LP5036 [TI]

36 通道 I2C 恒流 RGB LED 驱动器;
LP5036
型号: LP5036
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

36 通道 I2C 恒流 RGB LED 驱动器

驱动 驱动器
文件: 总62页 (文件大小:1485K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
LP503x 36/30 通道 12 PWM 超低静态电流 I2C RGB LED 驱动器  
1 特性  
3 说明  
1
工作电压范围:  
高效、高性能的 LED 响应效果,如闪烁,呼吸和追  
逐,对于改善许多人机界面 (HMI) 应用中的最终用户  
体验 至关重要。  
VCC 范围:2.7V 5.5V  
1.8V3.3V 5V 电源轨兼容的 ENSDA  
SCL 引脚  
LP503x 器件是一款 30 36 通道恒定电流阱 LED 驱  
动器。LP503x 具有适用于每个通道的 29kHz12 位  
PWM 发生器以及通道/模块独立的色彩混合和强度控  
(之前被称为亮度控制寄存器),能够达到可闻噪声  
为零的生动 LED 效果。用户可以受益于器件的超低关  
Iq 省电模式,而设计人员可以借助 LP503x 的三个  
可编程组 (R G B) 非常轻松地为软件编码。  
最大输出电压:6V  
36 路高精度恒定电流阱  
在整个 VCC 范围内,每个通道的最大电流为  
25.5mA  
VCC 3.3V 时,每个通道的最大电流为  
35mA  
器件间的误差为 ±5%;通道间的误差为 ±5%  
器件信息(1)  
超低静态电流:  
关断模式:1µA(最大值),EN 处于低电平  
器件型号  
LP5030  
LP5036  
封装  
封装尺寸(标称值)  
省电模式:12µA(最大值),EN 处于高电  
平,所有 LED 关断时间大于 30ms  
VQFN (46)  
6.00mm × 5.00mm  
每个通道具有一个集成式 12 29kHz PWM 发生  
器:  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
每个通道具有一个独立的色彩混合寄存器  
简化原理图  
每个 RGB LED 模块具有一个独立的亮度控制  
寄存器  
VVCC  
CVCC  
VMCU  
VLED  
可选的对数或线性标度亮度控制  
VCC  
OUT0  
集成式三相相移 PWM 方案  
EN  
OUT1  
SDA  
3 个可编程组(RGB),可轻松对每种颜色进  
行软件控制  
SCL  
OUT2  
ADDR0  
2 个外部硬件地址引脚允许连接多达 4 个器件  
MCU  
LP5036  
ADDR1  
广播从地址允许同时配置多个器件  
OUT33  
VCAP  
IREF  
CVCAP  
自动递增允许在一次传输期间写入或读取多个连续  
的寄存器  
高达 400kHz 的快速模式 I2C 速度  
OUT34  
OUT35  
RIREF  
GND  
2 应用  
用于以下设备的 LED 照明、指示灯和闪烁光:  
智能扬声器  
智能家用电器  
可视门铃  
电子智能锁  
烟雾探测器  
机顶盒  
智能路由器  
手持设备  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEH1  
 
 
 
 
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 19  
8.5 Programming .......................................................... 20  
8.6 Register Maps ........................................................ 24  
Application and Implementation ........................ 49  
9.1 Application Information............................................ 49  
9.2 Typical Application ................................................. 49  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics........................................... 8  
7.6 Timing Requirements................................................ 9  
7.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 12  
8.3 Feature Description................................................. 12  
9
10 Power Supply Recommendations ..................... 50  
11 Layout................................................................... 51  
11.1 Layout Guidelines ................................................. 51  
11.2 Layout Examples................................................... 52  
12 器件和文档支持 ..................................................... 54  
12.1 相关链接................................................................ 54  
12.2 接收文档更新通知 ................................................. 54  
12.3 社区资源................................................................ 54  
12.4 ....................................................................... 54  
12.5 静电放电警告......................................................... 54  
12.6 术语表 ................................................................... 54  
13 机械、封装和可订购信息....................................... 54  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (December 2018) to Revision B  
Page  
Changed max standy current from 10uA to 12uA .................................................................................................................. 8  
Changed power-save mode current from 10uA to 12uA........................................................................................................ 8  
已更改 from LED3 to LED11................................................................................................................................................. 28  
Changes from Original (September 2018) to Revision A  
Page  
首次发布生产数据数据表 ........................................................................................................................................................ 1  
2
版权 © 2018–2019, Texas Instruments Incorporated  
 
