LP5891ZXLR [TI]

具有 16 位 PWM 调光和超低功耗的 48 × 16 LED 矩阵驱动器 | ZXL | 96 | -40 to 85;
LP5891ZXLR
型号: LP5891ZXLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 16 位 PWM 调光和超低功耗的 48 × 16 LED 矩阵驱动器 | ZXL | 96 | -40 to 85

驱动 驱动器
文件: 总64页 (文件大小:2816K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LP5891  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
LP5891 48 个电流源、64 条扫描线的共阴LED 矩阵驱动器  
– 内部倍频器支持高GCLK  
• 优化LED 矩阵显示屏的性能  
1 特性  
• 支持分立VCC VR/G/B 电源  
– 去除上下重影  
– 低灰度增强  
VCC 电压范围2.5V 5.5V  
LED 开路/弱短路/短路检测和消除  
LP5891MRRFR 55°C 至大125°C 的工作  
环境温度  
VR/G/B 电压范围2.5V 5.5V  
48 个电流源通道范围0.2 mA 20 mA  
– 通道间精度±0.5%典型值),±2%最大  
);器件间一致性±0.5%典型值),±2%  
最大值)  
– 低拐点电压IOUT = 5 mA 0.26V最大  
)  
2 应用  
Mini-/micro-LED 矩阵产品  
• 游戏键RGB LED 背光  
• 混音器、DJ 设备和广播  
LED 发光面板和局部调光背光  
3 8 全局亮度控制  
8 256 色彩亮度控制  
– 最16 65536 PWM 灰度控制  
190mΩRDS(ON) 16 个线路扫描开关  
• 超低功耗  
3 说明  
LP5891 是一款高度集成的共阴极 LED 矩阵驱动器,  
具有 48 个恒流源和 16 个扫描 FETLP5891 采用高  
rising 沿传输接口可支持高器件数菊花链同时尽  
可能降低电磁干扰 (EMI)。内部 GCLK 速率范围为  
40MHz 160MHz。该器件在工作期间还能实现 LED  
开路/弱短路/短路检测和消除。  
– 低2.5V 的独VCC  
– 超ICC3.6 mA),50 MHz GCLK  
– 智能省电模式ICC 0.9 mA  
• 内SRAM 1 64 路复用  
– 单个器件可驱48 × 16 LED 16 × 16 个  
RGB 像素  
器件信息  
封装(1)  
VQFN (76)  
BGA (96)  
封装尺寸标称值)  
9mm × 9mm  
器件型号  
LP5891  
– 两个器件堆叠后可驱96 × 32 LED 32 ×  
32 RGB 像素  
– 三个器件堆叠后可驱144 × 48 LED 48  
× 48 RGB 像素  
– 四个器件堆叠后可驱192 × 64 LED 64  
× 64 RGB 像素  
6mm × 6mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 高速和EMI 连续时钟串行接(CCSI)  
– 仅三条总线SCLK/SIN/SOUT  
– 外50MHz最大值SCLK rising 边传  
输机制  
LP5891 采用四器件可堆叠连接  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLDS269  
 
 
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
Table of Contents  
7.5 Continuous Clock Series Interface............................25  
7.6 PWM Grayscale Control........................................... 31  
7.7 Register Maps...........................................................34  
8 Application and Implementation..................................49  
8.1 Application Information............................................. 49  
8.2 Typical Application.................................................... 49  
9 Power Supply Recommendations................................57  
10 Layout...........................................................................58  
10.1 Layout Guidelines................................................... 58  
10.2 Layout Example...................................................... 58  
11 Device and Documentation Support..........................62  
11.1 Documentation Support ......................................... 62  
11.2 接收文档更新通知................................................... 62  
11.3 支持资源..................................................................62  
11.4 Trademarks............................................................. 62  
11.5 Electrostatic Discharge Caution..............................62  
11.6 术语表..................................................................... 62  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Timing Requirements..................................................9  
6.7 Switching Characteristics............................................9  
6.8 Typical Characteristics..............................................10  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................13  
7.4 Device Functional Modes..........................................25  
Information.................................................................... 63  
4 Revision History  
Changes from Revision * (March 2022) to Revision A (May 2022)  
Page  
• 首次公开发布...................................................................................................................................................... 1  
Updated the Stackable Mode section...............................................................................................................13  
Updated 7-8 ................................................................................................................................................ 18  
Changed several field bits in the FC0 register table and Fields Description table............................................35  
Changed the name COLOR_R/G/B to LG_COLOR_R/G/B in the FC2 register table for better understanding...  
39  
Changed the name of bit 7 to bit 0 in the FC3 register table for better understanding.....................................41  
Deleted some words in the SCAN_REV field description.................................................................................43  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
5 Pin Configuration and Functions  
1
2
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
R0  
G0  
R15  
G15  
B15  
R14  
G14  
B14  
VG  
3
B0  
4
R1  
5
G1  
6
B1  
7
GND  
8
VCC  
VR  
VG  
VB  
VB  
9
10  
11  
12  
VR  
R2  
G2  
GND  
R13  
G13  
B13  
13  
45  
B2  
R3  
G3  
B3  
R4  
G4  
14  
15  
16  
17  
18  
44  
43  
42  
41  
40  
R12  
G12  
B12  
R11  
G11  
B11  
19  
39  
B4  
5-1. LP5891 RRF Package 76-Pin VQFN With Exposed Thermal Pad Top View  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
L3  
L4  
L5  
L6  
L7  
L8  
L9  
L10  
L11  
L12  
L13  
SOU  
T
SCL  
K
L2  
L1  
R1  
G1  
B1  
B0  
G0  
R0  
NC  
SIN  
NC  
GND  
GND  
R14  
G14  
B14  
R13  
G13  
R12  
R11  
L14  
L15  
GND  
VG  
L0  
GND  
GND  
GND  
GND  
R7  
GND  
GND  
GND  
GND  
B8  
GND  
GND  
GND  
GND  
B9  
GND  
R15  
G15  
B15  
B10  
GND  
VCC  
VR  
GND  
R2  
GND  
R3  
VG  
G
H
J
G2  
B2  
G3  
VB  
VR  
B3  
VB  
IREF  
G4  
R4  
B13  
G12  
B12  
K
L
B4  
R6  
B5  
G6  
B6  
G7  
B7  
G8  
R8  
G9  
R9  
G10  
R10  
B11  
G11  
R5  
G5  
5-2. LP5891 ZXL Package 96-Pin BGA Top View  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
RRF NO.  
ZXL NO.  
Pin for setting the maximum constant-current value. Connecting an external  
resistor between IREF and GND sets the maximum current for each constant-  
current output channel. When this pin is connected directly to GND, all outputs  
are forced off. The external resistor must be placed close to the device.  
IREF  
20  
J1  
I
VCC  
VR  
8
F1  
I
I
I
I
Device power supply  
9, 10  
51, 50  
49, 48  
G1, H1  
E11, F11  
G11, H11  
Red LED power supply  
Green LED power supply  
Blue LED power supply  
VG  
VB  
1, 4, 11, 14, B5, B2,F2, F4,  
17, 21, 24, J2, L1, K3, H5,  
27, 32, 35, L6, L7, L8, L10,  
38, 41, 44, K10, H10, E10,  
R0-R15  
G0-G15  
B0-B15  
O
O
O
Red LED constant-current output  
Green LED constant-current output  
Blue LED constant-current output  
47, 54, 57  
E8  
2, 5, 12, 15, B4, C2, G2, G4,  
18, 22, 25, K1, L2, K4, K5,  
28, 31, 34, K6, K7, K8, L9,  
37, 40, 43, K11, J10, F10,  
46, 53, 56  
F8  
3, 6, 13, 16, B3, D2, H2, H4,  
19, 23, 26, K2, L3, L4, L5,  
29, 30, 33, H6, H7, H8, K9,  
36, 39, 42, L11, J11, G10,  
45, 52, 55  
G8  
76, 75, 74,  
73, 72, 71,  
70, 69, 68,  
67, 66, 65,  
64, 63, 62,  
61  
D1, C1, B1, A1,  
A2, A3, A4, A5,  
A6, A7, A8, A9,  
A10, A11, B11,  
C11  
LINE0-  
LINE15  
O
Scan lines  
SCLK  
SIN  
60  
59  
58  
B9  
B8  
B7  
I
I
Clock-signal input pin  
Serial-data input pin  
Serial data output pin  
SOUT  
O
C10, E1, E2,  
D5, D6, D7, D8,  
D10, D11,  
E1,E2, E4, E5,  
E6,E7, F5, F6,  
F7,G5, G6, G7  
GND  
7
Power-ground reference  
Thermal  
pad  
The thermal pad and the GND pin must be connected together on the board  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LP5891  
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
40  
55  
55  
MAX  
6
UNIT  
V
VCC  
VR/G/B  
6
V
Voltage  
IREF, SCLK, SIN, SOUT  
RX/GX/BX  
6
V
6
V
LINE0 to LINE15  
6
V
Operating junction temperature, TJ , LP5891RRFR and LP5891ZXLR  
Operating junction temperature, TJ, LP5891MRRFR  
Storage temperature, Tstg  
150  
150  
150  
°C  
°C  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
NOM  
MAX  
5.5  
UNIT  
V
VCC  
Device supply voltage  
VLEDR/G/B LED supply voltage  
2.5  
5.5  
V
VIH  
VIL  
High level logic input voltage (SCLK, SIN)  
0.7 × VCC  
V
Low level logic input voltage (SCLK, SIN)  
High level logic output current (SOUT)  
Low level logic output current (SOUT)  
Constant output source current  
0.3 × VCC  
V
IOH  
IOL  
ICH  
ILINE  
mA  
mA  
mA  
A
2  
2
0.2  
0
20  
2
Line scan switch load current  
TA  
TA  
Ambient operating temperature (LP5891RRFR and LP5891ZXLR)  
Ambient operating temperature (LP5891MRRFR)  
85  
°C  
40  
55  
125  
°C  
6.4 Thermal Information  
LP5891  
THERMAL METRIC(1)  
RRF (VQFN)  
76 PINS  
22.2  
ZXL (BGA)  
UNIT  
96 PINS  
33.5  
18.6  
11.7  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
10.7  
RθJB  
ψJT  
Junction-to-board thermal resistance  
7.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.1  
0.3  
7.1  
11.6  
ψJB  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LP5891  
 
 
 
 
 
