LP3990QTLX-1.8Q1 [TI]

具有使能功能的汽车类 150mA、低 IQ、低压降稳压器 | YZR | 4 | -40 to 125;
LP3990QTLX-1.8Q1
型号: LP3990QTLX-1.8Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的汽车类 150mA、低 IQ、低压降稳压器 | YZR | 4 | -40 to 125

输出元件 稳压器 调节器
文件: 总20页 (文件大小:608K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LP3990-Q1  
ZHCSD25 OCTOBER 2014  
LP3990-Q1 用于数字应用的 150mA 线性电压稳压器  
1 特性  
3 说明  
1
输入电压范围:2V 6V  
LP3990-Q1 稳压器具有精确的输出电压、低噪声和低  
静态电流,其设计满足便携式电池供电系统的要求。  
LP3990-Q1 将在最高达 150mA 的负载电流条件下通  
2V 低输入电压提供 0.8V 输出。 当通过使能引脚  
(EN) 上的逻辑信号切换到关断模式时,器件功耗几乎  
降为零。  
符合 AEC-Q100 1 级标准  
室温下电压精度为 1%  
与陶瓷电容器搭配使用时可保持稳定  
逻辑控制使能  
无需噪声旁路电容  
热过载保护和短路保护  
输出电压范围:0.8V 3.3V  
输出电流:150mA  
LP3990-Q1 与节省空间的陶瓷电容器搭配使用时可保  
持稳定,其电容值低至 1µF。  
此器件的额定运行结温范围为 –40°C 125°C  
输出稳定 - 1µF 电容  
几乎零 IQ(禁用时):< 10nA  
极低 IQ(使能时):43µA  
低输出噪声:150µVRMS  
电源抑制比 (PSRR)1kHz 频率时为 55dB  
快速启动:105µs  
如需 0.8V1.2V1.35V1.5V1.8V2.5V2.8V  
3.3V 以外的输出电压,请联系德州仪器 (TI) 销售办  
事处。  
器件信息(1)  
器件型号  
封装  
封装尺寸  
LP3990-Q1  
1.324mm x 1.045mm(最大  
值)  
2 应用  
DSBGA (4)  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
信息娱乐  
仪表  
车身电子装置  
简化电路原理图  
VIN  
VOUT  
IN  
OUT  
COUT  
1 µF  
CIN  
1 µF  
LP3990  
VEN  
EN  
ON  
OFF  
GND  
GND  
GND  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SNVSA66  
 
 
 
LP3990-Q1  
ZHCSD25 OCTOBER 2014  
www.ti.com.cn  
目录  
7.3 Feature Description................................................... 9  
7.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 11  
8.1 Application Information............................................ 11  
8.2 Typical Application ................................................. 11  
Power Supply Recommendations...................... 14  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 Handling Ratings....................................................... 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Output Capacitor, Recommended Specifications ..... 5  
6.7 Timing Requirements................................................ 6  
6.8 Typical Performance Characteristics ........................ 6  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
8
9
10 Layout................................................................... 14  
10.1 Layout Guidelines ................................................. 14  
10.2 Layout Example .................................................... 15  
10.3 DSBGA Mounting.................................................. 15  
10.4 DSBGA Light Sensitivity ....................................... 15  
11 器件和文档支持 ..................................................... 16  
11.1 文档支持................................................................ 16  
11.2 ....................................................................... 16  
11.3 静电放电警告......................................................... 16  
11.4 术语表 ................................................................... 16  
12 机械封装和可订购信息 .......................................... 16  
7
4 修订历史记录  
日期  
修订版本  
注释  
2014 10 月  
*
最初发布。  
2
Copyright © 2014, Texas Instruments Incorporated  
 
