications processor begins the execution of code.  
40  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
APPLICATION HINTS  
LDO CONSIDERATIONS  
External Capacitors  
The LP3971’s regulators require external capacitors for regulator stability. These are specifically designed for  
portable applications requiring minimum board space and smallest components. These capacitors must be  
correctly selected for good performance.  
Input Capacitor  
An input capacitor is required for stability. It is recommended that a 1.0 µF capacitor be connected between the  
LDO input pin and ground (this capacitance value may be increased without limit).  
This capacitor must be located a distance of not more than 1 cm from the input pin and returned to a clean  
analogue ground. Any good quality ceramic, tantalum, or film capacitor may be used at the input.  
Important: Tantalum capacitors can suffer catastrophic failures due to surge current when connected to a low  
impedance source of power (like a battery or a very large capacitor). If a tantalum capacitor is used at the input,  
it must be specified by the manufacturer to have a surge current rating sufficient for the application.  
There are no requirements for the ESR (Equivalent Series Resistance) on the input capacitor, but tolerance and  
temperature coefficient must be considered when selecting the capacitor to ensure the capacitance will remain  
approximately 1.0 µF over the entire operating temperature range.  
Output Capacitor  
The LDO’s are designed specifically to work with very small ceramic output capacitors. A 1.0 μF ceramic  
capacitor (temperature types Z5U, Y5V or X7R) with ESR between 5 mto 500 m, are suitable in the  
application circuit.  
For this device the output capacitor should be connected between the VOUT pin and ground.  
It is also possible to use tantalum or film capacitors at the device output, COUT (or VOUT), but these are not as  
attractive for reasons of size and cost (see Capacitor Characteristics).  
The output capacitor must meet the requirement for the minimum value of capacitance and also have an ESR  
value that is within the range 5 mto 500 mfor stability.  
No-Load Stability  
The LDO’s will remain stable and in regulation with no external load. This is an important consideration in some  
circuits, for example CMOS RAM keep-alive applications.  
Capacitor Characteristics  
The LDO’s are designed to work with ceramic capacitors on the output to take advantage of the benefits they  
offer. For capacitance values in the range of 0.47 µF to 4.7 µF, ceramic capacitors are the smallest, least  
expensive and have the lowest ESR values, thus making them best for eliminating high frequency noise. The  
ESR of a typical 1.0 µF ceramic capacitor is in the range of 20 mto 40 m, which easily meets the ESR  
requirement for stability for the LDO’s.  
For both input and output capacitors, careful interpretation of the capacitor specification is required to ensure  
correct device operation. The capacitor value can change greatly, depending on the operating conditions and  
capacitor type. In particular, the output capacitor selection should take account of all the capacitor parameters, to  
ensure that the specification is met within the application. The capacitance can vary with DC bias conditions as  
well as temperature and frequency of operation. Capacitor values will also show some decrease over time due to  
aging. The capacitor parameters are also dependant on the particular case size, with smaller sizes giving poorer  
performance figures in general. As an example, Figure 23 shows a typical graph comparing different capacitor  
case sizes in a Capacitance vs. DC Bias plot. As shown in the graph, increasing the DC Bias condition can result  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: LP3971  
 