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
5 说明 (续)  
LP503x 器件以 12 PWM 分辨率和 29kHz 开关频率控制每个 LED 输出。这种控制有助于获得可平缓降低的强  
并消除可闻噪声。该器件具有不同的色彩混合和强度控制寄存器,使得编写软件代码变得非常简单。在以淡入淡  
出类型的呼吸效果为目标时,全局 RGB 组控制可显著减轻微控制器负载。LP503x 器件还可以实现 PWM 相  
移功能,以帮助在多个 LED 同时打开时降低输入功率预算。  
LP503x 器件具有自动省电模式,可实现超低静态电流。当所有通道都关断 30ms 时,该器件的总功耗会降至  
10µA,这使得 LP503x 器件成为电池供电终端设备的可能替代产品。  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
LP5030 RJV Package  
46-Pin VQFN With Exposed Thermal Pad  
Top View  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
OUT11  
OUT12  
1
36  
NC  
2
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
NC  
3
NC  
4
NC  
5
NC  
6
NC  
7
OUT29  
OUT28  
OUT27  
OUT26  
OUT25  
OUT24  
OUT23  
Thermal  
Pad  
8
9
10  
11  
12  
13  
Not to scale  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
LP5036 RJV Package  
46-Pin VQFN With Exposed Thermal Pad  
Top View  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
OUT11  
OUT12  
1
36  
OUT35  
OUT34  
OUT33  
OUT32  
OUT31  
OUT30  
OUT29  
OUT28  
OUT27  
OUT26  
OUT25  
OUT24  
OUT23  
2
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
3
4
5
6
7
Thermal  
Pad  
8
9
10  
11  
12  
13  
Not to scale  
Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
LP5030  
38  
39  
43  
44  
31  
32  
33  
34  
35  
36  
1
LP5036  
ADDR0  
ADDR1  
EN  
38  
39  
43  
44  
1
I
I2C slave-address selection pin. This pin must not be left floating.  
I2C slave-address selection pin. This pin must not be left floating.  
Chip enable input pin  
IREF  
NC  
O
Output current-reference global-setting pin  
No internal connection  
NC  
No internal connection  
NC  
No internal connection  
NC  
No internal connection  
NC  
No internal connection  
NC  
No internal connection  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
Current sink output 0. If not used, this pin can be left floating.  
Current sink output 1. If not used, this pin can be left floating.  
Current sink output 2. If not used, this pin can be left floating.  
Current sink output 3. If not used, this pin can be left floating.  
Current sink output 4. If not used, this pin can be left floating.  
Current sink output 5. If not used, this pin can be left floating.  
Current sink output 6. If not used, this pin can be left floating.  
2
2
O
3
3
O
4
4
O
5
5
O
6
6
O
7
7
O
Copyright © 2018–2019, Texas Instruments Incorporated  
5
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
LP5030  
8
LP5036  
8
OUT7  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
I
Current sink output 7. If not used, this pin can be left floating.  
Current sink output 8. If not used, this pin can be left floating.  
Current sink output 9. If not used, this pin can be left floating.  
Current sink output 10. If not used, this pin can be left floating.  
Current sink output 11. If not used, this pin can be left floating.  
Current sink output 12. If not used, this pin can be left floating.  
Current sink output 13. If not used, this pin can be left floating.  
Current sink output 14. If not used, this pin can be left floating.  
Current sink output 15. If not used, this pin can be left floating.  
Current sink output 16. If not used, this pin can be left floating.  
Current sink output 17. If not used, this pin can be left floating.  
Current sink output 18. If not used, this pin can be left floating.  
Current sink output 19. If not used, this pin can be left floating.  
Current sink output 20. If not used, this pin can be left floating.  
Current sink output 21. If not used, this pin can be left floating.  
Current sink output 22. If not used, this pin can be left floating.  
Current sink output 23. If not used, this pin can be left floating.  
Current sink output 24. If not used, this pin can be left floating.  
Current sink output 25. If not used, this pin can be left floating.  
Current sink output 26. If not used, this pin can be left floating.  
Current sink output 27. If not used, this pin can be left floating.  
Current sink output 28. If not used, this pin can be left floating.  
Current sink output 29. If not used, this pin can be left floating.  
Current sink output 30. If not used, this pin can be left floating.  
Current sink output 31. If not used, this pin can be left floating.  
Current sink output 32. If not used, this pin can be left floating.  
Current sink output 33. If not used, this pin can be left floating.  
Current sink output 34. If not used, this pin can be left floating.  
Current sink output 35. If not used, this pin can be left floating.  
OUT8  
9
9
OUT9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
42  
41  
OUT10  
OUT11  
OUT12  
OUT13  
OUT14  
OUT15  
OUT16  
OUT17  
OUT18  
OUT19  
OUT20  
OUT21  
OUT22  
OUT23  
OUT24  
OUT25  
OUT26  
OUT27  
OUT28  
OUT29  
OUT30  
OUT31  
OUT32  
OUT33  
OUT34  
OUT35  
SCL  
42  
41  
I2C bus clock line. If not used, this pin must be connected to GND or VCC.  
I2C bus data line. If not used, this pin must be connected to GND or VCC.  
SDA  
I/O  
Internal LDO output pin, this pin must be connected to a 1-µF capacitor to  
GND.  
VCAP  
45  
45  
VCC  
40  
37  
40  
37  
I
Input power.  
GND  
The ground pin for the device.  
GND  
46  
46  
The ground pin for the device.  
Thermal pad  
GND  
GND  
Exposed thermal pad also serves as a ground for the device.  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
Voltage on EN, IREF, OUTx, SCL, SDA, VCC  
Voltage on ADDRx  
6
VCC+0.3  
2
V
V
V
Voltage on VCAP  
Continuous power dissipation  
Junction temperature, TJ-MAX  
Storage temperature, Tstg  
Internally limited  
–40  
–65  
125  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1500  
V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±500 V  
may actually have higher performance.  
7.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
2.7  
0
MAX  
5.5  
5.5  
5.5  
85  
UNIT  
V
Input voltage on VCC  
Voltage on OUTx  
V
Voltage on ADDRx, EN, SDA, SCL  
Operating ambient temperature, TA  
0
V
–40  
°C  
7.4 Thermal Information  
LP5030 or LP5036  
THERMAL METRIC(1)  
RJV (QFN)  
46 PINS  
35.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
29.1  
Junction-to-board thermal resistance  
16.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.9  
ψJB  
16.2  
RθJC(bot)  
6.3  
(1) For more information about traditional and new thermal metrics, see Semiconductor and ICPackage Thermal Metrics.  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
7.5 Electrical Characteristics  
over operating ambient temperature range (–40°C < TA<85°C) (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (VCC)  
VVCC  
Supply voltage(1)  
2.7  
5.5  
1
V
Shutdown supply current  
Standby supply current  
Normal-mode supply current  
VEN = 0 V  
0.2  
6
µA  
mA  
VEN = 3.3 V, Chip_EN = 0 (bit)  
12  
10  
With 10-mA LED current per OUTx  
6.5  
IVCC  
VEN = 3.3 V, Chip_EN = 1 (bit),  
Power_Save_EN = 1 (bit), all the LEDs  
off duration > tPSM  
Power-save mode supply current  
6
12  
µA  
VUVR  
Undervoltage restart  
VVCC rising  
VVCC falling  
2.5  
V
V
V
VUVF  
Undervoltage shutdown  
2
VUV_HYS  
Undervoltage shutdown hysteresis  
0.2  
OUTPUT STAGE (OUTx)  
VVCC in full range, Max_Current_Option =  
0 (bit), PWM = 100%  
Maximum sink current (OUT0 – OUT35)  
25.5  
35  
IMAX  
mA  
VVCC 3.3 V, Max_Current_Option = 1  
Maximum sink current (OUT0 – OUT35)  
(bit), PWM = 100%  
Internal sink current limit (OUT0 –  
OUT35)  
VVCC in full range, Max_Current_Option =  
0 (bit), VIREF = 0 V  
35  
40  
55  
80  
ILIM  
mA  
µA  
Internal sink current limit (OUT0 –  
OUT35)  
VVCC 3.3V, Max_Current_Option=1 (bit),  
VIREF = 0 V  
75  
120  
1
ILKG  
Leakage current (OUT0 – OUT35)  
PWM = 0%  
0.1  
VVCC = 3.3V. All channels' current set to  
10 mA. PWM = 100%. Already includes  
the VIREF and KIREF tolerance  
Device to device current error,  
IERR_DD=(IAVE-ISET)/ISET×100%  
IERR_DD  
–5%  
–5%  
5%  
5%  
VVCC = 3.3V. All channels' current set to  
10 mA. PWM = 100%. Already includes  
the VIREF and KIREF tolerance  
Channel to channel current error,  
IERR_CC=(IOUTX-IAVE)/IAVE×100%  
IERR_CC  
VIREF  
KIREF  
ƒPWM  
IREF voltage(1)  
IREF ratio(1)  
PWM switching frequency(1)  
0.7  
105  
29  
V
21  
kHz  
VVCC in full range, Max_Current_Option =  
0 (bit), output current set to 20 mA, the  
voltage when the LED current has  
dropped 5%  
0.25  
0.3  
0.35  
0.4  
VSAT  
Output saturation voltage  
V
VVCC 3.3 V, Max_Current_Option = 1  
(bit), output current set to 20 mA, the  
voltage when the LED current has  
dropped 5%  
LOGIC INPUTS (EN, SCL, SDA, ADDRx)  
VIL  
Low level input voltage  
High level input voltage  
Input current  
0.4  
V
V
VIH  
1.4  
–1  
ILOGIC  
VSDA  
1
µA  
V
SDA output low level  
IPULLUP = 5 mA  
0.4  
(1) Specified by design  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
Electrical Characteristics (continued)  
over operating ambient temperature range (–40°C < TA<85°C) (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PROTECTION CIRCUITS  
T(TSD)  
T(HYS)  
Thermal-shutdown junction temperature(1)  
160  
15  
°C  
°C  
Thermal shutdown temperature  
hysteresis(1)  
7.6 Timing Requirements  
over operating ambient temperature range (-40°C < TA< 85°C) (unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
ƒOSC  
tPSM  
Internal oscillator frequency(1)  
15  
30  
MHz  
ms  
µs  
Power save mode deglitch time(1)  
EN first rising edge until first I2C access(1)  
EN first falling edge until first I2C reset(1)  
I2C clock frequency(1)  
Hold time (repeated) START condition(1)  
Clock low time(1)  
Clock high time(1)  
Setup time for a repeated START condition(1)  
Data hold time(1)  
20  
40  
500  
3
tEN_H  
tEN_L  
ƒSCL  
µs  
400  
kHz  
µs  
0.6  
1
2
3
4
5
6
7
8
9
10  
1.3  
µs  
600  
ns  
600  
0
ns  
ns  
Data setup time(1)  
Rise time of SDA and SCL(1)  
Fall time of SDA and SCL(1)  
100  
ns  
20 + 0.1 Cb  
15 + 0.1 Cb  
600  
ns  
ns  
Setup time for STOP condition(1)  
Bus free time between a STOP and a START condition(1)  
Capacitive load parameter for each bus line Load of 1 pF  
ns  
1.3  
µs  
Cb  
10  
200  
pF  
corresponds to one nanosecond(1)  
.
(1) Specified by design  
1. I2C Timing Parameters  
版权 © 2018–2019, Texas Instruments Incorporated  
9
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
7.7 Typical Characteristics  
35  
32.5  
30  
40  
35  
30  
25  
20  
15  
10  
5
27.5  
25  
22.5  
20  
5mA Average Current  
10mA Average Current  
25.5mA Average Current  
35mA Average Current  
17.5  
15  
12.5  
10  
7.5  
5
2.5  
0
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
RIREF(kW)  
Ambient Temperature (èC)  
D005  
D003  
VVCC = 3.3 V  
2. Output Current Target vs RIREF  
3. Output Current vs Ambient Temperature  
1.5  
1
40  
35  
30  
25  
20  
15  
10  
5
0.5  
0
Minimum at 5 mA  
Maximum at 5 mA  
Minimum at 10mA  
Maximum at 10 mA  
Minimum at 25.5 mA  
Maximum at 25.5 mA  
Minimum at 35 mA  
Maximum at 35 mA  
5mA-Average Current  
10mA-Average Current  
25.5mA-Average Current  
35mA-Average Current  
-0.5  
-1  
0
-1.5  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
-40  
-20  
0
20  
40  
60  
80 90  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D004  
D001  
VVCC = 5 V  
VVCC = 3.3 V  
5. Channel-to-Channel Accuracy  
4. Output Current vs Ambient Temperature  
1.2  
0.9  
0.6  
0.3  
0
0.055  
0.05  
0.045  
0.04  
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
50-mA IREF  
100-mA IREF  
150-mA IREF  
200-mA IREF  
250-mA IREF  
300-mA IREF  
350-mA IREF  
Minimum at 5 mA  
Maximum at 5 mA  
Minimum at 10mA  
Maximum at 10 mA  
Minimum at 25.5 mA  
Maximum at 25.5 mA  
Minimum at 35 mA  
Maximum at 35 mA  
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
-40  
-20  
0
20  
40  
60  
80  
100  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5  
Ambient Tempeature (èC)  
Output Pin Voltage (V)  
D002  
D006  
VVCC = 5 V  
6. Channel-to-Channel Accuracy  
VVCC = 3.3 V  
7. OUT Pin Voltage vs Current  
10  
版权 © 2018–2019, Texas Instruments Incorporated  
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
Typical Characteristics (接下页)  
0.055  
0.05  
0.045  
0.04  
0.035  
0.03  
0.025  
0.02  
0.015  
0.01  
0.005  
0
50-mA IREF  
100-mA IREF  
150-mA IREF  
200-mA IREF  
250-mA IREF  
300-mA IREF  
350-mA IREF  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5  
Output Pin Voltage (V)  
D007  
VVCC = 5 V  
8. OUT Pin Voltage vs Current  
版权 © 2018–2019, Texas Instruments Incorporated  
11  
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LP503x device is a 30- or 36-channel constant-current-sink LED driver. The LP503x device includes all  
necessary power rails, an on-chip oscillator, and a two-wire serial I2C interface. The maximum constant-current  
value of all channels is set by a single external resistor. Two hardware address pins allow up to four devices on  
the same bus. An automatic power-saving mode is implemented to keep the total current consumption under 10  
µA, which makes the LP503x device a potential choice for battery-powered end-equipment.  
The LP503x device is optimized for RGB LEDs regarding both live effects and software efforts. The LP503x  
device controls each LED output with 12-bit PWM resolution at 29-kHz switching frequency, which helps achieve  
a smooth dimming effect and eliminates audible noise. The independent color-mixing and intensity-control  
registers make the software coding straightforward. When targeting a fade-in, fade-out type breathing effect, the  
global RGB bank control reduces the microcontroller loading significantly. The LP503x device also implements a  
PWM phase-shifting function to help reduce the input power budget when LEDs turn on simultaneously.  
8.2 Functional Block Diagram  
VCC  
VLED  
VCC  
Bandgap  
OUT0  
OUT1  
OUT2  
V1P8  
LDO  
VCAP  
12 Bits  
29 kHz  
PWM  
Oscillator  
15MHz  
Generators  
EN  
SDA  
SCL  
OUT33  
OUT34  
OUT35  
Digital  
Interface  
Digital Control  
ADDR0  
ADDR1  
IREF  
IREF Setting Current  
Thermal Shutdown  
GND  
8.3 Feature Description  
8.3.1 Each Channel PWM Control  
Most traditional LED drivers are designed for the single-color LEDs, in which the high resolution PWM generator  
is used for intensity control only. However, for RGB LEDs, both the color mixing and intensity control should be  
addressed to achieve the target effect. With the traditional solution, the users must handle the color mixing and  
intensity control simultaneously with a single PWM register. Several undesired effects occur: the limited dimming  
steps, the complex software design, and the color distortion when using a logarithmic scale control.  
The LP503x device is designed with independent color mixing and intensity control, which makes the RGB LED  
effects fancy and the control experience straightforward. With the inputs of the color-mixing register and the  
intensity-control register, the final PWM generator output for each channel is 12-bit resolution and 29-kHz  
dimming frequency, which helps achieve a smooth dimming effect and eliminates audible noise. See 9.  
12  
版权 © 2018–2019, Texas Instruments Incorporated  
 
