LP5907_V04 [TI]

LP5907 250-mA, Ultra-Low-Noise, Low-IQ LDO;
LP5907_V04
型号: LP5907_V04
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LP5907 250-mA, Ultra-Low-Noise, Low-IQ LDO

文件: 总47页 (文件大小:2178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LP5907  
SNVS798O APRIL 2012REVISED JUNE 2020  
LP5907 250-mA, Ultra-Low-Noise, Low-IQ LDO  
1 Features  
3 Description  
The LP5907 is a low-noise LDO that can supply up to  
1
Input voltage range: 2.2 V to 5.5 V  
Output voltage range: 1.2 V to 4.5 V  
250 mA output current. Designed to meet the  
requirements of RF and analog circuits, the LP5907  
device provides low noise, high PSRR, low quiescent  
current, and low line or load transient response  
figures. Using new innovative design techniques, the  
LP5907 offers class-leading noise performance  
without a noise bypass capacitor and the ability for  
remote output capacitor placement.  
Stable with 1-µF ceramic input and output  
capacitors  
No noise bypass capacitor required  
Remote output capacitor placement  
Thermal-overload and short-circuit protection  
–40°C to 125°C operating junction temperature  
Low output voltage noise: < 6.5 µVRMS  
PSRR: 82 dB at 1 kHz  
The device is designed to work with a 1-µF input and  
a 1-µF output ceramic capacitor (no separate noise  
bypass capacitor is required).  
Output voltage tolerance: ±2%  
This device is available with fixed output voltages  
from 1.2 V to 4.5 V in 25-mV steps. Contact Texas  
Instruments Sales for specific voltage option needs.  
Very low IQ (enabled): 12 µA  
Low dropout: 120 mV (typical)  
Device Information(1)  
Create a custom design using the LP5907 with  
the WEBENCH® Power Designer  
PART NUMBER  
PACKAGE  
DSBGA (4)  
SOT-23 (5)  
X2SON (4)  
BODY SIZE  
0.645 mm × 0.645 mm (NOM)  
2.90 mm × 1.60 mm (NOM)  
1.00 mm × 1.00 mm (NOM)  
2 Applications  
LP5907  
Smartphones  
Tablets  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Communications equipment  
Digital still cameras  
Factory automation  
space  
space  
space  
Simplified Schematic  
INPUT  
IN  
OUT  
OUTPUT  
1 F  
1 F  
LP5907  
ENABLE  
GND  
EN  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
 
 
 
 
LP5907  
SNVS798O APRIL 2012REVISED JUNE 2020  
www.ti.com  
Table of Contents  
7.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 14  
8.1 Application Information............................................ 14  
8.2 Typical Application .................................................. 14  
Power Supply Recommendations...................... 17  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 Output and Input Capacitors..................................... 7  
6.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 12  
8
9
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Examples................................................... 18  
11 Device and Documentation Support ................. 20  
11.1 Documentation Support ........................................ 20  
11.2 Receiving Notification of Documentation Updates 20  
11.3 Support Resources ............................................... 20  
11.4 Trademarks........................................................... 20  
11.5 Electrostatic Discharge Caution............................ 20  
11.6 Glossary................................................................ 20  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 21  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision N (April 2018) to Revision O  
Page  
Changed Applications section ................................................................................................................................................ 1  
Changed DSBGA body size in Device Information table ...................................................................................................... 1  
Added YKG to pinout caption of Pin Configuration and Functions section ............................................................................ 4  
Added YKG column to Thermal Information table.................................................................................................................. 6  
Changes from Revision M (January 2018) to Revision N  
Page  
Added Overshoot on start-up with EN row to Electrical Characteristics table ...................................................................... 7  
Changes from Revision L (August 2016) to Revision M  
Page  
Added links for WEBENCH ................................................................................................................................................... 1  
Added information about YKM package option ..................................................................................................................... 1  
Added minor editorial changes .............................................................................................................................................. 1  
Changes from Revision K (May 2016) to Revision L  
Page  
Changed title of data sheet and updated list of Applications and wording of 1st sentence in Description............................ 1  