LP3990-Q1  
www.ti.com.cn  
ZHCSD25 OCTOBER 2014  
5 Pin Configuration and Functions  
4 Pins  
DSBGA (YZR)  
EN  
A2  
IN  
IN  
EN  
A2  
B2  
B2  
A1  
B1  
B1  
A1  
GND  
OUT  
OUT  
GND  
TOP VIEW  
BOTTOM VIEW  
Pin Functions  
PIN  
DSBGA  
YZR  
A1  
I/O  
DESCRIPTION  
NAME  
GND  
EN  
I
Common Ground.  
A2  
Enable Input; Enables the Regulator when 0.95 V.  
Disables the Regulator when 0.4 V.  
Enable Input has 1-M(typical) pull-down resistor to GND.  
OUT  
IN  
B1  
B2  
Voltage output. A 1-µF Low ESR Capacitor should be connected to this Pin. Connect this output to  
the load circuit.  
O
I
Voltage supply Input. A 1-µF capacitor should be connected at this input.  
Copyright © 2014, Texas Instruments Incorporated  
3
LP3990-Q1  
ZHCSD25 OCTOBER 2014  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)(3)  
MIN  
–0.3  
MAX  
6.5  
UNIT  
Input voltage  
Output voltage  
–0.3  
See(4)  
V
ENABLE input voltage  
Continuous power dissipation internally limited  
–0.3  
See(5)  
6.5  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.  
(3) All voltages are with respect to the potential at the GND pin.  
(4) The lower of VIN + 0.3 V or 6.5 V.  
(5) Internal thermal shutdown circuitry protects the device from permanent damage.  
6.2 Handling Ratings  
MIN  
–65  
MAX  
150  
UNIT  
Tstg  
Storage temperature range  
Electrostatic discharge  
°C  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
–2000  
–1500  
2000  
1500  
V(ESD)  
V
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2
NOM  
MAX  
6
UNIT  
Input voltage, VIN  
V
Enable input voltage, VEN  
Junction temperature, TJ  
0.0  
–40  
VIN  
125  
(1)  
°C  
(1) TJ(max) = (TA(max) + (RθJA × PD(max)) )  
6.4 Thermal Information  
LP3990  
THERMAL METRIC(1)  
YZR (DSBGA)  
4 PINS  
188.9  
1.0  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
105.3  
0.7  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
105.2  
N/A  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2014, Texas Instruments Incorporated  
LP3990-Q1  
www.ti.com.cn  
ZHCSD25 OCTOBER 2014  
6.5 Electrical Characteristics  
Unless otherwise noted, VEN = 950 mV, VIN = VOUT + 1 V or VIN = 2 V, whichever is higher. CIN = 1 µF, IOUT = 1 mA, COUT  
0.47 µF.  
=
(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
2
TYP  
MAX  
6
UNIT  
VIN  
Input voltage  
See(2)  
V
ILOAD = 1 mA, TJ = 25°C  
–1%  
1%  
Output voltage tolerance  
Line regulation error  
Load regulation error  
Over full line and load regulation  
VIN = (VOUT(NOM) + 1 V) to 6 V  
–2.5%  
0.1  
2.5%  
0.1  
ΔVOUT  
0.02  
0.002  
0.0005  
120  
%/V  
VOUT = 0.8 V to 1.95 V  
VOUT = 2 V to 3.3 V  
–0.005  
–0.002  
0.005  
0.002  
200  
IOUT = 1 mA  
to 150 mA  
%/mA  
VDO  
Dropout voltage  
Load current  
IOUT = 150 mA, see(3)(4)  
TJ = 25°, see(4)(5)  
mV  
µA  
ILOAD  
0
VEN = 950 mV, IOUT = 0 mA  
VEN = 950 mV, IOUT = 150 mA  
VEN = 0.4 V (output disabled), TJ = 25°C  
43  
65  
80  
120  
IQ  
Quiescent current  
µA  
0.002  
550  
0.2  
ISC  
Short circuit current limit See(6)  
1000  
mA  
dB  
IOUT  
Maximum output current  
150  
ƒ = 1 kHz, IOUT = 1 mA to 150 mA  
ƒ = 10 kHz, IOUT = 150 mA  
VOUT = 0.8 V  
55  
35  
Power Supply Rejection  
Ratio  
PSRR  
60  
BW = 10 Hz to 100  
kHz  
eη  
Output noise voltage(4)  
VOUT = 1.5 V  
VOUT = 3.3 V  
125  
180  
µVRMS  
Junction temperature (TJ) rising until the  
output is disabled  
155  
15  
Thermal shutdown  
junction temperature  
TSHUTDOWN  
°C  
Hysteresis  
ENABLE CONTROL CHARACTERISTICS  
VEN = 0 V (Output is disabled)  
TJ = 25°C  
0.001  
6
0.1  
10  
Maximum input current  
at EN pin  
(7)  
IEN  
µA  
V
VEN = 6 V  
2.5  
VIN = 2 V to 6 V  
VEN falling from VIH until the output is  
disabled  
VIL  
VIH  
Low input threshold  
High input threshold  
0.4  
VIN = 2 V to 6 V  
VEN rising from VIL until the output is  
enabled  
0.95  
(1) Minimum and Maximum limits are ensured through test, design, or statistical correlation over the operating junction temperature range  
(TJ) of –40°C to 125°C, unless otherwise stated. Typical values represent the most likely parametric norm at TJ = 25°C, and are  
provided for reference purposes only.  
(2) VIN(MIN) = VOUT(NOM) + 0.5 V, or 2 V, whichever is higher.  
(3) Dropout voltage is voltage difference between input and output at which the output voltage drops to 100 mV below its nominal value.  
This parameter applies only for output voltages above 2 V.  
(4) This electrical specification is verified by design.  
(5) The device maintains the regulated output voltage without the load.  
(6) Short-circuit current is measured with VOUT pulled to 0 V and VIN worst case = 6 V.  
(7) ENABLE Pin has 1-M(typical) resistor connected to GND.  
6.6 Output Capacitor, Recommended Specifications(1)  
PARAMETER  
TEST CONDITIONS  
Capacitance(2)  
ESR  
MIN  
0.7(3)  
5
TYP  
MAX  
UNIT  
µF  
1
500  
COUT  
Output capacitance  
mΩ  
(1) Unless otherwise specified, values and limits apply for TJ = 25°C.  
(2) The full operating conditions for the application should be considered when selecting a suitable capacitor to ensure that the minimum  
value of capacitance is always met. Recommended capacitor type is X7R. However, dependent on application, X5R, Y5V, and Z5U can  
also be used. (See Detailed Design Procedure.)  
(3) Limit applies over the full operating junction temperature range (TJ) of 40°C to 125°C.  
Copyright © 2014, Texas Instruments Incorporated  
5
 