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
in the capacitance value falling below the minimum value given in the recommended capacitor specifications  
table. Note that the graph shows the capacitance out of spec for the 0402 case size capacitor at higher bias  
voltages. It is therefore recommended that the capacitor manufacturers’ specifications for the nominal value  
capacitor are consulted for all conditions, as some capacitor sizes (e.g. 0402) may not be suitable in the actual  
application.  
0603, 10V, X5M  
100%  
80%  
60%  
40%  
0402, 6.3V, X5R  
20%  
0
1.0  
2.0  
3.0  
4.0  
5.0  
DC BIAS (V)  
Figure 23. Graph Showing a Typical Variation in Capacitance vs. DC Bias  
The ceramic capacitor’s capacitance can vary with temperature. The capacitor type X7R, which operates over a  
temperature range of 55°C to +125°C, will only vary the capacitance to within ±15%. The capacitor type X5R  
has a similar tolerance over a reduced temperature range of 55°C to +85°C. Many large value ceramic  
capacitors, larger than 1 µF are manufactured with Z5U or Y5V temperature characteristics. Their capacitance  
can drop by more than 50% as the temperature varies from 25°C to 85°C. Therefore X7R is recommended over  
Z5U and Y5V in applications where the ambient temperature will change significantly above or below 25°C.  
Tantalum capacitors are less desirable than ceramic for use as output capacitors because they are more  
expensive when comparing equivalent capacitance and voltage ratings in the 0.47 µF to 4.7 µF range.  
Another important consideration is that tantalum capacitors have higher ESR values than equivalent size  
ceramics. This means that while it may be possible to find a tantalum capacitor with an ESR value within the  
stable range, it would have to be larger in capacitance (which means bigger and more costly) than a ceramic  
capacitor with the same ESR value. It should also be noted that the ESR of a typical tantalum will increase about  
2:1 as the temperature goes from 25°C down to –40°C, so some guard band must be allowed.  
BUCK CONSIDERATIONS  
Inductor Selection  
There are two main considerations when choosing an inductor; the inductor should not saturate, and the inductor  
current ripple is small enough to achieve the desired output voltage ripple. Different saturation current rating  
specs are followed by different manufacturers so attention must be given to details. Saturation current ratings are  
typically specified at 25°C so ratings at max ambient temperature of application should be requested from  
manufacturer.  
There are two methods to choose the inductor saturation current rating.  
Method 1  
The saturation current is greater than the sum of the maximum load current and the worst case average to peak  
inductor current. This can be written as  
ISAT > IOUTMAX + IRIPPLE  
«
«
«
«
«
«
VIN - VOUT  
VOUT  
VIN  
1
f
where IRIPPLE  
=
*
*
L
2
*
(2)  
42  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
• IRIPPLE: Average to peak inductor current  
• IOUTMAX: Maximum load current (1500 mA)  
• VIN: Maximum input voltage in application  
• L: Min inductor value including worst case tolerances (30% drop can be considered for method 1)  
• f: Minimum switching frequency (1.6 MHz)  
• VOUT: Output voltage  
Method 2  
A more conservative and recommended approach is to choose an inductor that has saturation current rating  
greater than the max current limit of TBD mA.  
A 2.2 μH inductor with a saturation current rating of at least TBD mA is recommended for most applications. The  
inductor’s resistance should be less than 0.3for a good efficiency. Table 2 lists suggested inductors and  
suppliers. For low-cost applications, an unshielded bobbin inductor could be considered. For noise critical  
applications, a toroidal or shielded bobbin inductor should be used. A good practice is to lay out the board with  
overlapping footprints of both types for design flexibility. This allows substitution of a low-noise shielded inductor,  
in the event that noise from low-cost bobbin models is unacceptable.  
Input Capacitor Selection  
A ceramic input capacitor of 10 μF, 6.3V is sufficient for most applications. Place the input capacitor as close as  
possible to the VIN pin of the device. A larger value may be used for improved input voltage filtering. Use X7R or  
X5R types, do not use Y5V. DC bias characteristics of ceramic capacitors must be considered when selecting  
case sizes like 0805 and 0603. The input filter capacitor supplies current to the PFET switch of the converter in  
the first half of each cycle and reduces voltage ripple imposed on the input power source. A ceramic capacitor’s  
low ESR provides the best noise filtering of the input voltage spikes due to this rapidly changing current. Select a  
capacitor with sufficient ripple current rating. The input current ripple can be calculated as:  
«
r2  
VOUT  
VIN  
VOUT  
VIN  
1 -  
*
IRMS = IOUTMAX  
+
*
12  
«
VOUT  
(VIN - VOUT  
)
*
where r =  
VIN  
L
f
IOUTMAX  
*
*
*
(3)  
The worst case is when VIN = 2 * VOUT  
Table 2. Suggested Inductors and Their Suppliers  
Model  
Vendor  
Toko  
Dimensions LxWxH (mm)  
3.0 x 3.0 x 1.2  
D.C.R (Typ)  
FDSE0312-2R2M  
DO1608C-222  
160 mΩ  
80 mΩ  
Coilcraft  
6.6 x 4.5 x 1.8  
Output Capacitor Selection  
Use a 10 μF, 6.3V ceramic capacitor. Use X7R or X5R types, do not use Y5V. DC bias characteristics of ceramic  
capacitors must be considered when selecting case sizes like 0805 and 0603. DC bias characteristics vary from  
manufacturer to manufacturer and dc bias curves should be requested from them as part of the capacitor  
selection process. The output filter capacitor smooths out current flow from the inductor to the load, helps  
maintain a steady output voltage during transient load changes and reduces output voltage ripple. These  
capacitors must be selected with sufficient capacitance and sufficiently low ESR to perform these functions.  
The output voltage ripple is caused by the charging and discharging of the output capacitor and also due to its  
ESR and can be calculated as:  
IRIPPLE  
VPP-C  
=
4
f C  
*
*
(4)  
43  
Voltage peak-to-peak ripple due to ESR can be expressed as follows  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: LP3971  
 