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
Feature Description (接下页)  
Color-Mixing  
Brightness-Control  
PWM Generators  
OUT0  
8 Bits Color  
12 Bits / 29KHz PWM  
12 Bits / 29KHz PWM  
12 Bits / 29KHz PWM  
8 Bits Color  
8 Bits Color  
8 Bits Brightness  
OUT1  
OUT2  
8 Bits Color  
8 Bits Color  
8 Bits Color  
12 Bits / 29KHz PWM  
12 Bits / 29KHz PWM  
12 Bits / 29KHz PWM  
OUT33  
8 Bits Brightness  
OUT34  
OUT35  
9. PWM Control Scheme for Each Channel  
8.3.1.1 Independent Color Mixing Per RGB LED Module  
Each output channel has its own individual 8-bit color-setting register (OUTx_COLOR). The device allows every  
RGB LED module to achieve >16 million (256 × 256 × 256) color-mixing.  
8.3.1.2 Independent Intensity Control Per RGB LED Module  
When color is fixed, the independent intensity-control is used to achieve accurate and flexible dimming control for  
every RGB LED module.  
8.3.1.2.1 Intensity-Control Register Configuration  
Every three consecutive output channels are assigned to their respective intensity-control register  
(LEDx_BRIGHTNESS). For example, OUT0, OUT1, and OUT2 are assigned to LED0_BRIGHTNESS, so it is  
recommended to connect the RGB LEDs in the sequence as shown in 1. The LP503x device allows 256-step  
intensity control for each RGB LED module, which helps achieve a smooth dimming effect.  
Keeping FFh (default value) in the LED0_BRIGHTNESS register results in 100% dimming duty cycle. With this  
setting, the users can just configure the color mixing register by channel to achieve the target dimming effect in a  
single-color LED application.  
8.3.1.2.2 Logarithmic- or Linear-Scale Intensity Control  
For human-eye-friendly visual performance, a logarithmic-scale dimming curve is usually implemented in LED  
drivers. However, for RGB LEDs, if using a single register to achieve both color mixing and intensity control,  
color distortion can be observed easily when using a logarithmic scale. The LP503x device, with independent  
color-mixing and intensity-control registers, implements the logarithmic scale dimming control inside the intensity  
control function, which solves the color distortion issue effectively. See 10. Also, the LP503x device allows  
users to configure the dimming scale either logarithmically or linearly through the global Log_Scale_EN register  
bit. If a special dimming curve is desired, using the linear scale with software correction is the most flexible  
approach. See 11.  
版权 © 2018–2019, Texas Instruments Incorporated  
13  
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
Feature Description (接下页)  
Brightness Control  
8 Bits Brightness  
Linear OR  
Logarithmic  
Log_Scale_EN  
8 Bits Brightness  
Linear OR  
Logarithmic  
10. Logarithmic or Linear Scale Intensity Control  
Logarithmic Scale Dimming Curve  
Linear Scale Dimming Curve  
100 %  
80 %  
60 %  
40 %  
20 %  
0 %  
100 %  
80 %  
60 %  
40 %  
20 %  
0 %  
0
32  
64  
96  
128  
160  
192  
224  
255  
0
32  
64  
96  
128  
160  
192  
224  
255  
LEDx_BRIGHTNESS Register Input  
LEDx_BRIGHTNESS Register Input  
11. Logarithmic vs Linear Dimming Curve  
8.3.1.3 12-Bit, 29-kHz PWM Generator Per Channel  
8.3.1.3.1 PWM Generator  
With the inputs of the color mixing and the intensity control, the final output PWM duty cycle is defined as the  
product obtained by multiplying the color-mixing register value by the related intensity-control register value. The  
final output PWM duty cycle has 12 bits of control accuracy, which is achieved by a 9 bits of pure PWM  
resolution and 3 bits of dithering digital control. For 3-bit dithering, every eighth pulse is made 1 LSB longer to  
increase the average value by 1 / 8th. The LP503x device allows the users to enable or disable the dithering  
function through the PWM_Dithering_EN register. When enabled (default), the output PWM duty-cycle accuracy  
is 12 bits. When disabled, the output PWM duty-cycle accuracy is 9 bits.  
To eliminate the audible noise due to the PWM switching, the LP503x device sets the PWM switching frequency  
at 29-kHz, above the 20-kHz human hearing range.  
14  
版权 © 2018–2019, Texas Instruments Incorporated  
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
Feature Description (接下页)  
8.3.1.4 PWM Phase-Shifting  
A PWM phase-shifting scheme allows delaying the time when each LED driver is active. When the LED drivers  
are not activated simultaneously, the peak load current from the pre-stage power supply is significantly  
decreased. The scheme also reduces input-current ripple and ceramic-capacitor audible ringing. LED drivers are  
grouped into three different phases.  
Phase 1—the rising edge of the PWM pulse is fixed. The falling edge of the pulse is changed when the duty  
cycle changes. Phase 1 is applied to LED0, LED3, …, LED[3 × (n – 1)].  
Phase 2—the middle point of the PWM pulse is fixed. The pulse spreads in both directions when the PWM  
duty cycle is increased. Phase 2 is applied to LED1, LED4, …, LED[3 × (n – 1) + 1].  
Phase 3—the falling edge of the PWM pulse is fixed. The rising edge of the pulse is changed when the duty  
cycle changes. Phase 3 is applied to LED2, LED5, …, LED[3 × (n – 1) + 2].  
For LP5030, n = 10. For LP5036, n = 12.  
Cycle Time  
LED0  
LED3  
Phase 1  
LED[3× (n-1)]  
LED1  
LED4  
Phase 2  
LED[3× (n-1)+1]  
LED2  
LED5  
Phase 3  
LED[3× (n-1)+2]  
Phase 1  
Phase 2  
Phase 3  
12. PWM Phase-Shifting  
8.3.2 LED Bank Control  
For most LED-animation effects, like blinking and breathing, all the RGB LEDs have the same lighting pattern.  
Instead of controlling the individual LED separately, which occupies the microcontroller resources heavily, the  
LP503x device provides an easy coding approach, the LED bank control.  
版权 © 2018–2019, Texas Instruments Incorporated  
15  
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
Feature Description (接下页)  
Each channel can be configured as either independent control or bank control through the LEDx_Bank_EN  
register. When LEDx_Bank_EN = 0 (default), the LED is controlled independently by the related color-mixing and  
intensity-control registers. When LEDx_Bank_EN = 1, the LP503x device drives the LED in LED bank-control  
mode. The LED bank has its own independent PWM control scheme, which is the same structure as the PWM  
scheme of each channel. See Each Channel PWM Control for more details. When a channel configured as LED  
bank-control mode, the related color mixing and intensity control is governed by the bank control registers  
(BANK_A_COLOR, BANK_B_COLOR, BANK_C_COLOR, and BANK_BRIGHTNESS) regardless of the inputs  
on its own color-mixing and intensity-control registers.  
Bank Color-Mixing  
8 Bits Color  
Bank Brightness-Control  
Bank PWM Generators  
12 Bits / 29kHz PWM  
Bank A:  
Bank B:  
Bank C:  
8 Bits Color  
8 Bits Color  
8 Bits Brightness  
12 Bits / 29kHz PWM  
12 Bits / 29kHz PWM  
13. Bank PWM Control Scheme  
1. Bank Number and LED Number Assignment  
OUT NUMBER  
OUT0  
BANK NUMBER  
Bank A  
Bank B  
Bank C  
Bank A  
Bank B  
Bank C  
Bank A  
Bank B  
Bank C  
Bank A  
Bank B  
Bank C  
Bank A  
Bank B  
Bank C  
Bank A  
Bank B  
Bank C  
Bank A  
Bank B  
Bank C  
Bank A  
Bank B  
Bank C  
Bank A  
Bank B  
Bank C  
RGB LED MODULE NUMBER  
OUT1  
LED0  
LED1  
LED2  
LED3  
LED4  
LED5  
LED6  
LED7  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
OUT11  
OUT12  
OUT13  
OUT14  
OUT15  
OUT16  
OUT17  
OUT18  
OUT19  
OUT20  
OUT21  
OUT22  
OUT23  
OUT24  
OUT25  
OUT26  
LED8  
16  
版权 © 2018–2019, Texas Instruments Incorporated  
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
Feature Description (接下页)  
1. Bank Number and LED Number Assignment (接下页)  
OUT NUMBER  
OUT27  
BANK NUMBER  
Bank A  
RGB LED MODULE NUMBER  
OUT28  
Bank B  
LED9  
OUT29  
Bank C  
OUT30  
Bank A  
OUT31  
Bank B  
LED10(1)  
LED11(1)  
OUT32  
Bank C  
OUT33  
Bank A  
OUT34  
Bank B  
OUT35  
Bank C  
(1) For LP5036 only.  
With the bank control configuration, the LP503x device enables users to achieve smooth and live LED effects  
globally with an ultra-simple software effort. 14 shows an example using LED0 as an independent RGB  
indicator and others with group breathing effect.  
14. Bank PWM Control Example  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
 