Changed "10 µVRMS" to "6.5 µVRMS" ....................................................................................................................................... 1  
Changes from Revision J (March 2016) to Revision K  
Page  
Changed "Linear Regulator" to "LDO" in title and first sentence of Description .................................................................... 1  
2
Submit Documentation Feedback  
Copyright © 2012–2020, Texas Instruments Incorporated  
Product Folder Links: LP5907  
 
LP5907  
www.ti.com  
SNVS798O APRIL 2012REVISED JUNE 2020  
Changes from Revision I (August 2015) to Revision J  
Page  
Changed VOUT min and max values and VEN min value in Abs Max table and VEN row of ROC table to correct format  
errors; replace text of footnote 2 of Abs Max table ............................................................................................................... 5  
Changes from Revision H (November 2014) to Revision I  
Page  
Added icon for reference design to Top Navs and "ΔVOUT vs Temperature" graph to Typical Characteristics ..................... 1  
Changed Storage Temperature to Abs Max table; replace Handling Ratings with ESD Ratings ......................................... 5  
Deleted "VOUT 1.8 V" from first row of ΔVout spec ............................................................................................................. 6  
Added "SOT-23, X2SON packages" to second row of ΔVout spec ...................................................................................... 6  
Changes from Revision G (October 2013) to Revision H  
Page  
Added Device Information and Handling Rating tables, Feature Description, Device Functional Modes, Application  
and Implementation, Power Supply Recommendations, Layout, Device and Documentation Support, and  
Mechanical, Packaging, and Orderable Information sections; moved some curves to Application Curves section ............. 1  
Copyright © 2012–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LP5907  
LP5907  
SNVS798O APRIL 2012REVISED JUNE 2020  
www.ti.com  
5 Pin Configuration and Functions  
YKE, YKG, and YKM Packages  
4-Pin DSBGA  
OUT  
A2  
OUT  
IN  
IN  
A2  
A1  
A1  
B2  
B1  
B1  
B2  
EN  
GND  
GND  
EN  
BOTTOM VIEW  
TOP VIEW  
Pin Functions: DSBGA  
PIN  
I/O  
DESCRIPTION  
DSBGA  
NUMBER  
NAME  
A1  
A2  
IN  
I
Input voltage supply. Connect a 1-µF capacitor at this input.  
Regulated output voltage. Connect a minimum 1-µF low-ESR capacitor to this pin. Connect  
this output to the load circuit. An internal 230-Ω (typical) pulldown resistor prevents a charge  
remaining on VOUT when the regulator is in the shutdown mode (VEN low).  
OUT  
O
Enable input. A low voltage (< VIL) on this pin turns the regulator off and discharges the  
output pin to GND through an internal 230-Ω pulldown resistor. A high voltage (> VIH) on this  
pin enables the regulator output. This pin has an internal 1-MΩ pulldown resistor to hold the  
regulator off by default.  
B1  
B2  
EN  
I
GND  
Common ground  
DQN Package  
4-Pin X2SON  
Bottom View  
DBV Package  
5-Pin SOT-23  
Top View  
OUT GND  
1
2
1
2
3
IN  
GND  
EN  
OUT  
N/C  
5
4
5
4
3
IN  
EN  
Pin Functions: X2SON, SOT-23  
PIN  
I/O  
DESCRIPTION  
X2SON  
NUMBER  
SOT-23  
NUMBER  
NAME  
IN  
4
1
I
Input voltage supply. Connect a 1-µF capacitor at this input.  
Regulated output voltage. Connect a minimum 1-µF low-ESR capacitor to this  
pin. Connect this output to the load circuit. An internal 230-Ω (typical) pulldown  
resistor prevents a charge remaining on VOUT when the regulator is in the  
shutdown mode (VEN low).  
OUT  
EN  
1
3
5
O
Enable input. A low voltage (< VIL) on this pin turns the regulator off and  
discharges the output pin to GND through an internal 230-Ω pulldown resistor. A  
high voltage (> VIH) on this pin enables the regulator output. This pin has an  
internal 1-MΩ pulldown resistor to hold the regulator off by default.  
3
I
GND  
N/C  
2
2
4
Common ground  
No internal electrical connection.  
Thermal pad for X2SON package, connect to GND or leave floating. Do not  
connect to any potential other than GND.  
Thermal Pad  
5
4
Submit Documentation Feedback  
Copyright © 2012–2020, Texas Instruments Incorporated  
Product Folder Links: LP5907  
LP5907  
www.ti.com  
SNVS798O APRIL 2012REVISED JUNE 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
VIN  
Input voltage  
6
See(3)  
6
VOUT  
VEN  
Output voltage  
V
Enable input voltage  
Continuous power dissipation(4)  
Junction temperature  
Storage temperature  
Internally Limited  
W
°C  
°C  
TJMAX  
Tstg  
150  
150  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the GND pin.  
(3) Abs Max VOUT is the lessor of VIN + 0.3 V, or 6 V.  
(4) Internal thermal shutdown circuitry protects the device from permanent damage.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
2.2  
0
MAX  
UNIT  
VIN  
VEN  
IOUT  
TJ  
Input supply voltage  
Enable input voltage  
Output current  
5.5  
5.5  
250  
125  
85  
V
0
mA  
°C  
Junction temperature  
Ambient temperature(3)  
–40  
–40  
TA  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the GND pin.  