LP3990-Q1  
ZHCSD25 OCTOBER 2014  
www.ti.com.cn  
6.7 Timing Requirements  
MIN  
NOM(1)  
80  
MAX(2)  
UNIT  
VOUT = 0.8 V  
VOUT = 1.5 V  
VOUT = 3.3 V  
150  
200  
250  
From VEN VIH to  
VOUT 95% level  
(VIN(MIN) to 6 V)  
(3)  
TON  
Turnon time  
105  
µs  
175  
Line transient response  
Trise = Tfall = 30 µs(3)  
ΔVIN = 600 mV  
,
mV (pk-  
pk)  
8
16  
(ΔVOUT  
)
Transient  
response  
Trise = Tfall = 1 µs(3)  
IOUT = 1 mA to 150 mA  
COUT = 1 µF  
,
Load transient response  
(ΔVOUT  
55  
100  
mV  
)
(1) Nom values apply for TJ = 25°C.  
(2) Maximum limits apply over the full operating junction temperature (TJ) range of 40°C to 125°C.  
(3) This electrical specification is verified by design.  
6.8 Typical Performance Characteristics  
Unless otherwise specified, CIN = 1 µF ceramic, COUT = 0.47 µF ceramic, VIN = VOUT(NOM) + 1 V, TA = 25°C, VOUT(NOM) = 1.5 V;  
VEN = VIN.  
2.00  
1.50  
1.00  
0.50  
0.00  
-0.50  
-1.00  
-1.50  
-2.00  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 125°C  
J
T
= -40°C  
J
T
J
= 25°C  
-40 -25  
0
25  
50  
75 100 125  
0
25  
50  
75  
100  
125  
150  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
Figure 1. Output Voltage Change vs Temperature  
Figure 2. Ground Current vs Load Current  
100  
90  
80  
70  
60  
100  
90  
80  
70  
60  
T
= 125°C  
T = 125°C  
J
J
50  
40  
50  
40  
T
J
= 25°C  
T
J
= 25°C  
T
J
= -40°C  
T
J
= -40°C  
30  
20  
30  
20  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V
V
IN  
IN  
ILOAD = 0 mA  
ILOAD = 1 mA  
Figure 3. Ground Current vs VIN  
Figure 4. Ground Current vs VIN  
6
Copyright © 2014, Texas Instruments Incorporated  
LP3990-Q1  
www.ti.com.cn  
ZHCSD25 OCTOBER 2014  
Typical Performance Characteristics (continued)  
Unless otherwise specified, CIN = 1 µF ceramic, COUT = 0.47 µF ceramic, VIN = VOUT(NOM) + 1 V, TA = 25°C, VOUT(NOM) = 1.5 V;  
VEN = VIN.  
100  
V
2.5V  
IN =  
800  
600  
400  
200  
0
90  
80  
70  
60  
50  
40  
T
= 125°C  
J
T
J
= 25°C  
T
J
= -40°C  
30  
20  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V
TIME (100 Ps/DIV)  
IN  
ILOAD = 150 mA  
Figure 6. Short Circuit Current  
Figure 5. Ground Current vs VIN  
C
C
= 1 PF  
IN  
V
6V  
IN =  
800  
600  
400  
200  
0
= 0.47 PF  
OUT  
IL = 1 to 150 mA  
3.1  
2.5  
TIME (100 Ps/DIV)  
TIME (100 Ps/DIV)  
Figure 7. Short Circuit Current  
Figure 8. Line Transient  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
C
= 0.47 PF  
C
OUT  
= 1 PF  
OUT  
I
= 150 mA  
I
L
= 1 mA  
LOAD  
C = 0.47 PF  
OUT  
C
OUT  
= 1 PF  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 10. Power Supply Rejection Ratio  
Figure 9. Power Supply Rejection Ratio  
Copyright © 2014, Texas Instruments Incorporated  
7
LP3990-Q1  
ZHCSD25 OCTOBER 2014  
www.ti.com.cn  
Typical Performance Characteristics (continued)  
Unless otherwise specified, CIN = 1 µF ceramic, COUT = 0.47 µF ceramic, VIN = VOUT(NOM) + 1 V, TA = 25°C, VOUT(NOM) = 1.5 V;  
VEN = VIN.  
10  
I
1 mA  
L =  
V
= 3.3V  
OUT  
1
V
= 1.5V  
OUT  
0.1  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
TIME (50 Ps/DIV)  
Figure 11. Enable Start-Up Time  
Figure 12. Noise Density  
8
Copyright © 2014, Texas Instruments Incorporated  
LP3990-Q1  
www.ti.com.cn  
ZHCSD25 OCTOBER 2014  
7 Detailed Description  
7.1 Overview  
The LP3990-Q1 is designed to meet the requirements of portable, battery-powered digital systems providing an  
accurate output voltage with fast start-up. When disabled via a low logic signal at the enable pin (EN), the power  
consumption is reduced to virtually zero.  
The device is designed to perform with a single 1-μF input capacitor and a single 1-μF ceramic output capacitor.  