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
LP5891  
THERMAL METRIC(1)  
RRF (VQFN)  
76 PINS  
1.7  
ZXL (BGA)  
96 PINS  
UNIT  
RθJC(bot) Junction-to-case (bottom) thermal resistance  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
At VCC = VR = 2.8 V, VG/B = 3.8 V, TA = 40°C to +85°C for LP5891RRFR and LP5891ZXLR while TA = 40°C to +125°C  
for LP5891MRRFR; Typical values are at TA = 25°C (unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
5.5  
UNIT  
VCC  
Device supply voltage  
Undervoltage restart  
Undervoltage shutdown  
2.5  
V
V
V
VUVR  
VUVF  
VCC rising  
2.3  
VCC falling  
2.0  
Undervoltage shutdown  
hysteresis  
VUV(HYS)  
0.1  
0.9  
V
SCLK/SIN = 10 MHz,  
MPSM_EN=1bit, Matrix PSM enable,  
internal GCLK off, GSn = 0000h, BC  
= 2h, CCR/G/B = 63h, PS_EN= 1h,  
VOUTn = floating, RIREF = 7.8 kΩ(In  
intelligent power save mode)  
mA  
SCLK/SIN = 10 MHz, Standby  
enable, internal GCLK off, GSn =  
0000h, BC = 2h, CCR/G/B = 63h,  
PS_EN= 1h, VOUTn = floating,  
RIREF = 7.8 kΩ(In intelligent power  
save mode)  
0.9  
3.6  
mA  
mA  
SCLK/SIN = 10 MHz,  
PSP_MOD=1bit, internal  
GCLK=50MHz, GSn = 0000h, BC =  
2h, CCR/G/B = 63h, PS_EN= 1h,  
VOUTn = floating, RIREF = 7.8 kΩ(In  
power save mode)  
ICC  
Device supply current  
SCLK = 10 MHz, internal GCLK = 50  
MHz, GSn = 1FFFh, BC = 2h,  
CCR/G/B = 63h,VOUTn = floating,  
RIREF = 7.8 kΩ, ICH = 2 mA  
3.6  
4.9  
mA  
mA  
SCLK = 10 MHz, internal GCLK =  
100 MHz, GSn = 1FFFh, BC = 2h,  
CCR/G/B = 63h, VOUTn = floating,  
RIREF = 7.8 kΩ, ICH = 2 mA  
VR/G/B  
VIH  
LED supply voltage  
2.5  
5.5  
V
V
High level input voltage (SCLK,  
SIN)  
0.7 × VCC  
Low level input voltage (SCLK,  
SIN)  
VIL  
0.3 × VCC  
V
VOH  
High level output voltage (SOUT)  
VCC-0.4  
-1  
VCC  
0.4  
1
V
V
IOH = 2 mA at SOUT  
VOL  
Low level output voltage (SOUT) IOL = 2 mA at SOUT  
ILOGIC  
Logic pin current (SCLK, SIN)  
SCLK/SIN = VCC or GND  
VCC = 2.8 V, TA= 25°C  
uA  
Scan switches' on-state  
resistance (LINE0 to LINE15)  
RDS(ON)  
190  
0.8  
mΩ  
SCLK/SIN = GND, internal GCLK=  
0MHz, GSn = 0000h, BC = 2h,  
CCR/G/B = 63h, VOUTn = floating,  
RIREF = 7.8 kΩ  
VIREF  
Reference voltage  
V
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LP5891  
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
6.5 Electrical Characteristics (continued)  
At VCC = VR = 2.8 V, VG/B = 3.8 V, TA = 40°C to +85°C for LP5891RRFR and LP5891ZXLR while TA = 40°C to +125°C  
for LP5891MRRFR; Typical values are at TA = 25°C (unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VLEDR/G/B 2.8 V, all channel  
outputs on, output current at 1 mA  
0.25  
V
VLEDR/G/B 2.8 V, all channel  
outputs on, output current at 5 mA  
0.26  
0.3  
V
V
VLEDR/G/B 2.8 V, all channel  
outputs on, output current at 10 mA  
Channel knee voltage (R0-R15 /  
G0-G15 / B0-B15)  
VKNEE  
VLEDR/G/B 2.8 V, IMAX = 1b, all  
channel outputs on, output current at  
15 mA  
0.37  
V
VLEDR/G/B 2.8 V, IMAX=1b, all  
channel outputs on, output current at  
20 mA  
0.41  
1
V
Channel leakage current (R0-  
R15 / G0-G15 / B0-B15)  
ICH(LKG)  
Channel voltage at 0 V  
uA  
All CHn = on, BC = 00h, CC = 31h,  
VOUTn = (VLED-1)V, RIREF = 19.05  
kΩ(ICH = 0.2-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
±1  
±0.5  
±0.5  
±0.5  
±0.5  
±2.5  
±1.5  
±1.5  
±2  
%
%
%
%
%
All CHn = on, BC = 00h, CC = 7Dh,  
VOUTn = (VLED-1)V, RIREF = 19.05  
kΩ(ICH = 0.5-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
All CHn = on, BC = 00h, CC = FBh,  
VOUTn = (VLED-1)V, RIREF = 19.05  
kΩ(ICH = 1-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
Constant-current channel to  
channel deviation (R0-R15 / G0-  
G15 / B0-B15)(1)  
ΔIERR(CC)  
All CHn = on, BC = 2h, CC = FBh,  
VOUTn = (VLED-1)V, RIREF = 7.8  
kΩ(ICH = 5-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
All CHn = on, BC = 6h, CC = A7h,  
VOUTn = (VLED-1)V, RIREF = 7.8  
kΩ(ICH = 10-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
±2  
All CHn = on, BC = 7h, CC = FBh,  
IMAX=1b, VOUTn = (VLED-1)V,  
RIREF = 6.8 kΩ(ICH = 20-mA target),  
TA = 25°C, includes the VIREF  
tolerance, at same color grouped  
outputs of R0-R15 / G0-G15 / B0-  
B15  
±0.5  
±2.5  
%
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LP5891  
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
6.5 Electrical Characteristics (continued)  
At VCC = VR = 2.8 V, VG/B = 3.8 V, TA = 40°C to +85°C for LP5891RRFR and LP5891ZXLR while TA = 40°C to +125°C  
for LP5891MRRFR; Typical values are at TA = 25°C (unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
All CHn = on, BC = 00h, CC = 31h,  
VOUTn = (VLED-1)V, RIREF = 19.05  
kΩ(ICH = 0.2-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
±1  
±2.5  
%
All CHn = on, BC = 00h, CC = 7Dh,  
VOUTn = (VLED-1)V, RIREF = 19.05  
kΩ(ICH = 0.5-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
±0.5  
±0.5  
±0.5  
±0.5  
±1.5  
%
%
%
%
All CHn = on, BC = 00h, CC = FBh,  
VOUTn = (VLED-1)V, RIREF = 19.05  
kΩ(ICH = 1-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
±1  
Constant-current device to  
device deviation (R0-R15 / G0-  
G15 / B0-B15)(2)  
ΔIERR(DD)  
All CHn = on, BC = 2h, CC = FBh,  
VOUTn = (VLED-1)V, RIREF = 7.8  
kΩ(ICH = 5-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
±1.5  
All CHn = on, BC = 6h, CC = A7h,  
VOUTn = (VLED-1)V, RIREF = 7.8  
kΩ(ICH = 10-mA target), TA = 25°C,  
includes the VIREF tolerance, at  
same color grouped outputs of R0-  
R15 / G0-G15 / B0-B15  
±2  
All CHn = on, BC = 7h, CC = FBh,  
IMAX=1b, VOUTn = (VLED-1)V,  
RIREF = 6.8 kΩ(ICH = 20-mA target),  
TA = 25°C, includes the VIREF  
tolerance, at same color grouped  
outputs of R0-R15 / G0-G15 / B0-  
B15  
±0.5  
±2  
%
VLED = 2.5 to 5.5V, All CHn = on,  
VOUTn = (VLED-1)V, at same color  
grouped outputs of R0-R15 / G0-  
G15 / B0-B15  
Line regulation (R0-R15 / G0-  
G15 / B0-B15)(3)  
±1  
±1  
%/V  
%/V  
ΔIREG(LINE)  
VOUTn = (VLED-1)V to (VLED-3)V,  
VR=VG/B=VLED=3.8V, All CHn =  
on, at same color grouped outputs of  
R0-R15 / G0-G15 / B0-B15  
Load regulation (R0-R15 / G0-  
G15 / B0-B15)(4)  
ΔIREG(LOAD)  
TTSD  
THYS  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
170  
15  
°C  
°C  
(1) The deviation of each output in same color group (OUTR0-15 or OUTG0-15 or OUTB0-15) from the average of same color group  
+
:J  
: ;  
¿ % = N  
F 1O × 100  
+
:0 + +:1 + ® + +:14 + +:15  
16  
constant current. The deviation is calculated by the formula. (X = R or G or B, n = 0-15)  
spacer  
(2) The deviation of the average of constant-current in each color group from the ideal constant-current value. (X = R or G or B) :  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LP5891  
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
+
:0  
+ +:1 + ® + +:14 + +:15  
16  
F Ideal Output Current  
: ;  
¿ % =  
N
O
× 100  
Ideal Output Current  
Ideal current is calculated by the following equation:  
8
1 + %%_4(KN %%_) KN %%_$)  
+4'(  
+
=
× )#+0  
×
+&'#._4(KN ) KN $)  
($%)  
4+4'(  
256  
spacer  
(3) Line regulation is calculated by the following equation. (X = R or G or B, n = 0-15):  
I
at V  
LED  
= 5.5 V − I at V = 2.5 V  
Xn LED  
Xn  
100  
5.5 V − 2.5 V  
%V =  
×
I
at V = 2.5 V  
LED  
Xn  
spacer  
(4) Load regulation is calculated by the following equation. (X = R or G or B, n = 0-15):  
I
at V = 1 V − I at V = 3 V  
Xn Xn Xn  
Xn  
100  
3 V − 1 V  
%V =  
×
I
at V = 3 V  
Xn  
Xn  
spacer  
6.6 Timing Requirements  
At VCC = VR = 2.8 V, VG/B = 3.8 V, TA = 40°C to +85°C for LP5891RRFR and LP5891ZXLR while TA = 40°C to +125°C  
for LP5891MRRFR; Typical values are at TA = 25°C (unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fSCLK  
tw(H0)  
Clock frequency (SCLK)  
High level pulse duration (SCLK)  
50  
MHz  
9
ns  
tw(L0)  
tsu(0)  
th(0)  
Low level pulse duration (SCLK)  
Set-up time  
9
10  
2
ns  
ns  
ns  
SIN to SCLK↑  
SCLKto SIN↑↓  
Hold time  
6.7 Switching Characteristics  
At VCC = VR = 2.8 V, VG/B = 3.8 V, TA = 40°C to +85°C for LP5891RRFR and LP5891ZXLR while TA = 40°C to +125°C  
for LP5891MRRFR; Typical values are at TA = 25°C (unless otherwise specified)  
PARAMETER  
Rise time (SOUT)  
Fall time (SOUT)  
TEST CONDITIONS  
VCC = 3.3 V, CSOUT = 30 pF  
VCC = 3.3 V, CSOUT = 30 pF  
MIN  
TYP  
2
MAX  
10  
UNIT  
ns  
tr  
tf  
2
10  
ns  
SCLKto SOUT↑↓, full  
temperature, CSOUT = 30 pF  
tpd(0)  
Propagation delay  
3.5  
14.2  
ns  
(1). Input pulse rise and fall time is 2 ns typically.  
6-1. Timing and Switching Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LP5891  
 