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
VPP-ESR = (2 * IRIPPLE) * RESR  
(5)  
Because these two components are out of phase the rms value can be used to get an approximate value of  
peak-to-peak ripple.  
Voltage peak-to-peak ripple, root mean squared can be expressed as follows  
2
VPP-C2 + VPP-ESR  
VPP-RMS  
=
(6)  
Note that the output voltage ripple is dependent on the inductor current ripple and the equivalent series  
resistance of the output capacitor (RESR).  
The RESR is frequency dependent (as well as temperature dependent); make sure the value used for calculations  
is at the switching frequency of the part.  
Table 3. Suggested Capacitor and Their Suppliers  
Case Size  
Model  
Type  
Vendor  
Voltage  
Inch (mm)  
0805 (2012)  
0805 (2012)  
0805 (2012)  
GRM21BR60J106K  
JMK212BJ106K  
Ceramic, X5R  
Murata  
Taiyo-Yuden  
TDK  
6.3V  
6.3V  
6.3V  
Ceramic, X5R  
Ceramic, X5R  
C2012X5R0J106K  
Buck Output Ripple Management  
If VIN and ILOAD increase, the output ripple associated with the Buck Regulators also increases. The figure below  
shows the safe operating area. To ensure operation in the area of concern it is recommended that the system  
designer circumvents the output ripple issues to install schottky diodes on the Bucks(s) that are expected to  
perform under these extreme corner conditions.  
(Schottky diodes are recommended to reduce the output ripple, if system requirements include this shaded area  
of operation. VIN > 5.1V and ILOAD > 1.24)  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
0
0.5  
1.0  
1.5  
LOAD CURRENT (A)  
Board Layout Considerations  
PC board layout is an important part of DC-DC converter design. Poor board layout can disrupt the performance  
of a DC-DC converter and surrounding circuitry by contributing to EMI, ground bounce, and resistive voltage loss  
in the traces. These can send erroneous signals to the DC-DC converter IC, resulting in poor regulation or  
instability.  
Good layout for the converters can be implemented by following a few simple design rules.  
1. Place the converters, inductor and filter capacitors close together and make the traces short. The traces  
between these components carry relatively high switching currents and act as antennas. Following this rule  
reduces radiated noise. Special care must be given to place the input filter capacitor very close to the VIN  
and GND pin.  
2. Arrange the components so that the switching current loops curl in the same direction. During the first half of  
each cycle, current flows from the input filter capacitor through the converter and inductor to the output filter  
capacitor and back through ground, forming a current loop. In the second half of each cycle, current is pulled  
up from ground through the converter by the inductor to the output filter capacitor and then back through  
44  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
LP3971  
www.ti.com  
SNVS432V JANUARY 2006REVISED MAY 2013  
ground forming a second current loop. Routing these loops so the current curls in the same direction  
prevents magnetic field reversal between the two half-cycles and reduces radiated noise.  
3. Connect the ground pins of the converter and filter capacitors together using generous component-side  
copper fill as a pseudo-ground plane. Then, connect this to the ground-plane (if one is used) with several  
vias. This reduces ground-plane noise by preventing the switching currents from circulating through the  
ground plane. It also reduces ground bounce at the converter by giving it a low-impedance ground  
connection.  
4. Use wide traces between the power components and for power connections to the DC-DC converter circuit.  
This reduces voltage errors caused by resistive losses across the traces.  
5. Route noise sensitive traces, such as the voltage feedback path, away from noisy traces between the power  
components. The voltage feedback trace must remain close to the converter circuit and should be direct but  
should be routed opposite to noisy components. This reduces EMI radiated onto the DC-DC converter’s own  
voltage feedback trace. A good approach is to route the feedback trace on another layer and to have a  
ground plane between the top layer and layer on which the feedback trace is routed. In the same manner for  
the adjustable part it is desired to have the feedback dividers on the bottom layer.  
6. Place noise sensitive circuitry, such as radio RF blocks, away from the DC-DC converter, CMOS digital  
blocks and other noisy circuitry. Interference with noise-sensitive circuitry in the system can be reduced  
through distance.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: LP3971  
 