7.2 Functional Block Diagram  
LP3990  
IN  
OUT  
Current  
Limit  
Thermal  
Shutdown  
+
ON  
V
OFF  
REF  
800 mV  
EN  
1 M  
GND  
7.3 Feature Description  
7.3.1 Enable (EN)  
The LP3990-Q1 Enable (EN) pin is internally held low by a 1-MΩ resistor to GND. The EN pin voltage must be  
higher than the VIH threshold to ensure that the device is fully enabled under all operating conditions. The EN pin  
voltage must be lower than the VIL threshold to ensure that the device is fully disabled. If the EN pin is left open  
the LP3990-Q1 output will be disabled.  
7.3.2 Thermal Overload Protection (TSD  
)
Thermal Shutdown disables the output when the junction temperature rises to approximately 155°C which allows  
the device to cool. When the junction temperature cools to approximately 140°C, the output circuitry enables.  
Based on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may  
cycle on and off. This thermal cycling limits the dissipation of the regulator and protects it from damage as a  
result of overheating.  
The Thermal Shutdown circuitry of the LP3990-Q1 has been designed to protect against temporary thermal  
overload conditions. The Thermal Shutdown circuitry was not intended to replace proper heat-sinking.  
Continuously running the LP3990-Q1 device into thermal shutdown may degrade device reliability.  
Copyright © 2014, Texas Instruments Incorporated  
9
LP3990-Q1  
ZHCSD25 OCTOBER 2014  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Enable (EN)  
The LP3990-Q1 EN pin is internally held low by a 1-MΩ resistor to GND. The EN pin voltage must be higher than  
the VIH threshold to ensure that the device is fully enabled under all operating conditions.  
7.4.2 Minimum Operating Input Voltage (VIN)  
The LP3990-Q1 does not include any dedicated UVLO circuitry. The LP3990-Q1 internal circuitry is not fully  
functional until VIN is at least 2 V. The output voltage is not regulated until VIN (VOUT + VDO), or 2 V, whichever  
is higher.  
10  
Copyright © 2014, Texas Instruments Incorporated  
LP3990-Q1  
www.ti.com.cn  
ZHCSD25 OCTOBER 2014  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LP3990-Q1 is a linear voltage regulator for digital applications designed to be stable with space-saving  
ceramic capacitors as small as 1 µF.  
8.2 Typical Application  
Figure 13 shows the typical application circuit for the LP3990-Q1. The input and output capacitances may need  
to be increased above the 1 μF shown for some applications.  
VIN  
VOUT  
IN  
OUT  
COUT  
1 µF  
CIN  
1 µF  
LP3990  
VEN  
EN  
ON  
OFF  
GND  
GND  
GND  
Figure 13. LP3990-Q1 Typical Application  
8.2.1 Design Requirements  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
2 V to 6 V  
1.8 V  
Output voltage  
Output current  
100 mA  
Output capacitor range  
Input/output capacitor ESR range  
1 µF  
5 mΩ to 500 mΩ  
8.2.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Available input voltage range  
Output voltage needed  
Output current needed  
Input and output capacitors  
8.2.2.1 Power Dissipation and Device Operation  
The permissible power dissipation for any package is a measure of the capability of the device to pass heat from  
the power source, the junctions of the IC, to the ultimate heat sink, the ambient environment. Thus, the power  
dissipation is dependent on the ambient temperature and the thermal resistance across the various interfaces  
between the die junction and ambient air.  
The maximum allowable power dissipation for the device in a given package can be calculated using Equation 1:  
PD-MAX = ((TJ-MAX - TA) / RθJA  
)
(1)  
Copyright © 2014, Texas Instruments Incorporated  
11  
 