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
6.8 Typical Characteristics  
0.016  
0.014  
0.012  
0.01  
0.016  
0.014  
0.012  
0.01  
0.2 mA  
1 mA  
5 mA  
10 mA  
15 mA  
0.2 mA  
1 mA  
5mA  
10 mA  
15 mA  
0.008  
0.006  
0.004  
0.002  
0
0.008  
0.006  
0.004  
0.002  
0
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
VLED - VCH (V)  
VLED - VCH (V)  
Vcc = 2.8 V  
6-2. Channel Current vs (VLED-Vchannel) Voltage  
Vcc = 5.5 V  
6-3. Channel Current vs (VLED-Vchannel) Voltage  
1.7  
11  
-55oC  
-40oC  
25oC  
10  
9
8
7
6
5
4
3
2
1
0
1.1  
0.5  
85oC  
125oC  
-0.1  
-0.7  
125oC Min  
85oC Min  
25oC Min  
-40oC Min  
-55oC Min  
125oC Max  
85oC Max  
25oC Max  
-40oC Max  
-55oC Max  
-1.3  
-1.9  
-2.5  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Output Current (mA)  
VLED - VCH (V)  
6-5. Channel to Channel Accuracy vs Output Current  
6-4. Channel Current vs. (VLED-Vchannel) Voltage  
0.016  
0.012  
0.011  
0.01  
0.2 mA, BC = 00h  
1 mA, BC = 02h  
5 mA, BC = 02h  
10 mA, BC = 06h  
15 mA, BC = 06h  
0.014  
0.012  
0.01  
0.009  
0.008  
0.007  
0.006  
0.005  
0.004  
0.003  
0.008  
0.006  
0.004  
0.002  
0
0
30  
60  
90  
120 150 180 210 240 270  
40  
60  
80  
100  
120  
140  
160  
180  
Color Control Code (Decimal)  
GCLK Frequency (MHz)  
6-6. Color Control Code vs Output Current  
6-7. Icc Current vs GCLK Frequency  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
6.8 Typical Characteristics (continued)  
4.68  
4.66  
4.64  
4.62  
4.6  
4.58  
4.56  
4.54  
4.52  
2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
Vcc Voltage (V)  
4
4.2 4.4 4.6  
GCLK = 80 MHz  
6-8. Icc Current vs Vcc Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LP5891  
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7 Detailed Description  
7.1 Overview  
The LP5891 is a highly integrated RGB LED driver with 48 constant current sources and 16 scanning FETs. A  
single LP5891 is capable of driving 16 × 16 RGB LED pixels while stacking four LP5891 devices can drive 64 ×  
64 RGB LED pixels. To achieve low power consumption, the device supports separated power supplies for the  
red, green, and blue LEDs by its common cathode structure. Furthermore, the operation power of the LP5891 is  
significantly reduced by ultra-low operation voltage range (VCC down to 2.5 V) and ultra-low operation current  
(ICC down to 3.6 mA).  
The LP5891 supports 0.2 mA to 20 mA per channel with typical 0.5% channel-to-channel current deviation and  
typical 0.5% device-to-device current deviation. The DC current value of all 48 channels is set by an external  
IREF resistor and can be adjusted by the 8-step global brightness control (BC) and the 256-step per-color group  
brightness control (CC_R/CC_G/CC_B).  
The LP5891 implements a high speed rising-edge transmission interface to support high device count daisy-  
chained and high refresh rate while minimizing electrical-magnetic interference (EMI). The LP5891 supports up  
to 50-MHz SCLK (external) and up to 160-MHz GCLK (internal).  
The LP5891 also implements LED open, weak-short, and short detections and can also report this information  
out to the accompanying digital processor.  
7.2 Functional Block Diagram  
VB VG VR  
VCC  
Internal LDO  
Bandgap  
TSD  
Power Save  
R0  
G0  
B0  
UVLO  
IREF  
GND  
3-Bits  
Brightness control  
R/G/B 8-Bits  
Color control  
Channel  
Drivers  
Channel  
Control  
R15  
G15  
Frequency  
Multiplier  
Frame  
Control  
Digital  
Core  
SCLK  
SIN  
B15  
Line  
Control  
Pre-discharge  
LED Short Detection  
SRAM  
Low Grayscale  
Compensation  
LED Open Detection  
Line Drivers  
SOUT  
Line Clamp  
GND  
LINE0  
LINE15  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LP5891  
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7.3 Feature Description  
7.3.1 Independent and Stackable Mode  
The LP5891 can operate in two different modes: independent or stackable. In independent mode, a single  
LP5891 can drive a 16 × 16 RGB LED matrix, while in stackable mode, up to four LP5891 devices can be  
stacked together, which means the line switches of one device can be shared to the others. Stacking three  
LP5891 devices can drive a 48 × 48 RGB LED matrix while stacking four LP5891 devices can drive a 64 × 64  
RGB matrix. The mode can be configured by the MOD_SIZE (see FC2 for more details).  
7.3.1.1 Independent Mode  
7-1 shows an implementation of a 16 × 32 RGB LED matrix using two LP5891 devices in independent mode.  
Each device is responsible for its own 16 ×16 RGB LED matrix, which means that all the data for section A is  
stored in device 1 and the data for section B is stored in device 2.  
7-1. Two Devices in Independent Mode  
The unused line must be assigned to the last several lines of the device. For example, if there are only 14  
scanning lines, then the two unused lines must be assigned to 1_LS14 and 1_LS15.  
7.3.1.2 Stackable Mode  
While operating the LP5891 in stackable mode, as shown in below table.  
7-1. Stackable Mode  
Mode  
Mode1  
Mode2  
Mode3  
Mode4  
Mode5  
Mode6  
Mode7  
Mode8  
Matrix Size  
16x32  
Register Value  
000b  
Scan Sequence  
D1, D2 independent  
D1->D2  
32x32  
001b  
48x48  
010b  
D1->D2->D3  
48x48  
011b  
D1->D3->D2  
48x64  
100b  
D1->D2->D3  
48x64  
101b  
D1->D3->D2  
64x64  
110b  
D1->D2->D3->D4  
D1->D4->D2->D3  
64x64  
111b  
7-2 device 2 needs to be rotated 180o relative to device 1. This action allows the position of line switches to  
be near the center column of the LED matrix for better routing. For device 1, the lines connect sequentially (line  
switch 0 connected to scan line 1). However on device 2, it is connected in reverse order, with the 16th scan line  
is connected to line switch 15 and the 32nd scan line is connected to line switch 0.  
7-2 shows the connection between two LP5891 devices in stackable mode driving 32 × 32 RGB LED pixels.  
The MOD_SIZE must be configured to 001b. Device 1 supplies 16 line switches for the first 16 scan line, and  
device 2 supplies 16 line switches for scan line 17-32. The data for matrix sections A and C are stored in device  
1, while matrix sections B and D data are stored in device 2.  
To make sure the scanning sequence is still from 1st line to 32nd line, the scan line switching order of the second  
device must be reversed, which can be configured by the SCAN_REV (see FC4 for more details).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LP5891  
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
Physical Line0  
A
B
1_LS0  
Device1  
1_LS15  
Physical Line15  
Physical Line16  
C
D
2_LS15  
Device2  
2_LS0  
Physical Line31  
32 RGBs  
7-2. Mode2 Diagram  
7-3. Mode3 and Mode4 Diagram  
7-4. Mode5 and Mode6 Diagram  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-5. Mode7 and Mode8 Diagram  
When two or more LP5891 devices are used in stackable mode, if there are unused line switches, these unused  
line switches must be the last line switches of the first or the second device. For example, if there are only 30  
scanning lines, and if,  
SCAN_REV = '0'b, the unused line switches can be either of the below,  
1_LS14, 1_LS15  
2_LS14, 2_LS15  
SCAN_REV = '1'b, the unused line switches can be either of below,  
1_LS14, 1_LS15  
2_LS1, 2_LS0  
The unused line switches must be 2_LS14, 2_LS15 if SCAN_REV = '0'b, or 2_LS1, 2_LS0 if SCAN_REV = '1'b.  
7.3.2 Current Setting  
7.3.2.1 Brightness Control (BC) Function  
The LP5891 device is able to adjust the output current of all constant-current outputs simultaneously. This  
function is called global brightness control (BC). The global BC for all outputs is programmed with a 3-bit  
register, thus all output currents can be adjusted in eight steps for a given current-programming resistor, RIREF  
.
When the 3-bit BC register changes, the gain of output current, GAINBC changes as 7-2 below.  
7-2. Current Gain Versus BC Code  
BC Register (BC)  
000b  
Current Gain (GAINBC)  
24.17  
30.57  
001b  
010b  
49.49  
011b (default)  
100b  
86.61  
103.94  
129.92  
148.48  
101b  
110b  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LP5891  
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-2. Current Gain Versus BC Code (continued)  
BC Register (BC)  
Current Gain (GAINBC)  
111b  
173.23  
The maximum output current per channel, IOUTSET, is determined by resistor RIREF, and the GAINBC. The voltage  
on IREF is typically 0.8 V. RIREF can be calculated by 方程式 1 below. For noise immunity purpose, suggest  
R
IREF < 40 kΩ.  
8
+4'((8)  
8
+4'((8)  
4+4'( () =  
=
× )#+0($%)  
++4'( (I#)  
+1765'6 (I#)  
(1)  
7.3.2.2 Color Brightness Control (CC) Function  
The LP5891 device is able to adjust the output current of each of the three color groups R0-R15, G0-G15, and  
B0-B15 separately. This function is called color brightness control (CC). For each color, it has 8-bit data register,  
CC_R, CC_G, or CC_B. Thus, all color group output currents can be adjusted in 256 steps from 0% to 100% of  
the maximum output current, IOUTSET. The output current of each color, IOUT_R (or G or B) can be calculated by  
Equation 2 below.  
1 + %%_4(KN %%_) KN %%_$)  
+
= +1765'6 ×  
176_4(KN ) KN $)  
256  
(2)  
Table 7-3 shows the CC data versus the constant-current against IOUTSET  
:
7-3. CC Data vs Current Ratio  
CC Register (CC_R or CC_G or  
Ratio of IOUTSET  
CC_B)  
0000 0000b  
0000 0001b  
...  
1/256  
2/256  
...  
0.39%  
0.78%  
...  
0111 1111b (default)  
...  
128/256  
...  
50%  
...  
1111 1110b  
1111 1111b  
255/256  
256/256  
99.61%  
100%  
7.3.2.3 Choosing BC/CC for a Different Application  
BC is mainly used for global brightness adjustment to adapt to ambient brightness, such as between day and  
night, indoor and outdoor.  
Suggested BC is 3h or 4h, which is in the middle of the range, allowing flexible changes in brightness up and  
down.  
If the current of one color group (usually R LEDs) is close to the output maximum current (10 mA or 20 mA),  
to prevent the constant output current from exceeding the upper limit in case a larger BC code is input  
accidentally, choose the maximum BC value, 7h.  
If the current of one color group (usually B LEDs) is close to the output minimum current (0.2 mA), to prevent  
the constant output current from exceeding the lower limit in case a lower BC code is input accidentally,  
choose the minimum BC code, 0h.  
CC can be used to fine tune the brightness in 256 steps. This is suitable for white balance adjustment between  
RGB color group. To get a pure white color, the general requirement for the luminous intensity ratio of R, G, B  
LED is 5:3:2. Depending on the characteristics of the LED (Electro-Optical conversion efficiency), the current  
ratio of R, G, B LED is much different from this ratio. Usually, the Red LED needs the largest current. Choose  
255d (the maximum value) CC code for the color group that needs the largest initial current, then choose proper  
CC code for the other two color groups according to the current ratio requirement of the LED used.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LP5891  
 