LP3971  
SNVS432V JANUARY 2006REVISED MAY 2013  
www.ti.com  
REVISION HISTORY  
Changes from Revision U (May 2013) to Revision V  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 45  
46  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LP3971  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2013  
PACKAGING INFORMATION  
Orderable Device  
LP3971SQ-2G16/NOPB  
LP3971SQ-7848/NOPB  
LP3971SQ-8858/NOPB  
LP3971SQ-B410/NOPB  
LP3971SQ-B510/NOPB  
LP3971SQ-D510/NOPB  
LP3971SQ-F211/NOPB  
LP3971SQ-G824/NOPB  
LP3971SQ-N510/NOPB  
LP3971SQ-O509/NOPB  
LP3971SQ-P55A/NOPB  
LP3971SQ-Q418/NOPB  
LP3971SQ-U511/NOPB  
LP3971SQ-W416/NOPB  
LP3971SQE-7848/NOPB  
LP3971SQE-B510/NOPB  
LP3971SQE-N510/NOPB  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RSB  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
1000  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
71-2G16  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
250  
Green (RoHS  
& no Sb/Br)  
71-7848  
71-8858  
71-B410  
71-B510  
71-D510  
71-F211  
71-G824  
71-N510  
71-O509  
71-P55A  
71-Q418  
71-U511  
71W416  
71-7848  
71-B510  
71-N510  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
LP3971SQE-P55A/NOPB  
LP3971SQE-W416/NOPB  
LP3971SQX-2G16/NOPB  
LP3971SQX-7848/NOPB  
LP3971SQX-8858/NOPB  
LP3971SQX-B410/NOPB  
LP3971SQX-B510/NOPB  
LP3971SQX-D510/NOPB  
LP3971SQX-F211/NOPB  
LP3971SQX-G824/NOPB  
LP3971SQX-N510/NOPB  
LP3971SQX-O509/NOPB  
LP3971SQX-P55A/NOPB  
LP3971SQX-Q418/NOPB  
LP3971SQX-U511/NOPB  
LP3971SQX-W416/NOPB  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RSB  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
250  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
71-P55A  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
250  
Green (RoHS  
& no Sb/Br)  
71W416  
71-2G16  
71-7848  
71-8858  
71-B410  
71-B510  
71-D510  
71-F211  
71-G824  
71-N510  
71-O509  
71-P55A  
71-Q418  
71-U511  
71W416  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
-40 to 125  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2013  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Oct-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP3971SQ-2G16/NOPB WQFN  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
250  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
LP3971SQ-7848/NOPB  
LP3971SQ-8858/NOPB  
WQFN  
WQFN  
LP3971SQ-B410/NOPB WQFN  
LP3971SQ-B510/NOPB WQFN  
LP3971SQ-D510/NOPB WQFN  
LP3971SQ-F211/NOPB WQFN  
LP3971SQ-G824/NOPB WQFN  
LP3971SQ-N510/NOPB WQFN  
LP3971SQ-O509/NOPB WQFN  
LP3971SQ-P55A/NOPB WQFN  
LP3971SQ-Q418/NOPB WQFN  
LP3971SQ-U511/NOPB WQFN  
LP3971SQ-W416/NOPB WQFN  
LP3971SQE-7848/NOPB WQFN  
LP3971SQE-B510/NOPB WQFN  
LP3971SQE-N510/NOPB WQFN  
LP3971SQE-P55A/NOPB WQFN  
250  
250  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Oct-2013  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP3971SQE-W416/NOPB WQFN  
LP3971SQX-2G16/NOPB WQFN  
LP3971SQX-7848/NOPB WQFN  
LP3971SQX-8858/NOPB WQFN  
LP3971SQX-B410/NOPB WQFN  
LP3971SQX-B510/NOPB WQFN  
LP3971SQX-D510/NOPB WQFN  
LP3971SQX-F211/NOPB WQFN  
LP3971SQX-G824/NOPB WQFN  
LP3971SQX-N510/NOPB WQFN  
LP3971SQX-O509/NOPB WQFN  
LP3971SQX-P55A/NOPB WQFN  
LP3971SQX-Q418/NOPB WQFN  
LP3971SQX-U511/NOPB WQFN  
LP3971SQX-W416/NOPB WQFN  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
250  
178.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP3971SQ-2G16/NOPB  
LP3971SQ-7848/NOPB  
WQFN  
WQFN  
RSB  
RSB  
40  
40  
1000  
1000  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Oct-2013  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP3971SQ-8858/NOPB  
LP3971SQ-B410/NOPB  
LP3971SQ-B510/NOPB  
LP3971SQ-D510/NOPB  
LP3971SQ-F211/NOPB  
LP3971SQ-G824/NOPB  
LP3971SQ-N510/NOPB  
LP3971SQ-O509/NOPB  
LP3971SQ-P55A/NOPB  
LP3971SQ-Q418/NOPB  
LP3971SQ-U511/NOPB  
LP3971SQ-W416/NOPB  
LP3971SQE-7848/NOPB  
LP3971SQE-B510/NOPB  
LP3971SQE-N510/NOPB  
LP3971SQE-P55A/NOPB  
LP3971SQE-W416/NOPB  
LP3971SQX-2G16/NOPB  
LP3971SQX-7848/NOPB  
LP3971SQX-8858/NOPB  
LP3971SQX-B410/NOPB  
LP3971SQX-B510/NOPB  
LP3971SQX-D510/NOPB  
LP3971SQX-F211/NOPB  
LP3971SQX-G824/NOPB  
LP3971SQX-N510/NOPB  
LP3971SQX-O509/NOPB  
LP3971SQX-P55A/NOPB  
LP3971SQX-Q418/NOPB  
LP3971SQX-U511/NOPB  
LP3971SQX-W416/NOPB  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
RSB  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
40  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
250  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
250  
250  
250  
250  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
Pack Materials-Page 3  
MECHANICAL DATA  
RSB0040A  
SQF40A (Rev B)  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