 
LP3990-Q1  
ZHCSD25 OCTOBER 2014  
www.ti.com.cn  
The actual power being dissipated in the device can be represented by Equation 2:  
PD = (VIN - VOUT) x IOUT  
(2)  
These two equations establish the relationship between the maximum power dissipation allowed due to thermal  
consideration, the voltage drop across the device, and the continuous current capability of the device. These two  
equations should be used to determine the optimum operating conditions for the device in the application.  
In applications where lower power dissipation (PD) and/or excellent package thermal resistance (RθJA) is present,  
the maximum ambient temperature (TA-MAX) may be increased.  
In applications where high power dissipation and/or poor package thermal resistance is present, the maximum  
ambient temperature (TA-MAX) may have to be derated. TA-MAX is dependent on the maximum operating junction  
temperature (TJ-MAX-OP = 125°C), the maximum allowable power dissipation in the device package in the  
application (PD-MAX), and the junction-to ambient thermal resistance of the part/package in the application (RθJA),  
as given by Equation 3:  
TA-MAX = (TJ-MAX-OP – (RθJA × PD-MAX))  
(3)  
Alternately, if TA-MAX can not be derated, the PD value must be reduced. This can be accomplished by reducing  
VIN in the 'VIN–VOUT' term as long as the minimum VIN is met, or by reducing the IOUT term, or by some  
combination of the two.  
8.2.2.2 External Capacitors  
In common with most regulators, the LP3990-Q1 requires external capacitors for regulator stability. The LP3990-  
Q1 is specifically designed for portable applications requiring minimum board space and smallest components.  
These capacitors must be correctly selected for good performance.  
8.2.2.3 Input Capacitor  
An input capacitor is required for stability. It is recommended that a 1-µF capacitor be connected between the  
LP3990-Q1 IN pin and GND pin (this capacitance value may be increased without limit).  
This capacitor must be located a distance of not more than 1 cm from the IN pin and returned to a clean  
analogue ground. Any good quality ceramic, tantalum, or film capacitor may be used at the input.  
Important: To ensure stable operation it is essential that good PCB design practices are employed to minimize  
ground impedance and keep input inductance low. If these conditions cannot be met, or if long leads are used to  
connect the battery or other power source to the LP3990-Q1, then it is recommended that the input capacitor is  
increased. Also, tantalum capacitors can suffer catastrophic failures due to surge current when connected to a  
low-impedance source of power (like a battery or a very large capacitor). If a tantalum capacitor is used at the  
input, it must be ensured by the manufacturer to have a surge current rating sufficient for the application.  
There are no requirements for the ESR (Equivalent Series Resistance) on the input capacitor, but tolerance and  
temperature coefficient must be considered when selecting the capacitor to ensure the capacitance will remain  
approximately 1 µF over the entire operating temperature range.  
8.2.2.4 Output Capacitor  
The LP3990-Q1 is designed specifically to work with very small ceramic output capacitors. A 1-µF ceramic  
capacitor (temperature types Z5U, Y5V or X7R/X5R) with ESR between 5 mto 500 m, is suitable in the  
LP3990-Q1 application circuit.  
For this device the output capacitor should be connected between the OUT pin and GND pin.  
It is also possible to use tantalum or film capacitors at the device output, but these are not as attractive for  
reasons of size and cost (see Capacitor Characteristics).  
The output capacitor must meet the requirement for the minimum value of capacitance and also have an ESR  
value that is within the range 5 mto 500 mfor stability.  
8.2.2.5 No-Load Stability  
The LP3990-Q1 will remain stable and in regulation with no external load. This is an important consideration in  
some circuits, for example CMOS RAM keep-alive applications.  
12  
Copyright © 2014, Texas Instruments Incorporated  
 