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
=
125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the  
part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX). See Application and  
Implementation.  
Copyright © 2012–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LP5907  
 
LP5907  
SNVS798O APRIL 2012REVISED JUNE 2020  
www.ti.com  
6.4 Thermal Information  
LP5907  
YKE  
DBV  
(SOT-23)  
DQN  
YKG  
YKM  
THERMAL METRIC(1)  
UNIT  
(X2SON) (DSBGA) (DSBGA) (DSBGA)  
5 PINS  
193.4  
102.1  
45.8  
8.4  
4 PINS  
216.1  
161.7  
162.1  
5.1  
4 PINS  
206.1  
1.5  
4 PINS  
191.6  
2.4  
4 PINS  
194.1  
3.0  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
37.0  
15.0  
36.8  
n/a  
58.9  
1.1  
62.7  
1.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
45.3  
n/a  
161.7  
123.0  
58.9  
n/a  
62.7  
n/a  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
VIN = VOUT(NOM) + 1 V, VEN = 1.2 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF (unless otherwise noted)(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Input voltage  
TA = 25°C  
2.2  
5.5  
V
VIN = (VOUT(NOM) + 1 V) to 5.5 V,  
IOUT = 1 mA to 250 mA  
–2  
2
Output voltage tolerance  
Line regulation  
%VOUT  
VIN = (VOUT(NOM) + 1 V) to 5.5 V,  
IOUT = 1 mA to 250 mA  
(VOUT < 1.8 V, SOT-23, X2SON packages)  
–3  
3
ΔVOUT  
VIN = (VOUT(NOM) + 1 V) to 5.5 V,  
IOUT = 1 mA  
0.02  
%/V  
Load regulation  
IOUT = 1 mA to 250 mA  
See(4)  
0.001  
%/mA  
mA  
Load current  
0
250  
ILOAD  
Maximum output current  
250  
VEN = 1.2 V, IOUT = 0 mA  
VEN = 1.2 V, IOUT = 250 mA  
VEN = 0.3 V (disabled)  
12  
250  
0.2  
14  
25  
425  
1
IQ  
Quiescent current(5)  
Ground current(6)  
µA  
µA  
IG  
VEN = 1.2 V, IOUT = 0 mA  
IOUT = 100 mA  
50  
VDO  
Dropout voltage(7)  
IOUT = 250 mA (DSBGA package)  
IOUT = 250 mA (SOT-23, X2SON packages)  
TA = 25°C(8)  
120  
200  
250  
mV  
mA  
ISC  
Short-circuit current limit  
250  
500  
(1) All voltages are with respect to the device GND terminal, unless otherwise stated.  
(2) Minimum and maximum limits are ensured through test, design, or statistical correlation over the junction temperature (TJ) range of  
–40°C to 125°C, unless otherwise stated. Typical values represent the most likely parametric norm at TA = 25°C, and are provided for  
reference purposes only.  
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
=
125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the  
part/package in the application RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX). See Application and  
Implementation.  
(4) The device maintains a stable, regulated output voltage without a load current.  
(5) Quiescent current is defined here as the difference in current between the input voltage source and the load at VOUT  
.
(6) Ground current is defined here as the total current flowing to ground as a result of all input voltages applied to the device.  
(7) Dropout voltage is the voltage difference between the input and the output at which the output voltage drops to 100 mV below its  
nominal value.  
(8) Short-circuit current (ISC) for the LP5907 is equivalent to current limit. To minimize thermal effects during testing, ISC is measured with  
VOUT pulled to 100 mV below its nominal voltage.  