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
8.3.3 Current Range Setting  
The maximum constant-current value of all 30 or 36 channels is set by a single external resistor, RIREF. The  
value of RIREF can be calculated by 公式 1.  
VIREF  
RIREF=KIREF  
×
ISET  
where:  
KIREF = 105  
VIREF = 0.7 V  
(1)  
With the IREF pin floating, the output current is close to zero. With the IREF pin shorted to GND, the LP503x  
device provides internal current-limit protection, and the output-channel maximum current is limited to ILIM  
.
The LP503x device supports two levels of maximum output current, IMAX  
.
When VCC is in the range from 2.7 V to 5.5 V, and the Max_Current_Option (bit) = 0, IMAX= 25.5 mA.  
When VCC is in the range from 3.3 V to 5.5 V, and the Max_Current_Option (bit) = 1, IMAX= 35 mA.  
8.3.4 Automatic Power-Save Mode  
When all the LED outputs are inactive, the LP503x device is able to enter power-save mode automatically, thus  
lowering idle-current consumption down to 12 μA (maximum). Automatic power-save mode is enabled when  
register bit Power_Save_EN = 1 (default) and all the LEDs are off for a duration of >30 ms. Almost all analog  
blocks are powered down in power-save mode. If any I2C command to the device occurs, the LP503x device  
returns to NORMAL mode.  
8.3.5 Protection Features  
8.3.5.1 Thermal Shutdown  
The LP503x device implements a thermal shutdown mechanism to protect the device from damage due to  
overheating. When the junction temperature rises to 160°C (typical), the device switches into shutdown mode.  
The LP503x device releases thermal shutdown when the junction temperature of the device is reduced to 145°C  
(typical).  
8.3.5.2 UVLO  
The LP503x device has an internal comparator that monitors the voltage at VCC. When VCC is below VUVF, reset  
is active and the LP503x device is in the INITIALIZATION state.  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
 
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
8.4 Device Functional Modes  
VCC Power Up  
EN = L  
From all states  
SHUTDOWN  
EN = H  
RESET = FF or UVLO = H  
INITIALIZATION  
From all states  
STANDBY  
Chip_EN = 1  
Chip_EN = 0  
I2C Command  
TSD=H  
TSD=L  
THERMAL  
SHUTDOWN  
POWER SAVE  
NORMAL  
Power_Save_EN =1 and  
All LEDs off > 30ms  
15. Functional Modes  
INITIALIZATION: The device enters into INITIALIZATION mode when EN = H. In this mode, all the registers  
are reset. Entry can also be from any state, if the RESET (register) = FFh or UVLO is active.  
NORMAL: The device enters the NORMAL mode when Chip_EN (register) = 1. ICC is 10 mA (typical).  
POWER SAVE: The device automatically enters the POWER SAVE mode when Power_Save_EN (register) =  
1 and all the LEDs are off for a duration of >30 ms. In POWER SAVE mode, analog blocks are disabled to  
minimize power consumption, but the registers retain the data and keep it available via I2C. ICC is 12 µA  
(maximum). In case of any I2C command to this device, it goes back to the NORMAL mode.  
SHUTDOWN: The device enters into SHUTDOWN mode from all states on VCC power up or when EN = L.  
ICC is < 1 µA (max).  
STANDBY: The device enters the STANDBY mode when Chip_EN (register bit) = 0. In this mode, all the  
OUTx are shut down, but the registers retain the data and keep it available via I2C. STANDBY is the low-  
power-consumption mode, when all circuit functions are disabled. ICC is 10 µA (maximum).  
THERMAL SHUTDOWN: The device automatically enters the THERMAL SHUTDOWN mode when the  
junction temperature exceeds 160°C (typical). In this mode, all the OUTx outputs are shut down. If the  
junction temperature decreases below 145°C (typical), the device returns to the NORMAL mode.  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
8.5 Programming  
8.5.1 I2C Interface  
The I2C-compatible two-wire serial interface provides access to the programmable functions and registers on the  
device. This protocol uses a two-wire interface for bidirectional communications between the devices connected  
to the bus. The two interface lines are the serial data line (SDA) and the serial clock line (SCL). Every device on  
the bus is assigned a unique address and acts as either a master or a slave depending on whether it generates  
or receives the serial clock, SCL. The SCL and SDA lines should each have a pullup resistor placed somewhere  
on the line and remain HIGH even when the bus is idle.  
8.5.1.1 Data Validity  
The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, the state  
of the data line can only be changed when the clock signal is LOW.  
16. Data Validity  
8.5.1.2 Start and Stop Conditions  
START and STOP conditions classify the beginning and the end of the data transfer session. A START condition  
is defined as the SDA signal transitioning from HIGH to LOW while the SCL line is HIGH. A STOP condition is  
defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The bus master always generates  
START and STOP conditions. The bus is considered to be busy after a START condition and free after a STOP  
condition. During data transmission, the bus master can generate repeated START conditions. First START and  
repeated START conditions are functionally equivalent.  
17. Start and Stop Conditions  
8.5.1.3 Transferring Data  
Every byte put on the SDA line must be eight bits long, with the most-significant bit (MSB) being transferred first.  
Each byte of data must be followed by an acknowledge bit. The acknowledge-related clock pulse is generated by  
the master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The device pulls  
down the SDA line during the 9th clock pulse, signifying an acknowledge. The device generates an acknowledge  
after each byte has been received.  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
Programming (接下页)  
There is one exception to the acknowledge-after-every-byte rule. When the master is the receiver, it must  
indicate to the transmitter an end of data by not acknowledging (negative acknowledge) the last byte clocked out  
of the slave. This negative acknowledge still includes the acknowledge clock pulse (generated by the master),  
but the SDA line is not pulled down.  
After the START condition, the bus master sends a chip address. This address is seven bits long followed by an  
eighth bit, which is a data direction bit (READ or WRITE). For the eighth bit, a 0 indicates a WRITE, and a 1  
indicates a READ. The second byte selects the register to which the data is written. The third byte contains data  
to write to the selected register.  
18. Acknowledge and Not Acknowledge on I2C Bus  
8.5.1.4 I2C Slave Addressing  
The device slave address is defined by connecting GND or VCC to the ADDR0 and ADDR1 pins. A total of four  
independent slave addresses can be realized by combinations when GND or VCC is connected to the ADDR0  
and ADDR1 pins (see 2 and 3).  
The device responds to a broadcast slave address regardless of the setting of the ADDR0 and ADDR1 pins.  
Global writes to the broadcast address can be used for configuring all devices simultaneously. The device  
supports global read using a broadcast address; however, the data read is only valid if all devices on the I2C bus  
contain the same value in the addressed register.  
2. Slave-Address Combinations  
SLAVE ADDRESS  
ADDR1  
ADDR0  
INDEPENDENT  
011 0000  
BROADCAST  
GND  
GND  
VCC  
VCC  
GND  
VCC  
GND  
VCC  
011 0001  
001 1100  
011 0010  
011 0011  
3. Chip Address  
SLAVE ADDRESS  
R/W  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Independent  
0
1
1
0
0
ADDR1  
ADDR0  
1 or 0  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
 