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7.3.3 Frequency Multiplier  
The LP5891 has an internal frequency multiplier to generate the GCLK by SCLK. The GCLK frequency can be  
configured by FREQ_MOD (See FC0 for more details) and FREQ_MUL (see FC0 for more details ) from 40 MHz  
to 160 MHz. As 7-6 shows, if the GCLK frequency is not higher than 80 MHz, the GCLK_MOD is set to 0 to  
disable the bypass switch (enable the ½ divider), while the GCLK frequency is higher than 80 MHz, the  
GCLK_MOD is set to 1 to enable the bypass switch (disable the ½ divider).  
GCLK_MUL  
GCLK_MOD  
SCLK  
GCLK  
1/2  
7-6. Frequency Multiplier Block Diagram  
7.3.4 Line Transitioning Sequence  
The LP5891 defines a timing sequence of scan line transition, shown as 7-7. T_SW is the total transitioning  
time. T_SW is broken up into four intervals: T0 is the time interval between the end of PWM time in current  
segment and the beginning of channel pre-discharge, T1 is the time interval between the beginning of the  
channel pre-discharge and the beginning of current line OFF, T2 is the time interval that the beginning of current  
line OFF and the beginning of next line ON, T3 is the time interval of the beginning of next line ON and the  
beginning of PWM time in next segment.  
7-7. Line Transitioning Sequence  
The line switch time T_SW equals to T0 + T1 + T2 + T3. T_SW can be configured by the LINE_SWT (see FC1  
register bit 40-37 in 7-8).  
7-4 is the relation between LINE_SWT bits and the line switch time (GCLK numbers) with different internal  
GCLK frequency.  
7-4. Line Switch Time  
LINE_SW  
T
GCLK  
Numbers  
T_SW (us, 40  
MHZ GCLK)  
T_SW (us, 60 MHZ T_SW (us, 100 MHZ T_SW (us, 120 MHZ T_SW (us, 160 MHZ  
GCLK)  
0.7515  
1.002  
1.503  
2.004  
2.505  
GCLK)  
0.45  
0.6  
GCLK)  
0.3735  
0.498  
0.747  
0.996  
1.245  
GCLK)  
0.2835  
0.378  
0.567  
0.756  
0.945  
0000b  
0001b  
0010b  
0011b  
0100b  
45  
60  
1.125  
1.5  
90  
2.25  
3
0.9  
120  
150  
1.2  
3.75  
1.5  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LP5891  
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-4. Line Switch Time (continued)  
LINE_SW  
T
GCLK  
Numbers  
T_SW (us, 40  
MHZ GCLK)  
T_SW (us, 60 MHZ T_SW (us, 100 MHZ T_SW (us, 120 MHZ T_SW (us, 160 MHZ  
GCLK)  
3.006  
3.507  
4.008  
4.509  
5.01  
GCLK)  
1.8  
2.1  
2.4  
2.7  
3
GCLK)  
1.494  
1.743  
1.992  
2.241  
2.49  
GCLK)  
1.134  
1.323  
1.512  
1.701  
1.89  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
1101b  
1110b  
1111b  
180  
210  
240  
270  
300  
330  
360  
390  
420  
450  
480  
4.5  
5.25  
6
6.75  
7.5  
8.25  
9
5.511  
6.012  
6.513  
7.014  
7.515  
8.016  
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
2.739  
2.988  
3.237  
3.486  
3.735  
3.984  
2.079  
2.268  
2.457  
2.646  
2.835  
3.024  
9.75  
10.5  
11.25  
12  
7.3.5 Protections and Diagnostics  
7.3.5.1 Thermal Shutdown Protection  
The thermal shutdown (TSD) function turns off all IC constant-current outputs when the junction temperature (TJ)  
exceeds 170°C (typical). The function resumes normal operation when TJ falls below 155°C (typical).  
7.3.5.2 IREF Resistor Short Protection  
The IREF resistor short protection (ISP) function prevents unwanted large currents from flowing through the  
constant-current output when the IREF resistor is shorted accidently. The LP5891 device turns off all output  
channels when the IREF pin voltage is lower than 0.19 V (typical). When the IREF pin voltage goes higher than  
0.325 V (typical), the LP5891 device resumes normal operation.  
7.3.5.3 LED Open Load Detection and Removal  
7.3.5.3.1 LED Open Detection  
The LED Open Detection (LOD) function detects faults caused by an open circuit in any LED, or a short from  
OUTn to VLED with low impedance. This function was realized by comparing the OUTn voltage to the LOD  
detection threshold voltage level set by LODVTH_R/LODVTH_G/LODVTH_B (See FC3 for more details). If the  
OUTn voltage is higher than the programmed voltage, the corresponding output LOD bit is set to 1 to indicate an  
open LED. Otherwise, the output of that LOD bit is 0. LOD data output by the detection circuit are valid only  
during the OUTn turning on period.  
7-8 shows the equivalent circuit of LED open detection.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
VG  
LODVTH_G  
VB  
LODVTH_B  
VR  
LODVTH_R  
VB  
VG  
LODVTH_G  
VR  
LODVTH_R  
LODVTH_B  
+
+
+
+
+
+
Channel  
Control  
Channel  
Control  
Channel  
Control  
Channel  
Control  
Channel  
Control  
Channel  
Control  
LOD Detection  
0b - Normal  
1b - LED-open  
48-bit LOD Data  
READLOD  
48-bit  
LSB  
MSB  
SCLK  
SIN  
48-bit Common Shift Register  
SOUT  
7-8. LED Open Detection Circuit  
The LED open detection function records the position of the open LED, which contains the scan line number and  
relevant channel number. The scan line order is stored LOD_LINE_WARN register (see FC16, FC17 for more  
details), and the channel number is latched into the internal 48-bit LOD data register (see FC20 for more details)  
at the end of each segment. 7-9 shows the bit arrangement of the LOD data register.  
7-9. Bit Arrangement in LOD Data Register  
7.3.5.3.2 Read LED Open Information  
The LOD readback function must be enabled before read LED open information. This function is enabled by  
LOD_LSD_RB (see FC3 for more details).  
7-10 shows the steps to read LED open information. Wait at least one sub-period time between Step2 and  
Step3 command.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LP5891  
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-10. Steps to Read LED Open Information  
7.3.5.3.3 LED Open Caterpillar Removal  
7-11 shows the caterpillar issue caused by open LED. Suppose the LED0-1 is an open LED. When line 0 is  
chosen and the OUT1 is turned on, the OUT1 voltage is forced to approach to VLED because of the broken path  
of the current source. However, the voltage of the un-chosen lines are below the Vclamp which is much lower  
than VLED, causing all LEDs which connect to the channel OUT1, light unwanted.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-11. LED Open Caterpillar  
The LP5891 implements circuits that can eliminate the caterpillar issue caused by open LEDs. The LED open  
caterpillar removal function is configured by LOD_RM_EN (see FC0 for more details). When LOD_RM_EN is set  
to 1b, the caterpillar removal function is enabled. The corresponding channel OUTn is turned off when scanning  
to line with open LED, The caterpillar issue is eliminated until device resets or LOD_RM_EN is set to 0b.  
The internal caterpillar elimination circuit can handle a maximum of three lines that have open LEDs fault  
condition. If there are open LEDs located in three or fewer lines, the LP5891 is able to handle the open LEDs all  
in these lines. If there are open LEDs in more than three lines, the caterpillar issue is solved for the lines where  
the first three open LEDs were detected, but the open LEDs in the fourth and subsequent lines still cause the  
caterpillar issue.  
7.3.5.4 LED Short and Weak Short Circuitry Detection and Removal  
7.3.5.4.1 LED Short/Weak Short Detection  
The LED short detection (LSD) function detects faults caused by a short circuit in any LED. This function was  
realized by comparing the OUTn voltage to the LSD threshold voltage. If the OUTn voltage is lower than the  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
threshold voltage, the corresponding output LSD bit is set to 1 to indicate an short LED, otherwise, the output of  
that LSD bit is 0. LSD data output by the detection circuit are valid only during the OUTn turning on period.  
LSD weak short can be detected by adjusting threshold voltage, which level is set by LSDVTH_R/LSDVTH_G/  
LSDVTH_B (See FC3 for more details).  
7-12 shows the equivalent circuit of LED short detection.  
VG  
VB  
VR  
VB  
VG  
VR  
LSDVTH_G  
LSDVTH_B  
LSDVTH_R  
LSDVTH_G  
LSDVTH_B  
LSDVTH_R  
+
+
+
+
+
+
Channel  
Control  
Channel  
Control  
Channel  
Control  
Channel  
Control  
Channel  
Control  
Channel  
Control  
LSD Detection  
0b - Normal  
1b - LED-short  
48-bit LSD Data  
READLSD  
48-bit  
LSB  
MSB  
SCLK  
SIN  
48-bit Common Shift Register  
SOUT  
7-12. LED Short Detection Circuit  
The LED short detection function records the position of the short LED, which contains the scan line order and  
relevant channel number. The scan line order is stored LSD_LINE_WARN register (see FC18, FC19 for more  
details), and the channel number is latched into the internal 48-bit LSD data register (see FC21 for more details)  
at the end of each segment. 7-13 shows the bit arrangement of the LSD data register.  
7-13. Bit Arrangement in the LSD Data Register  
7.3.5.4.2 Read LED Short Information  
The LSD readback function must be enabled before reading LED Short information. This function is enabled by  
LOD_LSD_RB (see FC3 for more details).  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LP5891  
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-14 shows the steps to read LED Short information. Wait at least one sub-period time between Step2 and  
Step3 command.  
7-14. Steps to Read LED Short Information  
7.3.5.4.3 LSD Caterpillar Removal  
7-15 shows the LSD caterpillar issue caused by short LED. Suppose the LED0-1 is a short LED. When it  
scans to the line1 and the OUT1 is turned off, the OUT1 voltage is the same with scan line0 voltage because of  
the short path of the LED0-1. At this time, there is a current path from the line0 to the GND through the LED1-1  
and SW1-1, which causes LED1-1 light unwanted.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-15. LED Short Caterpillar  
The LP5891 device implements internal circuits that can eliminate the caterpillar issue by short LEDs. As is  
shown in 7-15, the LED short caterpillar is caused by the voltage of the Vclamp on the line. So it can be  
solved by adjusting the LSD_RM_EN (see FC3 for more details) to let the voltage drop of the LED1-1 be smaller  
than LED forward voltage.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7.4 Device Functional Modes  
The device functional modes are shown in 7-16.  
7-16. Functional Modes  
Initialization: The device enters into Initialization when Vcc goes down to UVLO voltage. In this mode, all the  
registers are reset. Entry can also be from any state.  
Normal: The device enters the normal mode when Vcc is higher than UVLO threshold. The display process  
is shown as below in normal mode.  
Power saving: The device automatically enters and gets out from the power save mode when it detects the  
condition PSin and PSout. In this mode, all channels turn off. PSin: after the device detects that the display  
data of the next frame all equal to zero, it enters in to power save mode when the VSYNC comes. PSout:  
after the device detects that there is non-zero display data of the next frame, it gets out from power save  
mode immediately.  
IREF resistor short protection: The device automatically enters and gets out from the IREF resistor short  
protection mode when it detects the condition ISPin and ISPout. In this mode, all channels turn off. ISPin: the  
device detects that the reference voltage is smaller than 0.195 V ISPout: the device detects that the  
reference voltage is larger than 0.325 V.  
Thermal shutdown: The device automatically enters and gets out from the thermal shutdown mode when it  
detects the condition TSDin and TSDout. In this mode, all channels turn off. TSDin: the device detects that  
the junction temperature exceeds 170°C TSDout: the device detects that the junction temperature is below  
155°C.  
7.5 Continuous Clock Series Interface  
The continuous clock series interface (CCSI) provides access to the programmable functions and registers,  
SRAM data of the device. The interface contains two input digital pins, they are the serial data input (SIN) and  
serial clock (SCLK). Moreover, there is an another wire called serial data output (SOUT) as the output digital  
signal of the device. The SIN is set to HIGH when device is in idle status and the SCLK must be existent and  
continuous all the time considering as the clock source of internal Frequency Multiplier, the SOUT is used to  
transmit the data or read the data of internal registers.  
This protocol can support up to 32 devices cascaded in a data chain. The devices receive the chip index  
command after power up. The chip index command configured addresses of the devices from 0x00 up to 0x1F  
according to the sequence that receives the command. Then the controller can communicate with all the devices  
through the broadcast way or particular device through non-broadcast way.  
The broadcast is mainly used to transmit function control commands. All the devices in a data chain receive the  
same data in this way. The non-broadcast is mainly used to transmit function control commands or display data,  
and each device receives its own data in this way. These two ways are distinguished by the command  
identification.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LP5891  
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7.5.1 Data Validity  
The data on DIN wire must be stable at rising edges of the SCLK in transmission.  
7.5.2 CCSI Frame Format  
7-17 defines the format of the command and data transmission. There are four states in one frame.  
IDLE: SCLK is always existent and continuous, and DIN is always HIGH.  
START: DIN changes from HIGH to LOW after the IDLE states.  
DATA:  
Head_bytes: It is the command identifier, contains one 16-bit data and one check bit. It can be WRITE  
COMMAND ID or READ COMMAND ID (see Register Maps for more details).  
Data_bytes_N: The Nth data-bytes, contains 3 × 17-bit data, each 17-bit data contains one 16-bit data  
and one check bit. N is the number of devices cascaded in a data chain.  
END: The device recognizes continuous 18-bit HIGH on DIN, then returns to IDLE state.  
CHECK BIT: The check bit (17th bit) value is the NOT of 16th bit value to avoid continuous 18-bit HIGH (to  
distinguish with END).  
7-17. CCSI Frame  
The IDLE state is not necessary, which means the START state of the next frame can connect to the END state  
of the current frame.  
7.5.3 Write Command  
Take m devices cascaded in a data chain for example.  
7.5.3.1 Chip Index Write Command  
The chip index is used to set the identification of the device cascaded in a data chain. When the first device  
receives the chip index command Head_bytes1, it sets the current address to 00h and meanwhile change the  
chip index command Head_bytes2, then sends to the next device. When the device receives the Head_bytes2, it  
sets the address to 01h and meanwhile changes the chip index command Head_bytes3, then sends to the next  
device, likewise, all the cascaded devices get their unique identifications.  
SOUT  
SCLK  
Controller  
SIN  
Device_1  
Device_...  
Device_m  
ST Head_bytes1  
END  
ST Head_bytes...  
END  
ST Head_bytesm  
END  
7-18. Chip Index Write Command  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LP5891  
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7.5.3.2 VSYNC Write Command  
The VSYNC is used to sync the display of each frame for the devices in a cascaded chain. this command is a  
write-only command. The devices receive VSYNC command one time from the controller in each frame, and the  
VSYNC command needs to be active for all devices at the same time.  
Because some devices receive the command earlier in the data chain, they need to wait until the last device  
receives the command, then all the devices are active at that time. To realize such function, each device needs  
to know its delay time from receiving VSYNC command to enabling VSYNC. The device uses some register bits  
to restore the device number in a data chain. This number minuses the device identification, and the result is the  
delay time of the device.  
Because the sync function has been done by the device, the controller only must send the VSYNC command to  
the first device in a data chain.  
SOUT  
SCLK  
Controller  
SIN  
Device_1  
Device_...  
Device_m  
ST Head_bytes  
END  
ST Head_bytes  
END  
ST Head_bytes  
END  
ST Head_bytes  
END  
7-19. VSYNC Write Command  
7.5.3.3 MPSM Write Command  
The MPSM command is used to control the intelligent power save mode of devices in the same matrix. The  
device detects all zero data in a stackable module and receives MPSM command in current frame, then when  
VSYNC command comes, all devices in the same matrix turn off. After the device detects that there is non-zero  
display data of the next frame, it gets out from intelligent power save mode until MSPM command comes in  
current frame.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-20. Design Procedure for MPSM Command  
7.5.3.4 Standby Clear and Enable Command  
Standby clear command and standby enable command are used to control intelligent power save mode of  
devices in the same daisy chain. When the device receives standby enable command, it enters to intelligent  
power save mode right away and does not have to wait for other devices in a module or daisy chain. After the  
device receives standby enable command, it exits from intelligent power save mode immediately and does not  
wait for other devices in a module or daisy chain.  
7.5.3.5 Soft_Reset Command  
The Soft_Reset Command is used to reset all the function registers to the default value, except for SRAM data.  
The format of this command is the same with VSYNC shown as VSYNC Write Command. The difference is the  
headbytes.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LP5891  
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7.5.3.6 Data Write Command  
The device can receive the function control with broadcast and non-broadcast way, which depends on the  
configuration of the devices. If the cascaded devices have the same configuration, broadcast is used,. If the  
cascaded devices have the different configurations, non-broadcast is used. It is always the MSB transmitted first  
and the LSB transmitted last. For 48-bits RGB data, the Blue data must be transmitted first, then the Green, and  
last the Red data.  
For broadcast, the devices receive the same data, when devices recognize the broadcast command, they copy  
the data to their internal registers. Generally, it is used for write FC0-FC13 command, LOD/LSD.  
7-21. Data Write Command with Broadcast  
7-22 shows the time diagram of the Data Write Command with Broadcast.  
7-22. Data Write Command with Broadcast (Timing Diagram)  
For non-broadcast, the devices receive the different data, the controller prepares the data as the figure shows.  
One pixel data is written to the corresponding device in each command. When the first device receives the END,  
it cuts off the last 51-bit (3 × 17-bit) data before the END, and the left are shifted out from SDO to the second  
device. Similarly, when the second device receives the END bytes from the former device, it cuts off the last 51-  
bit (3 × 17-bit) data before the END, and the left are shifted out to the next device. Generally, it is used for write  
SRAM command (WRTGS). Details for how to write a frame data into memory bank can be found in Write a  
Frame Data into Memory Book.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LP5891  
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-23. Data Write Command with Non-Broadcast  
7-24 shows the time diagram of the Data Write Command with Non-Broadcast.  
7-24. Data Write Command with Non-Broadcast (Timing Diagram)  
7.5.4 Read Command  
The controller sends the read command. When the first device receives this command, it inserts its 48-bit data  
before End_bytes, and meanwhile shifts out to the second device. When the second device receives this  
command, it inserts its 48-bit data before End_bytes and meanwhile shifts out to the third device. The data of all  
the device are shifted out from the last device SOUT with this flow. The MSB is always transmitted first and the  
LSB transmitted last.  
7-25. Data Read Command  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7.6 PWM Grayscale Control  
7.6.1 Grayscale Data Storage and Display  
7.6.1.1 Memory Structure Overview  
The LP5891 implements a display memory unit to achieve high refresh rate and high contrast ratio in an LED  
display products. The internal display memory unit is divided into two BANKs: BANK A and BANK B. During the  
normal operation, one BANK is selected to display the data of current frame, another is used to restore the data  
of next frame. The BANK switcher is controlled by the BANK_SEL bit, which is an internal flag register bit.  
After power on, BANK_SEL is initialized to 0, and BANK A is selected to restore the data of next frame.  
Meanwhile, the data in BANK B is read out for display. When one frame has elapsed, the controller sends the  
vertical synchronization (VSYNC) command to start the next frame, the BANK_SEL bit value is toggled and the  
selection of the two BANKs reverses. Repeat this operation until all the frame images are displayed.  
With this method, the LP5891 device can display the current frame image at a very high refresh rate. See 图  
7-26 for more details about the BANK-selection exchange operation.  
7-26. Bank Selection Exchange Operation  
7.6.1.2 Details of Memory Bank  
Each memory BANK contains the frame-image grayscale data of all the 64 lines. Each line comprises sixteen  
48-bit-width memory units. Each memory unit contains the grayscale data of the corresponding R/G/B channels.  
Depending on the number of scan lines set in SCAN_NUM (FC0 bit 21 to bit 16), the total number of memory  
units that must be written in one BANK is: 48 × the number of scan lines. For example, if the number of scan  
lines is set to 64, then 3072 (64 × 48 = 3072) memory units must be written during each frame period.  
7-27 shows the detailed memory structure of the LP5891 device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LP5891  
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-27. LP5891 Memory-unit Structure  
7.6.1.3 Write a Frame Data into Memory Bank  
After power on, the LP5891 internal flag BANK_SEL, and counters LINE_COUNT, CHANNEL_COUNT, are all  
initialized to 0. Thus, the memory unit of channel R0/G0/B0, locating in line 0 of BANK A, is selected to restore  
the data transimitted the first time after VSYNC command.  
When the first WRTGS command is received, all the data in the common shift register is latched into the memory  
unit of channel R0/G0/B0, locating in line 0 of BANK A. Then CHANNEL_COUNT increases by 1 and  
LINE_COUNT stays the same. Thus, the memory unit of channel R1/G1/B1, locating in line 0 of BANK A, is  
selected to restore the data transimitted the second time after VSYNC command.  
When the second WRTGS command is received, all the data in the common shift register is latched into the  
memory unit of channel R1/G1/B1, locating in line 0 of BANK A. Then CHANNEL_COUNT increases by 1 and  
LINE_COUNT stays the same. Thus, the memory unit of channel R2/G2/B2, locating in line 0 of BANK A, is  
selected to restore the data transimitted the third time after VSYNC command.  
Repeat the grayscale-data-write operation until the 16th WRTGS command is received. Then  
CHANNEL_COUNT is reset to 0 and LINE_COUNT increases by 1. Thus, the memory unit of channel  
R0/G0/B0, locating in line 1 of BANK A, is selected to restore the data transimitted the 17th time after VSYNC  
command.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LP5891  
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
Repeat this operation for each line until the LINE_COUNT exceeds the number of scan lines set in the  
SCAN_NUM (See FC0 register bit21-16 ) and all scan lines have been updated with new GS data, which means  
one frame of GS data is restored into the memory BANK. Then the LINE_COUNT is reset to 0.  
7.6.2 PWM Control for Display  
To increase the refresh rate in time-multiplexing display system, a DS-PWM (Dynamic Spectrum-Pulse Width  
Modulation) algorithm is proposed in this device. One frame is divided into many segments shown below. Note  
that one frame is divided into n sub-periods, n is set by SUBP_NUM (FC0 register bit24-22), and each sub-  
period is divided into 32 segments for 32 scan lines. Each segment contains GS GCLKs time for grayscale data  
display and T_SW GCLKs time for switching lines. GS is configured by the SEG_LENGTH (FC1 register bit9-0 in  
7-8) , and T_SW is the line switch time, which is configured by the LINE_SWT (see FC1 register bit 40-37 in  
7-8).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LP5891  
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-28. DS-PWM Algorithm with 32 Scan Lines  
The DS-PWM can not only increase the refresh rate meanwhile keep the same frame rate, but also decrease the  
brightness loss in low grayscale, which can smoothly increase the sub-period number when the grayscale data  
increases.  
To achieve ultra-low luminance, the LED driver must have the ability to output a very short current pulse (1  
GCLK time), however, because of the parasitic capacitor of the LEDs, such pulse can not turn on the LEDs. The  
larger GCLK frequency is, the harder to turn on LEDs.  
DS-PWM algorithm have a parameter called subperiod threshold, which is used to calculate when to change  
subperiod number according to the giving grayscale data. Subperiod threshold defines the LED minimum turn-on  
time, so as to conquer the current loss caused by LED parasitic capacitor. Subperiod threshold is configured by  
the LG_STEP_R/G/B (FC1 register bit24-10 in 7-8).  
With DS-PWM algorithm, the brightness has smoothly increased with the gradient grayscale data.  
7.7 Register Maps  
7-5. Register Maps  
WRITE COMMAND READ COMMAND  
REGISTER NAME  
TYPE  
DESCRIPTION  
ID  
ID  
FC0  
FC1  
R/ W  
R/ W  
R/ W  
R/ W  
R/ W  
R/ W  
R/ W  
AA00h  
AA01h  
AA02h  
AA03h  
AA04h  
AA0Eh  
AA0Fh  
AA60h  
AA61h  
AA62h  
AA63h  
AA64h  
AA6Eh  
AA6Fh  
Common configuration  
Common configuration  
Common configuration  
Common configuration  
Common configuration  
Locate the line for LOD  
Locate the line for LSD  
FC2  
FC3  
FC4  
FC14  
FC15  
Read the lines' warning of LOD from 64th ~ 49th  
line  
FC16  
FC17  
FC18  
FC19  
R
R
R
R
AAA0h  
AAA1h  
AAA2h  
AAA3h  
Read the lines' warning of LOD from 48th~1st line  
Read the lines' warning of LSD from 64th ~ 49th  
line  
Read the lines' warning of LSD from 48th~1st line  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-5. Register Maps (continued)  
WRITE COMMAND READ COMMAND  
REGISTER NAME  
TYPE  
DESCRIPTION  
ID  
ID  
FC20  
FC21  
R
R
AAA4h  
AAA5h  
AA70h  
Read the channel's warning of LOD  
Read the channel's warning of LSD  
Read/Write chip index  
Chip Index  
VSYNC  
MPSM  
R/ W  
W
AA10h  
AAF0h  
AA90h  
AAB0h  
AAB1h  
AA80h  
AA30h  
Write VSYNC command  
W
Write matrix PSM command  
SBY_CLR  
SBY_EN  
Soft_Reset  
SRAM  
W
Write standby clear command  
Write standby enable command  
Reset the all the registers expect the SRAM  
Write or read the SRAM data  
W
W
W
7-6. Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
7.7.1 FC0  
FC0 is shown in FC0 Register and described in FC0 Register Field Descriptions.  
7-29. FC0 Register  
47  
46  
45  
44  
43  
42  
41  
25  
9
40  
39  
38  
22  
6
37  
36  
20  
4
35  
19  
34  
33  
17  
1
32  
16  
0
LSD_R RESERVED  
M_EN  
GRP_DLY_B  
GRP_DLY_G  
GRP_DLY_R  
RESERVED  
R/  
W-0b  
R-01b  
R/W-000b  
R/W-000b  
R/W-000b  
21  
R-000b  
31  
30  
29  
28  
27  
26  
24  
23  
18  
FREQ_MUL  
R/W-0111b  
14  
FREQ_  
MOD  
RESERVED  
SUBP_NUM  
R/W-000b  
7
SCAN_NUM  
R/  
W-0b  
R-000b  
R/W-000000b  
15  
13  
12  
11  
10  
8
5
3
2
LODR  
M_EN  
PSP_MOD  
PS_EN  
RESERVED  
PDC_E  
N
RESERVED  
CHIP_NUM  
R/  
R/W-00b  
R/  
R-000b  
R/  
R-000b  
R/W-00111b  
W-0b  
W-0b  
W-1b  
7-7. FC0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
4-0  
CHIP_NUM  
R/W  
00111b  
Set the device number  
00000b: 1 device  
...  
01111b: 16 devices  
...  
11111b: 32 devices  
7-5  
RESERVED  
R
000b  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LP5891  
 