6
Submit Documentation Feedback  
Copyright © 2012–2020, Texas Instruments Incorporated  
Product Folder Links: LP5907  
 
LP5907  
www.ti.com  
SNVS798O APRIL 2012REVISED JUNE 2020  
Electrical Characteristics (continued)  
VIN = VOUT(NOM) + 1 V, VEN = 1.2 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF (unless otherwise noted)(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
f = 100 Hz, IOUT = 20 mA  
MIN  
TYP  
90  
MAX  
UNIT  
f = 1 kHz, IOUT = 20 mA  
f = 10 kHz, IOUT = 20 mA  
f = 100 kHz, IOUT = 20 mA  
82  
PSRR  
Power-supply rejection ratio(9)  
dB  
65  
60  
IOUT = 1 mA  
10  
eN  
Output noise voltage(9)  
BW = 10 Hz to 100 kHz  
µVRMS  
Ω
IOUT = 250 mA  
6.5  
Output automatic discharge  
pulldown resistance  
RAD  
TSD  
VEN < VIL (output disabled)  
230  
Thermal shutdown  
Thermal hysteresis  
TJ rising  
160  
15  
°C  
TJ falling from shutdown  
LOGIC INPUT THRESHOLDS  
VIN = 2.2 V to 5.5 V,  
VEN falling until the output is disabled  
VIL  
VIH  
Low input threshold  
High input threshold  
0.4  
V
V
VIN = 2.2 V to 5.5 V  
VEN rising until the output is enabled  
1.2  
VEN = 5.5 V and VIN = 5.5 V  
VEN = 0 V and VIN = 5.5 V  
5.5  
IEN  
Input current at EN pin(10)  
µA  
0.001  
TRANSIENT CHARACTERISTICS  
VIN = (VOUT(NOM) + 1 V) to  
(VOUT(NOM) + 1.6 V) in 30 µs  
–1  
Line transient(9)  
VIN = (VOUT(NOM) + 1.6 V) to  
(VOUT(NOM) + 1.6 V) in 30 µs  
1
mV  
IOUT = 1 mA to 250 mA in 10 µs  
–40  
Load transient(9)  
ΔVOUT  
IOUT = 250 mA to 1 mA in 10 µs  
40  
Overshoot on start-up(9)  
Stated as a percentage of VOUT(NOM)  
Stated as a percentage of VOUT(NOM), VIN  
5%  
=
VOUT + 1 V to 5.5 V, 0.7 µF < COUT < 10 µF,  
0 mA < IOUT < 250 mA, EN rising until the  
output is enabled  
Overshoot on start-up with EN(9)  
1%  
From VEN > VIH to VOUT = 95% of VOUT(NOM)  
TA = 25°C  
,
tON  
Turnon time  
80  
150  
µs  
(9) This specification is verified by design.  
(10) There is a 1-MΩ resistor between EN and ground on the device.  
6.6 Output and Input Capacitors  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN(1)  
TYP  
MAX  
UNIT  
µF  
CIN  
Input capacitance(2)  
Output capacitance(2)  
Output/Input capacitance(2)  
0.7  
0.7  
5
1
1
Capacitance for stability  
COUT  
ESR  
10  
µF  
500  
mΩ  
(1) The minimum capacitance should be greater than 0.5 µF over the full range of operating conditions. The capacitor tolerance should be  
30% or better over the full temperature range. The full range of operating conditions for the capacitor in the application must be  
considered during device selection to ensure this minimum capacitance specification is met. X7R capacitors are recommended however  
capacitor types X5R, Y5V and Z5U may be used with consideration of the application and conditions.  
(2) This specification is verified by design.  
Copyright © 2012–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LP5907  
 
LP5907  
SNVS798O APRIL 2012REVISED JUNE 2020  
www.ti.com  
6.7 Typical Characteristics  
VIN = 3.7 V, VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C (unless otherwise noted)  
1
0.9  
0.8  
0.7  
0.6  
0.5  
16  
14  
12  
10  
8
6
4
2
VIH Rising  
VIL Falling  
0
2.3 2.8 3.3 3.8 4.3 4.8 5.3 5.8  
(V)  
2
2.5  
3
3.5  
4
VIN (V)  
4.5  
5
5.5  
6
V
IN  
D001  
SVA-30180569  
Figure 2. VEN Thresholds vs VIN  
Figure 1. Quiescent Current vs Input Voltage  
1.4  
1.2  
1
5
4.5  
4
3.5  
3
0.8  
0.6  
0.4  
0.2  
0
2.5  
2
1.5  
1
RLOAD = 1.2 kW  
RLOAD = 4.8 W  
RLOAD = 4.5 kW  
RLOAD = 18 W  
0.5  
0
0
0.5  
1
1.5  
2
2.5  
0
1
2
3
VIN (V)  
4
5
6
VIN (V)  
D002  
D003  
VOUT = 1.2 V, VEN = VIN  
VOUT = 4.5 V, VEN = VIN  
Figure 4. VOUT vs VIN  
Figure 3. VOUT vs VIN  
350  
300  