 
LP3990-Q1  
www.ti.com.cn  
ZHCSD25 OCTOBER 2014  
8.2.2.6 Capacitor Characteristics  
The LP3990-Q1 is designed to work with ceramic capacitors on the output to take advantage of the benefits they  
offer. For capacitance values in the range of 0.47 µF to 4.7 µF, ceramic capacitors are the smallest, least  
expensive and have the lowest ESR values, thus making them best for eliminating high frequency noise. The  
ESR of a typical 1-µF ceramic capacitor is in the range of 20 mto 40 m, which easily meets the ESR  
requirement for stability for the LP3990-Q1.  
For both input and output capacitors, careful interpretation of the capacitor specification is required to ensure  
correct device operation. The capacitor value can change greatly, depending on the operating conditions and  
capacitor type.  
In particular, the output capacitor selection should take account of all the capacitor parameters, to ensure that the  
specification is met within the application. The capacitance can vary with DC bias conditions as well as  
temperature and frequency of operation. Capacitor values will also show some decrease over time due to aging.  
The capacitor parameters are also dependant on the particular case size, with smaller sizes giving poorer  
performance figures in general. As an example, Figure 14 shows a typical graph comparing different capacitor  
case sizes in a Capacitance vs. DC Bias plot. As shown in the graph, increasing the DC Bias condition can result  
in the capacitance value falling below the minimum value given in the recommended capacitor specifications  
table (0.7 µF in this case). Note that the graph shows the capacitance out of spec for the 0402 case size  
capacitor at higher bias voltages. It is therefore recommended that the capacitor manufacturers’ specifications for  
the nominal value capacitor are consulted for all conditions, as some capacitor sizes (for example, 0402) may not  
be suitable in the actual application.  
0603, 10V, X5R  
100%  
80%  
60%  
0402, 6.3V, X5R  
40%  
20%  
0
1.0  
2.0  
3.0  
4.0  
5.0  
DC BIAS (V)  
Figure 14. Typical Variation In Capacitance vs DC Bias  
The ceramic capacitor’s capacitance can vary with temperature. The capacitor type X7R, which operates over a  
temperature range of –55°C to 125°C, will only vary the capacitance to within ±15%. The capacitor type X5R has  
a similar tolerance over a reduced temperature range of –55°C to 85°C. Many large value ceramic capacitors,  
larger than 1 µF are manufactured with Z5U or Y5V temperature characteristics. Their capacitance can drop by  
more than 50% as the temperature varies from 25°C to 85°C. Therefore, X7R and X5R types are recommended  
over Z5U and Y5V in applications where the ambient temperature will change significantly above or below 25°C.  
Tantalum capacitors are less desirable than ceramic for use as output capacitors because they are more  
expensive when comparing equivalent capacitance and voltage ratings in the 0.47-µF to 4.7-µF range.  
Another important consideration is that tantalum capacitors have higher ESR values than equivalent size  
ceramics. This means that while it may be possible to find a tantalum capacitor with an ESR value within the  
stable range, it would have to be larger in capacitance (which means bigger and more costly) than a ceramic  
capacitor with the same ESR value. It should also be noted that the ESR of a typical tantalum will increase about  
2:1 as the temperature goes from 25°C down to -40°C, so some guard band must be allowed.  
8.2.2.7 Enable Control  
The LP3990-Q1 features an active high Enable pin, EN, which turns the device on when pulled high. When not  
enabled the regulator output is off and the device typically consumes 2 nA.  
If the application does not require the Enable switching feature, the EN pin should be tied to VIN to keep the  
regulator output permanently on.  
Copyright © 2014, Texas Instruments Incorporated  
13  
 