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-7. FC0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
8
PDC_EN  
R/W  
1b  
Enable or disable pre-discharge function  
0b: disable  
1b: enable  
11-9  
12  
RESERVED  
PS_EN  
R
000b  
0b  
R/W  
Enable or disable the power saving mode  
0b: disable  
1b: enable  
14-13  
PSP_MOD  
R/W  
00b  
Set the powering saving plus mode  
00b: disable  
01b: save power at high level  
10b: save power at middle level  
11b: save power at low level  
15  
LODRM_EN  
SCAN_NUM  
R/W  
R/W  
0b  
Enable or disable the LED open load removal function  
0b: disable  
1b: enable  
21-16  
000000b  
Set the scan line number  
000000b: 1 line  
...  
001111b: 16 lines  
...  
011111b: 32 lines  
...  
111111b: 64 lines  
24-22  
SUBP_NUM  
R/W  
000b  
Set the subperiod number  
000b: 16  
001b: 32  
010b: 48  
011b: 64  
100b: 80  
101b: 96  
110b: 112  
111b: 128  
27-25  
28  
RESERVED  
FREQ_MOD  
R
000b  
0b  
R/W  
Set the GCLK multiplier mode  
0b: low frequency mode, 40MHz to 80MHz  
1b: high frequency mode, 80MHz to 160MHz  
32-29  
FREQ_MUL  
R/W  
0111b  
Set the GCLK multiplier frequency  
0000b: 1 x SCLK frequency  
...  
0111b: 8 x SCLK frequency  
...  
1111b: 16 x SCLK frequency  
35-33  
38-36  
RESERVED  
GRP_DLY_R  
R
000b  
000b  
R/W  
Set the Red group delay, forward PWM mode only  
000b: no delay  
001b: 1 GCLK  
010b: 2 GCLK  
011b: 3 GCLK  
100b: 4 GCLK  
101b: 5 GCLK  
110b: 6 GCLK  
111b: 7 GCLK  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: LP5891  
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-7. FC0 Register Field Descriptions (continued)  
Bit  
Field  
GRP_DLY_G  
Type  
Reset  
Description  
41-39  
R/W  
000b  
Set the Green group delay, forward PWM mode only  
000b: no delay  
001b: 1 GCLK  
010b: 2 GCLK  
011b: 3 GCLK  
100b: 4 GCLK  
101b: 5 GCLK  
110b: 6 GCLK  
111b: 7 GCLK  
44-42  
GRP_DLY_B  
R/W  
000b  
Set the Blue group delay, forward PWM mode only  
000b: no delay  
001b: 1 GCLK  
010b: 2 GCLK  
011b: 3 GCLK  
100b: 4 GCLK  
101b: 5 GCLK  
110b: 6 GCLK  
111b: 7 GCLK  
46-45  
47  
RESERVED  
LSD_RM_EN  
R
01b  
0b  
R/W  
Enable or disable short LED caterpillar  
0b: disable  
1b: enable  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: LP5891  
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7.7.2 FC1  
FC1 is shown in FC1 Register and described in FC1 Register Field Descriptions.  
7-30. FC1 Register  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
17  
32  
RESE  
RVED  
BLK_ADJ  
LINE_SWT  
LG_ENH_B  
LG_EN  
H_G  
R-0b  
31  
R/W-000000b  
R/W-0111b  
R/W-0000b  
30  
29  
13  
28  
27  
26  
25  
9
24  
8
23  
7
22  
21  
5
20  
4
19  
3
18  
16  
0
LG_ENH_G  
R/W-0000b  
14  
LG_ENH_R  
R/W-0000b  
LG_STEP_B  
R/W-01001b  
6
LG_STEP_G  
R/W-01001b  
15  
12  
11  
10  
2
1
LG_ST  
EP_G  
LG_STEP_R  
SEG_LENGTH  
R/W-01001b  
R/W-0'000'000'000b  
7-8. FC1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
9-0  
SEG_LENGTH  
LG_STEP_R  
R/W  
0'000'000'0 Set the GCLK number in each segment  
00b  
127d: 128 GCLK  
...  
1023d: 1024 GCLK  
others: 128 GCLK  
14-10  
19-15  
24-20  
28-25  
32-29  
36-33  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
01001b  
Adjust the smooth of the brightness in low grayscale  
00000b: level 1  
...  
01111b: level 16  
...  
11111b: level 32  
LG_STEP_G  
LG_STEP_B  
LG_ENH_R  
LG_ENH_G  
LG_ENH_B  
01001b  
01001b  
0000b  
0000b  
0000b  
Adjust the smooth of the brightness in low grayscale  
00000b: level 1  
...  
01111b: level 16  
...  
11111b: level 32  
Adjust the smooth of the brightness in low grayscale  
00000b: level 1  
...  
01111b: level 16  
...  
11111b: level 32  
Adjust low grayscale enhancement of red channels  
0000b: level 0  
...  
0111b: level 7  
...  
1111b: level 15  
Adjust low grayscale enhancement of green channels  
0000b: level 0  
...  
0111b: level 7  
...  
1111b: level 15  
Adjust low grayscale enhancement of blue channels  
0000b: level 0  
...  
0111b: level 7  
...  
1111b: level 15  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: LP5891  
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-8. FC1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
40-37  
LINE_SWT  
R/W  
0111b  
Set the scan line switch time.  
0000b: 45 GCLK  
0001b: 2x30 GCLK  
...  
0111b: 8x30 GCLK  
...  
1111b: 16x30 GCLK  
46-41  
BLK_ADJ  
R/W  
000000b  
Set the black field adjustment  
000000b: 0 GCLK  
...  
011111b: 31 GCLK  
...  
111111b: 63 GCLK  
47  
RESERVED  
R
0b  
Reserved bit.  
7.7.3 FC2  
FC2 is shown in FC2 Register and described in FC2 Register Field Descriptions.  
7-31. FC2 Register  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
MPSM RESE  
MOD_SIZE  
SUBP_ CH_B_ CH_G_ CH_R_  
MAX_2 IMMU IMMU IMMU  
RESERVED  
LG_COLOR_B  
_EN  
RVED  
R-0b  
30  
56  
NITY  
NITY  
NITY  
R/  
W-0b  
R/W-111b  
28  
R/  
R/  
R/  
R/  
R-000b  
21  
R/W-0000b  
W-0b  
W-1b  
W-1b  
W-1b  
31  
29  
27  
11  
26  
25  
24  
23  
22  
20  
4
19  
3
18  
17  
16  
0
LG_COLOR_G  
R/W-0000b  
LG_COLOR_R  
R/W-0000b  
DE_COUPLE1_B  
R/W-0000b  
DE_COUPLE1_G  
R/W-0000b  
15  
14  
13  
12  
10  
9
8
7
6
5
2
1
DE_COUPLE1_R  
R/W-0000b  
V_PDC_B  
R/W-0110b  
V_PDC_G  
R/W-0110b  
V_PDC_R  
R/W-0110b  
7-9. FC2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
3-0  
V_PDC_R  
R/W  
0110b  
Set the Red pre_discharge voltage (typical), the voltage value  
must not be higher than (VR-1.3V).  
0000b: 0.1V  
0001b: 0.2V  
0010b: 0.3V  
0011b: 0.4V  
0100b: 0.5V  
0101b: 0.6V  
0110b: 0.7V  
0111b: 0.8V  
1000b: 0.9V  
1001b: 1.0V  
1010b: 1.1V  
1011b: 1.3V  
1100b: 1.5V  
1101b: 1.7V  
1110b: 1.9V  
1111b: 2.1V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: LP5891  
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-9. FC2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
7-4  
V_PDC_G  
R/W  
0110b  
Set the Green pre_discharge voltage (typical), the voltage value  
must not be higher than (VG-1.3V).  
0000b: 0.1V  
0001b: 0.2V  
0010b: 0.3V  
0011b: 0.4V  
0100b: 0.5V  
0101b: 0.6V  
0110b: 0.7V  
0111b: 0.8V  
1000b: 0.9V  
1001b: 1.0V  
1010b: 1.1V  
1011b: 1.3V  
1100b: 1.5V  
1101b: 1.7V  
1110b: 1.9V  
1111b: 2.1V  
11-8  
V_PDC_B  
R/W  
0110b  
Set the Blue pre_discharge voltage (typical), the voltage value  
must not be higher than (VB-1.3V).  
0000b: 0.1V  
0001b: 0.2V  
0010b: 0.3V  
0011b: 0.4V  
0100b: 0.5V  
0101b: 0.6V  
0110b: 0.7V  
0111b: 0.8V  
1000b: 0.9V  
1001b: 1.0V  
1010b: 1.1V  
1011b: 1.3V  
1100b: 1.5V  
1101b: 1.7V  
1110b: 1.9V  
1111b: 2.1V  
15-12  
19-16  
23-20  
27-24  
DE_COUPLE1_R  
DE_COUPLE1_G  
DE_COUPLE1_B  
LG_COLOR_R  
R/W  
R/W  
R/W  
R/W  
0000b  
0000b  
0000b  
0000b  
Set the Red decoupling level  
0000b: level 1 (lowest)  
...  
0111b: level 8 (middle)  
...  
1111b: level 16(highest)  
Set the Green decoupling level  
0000b: level 1 (lowest)  
...  
0111b: level 8 (middle)  
...  
1111b: level 16(highest)  
Set the Blue decoupling level  
0000b: level 1 (lowest)  
...  
0111b: level 8 (middle)  
...  
1111b: level 16(highest)  
Set the Red brightness compensation level of the low grayscale  
0000b: level 1 (lowest)  
...  
0111b: level 8 (middle)  
...  
1111b: level 16(highest)  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: LP5891  
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-9. FC2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
31-28  
LG_COLOR_G  
R/W  
0000b  
Set the Red brightness compensation level of the low grayscale  
0000b: level 1 (lowest)  
...  
0111b: level 8 (middle)  
...  
1111b: level 16(highest)  
35-32  
LG_COLOR_B  
R/W  
0000b  
Set the Red brightness compensation level of the low grayscale  
0000b: level 1 (lowest)  
...  
0111b: level 8 (middle)  
...  
1111b: level 16(highest)  
38-36  
39  
RESERVED  
R
000b  
1b  
CH_R_IMMUNITY  
R/W  
Set the immunity of the Red channels group  
0b: high immunity  
1b: low immunity  
40  
41  
CH_G_IMMUNITY  
CH_B_IMMUNITY  
SUBP_MAX_256  
MOD_SIZE  
R/W  
R/W  
R/W  
R/W  
1b  
Set the immunity of the Green channels group  
0b: high immunity  
1b: low immunity  
1b  
Set the immunity of the Blue channels group  
0b: high immunity  
1b: low immunity  
42  
0b  
Set the maximum subperiod to 256.  
0b: disable  
1b: enable  
45-43  
111b  
Set the module size.  
000b: 16x16 RGB pixels  
001b:32x32 RGB pixels  
010b:48x48 RGB pixels with D3 reverse, and scan sequence  
D1,D2,D3  
011b:48x48 RGB pixels with D3 reverse, and scan sequence  
D1,D3,D2  
100b:48x64 RGB pixels with D3, D4 reverse, and scan  
sequence D1,D2,D3  
101b:48x64 RGB pixels with D3,D4 reverse, and scan sequence  
D1,D3,D2  
110b:64x64 RGB pixels with D3,D4 reserve, and scan seqeunce  
D1,D2,D3,D4  
111b:64x64 RGB pixels with D3,D4 reverse,and scan sequence  
D1,D4,D2,D3  
46  
47  
RESERVED  
MPSM_EN  
R
0b  
0b  
R/W  
Enable or disable matrix power saving mode.  
0b: disable  
1b: enable  
7.7.4 FC3  
FC3 is shown in FC3 Register and described in FC3 Register Field Descriptions.  
7-32. FC3 Register  
47  
31  
15  
46  
45  
29  
13  
44  
28  
43  
LSDVTH_G  
R/W-000b  
27  
42  
26  
10  
41  
25  
9
40  
39  
23  
7
38  
22  
6
37  
LSD_RM  
R/W-0111b  
36  
35  
19  
34  
18  
2
33  
BC  
32  
16  
0
LSDVTH_B  
R/W-000b  
30  
LSDVTH_R  
R/W-000b  
24  
R/W-011b  
17  
21  
20  
CC_B  
CC_G  
R/W-0111 1111b  
R/W-0111 1111b  
12 11  
14  
8
5
4
3
1
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: LP5891  
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-32. FC3 Register (continued)  
CC_R  
LOD_L RESE  
SD_RB RVED  
LODVTH_B  
LODVTH_G  
R/W-00b  
LODVTH_R  
R/W-00b  
R/W-0111 1111b  
R/  
R-0b  
R/W-00b  
W-0b  
7-10. FC3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
1-0  
LODVTH_R  
R/W  
00b  
Set the Red LED open load detection threshold  
00b: (VLEDR-0.2) V  
01b: (VLEDR-0.5) V  
10b: (VLEDR-0.9) V  
11b: (VLEDR-1.2) V  
3-2  
5-4  
LODVTH_G  
LODVTH_B  
R/W  
R/W  
00b  
00b  
Set the Green LED open load detection threshold  
00b: (VLEDG-0.2) V  
01b: (VLEDG-0.5) V  
10b: (VLEDG-0.9) V  
11b: (VLEDG-1.2) V  
Set the Blue LED open load detection threshold  
00b: (VLEDB-0.2) V  
01b: (VLEDB-0.5) V  
10b: (VLEDB-0.9) V  
11b: (VLEDB-1.2) V  
6
7
RESERVED  
R
0b  
0b  
LOD_LSD_RB  
R/W  
Enable or disable the LOD and LSD readback function  
0b: disabled  
01b: enabled  
15-8  
23-16  
31-24  
34-32  
CC_R  
CC_G  
CC_B  
BC  
R/W  
R/W  
R/W  
R/W  
0111 1111b Set the Red color brightness level  
0000 0000b: level 0 (lowest)  
...  
0111 1111b: level 127 (middle)  
...  
1111 1111b: level 255 (highest)  
0111 1111b Set the Green color brightness level  
0000 0000b: level 0 (lowest)  
...  
0111 1111b: level 127 (middle)  
...  
1111 1111b: level 255 (highest)  
0111 1111b Set the Blue color brightness level  
0000 0000b: level 0 (lowest)  
...  
0111 1111b: level 127 (middle)  
...  
1111 1111b: level 255 (highest)  
011b  
Set the global brightness level  
000b: level 0 (lowest)  
...  
011b: level 3 (middle)  
...  
111b: level 7 (highest)  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-10. FC3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
38-35  
LSD_RM  
R/W  
0111b  
Set the LED short removal level  
0000b: level 1  
0001b: level 2  
0010b: level 3  
0011b: level 4  
0100b: level 5  
0101b: level 6  
0110b: level 7  
0111b: level 8  
1000b: level 9  
1001b: level 10  
1010b: level 11  
1011b: level 12  
1100b: level 13  
1101b: level 14  
1110b: level 15  
1111b: level 16  
41-39  
44-42  
47-45  
LSDVTH_R  
LSDVTH_G  
LSDVTH_B  
R/W  
R/W  
R/W  
000b  
000b  
000b  
Set the Red LED short/weak short circuitry detection threshold  
(typical)  
000b: 0.2 V  
001b: 0.4 V  
010b: 0.8 V  
011b: 1.0 V  
100b: 1.2 V  
101b: 1.4 V  
110b: 1.6 V  
111b: 1.8 V  
Set the Green LED short/weak short circuitry detection threshold  
(typical)  
000b: 0.2 V  
001b: 0.4 V  
010b: 0.8 V  
011b: 1.2 V  
100b: 1.6 V  
101b: 2 V  
110b: 2.4 V  
111b: 2.8 V  
Set the Blue LED short/weak short circuitry detection threshold  
(typical)  
000b: 0.2 V  
001b: 0.4 V  
010b: 0.8 V  
011b: 1.2 V  
100b: 1.6 V  
101b: 2 V  
110b: 2.4 V  
111b: 2.8 V  
7.7.5 FC4  
FC4 is shown in FC4 Register and described in FC4 Register Field Descriptions.  
7-33. FC4 Register  
47  
31  
15  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
19  
34  
33  
32  
RESERVED  
DE_COU  
PLE3_EN  
DE_COUPLE3  
DE_COU  
PLE2  
FIRST_LINE_DIM  
CAURSE CAURSE CAURSE  
_B  
R/W-0b  
18  
_G  
R/W-0b  
17  
_R  
R/W-0b  
16  
R-000b  
30  
R/W-0b  
28  
R/W-1000b  
R/W-0b  
23  
R/W-0000b  
29  
27  
26  
SR_ON_B  
25  
SR_ON_G  
24  
22  
21  
20  
RESERVED  
SR_ON_R  
SR_OFF SR_OFF SR_OFF FINE_B  
FINE_G  
FINE_R  
_B  
R/W-0b  
5
_G  
R/W-0b  
4
_R  
R/W-0b  
3
R-0000b  
R/W-01b  
R/W-01b  
R/W-01b  
R/W-0b  
2
R/W-0b  
1
R/W-0b  
0
14  
13  
12  
11  
10  
9
8
7
6
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: LP5891  
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-33. FC4 Register (continued)  
RESERV SCAN_R  
RESERVED  
IMAX  
RESERV  
ED  
ED  
EV  
R-0b  
R/W-1b  
R-0000 0000 1111b  
R/W-0b  
R-0b  
7-11. FC4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0
1
RESERVED  
IMAX  
R
0b  
R/W  
0b  
Set the maximum current of each channel  
0b: 10mA maximum  
01b: 20 mA maximum  
13-2  
14  
RESERVED  
SCAN_REV  
R
0000 0000  
1111b  
R/W  
1b  
When 2 device stackable, the scan lines PCB layout is reversed.  
For the proper scan and SRAM read sequence, SCAN_REV  
register is provided.  
0b: the PCB layout sequence is L0-L15, L16-L31.  
1b: the PCB layout sequence is L0-L15, L31-L16.  
15  
16  
RESERVED  
FINE_R  
R
0b  
0b  
R/W  
Enable the Red brightness compensation level fine range  
0b: disable  
1b: enable  
17  
18  
FINE_G  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
01b  
Enable the Green brightness compensation level fine range  
0b: disable  
1b: enable  
FINE_B  
Enable the Blue brightness compensation level fine range  
0b: disable  
1b: enable  
19  
SR_OFF_R  
SR_OFF_G  
SR_OFF_B  
SR_ON_R  
Slew rate control function when Red turns off operation  
0b: slow slew rate.  
1b: fast slew rate.  
20  
Slew rate control function when Green turns off operation  
0b: slow slew rate.  
1b: fast slew rate.  
21  
Slew rate control function when Blue turns off operation  
0b: slow slew rate.  
1b: fast slew rate.  
23-22  
Slew rate control function when Red turns on operation  
00b: the slower slew rate.  
01b: slow slew rate.  
10b: fast slew rate.  
11b: the faster slew rate.  
25-24  
27-26  
SR_ON_G  
SR_ON_B  
R/W  
R/W  
01b  
01b  
Slew rate control function when Green turns on operation  
00b: the slower slew rate.  
01b: slow slew rate.  
10b: fast slew rate.  
11b: the faster slew rate.  
Slew rate control function when Blue turns on operation  
00b: the slower slew rate.  
01b: slow slew rate.  
10b: fast slew rate.  
11b: the faster slew rate.  
31-28  
32  
RESERVED  
CAURSE_R  
R
0000b  
0b  
R/W  
Enable the Red brightness compensation level caurse range  
0b: disable  
1b: enable  
33  
CAURSE_G  
R/W  
0b  
Enable the Green brightness compensation level caurse range  
0b: disable  
1b: enable  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-11. FC4 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
34  
CAURSE_B  
R/W  
0b  
Enable the Blue brightness compensation level caurse range  
0b: disable  
1b: enable  
38-35  
FIRST_LINE_DIM  
R/W  
0000b  
Adjust the first line dim level  
0000b: level 1  
...  
0111b: level 8  
...  
1111b: level 16  
39  
DE_COUPLE2  
DE_COUPLE3  
R/W  
R/W  
0b  
Decoupling between ON and OFF channels  
0b: disabled  
1b: enabled  
43-40  
1000b  
Set decoupling enhancement level  
0000b: level 1  
...  
0111b: level 8  
...  
1111b: level 16  
44  
DE_COUPLE3_EN  
RESERVED  
R/W  
R
0b  
Enable decoupling enhancement  
0b: disabled  
1b: enabled  
47-45  
000b  
7.7.6 FC14  
FC14 is shown in FC14 Register and described in FC14 Register Field Descriptions.  
7-34. FC14 Register  
47  
31  
15  
46  
30  
14  
45  
29  
13  
44  
28  
12  
43  
27  
11  
42  
26  
10  
41  
25  
9
40  
39  
38  
22  
6
37  
21  
5
36  
20  
4
35  
19  
3
34  
18  
2
33  
17  
1
32  
16  
0
RESERVED  
R-0b  
24  
23  
RESERVED  
R-0b  
8
7
RESERVED  
R-0b  
LOD_LINE_CMD  
R/W-000000b  
7-12. FC14 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
5-0  
LOD_LINE_CMD  
R/W  
000000b  
Locate the line with LED open load warnings:  
000000b: Line 0  
...  
011111b: Line 31  
...  
111111b: Line 63  
47-6  
RESERVED  
R
0b  
Reserved bits  
7.7.7 FC15  
FC15 is shown in FC15 Register and described in FC15 Register Field Descriptions.  
7-35. FC15 Register  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
RESERVED  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: LP5891  
 