250  
200  
150  
100  
50  
2.900  
2.875  
2.850  
2.825  
2.800  
2.775  
2.750  
2.725  
2.700  
V
= 3.6V  
IN  
VIN = 3.0V  
VIN = 3.8V  
VIN = 4.2V  
VIN = 5.5V  
-40°C  
90°C  
25°C  
0
0
50 100 150 200 250 300  
(mA)  
0
50  
100  
150  
200  
250  
LOAD (mA)  
I
OUT  
SVA-30180567  
SVA-30180571  
Figure 6. Load Regulation  
Figure 5. Ground Current vs Output Current  
8
Submit Documentation Feedback  
Copyright © 2012–2020, Texas Instruments Incorporated  
Product Folder Links: LP5907  
LP5907  
www.ti.com  
SNVS798O APRIL 2012REVISED JUNE 2020  
Typical Characteristics (continued)  
VIN = 3.7 V, VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C (unless otherwise noted)  
0.2  
0.1  
0
2.900  
2.875  
2.850  
2.825  
2.800  
2.775  
2.750  
2.725  
2.700  
Load = 10 mA  
-0.1  
-0.2  
-0.3  
-0.4  
-40°C  
90°C  
25°C  
3.0  
3.5  
4.0  
V
4.5  
(V)  
5.0  
5.5  
-50  
-25  
0
25  
50  
75  
100  
125  
D010  
IN  
Junction Temperature (èC)  
SVA-30180568  
Figure 8. Line Regulation  
Figure 7. ΔVOUT vs Temperature  
2V/DIV  
V
10 mV/  
DIV  
OUT  
V
OUT  
(AC Coupled)  
2V/DIV  
V
IN  
V
V
IN = EN  
1V/DIV  
1A/DIV  
I
IN  
2 ms/DIV  
10 s/DIV  
SVA-30180509  
SVA-30180510  
VIN = 3.2 V 4.2 V, load = 1 mA  
Figure 9. Inrush Current  
Figure 10. Line Transient  
V
10 mV/  
DIV  
OUT  
V
OUT  
100 mV/DIV  
(AC Coupled)  
V
1V/DIV  
IN  
200 mA/DIV  
LOAD  
10 s/DIV  
100 s/DIV  
SVA-30180511  
SVA-30180512  
VIN = 3.2 V 4.2 V, load = 250 mA  
Load = 0 mA 250 mA, –40°C  
Figure 11. Line Transient  
Figure 12. Load Transient  
Copyright © 2012–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LP5907  
LP5907  
SNVS798O APRIL 2012REVISED JUNE 2020  
www.ti.com  
Typical Characteristics (continued)  
VIN = 3.7 V, VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C (unless otherwise noted)  
V
OUT  
100 mV/DIV  
100 mV/DIV  
V
OUT  
LOAD  
200 mA/DIV  
LOAD  
200 mA/DIV  
100 s/DIV  
100 s/DIV  
SVA-30180513  
SVA-30180514  
Load = 0 mA 250 mA, 90°C  
Load = 0 mA 250 mA, 25°C  
Figure 13. Load Transient  
Figure 14. Load Transient  
1V/DIV  
1V/DIV  
V
OUT  
V
OUT  
1V/DIV  
1V/DIV  
EN  
EN  
20 s/DIV  
20 s/DIV  
SVA-30180516  
SVA-30180515  
Load = 250 mA  
Load = 0 mA  
Figure 15. Start-Up  
Figure 16. Start-Up  
140  
120  
100  
80  
60  
40  
Dropout Voltage  
20  
0
0
50  
100  
150  
200  
250  
LOAD CURRENT (mA)  
SVA-30180573  
Figure 18. Dropout Voltage vs Load Current  
Figure 17. Noise Density Test  
10  
Submit Documentation Feedback  
Copyright © 2012–2020, Texas Instruments Incorporated  
Product Folder Links: LP5907  
LP5907  
www.ti.com  
SNVS798O APRIL 2012REVISED JUNE 2020  
Typical Characteristics (continued)  
VIN = 3.7 V, VOUT = 2.8 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, and TA = 25°C (unless otherwise noted)  
0
0
250 mA  
200 mA  
150 mA  
100 mA  
50 mA  
-20  
-20  
-40  
-40  
20 mA  
-60  
-60  
250 mA  
200 mA  
150 mA  
100 mA  
50 mA  
-80  
-80  
-100  
-100  
20 mA  
-120  
-120  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
10000  
FREQUENCY (kHz)  
D004  
D005  
Figure 19. PSRR Loads Averaged 100 Hz to 100 kHz  
Figure 20. PSRR Loads Averaged 10 Hz to 10 MHz  
Copyright © 2012–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LP5907  
LP5907  
SNVS798O APRIL 2012REVISED JUNE 2020  
www.ti.com  
7 Detailed Description  
7.1 Overview  
Designed to meet the needs of sensitive RF and analog circuits, the LP5907 provides low noise, high PSRR, low  
quiescent current, as well as low line and load transient response figures. Using new innovative design  
techniques, the LP5907 offers class leading noise performance without the need for a separate noise filter  
capacitor.  