 
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
3. Chip Address (接下页)  
SLAVE ADDRESS  
R/W  
Bit 0  
1 or 0  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Broadcast  
0
0
1
1
1
0
0
8.5.1.5 Control-Register Write Cycle  
The master device generates a start condition.  
The master device sends the slave address (7 bits) and the data direction bit (R/W = 0).  
The slave device sends an acknowledge signal if the slave address is correct.  
The master device sends the control register address (8 bits).  
The slave device sends an acknowledge signal.  
The master device sends the data byte to be written to the addressed register.  
The slave device sends an acknowledge signal.  
If the master device sends further data bytes, the control register address of the slave is incremented by 1  
after the acknowledge signal. To reduce program load time, the device supports address auto incrementation.  
The register address is incremented after each 8 data bits.  
The write cycle ends when the master device creates a stop condition.  
19. Write Cycle  
8.5.1.6 Control-Register Read Cycle  
The master device generates a start condition.  
The master device sends the slave address (7 bits) and the data direction bit (R/W = 0).  
The slave device sends an acknowledge signal if the slave address is correct.  
The master device sends the control register address (8 bits).  
The slave device sends an acknowledge signal.  
The master device generates a repeated-start condition.  
The master device sends the slave address (7 bits) and the data direction bit (R/W = 1).  
The slave device sends an acknowledge signal if the slave address is correct.  
The slave device sends the data byte from the addressed register.  
If the master device sends an acknowledge signal, the control-register address is incremented by 1. The  
slave device sends the data byte from the addressed register. To reduce program load time, the device  
supports address auto incrementation. The register address is incremented after each 8 data bits.  
The read cycle ends when the master device does not generate an acknowledge signal after a data byte and  
generates a stop condition.  
20. Read Cycle  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
8.5.1.7 Auto-Increment Feature  
The auto-increment feature allows writing or reading several consecutive registers within one transmission. For  
example, when an 8-bit word is sent to the device, the internal address index counter is incremented by 1, and  
the next register is written. The auto-increment feature is enabled by default and can be disabled by setting the  
Auto_Incr_EN bit = 0 in the DEVICE_CONFIG1 register. The auto-increment feature is applied for the full register  
address from 0h to FFh.  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
8.6 Register Maps  
4 lists the memory-mapped registers of the device.  
4. Register Maps  
REGISTER  
NAME  
DEF  
AULT  
ADDR TYPE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DEVICE_CONFI  
G0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
R/W  
R/W  
RESERVED  
Chip_EN  
RESERVED  
00h  
DEVICE_CONFI  
G1  
PWM_Ditherin Max_Current_  
g_EN Option  
LED_Global  
Off  
RESERVED  
Log_Scale_EN Power_Save_EN  
Auto_Incr_EN  
3Ch  
00h  
00h  
FFh  
00h  
00h  
00h  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
FFh  
LED2_Bank_E LED1_Bank_E LED0_Bank_E  
LED_CONFIG0  
LED_CONFIG1  
R/W LED7_Bank_EN LED6_Bank_EN LED5_Bank_EN LED4_Bank_EN LED3_Bank_EN  
N
N
N
LED11_Bank_E LED10_Bank_ LED9_Bank_E LED8_Bank_E  
EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RESERVED  
N
N
N
BANK_BRIGHTN  
ESS  
Bank_Brightness  
Bank_A_Color  
BANK_A_COLO  
R
BANK_B_COLO  
R
Bank_B_Color  
BANK_C_COLO  
R
Bank_C_Color  
LED0_BRIGHTN  
ESS  
LED0_Brightness  
LED1_Brightness  
LED2_Brightness  
LED3_Brightness  
LED4_Brightness  
LED5_Brightness  
LED6_Brightness  
LED7_Brightness  
LED8_Brightness  
LED9_Brightness  
LED1_BRIGHTN  
ESS  
LED2_BRIGHTN  
ESS  
LED3_BRIGHTN  
ESS  
LED4_BRIGHTN  
ESS  
LED5_BRIGHTN  
ESS  
LED6_BRIGHTN  
ESS  
LED7_BRIGHTN  
ESS  
LED8_BRIGHTN  
ESS  
LED9_BRIGHTN  
ESS  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
Register Maps (接下页)  
4. Register Maps (接下页)  
REGISTER  
ADDR TYPE  
NAME  
DEF  
AULT  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LED10_BRIGHT  
NESS  
12h  
13h  
R/W  
R/W  
LED10_Brightness  
LED11_Brightness  
FFh  
LED11_BRIGHT  
NESS  
FFh  
OUT0_COLOR  
OUT1_COLOR  
OUT2_COLOR  
OUT3_COLOR  
OUT4_COLOR  
OUT5_COLOR  
OUT6_COLOR  
OUT7_COLOR  
OUT8_COLOR  
OUT9_COLOR  
OUT10_COLOR  
OUT11_COLOR  
OUT12_COLOR  
OUT13_COLOR  
OUT14_COLOR  
OUT15_COLOR  
OUT16_COLOR  
OUT17_COLOR  
OUT18_COLOR  
OUT19_COLOR  
OUT20_COLOR  
OUT21_COLOR  
OUT22_COLOR  
OUT23_COLOR  
OUT24_COLOR  
OUT25_COLOR  
OUT26_COLOR  
OUT27_COLOR  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
OUT0_Color  
OUT1_Color  
OUT2_Color  
OUT3_Color  
OUT4_Color  
OUT5_Color  
OUT6_Color  
OUT7_Color  
OUT8_Color  
OUT9_Color  
OUT10_Color  
OUT11_Color  
OUT12_Color  
OUT13_Color  
OUT14_Color  
OUT15_Color  
OUT16_Color  
OUT17_Color  
OUT18_Color  
OUT19_Color  
OUT20_Color  
OUT21_Color  
OUT22_Color  
OUT23_Color  
OUT24_Color  
OUT25_Color  
OUT26_Color  
OUT27_Color  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
Register Maps (接下页)  
4. Register Maps (接下页)  
REGISTER  
NAME  
DEF  
AULT  
ADDR TYPE  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OUT28_COLOR  
OUT29_COLOR  
OUT30_COLOR  
OUT31_COLOR  
OUT32_COLOR  
OUT33_COLOR  
OUT34_COLOR  
OUT35_COLOR  
RESET  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
W
OUT28_Color  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
OUT29_Color  
OUT30_Color  
OUT31_Color  
OUT32_Color  
OUT33_Color  
OUT34_Color  
OUT35_Color  
Reset  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
5. Access Type Codes  
ACCESS TYPE  
CODE  
DESCRIPTION  
Read Type  
R
R
Read  
Write  
Write Type  
W
W
Reset or Default Value  
-n  
Value after reset or the default  
value  
8.6.1 DEVICE_CONFIG0 (Address = 0h) [reset = 0h]  
DEVICE_CONFIG0 is shown in 21 and described in 6.  
Return to 4.  
21. DEVICE_CONFIG0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
Chip_EN  
R/W-0h  
RESERVED  
R/W-0h  
6. DEVICE_CONFIG0 Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
R/W  
R/W  
Reset  
0h  
Description  
Reserved  
6
Chip_EN  
0h  
0 = LP503x not enabled  
1 = LP503x enabled  
Reserved  
5–0  
RESERVED  
R/W  
0h  
8.6.2 DEVICE_CONFIG1 (Address = 1h) [reset = 3Ch]  
DEVICE_CONFIG1 is shown in 22 and described in 7.  
Return to 4.  
22. DEVICE_CONFIG1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
Log_Scale_EN Power_Save_E Auto_Incr_EN PWM_Dithering Max_Current_O LED_Global Off  
N
_EN  
ption  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-1h  
R/W-0h  
R/W-0h  
7. DEVICE_CONFIG1 Register Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
RESERVED  
Reserved  
Log_Scale_EN  
1h  
0 = Linear scale dimming curve enabled  
1 = Logarithmic scale dimming curve enabled  
0 = Automatic power-saving mode not enabled  
1 = Automatic power-saving mode enabled  
0 = Automatic increment mode not enabled  
1 = Automatic increment mode enabled  
0 = PWM dithering mode not enabled  
4
3
2
1
Power_Save_EN  
Auto_Incr_EN  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
0h  
PWM_Dithering_EN  
Max_Current_Option  
1 = PWM dithering mode enabled  
0 = Output maximum current IMAX = 25.5 mA.  
1 = Output maximum current IMAX = 35 mA.  
版权 © 2018–2019, Texas Instruments Incorporated  
27  
 
 
 
 
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
7. DEVICE_CONFIG1 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
0
LED_Global Off  
R/W  
0h  
0 = Normal operation  
1 = Shut down all LEDs  
8.6.3 LED_CONFIG0 (Address = 2h) [reset = 00h]  
LED_CONFIG0 is shown in 23 and described in 8.  
Return to 4.  
23. LED_CONFIG0 Register  
7
6
5
4
3
2
1
0
LED7_Bank_E LED6_Bank_E LED5_Bank_E LED4_Bank_E LED3_Bank_E LED2_Bank_E LED1_Bank_E LED0_Bank_E  
N
N
N
N
N
N
N
N
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
8. LED_CONFIG0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LED7_Bank_EN  
LED6_Bank_EN  
LED5_Bank_EN  
LED4_Bank_EN  
LED3_Bank_EN  
LED2_Bank_EN  
LED1_Bank_EN  
LED0_Bank_EN  
R/W  
0h  
0 = LED7 independent control mode enabled  
1 = LED7 bank control mode enabled  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0 = LED6 independent control mode enabled  
1 = LED6 bank control mode enabled  
0 = LED5 independent control mode enabled  
1 = LED5 bank control mode enabled  
0 = LED4 independent control mode enabled  
1 = LED4 bank control mode enabled  
0 = LED3 Independent control mode enabled  
1 = LED3 bank control mode enabled  
0 = LED2 independent control mode enabled  
1 = LED2 bank control mode enabled  
0 = LED1 independent control mode enabled  
1 = LED1 bank control mode enabled  
0 = LED0 independent control mode enabled  
1 = LED0 bank control mode enabled  
8.6.4 LED_CONFIG1 (Address = 3h) [reset = 00h]  
LED_CONFIG1 is shown in 23 and described in 8.  
Return to 4.  
24. LED_CONFIG1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0h  
LED11_Bank_E LED10_Bank_E LED9_Bank_E LED8_Bank_E  
N
N
N
N
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
9. LED_CONFIG1 Register Field Descriptions  
Bit  
4–7  
3
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
RESERVED  
Reserved  
LED11_Bank_EN  
0h  
0 = LED11 Independent control mode enabled  
1 =LED11 bank control mode enabled  
28  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
9. LED_CONFIG1 Register Field Descriptions (接下页)  
Bit  
Field  
Type  
Reset  
Description  
2
LED10_Bank_EN  
LED9_Bank_EN  
LED8_Bank_EN  
R/W  
0h  
0 = LED10 independent control mode enabled  
1 = LED10 bank control mode enabled  
0 =LED9 independent control mode enabled  
1 = LED9 bank control mode enabled  
1
0
R/W  
R/W  
0h  
0h  
0 = LED8 independent control mode enabled  
1 = LED8 bank control mode enabled  
8.6.5 BANK_BRIGHTNESS (Address = 4h) [reset = FFh]  
BANK_BRIGHTNESS is shown in 25 and described in 10.  
Return to 4.  
25. BANK_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
BANK_BRIGHTNESS  
R/W-FFh  
10. BANK_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
BANK_BRIGHTNESS  
Type  
R/W  
Reset  
Description  
7–0  
FFh  
00h = 0% of full intensity  
...  
80h = 50% of full  
...  
FFh = 100 % of full intensity  
8.6.6 BANK_A_COLOR (Address = 5h) [reset = 00h]  
BANK_A_COLOR is shown in 26 and described in 11.  
Return to 4.  
26. BANK_A_COLOR Register  
7
6
5
4
3
2
1
0
BANK_A_COLOR  
R/W-0h  
11. BANK_A_COLOR Register Field Descriptions  
Bit  
Field  
BANK_A_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
0h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.7 BANK_B_COLOR (Address = 6h) [reset = 00h]  
BANK_B_COLOR is shown in 27 and described in 12.  
Return to 4.  
版权 © 2018–2019, Texas Instruments Incorporated  
29  
 
 
 