 
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-35. FC15 Register (continued)  
R-0b  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
25  
24  
23  
22  
21  
20  
4
19  
3
18  
2
17  
1
16  
0
RESERVED  
R-0b  
10  
9
8
7
6
5
RESERVED  
R-0b  
LSD_LINE_CMD  
R/W-000000b  
7-13. FC15 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
5-0  
LSD_LINE_CMD  
R/W  
000000b  
Locate the line with LED short circuitry warnings:  
000000b: Line 0  
...  
011111b: Line 31  
...  
111111b: Line 63  
47-6  
RESERVED  
R
0b  
Reserved bits  
7.7.8 FC16  
FC16 is shown in FC16 Register and described in FC16 Register Field Descriptions.  
7-36. FC16 Register  
47  
31  
15  
46  
30  
14  
45  
29  
13  
44  
28  
12  
43  
27  
11  
42  
26  
10  
41  
25  
9
40  
39  
38  
22  
6
37  
21  
5
36  
20  
4
35  
19  
3
34  
18  
2
33  
17  
1
32  
16  
0
RESERVED  
R-0b  
24  
23  
RESERVED  
R-0b  
8
7
LOD_LINE_WARN[63:48]  
R-0b  
7-14. FC16 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-0  
LOD_LINE_WARN[63:48]  
R
0b  
Read the line with LED open load warnings:  
Bit 0 = 0, Line 48 has no warning; Bit 0 = 1, Line 48 has warning  
...  
Bit 15 = 0, Line 63 has no warning; Bit 15 = 1, Line 63 has  
warning  
47-16  
RESERVED  
R
0b  
Reserved bits  
7.7.9 FC17  
FC17 is shown in FC17 Register and described in FC17 Register Field Descriptions.  
7-37. FC17 Register  
47  
31  
46  
30  
45  
29  
44  
28  
43  
27  
42  
26  
41  
40  
39  
38  
37  
21  
36  
20  
35  
19  
34  
18  
33  
17  
32  
16  
LOD_LINE_WARN[47:0]  
R-0b  
25  
24  
23  
22  
LOD_LINE_WARN[47:0]  
R-0b  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: LP5891  
 