The LP5907 is designed to perform with a single 1-µF input capacitor and a single 1-µF ceramic output  
capacitor. With a reasonable PCB layout, the single 1-µF ceramic output capacitor can be placed up to 10 cm  
away from the LP5907 device.  
7.2 Functional Block Diagram  
OUT  
IN  
POR  
EN  
EN  
+
R
F
C
F
+
V
BG  
R
AD  
1.20V  
EN  
EN  
+
EN  
1 M  
VIH  
GND  
7.3 Feature Description  
7.3.1 Enable (EN)  
The LP5907 EN pin is internally held low by a 1-MΩ resistor to GND. The EN pin voltage must be higher than the  
VIH threshold to ensure that the device is fully enabled under all operating conditions. The EN pin voltage must  
be lower than the VIL threshold to ensure that the device is fully disabled and the automatic output discharge is  
activated.  
7.3.2 Low Output Noise  
Any internal noise at the LP5907 reference voltage is reduced by a first order low-pass RC filter before it is  
passed to the output buffer stage. The low-pass RC filter has a –3 dB cut-off frequency of approximately 0.1 Hz.  
12  
Submit Documentation Feedback  
Copyright © 2012–2020, Texas Instruments Incorporated  
Product Folder Links: LP5907  
LP5907  
www.ti.com  
SNVS798O APRIL 2012REVISED JUNE 2020  
Feature Description (continued)  
7.3.3 Output Automatic Discharge  
The LP5907 output employs an internal 230-Ω (typical) pulldown resistance to discharge the output when the EN  
pin is low, and the device is disabled.  
7.3.4 Remote Output Capacitor Placement  
The LP5907 requires at least a 1-µF capacitor at the OUT pin, but there are no strict requirements about the  
location of the capacitor in regards the OUT pin. In practical designs, the output capacitor may be located up to  
10 cm away from the LDO.  
7.3.5 Thermal Overload Protection (TSD  
)
Thermal shutdown disables the output when the junction temperature rises to approximately 160°C which allows  
the device to cool. When the junction temperature cools to approximately 145°C, the output circuitry enables.  
Based on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may  
cycle on and off. This thermal cycling limits the dissipation of the regulator and protects it from damage as a  
result of overheating.  
The thermal shutdown circuitry of the LP5907 has been designed to protect against temporary thermal overload  
conditions. The TSD circuitry was not intended to replace proper heat-sinking. Continuously running the LP5907  
device into thermal shutdown may degrade device reliability.  
7.4 Device Functional Modes  
7.4.1 Enable (EN)  
The LP5907 Enable (EN) pin is internally held low by a 1-MΩ resistor to GND. The EN pin voltage must be  
higher than the VIH threshold to ensure that the device is fully enabled under all operating conditions.  
When the EN pin is pulled low, and the output is disabled, the output automatic discharge circuitry is activated.  
Any charge on the OUT pin is discharged to GND through the internal 230-Ω (typical) pulldown resistance.  
7.4.2 Minimum Operating Input Voltage (VIN)  
The LP5907 does not include any dedicated UVLO circuitry. The LP5907 internal circuitry is not fully functional  
until VIN is at least 2.2 V. The output voltage is not regulated until VIN has reached at least the greater of 2.2 V or  
(VOUT + VDO).  
Copyright © 2012–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LP5907  
LP5907  
SNVS798O APRIL 2012REVISED JUNE 2020  
www.ti.com  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LP5907 is designed to meet the requirements of RF and analog circuits, by providing low noise, high PSRR,  
low quiescent current, and low line or load transient response figures. The device offers excellent noise  
performance without the need for a noise bypass capacitor and is stable with input and output capacitors with a  
value of 1 µF. The LP5907 delivers this performance in industry standard packages such as DSBGA, X2SON,  
and SOT-23 which, for this device, are specified with an operating junction temperature (TJ) of –40°C to 125°C.  
8.2 Typical Application  
Figure 21 shows the typical application circuit for the LP5907. Input and output capacitances may need to be  
increased above the 1 µF minimum for some applications.  
INPUT  
IN  
OUT  
OUTPUT  
1 F  
1 F  
LP5907  
ENABLE  
GND  
EN  
GND  
Figure 21. LP5907 Typical Application  
8.2.1 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
2.2 V to 5.5 V  
1.8 V  
Input voltage range  
Output voltage  
Output current  
200 mA  
Output capacitor range  
Input/Output capacitor ESR range  
0.7 µF to 10 µF  
5 to 500 mΩ  
14  
Submit Documentation Feedback  
Copyright © 2012–2020, Texas Instruments Incorporated  
Product Folder Links: LP5907  
 
LP5907  
www.ti.com  
SNVS798O APRIL 2012REVISED JUNE 2020  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LP5907 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Power Dissipation and Device Operation  
The permissible power dissipation for any package is a measure of the capability of the device to pass heat from  
the power source, the junctions of the IC, to the ultimate heat sink, the ambient environment. Thus, the power  
dissipation is dependent on the ambient temperature and the thermal resistance across the various interfaces  
between the die junction and ambient air.  