 
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
27. BANK_B_COLOR Register  
7
6
5
4
3
2
1
0
BANK_B_COLOR  
R/W-0h  
12. BANK_B_COLOR Register Field Descriptions  
Bit  
Field  
BANK_B_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
0h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.8 BANK_C_COLOR (Address = 7h) [reset = 00h]  
BANK_C_COLOR is shown in 28 and described in 13.  
Return to 4.  
28. BANK_C_COLOR Register  
7
6
5
4
3
2
1
0
BANK_C_COLOR  
R/W-0h  
13. BANK_C_COLOR Register Field Descriptions  
Bit  
Field  
BANK_C_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
0h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.9 LED0_BRIGHTNESS (Address = 8h) [reset = FFh]  
LED0_BRIGHTNESS is shown in 29 and described in 14.  
Return to 4.  
29. LED0_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED0_BRIGHTNESS  
R/W-FFh  
14. LED0_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
LED0_BRIGHTNESS  
Type  
Reset  
Description  
7–0  
R/W  
FFh  
00h = 0% of full intensity  
...  
80h = 50% of full intensity  
...  
FFh = 100 % of full intensity  
30  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
8.6.10 LED1_BRIGHTNESS (Address = 9h) [reset = FFh]  
LED1_BRIGHTNESS is shown in 30 and described in 15.  
Return to 4.  
30. LED1_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED1_BRIGHTNESS  
R/W-FFh  
15. LED1_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
LED1_BRIGHTNESS  
Type  
Reset  
Description  
7–0  
R/W  
FFh  
00h = 0% of full intensity  
...  
80h = 50% of full intensity  
...  
FFh = 100 % of full intensity  
8.6.11 LED2_BRIGHTNESS (Address = 0Ah) [reset = FFh]  
LED2_BRIGHTNESS is shown in 31 and described in 16.  
Return to 4.  
31. LED2_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED2_BRIGHTNESS  
R/W-FFh  
16. LED2_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
LED2_BRIGHTNESS  
Type  
Reset  
Description  
7–0  
R/W  
FFh  
00h = 0% of full intensity  
...  
80h = 50% of full intensity  
...  
FFh = 100 % of full intensity  
8.6.12 LED3_BRIGHTNESS (Address = 0Bh) [reset = FFh]  
LED3_BRIGHTNESS is shown in 32 and described in 17.  
Return to 4.  
32. LED3_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED3_BRIGHTNESS  
R/W-FFh  
版权 © 2018–2019, Texas Instruments Incorporated  
31  
 
 
 
 
 
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
17. LED3_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
LED3_BRIGHTNESS  
R/W  
FFh  
00h = 0% of full intensity  
...  
80h = 50% of full intensity  
...  
FFh = 100 % of full intensity  
8.6.13 LED4_BRIGHTNESS (Address = 0Ch) [reset = FFh]  
LED4_BRIGHTNESS is shown in 33 and described in 18.  
Return to 4.  
33. LED4_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED4_BRIGHTNESS  
R/W-FFh  
18. LED4_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
LED4_BRIGHTNESS  
Type  
Reset  
Description  
7–0  
R/W  
FFh  
00h = 0% of full intensity  
...  
80h = 50% of full intensity  
...  
FFh = 100 % of full intensity  
8.6.14 LED5_BRIGHTNESS (Address = 0Dh) [reset = FFh]  
LED5_BRIGHTNESS is shown in 34 and described in 19.  
Return to 4.  
34. LED5_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED5_BRIGHTNESS  
R/W-FFh  
19. LED5_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
LED5_BRIGHTNESS  
Type  
Reset  
Description  
7–0  
R/W  
FFh  
00h = 0% of full intensity  
...  
80h = 50% of full intensity  
...  
FFh = 100 % of full intensity  
8.6.15 LED6_BRIGHTNESS (Address = 0Eh) [reset = FFh]  
LED6_BRIGHTNESS is shown in 35 and described in 20.  
Return to 4.  
32  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
35. LED6_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED6_BRIGHTNESS  
R/W-FFh  
20. LED6_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
LED6_BRIGHTNESS  
R/W  
FFh  
00h = 0% of full intensity  
...  
80h = 50% of full intensity  
...  
FFh = 100 % of full intensity  
8.6.16 LED7_BRIGHTNESS (Address = 0Fh) [reset = FFh]  
LED7_BRIGHTNESS is shown in 36 and described in 21.  
Return to 4.  
36. LED7_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED7_BRIGHTNESS  
R/W-FFh  
21. LED7_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
LED7_BRIGHTNESS  
Type  
Reset  
Description  
7–0  
R/W  
FFh  
00h = 0% of full intensity  
...  
80h = 50% of full intensity  
...  
FFh = 100 % of full intensity  
8.6.17 LED8_BRIGHTNESS (Address = 10h) [reset = FFh]  
LED8_BRIGHTNESS is shown in 37 and described in 22.  
Return to 4.  
37. LED8_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED8_BRIGHTNESS  
R/W-FFh  
22. LED8_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
LED8_BRIGHTNESS  
Type  
Reset  
Description  
7–0  
R/W  
FFh  
00h = 0% of full intensity  
...  
80h = 50% of full intensity  
...  
FFh = 100 % of full intensity  
版权 © 2018–2019, Texas Instruments Incorporated  
33  
 
 
 
 
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
8.6.18 LED9_BRIGHTNESS (Address = 11h) [reset = FFh]  
LED9_BRIGHTNESS is shown in 38 and described in 23.  
Return to 4.  
38. LED9_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED9_BRIGHTNESS  
R/W-FFh  
23. LED9_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
LED9_BRIGHTNESS  
Type  
Reset  
Description  
7–0  
R/W  
FFh  
00h = 0% of full intensity  
...  
80h = 50% of full intensity  
...  
FFh = 100 % of full intensity  
8.6.19 LED10_BRIGHTNESS (Address = 12h) [reset = FFh]  
LED10_BRIGHTNESS is shown in 39 and described in 24.  
Return to 4.  
39. LED10_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED10_BRIGHTNESS  
R/W-FFh  
24. LED10_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
LED10_BRIGHTNESS  
Type  
Reset  
Description  
7–0  
R/W  
FFh  
00h = 0% of full intensity  
...  
80h = 50% of full intensity  
...  
FFh = 100 % of full intensity  
8.6.20 LED11_BRIGHTNESS (Address = 13h) [reset = FFh]  
LED11_BRIGHTNESS is shown in 40 and described in 25.  
Return to 4.  
40. LED11_BRIGHTNESS Register  
7
6
5
4
3
2
1
0
LED11_BRIGHTNESS  
R/W-FFh  
34  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
25. LED11_BRIGHTNESS Register Field Descriptions  
Bit  
Field  
LED11_BRIGHTNESS  
Type  
R/W  
Reset  
FFh  
Description  
7–0  
00h = 0% of full intensity  
...  
80h = 50% of full intensity  
...  
FFh = 100 % of full intensity  
8.6.21 OUT0_COLOR (Address = 14h) [reset = 00h]  
OUT0_COLOR is shown in 41 and described in 26.  
Return to 4.  
41. OUT0_COLOR Register  
7
6
5
4
3
2
1
0
OUT0_COLOR  
R/W-00h  
26. OUT0_COLOR Register Field Descriptions  
Bit  
Field  
OUT0_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.22 OUT1_COLOR (Address = 15h) [reset = 00h]  
OUT1_COLOR is shown in 42 and described in 27.  
Return to 4.  
42. OUT1_COLOR Register  
7
6
5
4
3
2
1
0
OUT1_COLOR  
R/W-00h  
27. OUT1_COLOR Register Field Descriptions  
Bit  
Field  
OUT1_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.23 OUT2_COLOR (Address = 16h) [reset = 00h]  
OUT2_COLOR is shown in 43 and described in 28.  
Return to 4.  
版权 © 2018–2019, Texas Instruments Incorporated  
35  
 
 
 
 
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
43. OUT2_COLOR Register  
7
6
5
4
3
2
1
0
OUT2_COLOR  
R/W-00h  
28. OUT2_COLOR Register Field Descriptions  
Bit  
Field  
OUT2_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.24 OUT3_COLOR (Address = 17h) [reset = 00h]  
OUT3_COLOR is shown in 44 and described in 29.  
Return to 4.  
44. OUT3_COLOR Register  
7
6
5
4
3
2
1
0
OUT3_COLOR  
R/W-00h  
29. OUT3_COLOR Register Field Descriptions  
Bit  
Field  
OUT3_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.25 OUT4_COLOR (Address = 18h) [reset = 00h]  
OUT4_COLOR is shown in 45 and described in 30.  
Return to 4.  
45. OUT4_COLOR Register  
7
6
5
4
3
2
1
0
OUT1_COLOR  
R/W-00h  
30. OUT4_COLOR Register Field Descriptions  
Bit  
Field  
OUT4_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
36  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
8.6.26 OUT5_COLOR (Address = 19h) [reset = 00h]  
OUT5_COLOR is shown in 46 and described in 31.  
Return to 4.  
46. OUT5_COLOR Register  
7
6
5
4
3
2
1
0
OUT5_COLOR  
R/W-00h  
31. OUT5_COLOR Register Field Descriptions  
Bit  
Field  
OUT5_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.27 OUT6_COLOR (Address = 1Ah) [reset = 00h]  
OUT6_COLOR is shown in 47 and described in 32.  
Return to 4.  
47. OUT6_COLOR Register  
7
6
5
4
3
2
1
0
OUT6_COLOR  
R/W-00h  
32. OUT6_COLOR Register Field Descriptions  
Bit  
Field  
OUT6_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.28 OUT7_COLOR (Address = 1Bh) [reset = 00h]  
OUT7_COLOR is shown in 48 and described in 33.  
Return to 4.  
48. OUT7_COLOR Register  
7
6
5
4
3
2
1
0
OUT7_COLOR  
R/W-00h  
版权 © 2018–2019, Texas Instruments Incorporated  
37  
 
 
 
 
 