LP3990-Q1  
ZHCSD25 OCTOBER 2014  
www.ti.com.cn  
To ensure proper operation, the signal source used to drive the EN input must be able to swing above and below  
the specified turn-on/off voltage thresholds listed in the Electrical Characteristics section under VIL and VIH.  
An internal 1-MΩ pull-down resistor ties the EN input to ground, ensuring that the device remains off if the EN pin  
is left open circuit.  
8.2.3 Application Curves  
I
150 mA  
L =  
C
C
= 1 PF  
IN  
= 0.47 PF  
OUT  
150  
1
TIME (20 Ps/DIV)  
TIME (50 Ps/DIV)  
Figure 16. Load Transient  
Figure 15. Enable Start-Up Time  
9 Power Supply Recommendations  
This device is designed to operate from an input supply voltage range of 2 V to 6 V. The input supply should be  
well regulated and free of spurious noise. To ensure that the LP3990-Q1 output voltage is well regulated, the  
input supply should be at least VOUT + 0.5 V, or 2 V, whichever is higher. A minimum capacitor value of 1-μF is  
required to be within 1 cm of the IN pin.  
10 Layout  
10.1 Layout Guidelines  
The dynamic performance of the LP3990-Q1 is dependant on the layout of the PCB. PCB layout practices that  
are adequate for typical LDOs may degrade the load regulation, PSRR, noise, or transient performance of the  
LP3990-Q1.  
Best performance is achieved by placing CIN and COUT on the same side of the PCB as the LP3990-Q1, and as  
close as is practical to the package. The ground connections for CIN and COUT should be back to the LP3990-Q1  
ground pin using as wide, and as short, of a copper trace as is practical.  
Connections using long trace lengths, narrow trace widths, and/or connections through vias should be avoided.  
These will add parasitic inductances and resistance that results in inferior performance especially during transient  
conditions.  
A Ground Plane, either on the opposite side of a two-layer PCB, or embedded in a multi-layer PCB, is strongly  
recommended. This Ground Plane will provide a circuit reference plane to assure accuracy.  
14  
Copyright © 2014, Texas Instruments Incorporated  
LP3990-Q1  
www.ti.com.cn  
ZHCSD25 OCTOBER 2014  
10.2 Layout Example  
VIN  
VOUT  
LP3990TL  
B2  
B1  
A1  
COUT  
CIN  
A2  
Power Ground  
VEN  
Figure 17. LP3990-Q1 DSBGA Layout  
10.3 DSBGA Mounting  
The DSBGA package requires specific mounting techniques, which are detailed in TI Application Note DSBGA  
Wafer Level Chip Scale Package (SNVA009).  
For best results during assembly, alignment ordinals on the PC board may be used to facilitate placement of the  
DSBGA device.  
10.4 DSBGA Light Sensitivity  
Exposing the DSBGA device to direct light may affect the operation of the device. Light sources, such as halogen  
lamps, can affect electrical performance, if placed in close proximity to the device.  
Light with wavelengths in the infra-red portion of the spectrum is the most detrimental, and so, fluorescent  
lighting used inside most buildings, has little or no effect on performance.  
版权 © 2014, Texas Instruments Incorporated  
15  
LP3990-Q1  
ZHCSD25 OCTOBER 2014  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
相关文档如下:  
TI 应用手册DSBGA 晶圆级芯片规模封装》(文献编号:SNVA009)。  
11.2 商标  
All trademarks are the property of their respective owners.  
11.3 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
16  
版权 © 2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP3990QTLX-1.2Q1  
LP3990QTLX-1.8Q1  
LP3990QTLX-2.8Q1  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
YZR  
YZR  
YZR  
4
4
4
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
SNAGCU  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
YZR0004
D
0.600±0.075  
E
TLA04XXX (Rev D)  
D: Max = 1.324 mm, Min =1.263 mm  
E: Max = 1.045 mm, Min =0.984 mm  
4215042/A  
12/12  
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.  
B. This drawing is subject to change without notice.  
NOTES:  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LP3990QTLX-2.8Q1