The maximum allowable power dissipation for the device in a given package can be calculated using Equation 1:  
PD-MAX = ((TJ-MAX – TA) / RθJA  
)
(1)  
The actual power being dissipated in the device can be represented by Equation 2:  
PD = (VIN – VOUT) × IOUT  
(2)  
These two equations establish the relationship between the maximum power dissipation allowed due to thermal  
consideration, the voltage drop across the device, and the continuous current capability of the device. These two  
equations should be used to determine the optimum operating conditions for the device in the application.  
In applications where lower power dissipation (PD) and/or excellent package thermal resistance (RθJA) is present,  
the maximum ambient temperature (TA-MAX) may be increased.  
In applications where high power dissipation and/or poor package thermal resistance is present, the maximum  
ambient temperature (TA-MAX) may have to be derated. TA-MAX is dependent on the maximum operating junction  
temperature (TJ-MAX-OP = 125°C), the maximum allowable power dissipation in the device package in the  
application (PD-MAX), and the junction-to ambient thermal resistance of the part/package in the application (RθJA),  
as given by Equation 3:  
TA-MAX = (TJ-MAX-OP – (RθJA × PD-MAX))  
(3)  
Alternately, if TA-MAX can not be derated, the PD value must be reduced. This can be accomplished by reducing  
VIN in the VIN–VOUT term as long as the minimum VIN is met, or by reducing the IOUT term, or by some  
combination of the two.  
8.2.2.3 External Capacitors  
Like most low-dropout regulators, the LP5907 requires external capacitors for regulator stability. The device is  
specifically designed for portable applications requiring minimum board space and smallest components. These  
capacitors must be correctly selected for good performance.  
8.2.2.4 Input Capacitor  
An input capacitor is required for stability. The input capacitor should be at least equal to, or greater than, the  
output capacitor for good load transient performance. At least a 1 µF capacitor has to be connected between the  
LP5907 input pin and ground for stable operation over full load current range. Basically, it is ok to have more  
output capacitance than input, as long as the input is at least 1 µF.  
Copyright © 2012–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LP5907  
 
 
 
LP5907  
SNVS798O APRIL 2012REVISED JUNE 2020  
www.ti.com  
The input capacitor must be located a distance of not more than 1 cm from the input pin and returned to a clean  
analog ground. Any good quality ceramic, tantalum, or film capacitor may be used at the input.  
NOTE  
To ensure stable operation it is essential that good PCB practices are employed to  
minimize ground impedance and keep input inductance low. If these conditions cannot be  
met, or if long leads are to be used to connect the battery or other power source to the  
LP5907, TI recommends increasing the input capacitor to at least 10 µF. Also, tantalum  
capacitors can suffer catastrophic failures due to surge current when connected to a low-  
impedance source of power (like a battery or a very large capacitor). If a tantalum  
capacitor is used at the input, it should be verified by the manufacturer to have a surge  
current rating sufficient for the application. The initial tolerance, applied voltage de-rating,  
and temperature coefficient must all be considered when selecting the input capacitor to  
ensure the actual capacitance is never less than 0.7 µF over the entire operating range.  
8.2.2.5 Output Capacitor  
The LP5907 is designed specifically to work with a very small ceramic output capacitor, typically 1 µF. A ceramic  
capacitor (dielectric types X5R or X7R) in the 1 µF to 10 µF range, and with ESR between 5 mΩ to 500 mΩ, is  
suitable in the LP5907 application circuit. For this device the output capacitor should be connected between the  
OUT pin and a good connection back to the GND pin.  
It may also be possible to use tantalum or film capacitors at the device output, VOUT, but these are not as  
attractive for reasons of size and cost (see Capacitor Characteristics).  
The output capacitor must meet the requirement for the minimum value of capacitance and have an ESR value  
that is within the range 5 mΩ to 500 mΩ for stability. Like the input capacitor, the initial tolerance, applied voltage  
de-rating, and temperature coefficient must all be considered when selecting the input capacitor to ensure the  
actual capacitance is never less than 0.7 µF over the entire operating range.  
8.2.2.6 Capacitor Characteristics  
The LP5907 is designed to work with ceramic capacitors on the input and output to take advantage of the  
benefits they offer. For capacitance values in the range of 1 µF to 10 µF, ceramic capacitors are the smallest,  
least expensive and have the lowest ESR values, thus making them best for eliminating high frequency noise.  