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
33. OUT7_COLOR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
OUT7_COLOR  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.29 OUT8_COLOR (Address = 1Ch) [reset = 00h]  
OUT8_COLOR is shown in 49 and described in 34.  
Return to 4.  
49. OUT8_COLOR Register  
7
6
5
4
3
2
1
0
OUT8_COLOR  
R/W-00h  
34. OUT8_COLOR Register Field Descriptions  
Bit  
Field  
OUT8_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.30 OUT9_COLOR (Address = 1Dh) [reset = 00h]  
OUT9_COLOR is shown in 50 and described in 35.  
Return to 4.  
50. OUT9_COLOR Register  
7
6
5
4
3
2
1
0
OUT9_COLOR  
R/W-00h  
35. OUT9_COLOR Register Field Descriptions  
Bit  
Field  
OUT9_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.31 OUT10_COLOR (Address = 1Eh) [reset = 00h]  
OUT10_COLOR is shown in 51 and described in 36.  
Return to 4.  
38  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
51. OUT10_COLOR Register  
7
6
5
4
3
2
1
0
OUT10_COLOR  
R/W0-0h  
36. OUT10_COLOR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
OUT10_COLOR  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.32 OUT11_COLOR (Address = 1Fh) [reset = 00h]  
OUT11_COLOR is shown in 52 and described in 37.  
Return to 4.  
52. OUT11_COLOR Register  
7
6
5
4
3
2
1
0
OUT11_COLOR  
R/W-00h  
37. OUT11_COLOR Register Field Descriptions  
Bit  
Field  
OUT11_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.33 OUT12_COLOR (Address = 20h) [reset = 00h]  
OUT12_COLOR is shown in 53 and described in 38.  
Return to 4.  
53. OUT12_COLOR Register  
7
6
5
4
3
2
1
0
OUT12_COLOR  
R/W-00h  
38. OUT12_COLOR Register Field Descriptions  
Bit  
Field  
OUT12_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
版权 © 2018–2019, Texas Instruments Incorporated  
39  
 
 
 
 
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
8.6.34 OUT13_COLOR (Address = 21h) [reset = 00h]  
OUT13_COLOR is shown in 54 and described in 39.  
Return to 4.  
54. OUT13_COLOR Register  
7
6
5
4
3
2
1
0
OUT13_COLOR  
R/W-00h  
39. OUT13_COLOR Register Field Descriptions  
Bit  
Field  
OUT13_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.35 OUT14_COLOR (Address = 22h) [reset = 00h]  
OUT14_COLOR is shown in 55 and described in 40.  
Return to 4.  
55. OUT14_COLOR Register  
7
6
5
4
3
2
1
0
OUT14_COLOR  
R/W-00h  
40. OUT14_COLOR Register Field Descriptions  
Bit  
Field  
OUT14_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.36 OUT15_COLOR (Address = 23h) [reset = 00h]  
OUT15_COLOR is shown in 56 and described in 41.  
Return to 4.  
56. OUT15_COLOR Register  
7
6
5
4
3
2
1
0
OUT15_COLOR  
R/W-00h  
40  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
41. OUT15_COLOR Register Field Descriptions  
Bit  
Field  
OUT15_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.37 OUT16_COLOR (Address = 24h) [reset = 00h]  
OUT16_COLOR is shown in 57 and described in 42.  
Return to 4.  
57. OUT16_COLOR Register  
7
6
5
4
3
2
1
0
OUT16_COLOR  
R/W-00h  
42. OUT16_COLOR Register Field Descriptions  
Bit  
Field  
OUT16_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.38 OUT17_COLOR (Address = 25h) [reset = 00h]  
OUT17_COLOR is shown in 58 and described in 43.  
Return to 4.  
58. OUT17_COLOR Register  
7
6
5
4
3
2
1
0
OUT17_COLOR  
R/W-00h  
43. OUT17_COLOR Register Field Descriptions  
Bit  
Field  
OUT17_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.39 OUT18_COLOR (Address = 26h) [reset = 00h]  
OUT18_COLOR is shown in 59 and described in 44.  
Return to 4.  
版权 © 2018–2019, Texas Instruments Incorporated  
41  
 
 
 
 
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
59. OUT18_COLOR Register  
7
6
5
4
3
2
1
0
OUT18_COLOR  
R/W-00h  
44. OUT18_COLOR Register Field Descriptions  
Bit  
Field  
OUT18_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.40 OUT19_COLOR (Address = 27h) [reset = 00h]  
OUT19_COLOR is shown in 60 and described in 45.  
Return to 4.  
60. OUT19_COLOR Register  
7
6
5
4
3
2
1
0
OUT19_COLOR  
R/W-00h  
45. OUT19_COLOR Register Field Descriptions  
Bit  
Field  
OUT19_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.41 OUT20_COLOR (Address = 28h) [reset = 00h]  
OUT20_COLOR is shown in 61 and described in 46.  
Return to 4.  
61. OUT20_COLOR Register  
7
6
5
4
3
2
1
0
OUT20_COLOR  
R/W-00h  
46. OUT20_COLOR Register Field Descriptions  
Bit  
Field  
OUT20_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
42  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
8.6.42 OUT21_COLOR (Address = 29h) [reset = 00h]  
OUT21_COLOR is shown in 62 and described in 47.  
Return to 4.  
62. OUT21_COLOR Register  
7
6
5
4
3
2
1
0
OUT21_COLOR  
R/W-00h  
47. OUT21_COLOR Register Field Descriptions  
Bit  
Field  
OUT21_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.43 OUT22_COLOR (Address = 2Ah) [reset = 00h]  
OUT22_COLOR is shown in 63 and described in 48.  
Return to 4.  
63. OUT22_COLOR Register  
7
6
5
4
3
2
1
0
OUT22_COLOR  
R/W-00h  
48. OUT22_COLOR Register Field Descriptions  
Bit  
Field  
OUT22_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.44 OUT23_COLOR (Address = 2Bh) [reset = 00h]  
OUT23_COLOR is shown in 64 and described in 49.  
Return to 4.  
64. OUT23_COLOR Register  
7
6
5
4
3
2
1
0
OUT23_COLOR  
R/W-00h  
版权 © 2018–2019, Texas Instruments Incorporated  
43  
 
 
 
 
 
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
49. OUT23_COLOR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
OUT23_COLOR  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.45 OUT24_COLOR (Address = 2Ch) [reset = 00h]  
OUT24_COLOR is shown in 65 and described in 50.  
Return to 4.  
65. OUT24_COLOR Register  
7
6
5
4
3
2
1
0
OUT24_COLOR  
R/W-00h  
50. OUT24_COLOR Register Field Descriptions  
Bit  
Field  
OUT24_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.46 OUT25_COLOR (Address = 2Dh) [reset = 00h]  
OUT25_COLOR is shown in 66 and described in 51.  
Return to 4.  
66. OUT25_COLOR Register  
7
6
5
4
3
2
1
0
OUT25_COLOR  
R/W-00h  
51. OUT25_COLOR Register Field Descriptions  
Bit  
Field  
OUT25_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.47 OUT26_COLOR (Address = 2Eh) [reset = 00h]  
OUT26_COLOR is shown in 67 and described in 52.  
Return to 4.  
44  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
67. OUT26_COLOR Register  
7
6
5
4
3
2
1
0
OUT26_COLOR  
R/W-00h  
52. OUT26_COLOR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
OUT26_COLOR  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.48 OUT27_COLOR (Address = 2Fh) [reset = 00h]  
OUT27_COLOR is shown in 68 and described in 53.  
Return to 4.  
68. OUT27_COLOR Register  
7
6
5
4
3
2
1
0
OUT27_COLOR  
R/W-00h  
53. OUT27_COLOR Register Field Descriptions  
Bit  
Field  
OUT27_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.49 OUT28_COLOR (Address = 30h) [reset = 00h]  
OUT28_COLOR is shown in 69 and described in 54.  
Return to 4.  
69. OUT28_COLOR Register  
7
6
5
4
3
2
1
0
OUT28_COLOR  
R/W-00h  
54. OUT28_COLOR Register Field Descriptions  
Bit  
Field  
OUT28_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
版权 © 2018–2019, Texas Instruments Incorporated  
45  
 
 
 
 
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
8.6.50 OUT29_COLOR (Address = 31h) [reset = 00h]  
OUT29_COLOR is shown in 70 and described in 55.  
Return to 4.  
70. OUT29_COLOR Register  
7
6
5
4
3
2
1
0
OUT29_COLOR  
R/W-00h  
55. OUT29_COLOR Register Field Descriptions  
Bit  
Field  
OUT29_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.51 OUT30_COLOR (Address = 32h) [reset = 00h]  
OUT30_COLOR is shown in 71 and described in 56.  
Return to 4.  
71. OUT30_COLOR Register  
7
6
5
4
3
2
1
0
OUT30_COLOR  
R/W-00h  
56. OUT30_COLOR Register Field Descriptions  
Bit  
Field  
OUT30_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.52 OUT31_COLOR (Address = 33h) [reset = 00h]  
OUT31_COLOR is shown in 72 and described in 57.  
Return to 4.  
72. OUT31_COLOR Register  
7
6
5
4
3
2
1
0
OUT31_COLOR  
R/W-00h  
46  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
 
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
57. OUT31_COLOR Register Field Descriptions  
Bit  
Field  
OUT31_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.53 OUT32_COLOR (Address = 34h) [reset = 00h]  
OUT32_COLOR is shown in 73 and described in 58.  
Return to 4.  
73. OUT32_COLOR Register  
7
6
5
4
3
2
1
0
OUT32_COLOR  
R/W-00h  
58. OUT32_COLOR Register Field Descriptions  
Bit  
Field  
OUT32_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.54 OUT33_COLOR (Address = 35h) [reset = 00h]  
OUT33_COLOR is shown in 74 and described in 59.  
Return to 4.  
74. OUT33_COLOR Register  
7
6
5
4
3
2
1
0
OUT33_COLOR  
R/W-00h  
59. OUT33_COLOR Register Field Descriptions  
Bit  
Field  
OUT33_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.55 OUT34_COLOR (Address = 36h) [reset = 00h]  
OUT34_COLOR is shown in 75 and described in 60.  
Return to 4.  
版权 © 2018–2019, Texas Instruments Incorporated  
47  
 
 
 