 
 
 
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-37. FC17 Register (continued)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LOD_LINE_WARN[47:0]  
R-0b  
7-15. FC17 Register Field Descriptions  
Bit  
47-0  
Field  
LOD_LINE_WARN[47:0]  
Type  
Reset  
Description  
R
0b  
Read the line with LED open load warnings:  
Bit 0 = 0, Line 0 has no warning; Bit 0 = 1, Line 0 has warning  
...  
Bit 47 = 0, Line 47 has no warning; Bit 47 = 1, Line 47 has  
warning  
7.7.10 FC18  
FC18 is shown in FC18 Register and described in FC18 Register Field Descriptions.  
7-38. FC18 Register  
47  
15  
31  
46  
14  
30  
45  
13  
29  
44  
12  
28  
43  
11  
27  
42  
10  
26  
41  
40  
39  
38  
37  
5
36  
4
35  
3
34  
2
33  
1
32  
0
RESERVED  
R-0b  
9
8
7
6
RESERVED  
R-0b  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
LSD_LINE_WARN[63:48]  
R-0b  
7-16. FC18 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
47-0  
LSD_LINE_WARN[63:48]  
R
0b  
Read the line with LED short circuitry warnings:  
Bit 0 = 0, Line 48 has no warning; Bit 0 = 1, Line 48 has warning  
...  
Bit 15 = 0, Line 63 has no warning; Bit 15 = 1, Line 63 has  
warning  
47-16  
RESERVED  
R
0b  
Reserved bits  
7.7.11 FC19  
FC19 is shown in FC19 Register and described in FC19 Register Field Descriptions.  
7-39. FC19 Register  
47  
31  
15  
46  
30  
14  
45  
29  
13  
44  
28  
12  
43  
27  
11  
42  
26  
10  
41  
40  
39  
38  
37  
21  
5
36  
20  
4
35  
19  
3
34  
18  
2
33  
17  
1
32  
16  
0
LSD_LINE_WARN[47:0]  
R-0b  
25  
24  
23  
22  
LSD_LINE_WARN[47:0]  
R-0b  
9
8
7
6
LSD_LINE_WARN[47:0]  
R-0b  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: LP5891  
 
 
 
 
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
7-17. FC19 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
47-0  
LSD_LINE_WARN[47:0]  
R
0b  
Read the line with LED short circuitry warnings:  
Bit 0 = 0, Line 0 has no warning; Bit 0 = 1, Line 0 has warning  
...  
Bit 47 = 0, Line 47 has no warning; Bit 47 = 1, Line 47 has  
warning  
7.7.12 FC20  
FC20 is shown in FC20 Register and described in FC20 Register Field Descriptions.  
7-40. FC20 Register  
47  
31  
15  
46  
30  
14  
45  
29  
13  
44  
28  
12  
43  
27  
11  
42  
26  
10  
41  
25  
9
40  
LOD_CH  
R-0b  
39  
38  
22  
6
37  
21  
5
36  
20  
4
35  
19  
3
34  
18  
2
33  
17  
1
32  
16  
0
24  
23  
LOD_CH  
R-0b  
8
7
LOD_CH  
R-0b  
7-18. FC20 Register Field Descriptions  
Bit  
47-0  
Field  
LOD_CH  
Type  
Reset  
Description  
R
0b  
Locate the LED opem load channel:  
Bit 0 = 0, CH 0 is normal; Bit 0 = 1, CH 0 is short circuitry  
...  
Bit 47 = 0, CH 47 is normal; Bit 47 = 1, CH 47 is short circuitry  
7.7.13 FC21  
FC21 is shown in FC21 Register and described in FC21 Register Field Descriptions.  
7-41. FC21 Register  
47  
31  
15  
46  
30  
14  
45  
29  
13  
44  
28  
12  
43  
27  
11  
42  
26  
10  
41  
25  
9
40  
LSD_CH  
R-0b  
39  
38  
22  
6
37  
21  
5
36  
20  
4
35  
19  
3
34  
18  
2
33  
17  
1
32  
16  
0
24  
23  
LSD_CH  
R-0b  
8
7
LSD_CH  
R-0b  
7-19. FC21 Register Field Descriptions  
Bit  
47-0  
Field  
LSD_CH  
Type  
Reset  
Description  
R
0b  
Locate the LED short circuitry channel:  
Bit 0 = 0, CH 0 is normal; Bit 0 = 1, CH 0 is short circuitry  
...  
Bit 47 = 0, CH 47 is normal; Bit 47 = 1, CH 47 is short circuitry  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: LP5891  
 
 
 
 
 