LP3971SQ-A514

POWER MANAGEMENT UNIT FOR ADVANCED APPLICATION PROCESSORS
NSC

LP3971SQ-B410

POWER MANAGEMENT UNIT FOR ADVANCED APPLICATION PROCESSORS
NSC

LP3971SQ-B410

3-CHANNEL POWER SUPPLY SUPPORT CKT, PQCC40, 5 X 5 MM, LLP-40
TI

LP3971SQ-B510

IC 3-CHANNEL POWER SUPPLY SUPPORT CKT, PQCC40, 5 X 5 MM, LLP-40, Power Management Circuit
NSC

LP3971SQ-B510/NOPB

Power Management IC (PMIC) for Advanced Application Processors 40-WQFN
TI

LP3971SQ-F211/NOPB

Power Management IC (PMIC) for Advanced Application Processors 40-WQFN
TI

LP3971SQ-P55A/NOPB

Power Management IC (PMIC) for Advanced Application Processors 40-WQFN
TI

LP3971SQ-U511/NOPB

Power Management IC (PMIC) for Advanced Application Processors 40-WQFN
TI

LP3971SQE-7848/NOPB

Power Management IC (PMIC) for Advanced Application Processors 40-WQFN
TI

LP3971SQE-N510/NOPB

Power Management IC (PMIC) for Advanced Application Processors 40-WQFN
TI

LP3971SQX-A514

POWER MANAGEMENT UNIT FOR ADVANCED APPLICATION PROCESSORS
NSC

LP3971SQX-B410

POWER MANAGEMENT UNIT FOR ADVANCED APPLICATION PROCESSORS
NSC