 
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
75. OUT34_COLOR Register  
7
6
5
4
3
2
1
0
OUT34_COLOR  
R/W-00h  
60. OUT34_COLOR Register Field Descriptions  
Bit  
Field  
OUT34_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.56 OUT35_COLOR (Address = 37h) [reset = 00h]  
OUT35_COLOR is shown in 76 and described in 61.  
Return to 4.  
76. OUT35_COLOR Register  
7
6
5
4
3
2
1
0
OUT35_COLOR  
R/W-00h  
61. OUT35_COLOR Register Field Descriptions  
Bit  
Field  
OUT35_COLOR  
Type  
Reset  
Description  
7–0  
R/W  
00h  
00h = The color mixing percentage is 0%.  
...  
80h = The color mixing percentage is 50%.  
...  
FFh = The color mixing percentage is 100%.  
8.6.57 RESET (Address = 38h) [reset = 00h]  
RESET is shown in 77 and described in 62.  
Return to 4.  
77. RESET Register  
7
6
5
4
3
2
1
0
RESET  
W-00h  
62. RESET Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
FFh = Reset all the registers to default value.  
7–0  
RESET  
W
00h  
48  
版权 © 2018–2019, Texas Instruments Incorporated  
 
 
 
 
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LP503x device is a 30- or 36-channel constant-current-sink LED driver. The LP503x device improves the  
user experience in color mixing and intensity control, for both live effects and coding effort. The optimized  
performance for RGB LEDs makes it a perfect fit for human-machine interaction applications.  
9.2 Typical Application  
The LP503x design supports up to four devices in parallel with different configurations on the ADDR0 and  
ADDR1 pins.  
VVCC  
CVCC  
VMCU  
VLED  
VCC  
OUT0  
RPULLUP  
RPULLUP  
EN  
OUT1  
OUT2  
SDA  
SCL  
ADDR0  
ADDR1  
MCU  
LP5036  
OUT33  
VCAP  
CVCAP  
OUT34  
OUT35  
IREF  
RIREF  
GND  
VVCC  
CVCC  
VLED  
VCC  
OUT0  
OUT1  
OUT2  
EN  
SDA  
SCL  
ADDR0  
ADDR1  
LP5036  
OUT33  
VCAP  
CVCAP  
OUT34  
OUT35  
IREF  
RIREF  
GND  
78. Driving Dual LP5036 Application Example  
版权 © 2018–2019, Texas Instruments Incorporated  
49  
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
Typical Application (接下页)  
9.2.1 Design Requirements  
Set the LED current to 15 mA using the RIREF resistor.  
9.2.2 Detailed Design Procedure  
The LP503x device scales up the reference current (IREF) set by the external resistor (RIREF) to sink the output  
current (IOUT) at each output port. can be used to calculate the target output current IMAX_SET  
:
KIREF × V  
RIREF  
=
IREF =105 ×0.7÷0.015=4900  
I(MAX_SET)  
The SCL and SDA lines must each have a pullup resistor placed somewhere on the line (the pullup resistors are  
normally located on the bus master). In typical applications, values of 1.8 kΩ to 4.7 kΩ are used, depending on  
the bus capacitance, I/O voltage, and the desired communication speed. Selecting a smaller value increases the  
pullup speed, but slows the pulldown speed. If they want pull up quickly select the samller one but it will impact  
the pull down speed.  
VCAP is the internal LDO output pin. This pin must be connected through a 1-μF capacitor to GND. Put the  
capacitor as close to the device as possible.  
TI recommends having a 1-μF capacitor between VCC and GND to ensure proper operation. Put the capacitor as  
close to the device as possible.  
9.2.3 Application Curves  
The test condition for is that the testing is under bank control, using the following register values: 0x02 (0xFF),  
0x04 (0xF0), 0x05 (0xF0), 0x06 (0xF0). The test condition for is that the testing is under bank control, using the  
following register values: 0x02 (0xFF), 0x04 (0x0F), 0x05 (0x0F), 0x06 (0x0F).  
79. Current Waveform of OUT0, OUT1, OUT2 and OUT3  
80. Current Waveform of OUT0, OUT1, OUT2 and OUT3  
10 Power Supply Recommendations  
The device is designed to operate from a VVCC input-voltage supply range between 2.7 V and 5.5 V. This input  
supply must be well-regulated and able to withstand maximum input current and maintain stable voltage without  
voltage drop even in a load-transition condition (start-up or rapid intensity change). The resistance of the input  
supply rail must be low enough that the input-current transient does not cause a drop below the 2.7-V level in the  
LP503x VVCC supply voltage.  
50  
版权 © 2018–2019, Texas Instruments Incorporated  
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
11 Layout  
11.1 Layout Guidelines  
To prevent thermal shutdown, the junction temperature, TJ, must be less than T(TSD). If the voltage drop across  
the output channels is high, the device power dissipation can be large. The LP503x device has very good  
thermal performance because of the thermal pad design; however, the PCB layout is also very important to  
ensure that the device has good thermal performance. Good PCB design can optimize heat transfer, which is  
essential for the long-term reliability of the device.  
Use the following guidelines when designing the device layout:  
Put the CVCAP, CVCC and RIREF as close as possible to the device. Also, TI recommends placing the ground  
plane as shown in 81 and 82.  
Maximize the copper coverage on the PCB to increase the thermal conductivity of the board. The major heat  
flow path from the package to the ambient is through copper on the PCB. Maximum copper density is  
extremely important when no heat sinks are attached to the PCB on the other side from the package.  
Add as many thermal vias as possible directly under the package ground pad to maximize the thermal  
conductivity of the board.  
Use either plated-shut or plugged and capped vias for all the thermal vias on both sides of the board to  
prevent solder voids. To ensure reliability and performance, the solder coverage must be at least 85%.  
版权 © 2018–2019, Texas Instruments Incorporated  
51  
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
11.2 Layout Examples  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
OUT11  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
3
4
5
6
GND  
7
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
OUT29  
OUT28  
OUT27  
OUT26  
OUT25  
OUT24  
OUT23  
8
9
10  
11  
12  
13  
To LED  
OUT12  
GND  
GND  
81. LP5030 Layout Example  
52  
版权 © 2018–2019, Texas Instruments Incorporated  
LP5030, LP5036  
www.ti.com.cn  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
Layout Examples (接下页)  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
OUT11  
1
2
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
To LED  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
OUT35  
OUT34  
OUT33  
OUT32  
OUT31  
OUT30  
OUT29  
OUT28  
OUT27  
OUT26  
OUT25  
OUT24  
OUT23  
3
4
5
6
GND  
7
8
9
10  
11  
12  
13  
To LED  
OUT12  
GND  
GND  
82. LP5036 Layout Example  
版权 © 2018–2019, Texas Instruments Incorporated  
53  
LP5030, LP5036  
ZHCSIQ2B SEPTEMBER 2018REVISED JANUARY 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
63. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
LP5030  
LP5036  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是适用于指定器件的最新数据。数据如有变更,恕不另行通知,  
且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查看左侧的导航面板。  
54  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jul-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP5030RJVR  
LP5036RJVR  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RJV  
RJV  
46  
46  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
LP5030  
LP5036  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jul-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP5030RJVR  
LP5036RJVR  
VQFN  
VQFN  
RJV  
RJV  
46  
46  
3000  
3000  
330.0  
330.0  
12.4  
12.4  
5.3  
5.3  
6.3  
6.3  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP5030RJVR  
LP5036RJVR  
VQFN  
VQFN  
RJV  
RJV  
46  
46  
3000  
3000  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RJV0046A  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
B
5.1  
4.9  
A
PIN 1 INDEX AREA  
6.1  
5.9  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.6  
2.8 0.05  
(0.2) TYP  
23  
14  
EXPOSED  
THERMAL PAD  
42X 0.4  
13  
24  
2X  
47  
SYMM  
4.8  
3.8 0.05  
0.25  
0.15  
1
46X  
36  
0.1  
C A B  
46  
37  
PIN 1 ID  
SYMM  
0.05  
0.45  
0.25  
46X  
4223948/B 01/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RJV0046A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.8)  
SYMM  
46X (0.55)  
46  
37  
1
36  
46X (0.2)  
42X (0.4)  
SYMM  
(5.85)  
(3.8)  
47  
(0.64) TYP  
(1.01) TYP  
(
0.2) TYP  
VIA  
13  
24  
(R0.05)  
TYP  
14  
23  
(1.1)  
TYP  
(4.85)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.05 MIN  
ALL SIDES  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223948/B 01/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RJV0046A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
6X (1.23)  
46X (0.55)  
(R0.05) TYP  
37  
46  
1
36  
46X (0.2)  
6X (1.08)  
42X (0.4)  
SYMM  
47  
(5.85)  
(1.28)  
TYP  
13  
24  
METAL  
TYP  
14  
23  
(0.715)  
TYP  
SYMM  
(4.85)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 47:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4223948/B 01/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LP5036RJVR

36 通道 I2C 恒流 RGB LED 驱动器 | RJV | 46 | -40 to 125
TI

LP503T11CET

Parallel - 3Rd Overtone Quartz Crystal, 50.35MHz Nom,
CTS

LP503T11CJT

Parallel - 3Rd Overtone Quartz Crystal, 50.35MHz Nom,
CTS

LP503T15IAT

Parallel - 3Rd Overtone Quartz Crystal, 50.35MHz Nom,
CTS

LP503T15IST

Series - 3Rd Overtone Quartz Crystal, 50.35MHz Nom,
CTS

LP503T1XCCT

Parallel - 3Rd Overtone Quartz Crystal, 50.35MHz Nom,
CTS

LP503T22CAT

Parallel - 3Rd Overtone Quartz Crystal, 50.35MHz Nom,
CTS

LP503T23CBT

Parallel - 3Rd Overtone Quartz Crystal, 50.35MHz Nom,
CTS

LP503T23CDT

Parallel - 3Rd Overtone Quartz Crystal, 50.35MHz Nom,
CTS

LP503T2XIDT

Parallel - 3Rd Overtone Quartz Crystal, 50.35MHz Nom,
CTS

LP503T32IAT

Parallel - 3Rd Overtone Quartz Crystal, 50.35MHz Nom,
CTS

LP503T33CJT

Parallel - 3Rd Overtone Quartz Crystal, 50.35MHz Nom,
CTS