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The LP5891 integrates 48 constant current sources and 16 scanning FETs. A single LP5891 is capable of  
driving 16 × 16 RGB LED pixels while stacking two LP5891 devices can drive 32 × 32 RGB LED pixels. To  
achieve low power consumption, the LP5891 supports separated power supplies for the red, green, and blue  
LEDs by its common cathode structure.  
The LP5891 implements a high speed rising edge transmission interface (up to 50 MHz) to support high device  
count daisy-chained and high refresh rate while minimizing electrical-magnetic interference (EMI). SCLK must be  
continuous, no matter there is data on SIN or not, because SCLK is not only used to sample the data on SIN, but  
also used as a clock source to generate GCLK by internal frequency multiplier. Based on rising-edge CCSI  
protocol, all the commands/FC registers/SRAM data are written from the SIN input terminal, and all the FC  
registers/ LED open and short flag can be read out from the SOUT output terminal. Moreover, the device  
supports up to 160-MHz GCLK frequency and can achieve 16-bit PWM resolution, with 3840 Hz or even higher  
refresh rate.  
Meanwhile, the LP5891 integrates enhanced circuits and intelligent algorithms to solve the various display  
challenges in Narrow Pixel Pitch (NPP) LED display applications and mini and micro-LED products: dim at the  
first scan line, upper and downside ghosting, non-uniformity in low grayscale, coupling, caterpillar caused by  
open or short LEDs, which make the LP5891 a perfect choice in such applications.  
The LP5891 also implements LED open, weak short, short detections and removals during operations and can  
also report this information out to the accompanying digital processor.  
8.2 Typical Application  
The LP5891 are typically connected in series in a daisy-chain to drive the LED matrix with only a few controller  
ports. 8-1 shows a typical application diagram with two LP5891 devices stackable connection to drive 32 × 32  
RGB LED pixels.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: LP5891  
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
8-1. LP5891 with Dual Devices Stackable Connection  
8.2.1 Design Requirements  
Taking 4K micro-LED television for example, the resolution of the screen is 3840 × 2160, and the screen  
consists of many modules. The following sections show an example to build a LED display module with 240 ×  
180 pixels.  
The example uses the following values as the system design parameters.  
8-1. LP5891 Design Parameters  
DESIGN PARAMETER  
VCC and VR  
EXAMPLE VALUE  
2.8 V  
VG and VB  
3.8 V  
Maximum current per LED  
PWM resolution  
IRED = 3 mA, IGREEN = 2 mA, IBLUE = 1 mA  
14 bits  
Frame rate  
120 Hz  
Refresh rate  
3840 Hz  
Display module size  
cascaded devices number  
devices number per LED display module  
240 × 180 pixels  
8
96  
8.2.1.1 System Structure  
To build an LED display module with 240 × 180 pixels, 96 LP5891 devices are required.  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
240 Columns  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
180  
Lines  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
30 x 30  
pixels  
8-2. LED Display Module  
As shown in 8-2, the total module can be divided into 48 32 × 32 matrix. Each matrix includes two devices  
with stackable connection.  
备注  
To achieve the best performance, distribute the redundant channels and lines to each 32 × 32 matrix.  
For this case, two Red/Green/Blue channels and two lines are not used in each matrix. And these  
unused pins can be floated. For the software, TI suggests zero data to send to the unused channels.  
There is no need to send the zero data to unused lines.  
8.2.1.2 SCLK Frequency  
The SCLK frequency is determined by the data volume of one frame and frame rate. In this application, the data  
volume V_Data is 30 × 32 × 48 bits × 4 = 184.32 Kb, the frame rate is 120 Hz. Suppose the data transmission  
efficiency is 0.8, the minimum frequency of SCLK must be: fSCLK = V_Data × fframe / 0.8. So the minimum SCLK  
frequency is 27.65 MHz with rising-edge transmission.  
8.2.1.3 Internal GCLK Frequency  
The internal GCLK frequency is configured by the Frequency Multiplier (FREQ_MUL), and is determined by the  
PWM resolution. The GCLK frequency can be calculated by the below equations:  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
frefresh_ rate  
Nsub_ period  
=
f frame_ rate  
GSmax = 2K  
GSmax = NGCLK _ Seg ì Nsub_ period  
N
«
1
GCLK _ Seg  
=
+TSW ì NScan_line ì Nsub_ period +TBlank  
÷
f frame_ rate  
fGCLK  
(3)  
where  
frefresh_rate means the refresh rate  
fframe_rate means the frame rate  
K means the PWM resolution  
Nsub_period means the sub-period numbers within one frame  
NGCLK_seg means the GCLK number per segment (line switch time excluded)  
fGCLK means GCLK frequency  
TSW means line switching time  
Nscan_line means the scan line number  
Tblank means the blank time in one frame, equals to 0 in ideal configuration  
GSmax means the maximum grayscale that the device can output in one frame  
8-2 gives the values based on the system configuration and equation.  
8-2. LP5891 Design Parameters for GCLK Frequency Calculation  
DESIGN PARAMETER  
Nsub_period  
Nscan_line  
TSW  
EXAMPLE VALUE  
32  
30  
1.5 µs  
0
Tblank  
NGCLK_seg  
GSmax  
512  
16383  
71.3 MHz  
fGCLK  
Considering SCLK frequency and FREQ_MUL, the SCLK can be 27.7 MHz, and FREQ_MUL can be 0010b. So  
the GCLK is 83.1 MHz.  
8.2.1.4 Line Switch Time  
The line switch time is digitalized with the GCLK number and can be set by the LINE_SWT (Bit 40-37 in FC1  
register). In this application, it is 1.5 us × 83.1 MHz = 125 GCLKs, so the LINE_SWT equals to 0011b (120  
GCLKs), the actual line switch time is 1.44 us.  
8.2.1.5 Blank Time Removal  
The LP5891 has an algorithm to distribute the blank time into each sub-period to prevent the black field when  
taking photos or video.  
From Equation 3, 83.1-MHz GCLK frequency and 1.44-us line switch time, the calculated blank time is 1.0361  
ms ( 86100 GCLK ), which is too long and brings black field.  
Here are detailed steps of the algorithm.  
Step 1: Distribute blank time into each segment  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: LP5891  
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
When the blank GCLK number is larger than Nsub_period × Nscan_line, it can be distributed into each segment.  
In this application, the blank GCLK number is 86100, and Nsub_period × Nscan_line is 960, so the distributed GCLK  
number in each segment is 86100/960 = 89...660. These 89 GCLKs can be used to increase PWM length or  
extend line switch time. If used to increase PWM length, the GCLK number in each segment will be 512 + 89 =  
601, so the SEG_LENGTH ( Bit9-0 in FC1 register) is 1001011001b.  
Step 2: Distribute blank time into each sub-period  
If the left GCLK number is larger than Nsub_period, it can be distributed into each sub-period.  
In this application, the left GCLK is 660, the distributed GCLK number in each sub-period is 660/32=20. The  
BLK_ADJ (Bit46-41 in FC1 register) is 010100b.  
After distributing into each sub-period, the left GCLK number is 0.  
8.2.1.6 BC and CC  
Select the reference current-setting resistor RIREF and configure a proper BC value to set the maximum current  
of the RGB LEDs (see Brightness Control (BC) Function for more details). Here the maximum current is 3 mA,  
BC value is 03h, according to equation 方程1, the reference resistor value is 0.8 V/3 mA × 86.61 = 23 k.  
Configure the CC_R/CC_G/CC_B registers to set the current of Red/Green/Blue LED current to 3 mA/2 mA/1  
mA (see Color Brightness Control (CC) Function for more details).  
8-3 shows the reference current setting resistor RIREF, BC and CC_R/CC_G/CC_B register value.  
8-3. Current Setting Value  
DESIGN PARAMETER  
EXAMPLE VALUE  
23 kΩ  
RIREF  
BC  
011 b  
CC_R  
CC_G  
CC_B  
11111110 b  
10101001 b  
01010100 b  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
8.2.2 Detailed Design Procedure  
8-3 gives a detail design procedure for LED display. After power on and digital signals are ready, the first step  
for the controller is to send the chip index command to let the devices know their identifications. Then, the  
command sends the configuration data to the FC registers. After this, it sends the VSYNC at the beginning of  
each frame and also sends the data to each device. The devices displays the data of last frame when the  
VSYNC comes and meanwhile receive the data of current frame transmitted from controller. The registers can  
be read at anytime of the frame.  
Begin  
Power Supply, SCLK/SIN  
Ready  
Write Chip Index  
Configure the  
register during  
sending data  
Write FC Registers  
Write SRAM  
Write next  
frame SRAM  
Data in normal  
operation  
Wait for the end of current  
frame  
Write VSYNC  
Read registers  
during each  
time of the  
frame  
Read Chip Index/FC/LOD/LSD  
8-3. Design Procedure for LED Display  
8.2.2.1 Chip Index Command  
The chip index is used to distribute the address of the devices in a data chain,. Each device gets its unique  
address by this command. Details can be found in Chip Index Write Command.  
8.2.2.2 FC Registers Settings  
Some bits of FC0, FC1, FC2, FC3 registers must be configured properly before the devices work normally. In  
this application, the registers value can be:  
8-4. FC Registers Value  
FC Registers  
FC0  
Register Value(BIN)  
Register Value(HEX)  
1000 583F 0107 h  
2AE0 0094 A631 h  
0800 000F 0666 h  
003B 54A9 FF00 h  
0001 0000 0000 0000 0101 1000 0011 1111 0000 0001 0000 0111 b  
0010 1010 1110 0000 0000 0000 1001 0100 1010 0110 0011 0001 b  
0000 1000 0000 0000 0000 0000 0000 1111 0000 0110 0110 0110 b  
0000 0000 0011 1011 0101 0100 1010 1001 1111 1111 0000 0000 b  
FC1  
FC2  
FC3  
The controller can configure the FC by the data write command with broadcast mode (see Data Write Command  
for more detail), the FC0, FC1 registers are updated after the VSYNC command comes, and the other FC  
registers are updated right away regardless the VSYNC command.  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
8.2.2.3 Grayscale Data Write  
The channel grayscale data is written to SRAM of the device by the data write command with non-broadcast  
way, details can be found in Data Write Command and Write a Frame Data into Memory Book.  
Data Write Flow is the data write flow for this application, P (i, j) is the data of pixel locating in I + 1 row and j + 1  
column. Suppose channel R15/G15/B15 of each device is not used and not connected, the channel  
R14/G14/B14 is connected to P(i, 0), the channel R13/G13/B13 is connected to P (i, 1),, and channel  
R0/G0/B0 is connected to P (i, 14). The data of unused channel must be zero noting D_Zero in below figure, and  
D_Zero = 00000000000000001 00000000000000001 00000000000000001b.  
i=0  
j=15  
ST+HB+P(i, jx7)+P(i, jx6)+Y+P(i, jx1)+P(i,0)+END  
j=j-1  
Write one  
line data  
N
Write one  
frame data  
j=0  
Y
ST+HB+D_Zero+D_Zero+Y+D_Zero+D_Zero+END  
i=i+1  
N
i=30  
Y
8-4. Data Write Flow  
8.2.2.4 VSYNC Command  
The VSYNC is used to sync the display of each frame for the devices in a cascaded chain. Details can be found  
in VSYNC Write Command.  
8.2.2.5 LED Open/Short Read  
FC14, FC15, FC16, FC17, FC18, FC19, FC20, FC21 are the read command for LOD/LSD information. Details  
can be found in Read LED-open Information and Read LED-short Information.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
8.2.3 Application Curves  
8-5. Line and Channel Waveform in One Frame  
8-6. Line and Channel Waveform in One  
(GSn=0xFFFFh)  
Subperiod (GSn=0xFFFFh)  
8-8. Line and Channel Waveform in One Frame  
8-7. Line and Channel Waveform in One Frame  
(GSn=0x0001h)  
(GSn=0x0001h)  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: LP5891  
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
9 Power Supply Recommendations  
Decouple the VCC power supply voltage by placing a 0.1-μF ceramic capacitor close to VCC pin and GND  
plane. Depending on panel size, several electrolytic capacitors must be placed on the board equally distributed  
to get well regulated LED supply voltage VR/VG/VB. The ripple of the LED supply voltage must be less than 5%  
of their nominal value. Generally, the green and blue LEDs have the similar forward voltage, they can be  
supplied by the same power rail.  
Furthermore, the VR > Vf(R) + 0.35 V (10-mA constant current example), the VG = VB > Vf (G/B) + 0.35 V (10-  
mA constant current example), here Vf(R), Vf(G/B) are representative for the maximum forward voltage of red,  
green/blue LEDs.  
To simplify the power design, VCC can be connected to the VR power rail.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
10 Layout  
10.1 Layout Guidelines  
Place the decoupling capacitor near the VCC/VR, VG/VB pins and GND plane.  
Place the current programming resistor RIREF close to IREF pin and GND plane.  
Route the GND thermal pad as widely as possible for large GND currents. Maximum GND current is  
approximately 2 A for two devices (96-CH × 20 mA = 1.92 A).  
The Thermal Pad must be connected to GND plane because the pad is used as power ground pin internally.  
There is a large current flow through this pad when all channels turn on. Furthermore, this pad must be  
connected to a heat sink layer by thermal via to reduce device temperature. For more information about  
suggested thermal via pattern and via size, see PowerPAD™ Thermally Enhanced Package application note.  
Routing between the LED Anode side and the device OUTXn pin must be as short and straight as possible to  
reduce wire inductance.  
The line switch pins must be located in the middle of the matrix, which must be laid out as symmetrically as  
possible.  
10.2 Layout Example  
To simplify the system power rails design, VR, VCC must use one power rail and VG, VB use another power rail.  
10-1 gives an example for power rails routing.  
Connect the GND pin to the thermal pad on the board with the shortest wire and the thermal pad is connected to  
GND plane with the vias, as many as possible to help the power dissipation.  
32 RGB LEDs  
VR/VCC  
C
C
GND  
GND  
GND  
GND  
C
GND  
C
32 Lines  
VG/VB  
C
C
GND  
GND  
T  
GND  
GND  
C
GND  
C
VR/VCC  
10-1. Power Rails Routing Suggestion  
10-2 gives an example for line routing. Connect the line switch to the center of the line bus, so as to uniform  
the current flowing from the line switch to the left side and right side LEDs in white grayscale. With this  
connection, the unbalance of the parasitic inductor from the routing is the smallest and the display performance  
is better, especially in low grayscale condition.  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: LP5891  
 
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
10-2. Line Routing Suggestion  
10-3 gives an example for channel routing with the shortest wire. With this connection, the channel to the LED  
path is the shortest, which can reduce the wire inductance, and be a benefit to the performance. However, the  
data transmission sequence must be adjusted to follow the pins routing map. For example, R0 connects to  
column 15 (LED15 ). The first data must be column 15 (LED15) rather than column 0 (LED0).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
10-3. Channel Routing Suggestion with Shortest Wire  
10-4 gives an example for channel routing with pin number sequence. With this connection, the data  
transmission sequence is the same with pin number sequence. For example, R0 connects to column 0 (LED0 ).  
The first data is column 0 (LED0). However, with this connection, the inductance for each channel can be  
different, which can bring a slight difference for the worst case.  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
10-4. Channel Routing Suggestion with Channel Order Sequence  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: LP5891  
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
Texas Instruments, PowerPAD™ Thermally Enhanced Package application note  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: LP5891  
 
 
 
 
 
 
 
LP5891  
www.ti.com.cn  
ZHCSQG6A MARCH 2022 REVISED MAY 2022  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: LP5891  
 
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LP589T23IGT

Parallel - 3Rd Overtone Quartz Crystal, 58.9824MHz Nom,
CTS

LP589T2XIDT

Parallel - 3Rd Overtone Quartz Crystal, 58.9824MHz Nom,
CTS

LP589T35CHT

Parallel - 3Rd Overtone Quartz Crystal, 58.9824MHz Nom,
CTS

LP589T35IBT

Parallel - 3Rd Overtone Quartz Crystal, 58.9824MHz Nom,
CTS

LP589TY5ICT

Parallel - 3Rd Overtone Quartz Crystal, 58.9824MHz Nom,
CTS

LP58ATX2CGT

Parallel - 3Rd Overtone Quartz Crystal, 58.982MHz Nom,
CTS

LP5900

Ultra Low Noise, 100 mA Linear Regulator for RF/Analog Circuits Requires No Bypass Capacitor
NSC

LP5900

LP5900 Ultra Low Noise, 150 mA Linear Regulator for RF/Analog Circuits Requires No Bypass Capacitor
TI

LP5900SD-1.5

LP5900 Ultra Low Noise, 150 mA Linear Regulator for RF/Analog Circuits Requires No Bypass Capacitor
TI

LP5900SD-1.5/NOPB

LP5900 Ultra Low Noise, 150 mA Linear Regulator for RF/Analog Circuits Requires No Bypass Capacitor
TI

LP5900SD-1.8

LP5900 Ultra Low Noise, 150 mA Linear Regulator for RF/Analog Circuits Requires No Bypass Capacitor
TI

LP5900SD-1.8/NOPB

LP5900 Ultra Low Noise, 150 mA Linear Regulator for RF/Analog Circuits Requires No Bypass Capacitor
TI