具有使能功能的汽车类 150mA、低 IQ、低压降稳压器 | YZR | 4 | -40 to 125
TI

LP3990SD-0.8

150mA Linear Voltage Regulator for Digital Applications
NSC

LP3990SD-1.2

150mA Linear Voltage Regulator for Digital Applications
NSC

LP3990SD-1.2

LP3990 150mA Linear Voltage Regulator for Digital Applications
TI

LP3990SD-1.2/NOPB

150-mA Linear Voltage Regulator for Digital Applications
TI

LP3990SD-1.2/NOPB

IC VREG 1.2 V FIXED POSITIVE REGULATOR, PDSO6, ROHS COMPLIANT, LLP-6, Fixed Positive Single Output Standard Regulator
NSC

LP3990SD-1.35

150mA Linear Voltage Regulator for Digital Applications
NSC

LP3990SD-1.35

1.35V FIXED POSITIVE REGULATOR, PDSO6, LLP-6
ROCHESTER

LP3990SD-1.35/NOPB

1.35V FIXED POSITIVE REGULATOR, PDSO6, ROHS COMPLIANT, LLP-6
TI

LP3990SD-1.5

150mA Linear Voltage Regulator for Digital Applications
NSC

LP3990SD-1.5

LP3990 150mA Linear Voltage Regulator for Digital Applications
TI

LP3990SD-1.5/NOPB

150-mA Linear Voltage Regulator for Digital Applications
TI