The ESR of a typical 1 µF ceramic capacitor is in the range of 20 mΩ to 40 mΩ, which easily meets the ESR  
requirement for stability for the LP5907.  
A better choice for temperature coefficient in a ceramic capacitor is X7R. This type of capacitor is the most stable  
and holds the capacitance within ±15% over the temperature range. Tantalum capacitors are less desirable than  
ceramic for use as output capacitors because they are more expensive when comparing equivalent capacitance  
and voltage ratings in the 1 µF to 10 µF range.  
Another important consideration is that tantalum capacitors have higher ESR values than equivalent size  
ceramics. This means that while it may be possible to find a tantalum capacitor with an ESR value within the  
stable range, it would have to be larger in capacitance (which means bigger and more costly) than a ceramic  
capacitor with the same ESR value. It should also be noted that the ESR of a typical tantalum increases about  
2:1 as the temperature goes from 25°C down to –40°C, so some guard band must be allowed.  
8.2.2.7 Remote Capacitor Operation  
The LP5907 requires at least a 1-µF capacitor at the OUT pin, but there is no strict requirements about the  
location of the capacitor in regards to the pin. In practical designs the output capacitor may be located up to 10  
cm away from the LDO. This means that there is no need to have a special capacitor close to the output pin if  
there is already respective capacitors in the system (like a capacitor at the input of supplied part). The remote  
capacitor feature helps user to minimize the number of capacitors in the system.  
16  
Submit Documentation Feedback  
Copyright © 2012–2020, Texas Instruments Incorporated  
Product Folder Links: LP5907  
 
LP5907  
www.ti.com  
SNVS798O APRIL 2012REVISED JUNE 2020  
As a good design practice, keep the wiring parasitic inductance at a minimum, which means to use as wide as  
possible traces from the LDO output to the capacitors, keeping the LDO output trace layer as close to ground  
layer as possible and avoiding vias on the path. If there is a need to use vias, implement as many as possible  
vias between the connection layers. The recommendation is to keep parasitic wiring inductance less than 35 nH.  
For the applications with fast load transients, it is recommended to use an input capacitor equal to or larger to  
the sum of the capacitance at the output node for the best load transient performance.  
8.2.2.8 No-Load Stability  
The LP5907 remains stable, and in regulation, with no external load.  
8.2.2.9 Enable Control  
The LP5907 may be switched ON or OFF by a logic input at the EN pin. A voltage on this pin greater than VIH  
turns the device on, while a voltage less than VIL turns the device off.  
When the EN pin is low, the regulator output is off and the device typically consumes less than 1 µA.  
Additionally, an output pulldown circuit is activated which ensures that any charge stored on COUT is discharged  
to ground.  
If the application does not require the use of the shutdown feature, the EN pin can be tied directly to the IN pin to  
keep the regulator output permanently on.  
An internal 1-MΩ pulldown resistor ties the EN input to ground, ensuring that the device remains off if the EN pin  
is left open circuit. To ensure proper operation, the signal source used to drive the EN pin must be able to swing  
above and below the specified turnon or turnoff voltage thresholds listed in the Electrical Characteristics under  
VIL and VIH.  
8.2.3 Application Curves  
1V/DIV  
100 mV/DIV  
V
OUT  
V
OUT  
1V/DIV  
LOAD  
200 mA/DIV  
EN  
100 s/DIV  
20 s/DIV  
SVA-30180514  
SVA-30180515  
Figure 23. Load Transient Response  
Figure 22. Start-Up  
9 Power Supply Recommendations  
This device is designed to operate from an input supply voltage range of 2.2 V to 5.5 V. The input supply must  
be well regulated and free of spurious noise. To ensure that the LP5907 output voltage is well regulated and  
dynamic performance is optimum, the input supply must be at least VOUT + 1 V. A minimum capacitor value of 1  
µF is required to be within 1 cm of the IN pin.  
Copyright © 2012–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LP5907  
LP5907  
SNVS798O APRIL 2012REVISED JUNE 2020  
www.ti.com  
10 Layout  
10.1 Layout Guidelines  
The dynamic performance of the LP5907 is dependant on the layout of the PCB. PCB layout practices that are  
adequate for typical LDOs may degrade the PSRR, noise, or transient performance of the LP5907.  
Best performance is achieved by placing CIN and COUT on the same side of the PCB as the LP5907, and as  
close to the package as is practical. The ground connections for CIN and COUT must be back to the LP5907  
ground pin using as wide and short a copper trace as is practical.  
Connections using long trace lengths, narrow trace widths, and/or connections through vias must be avoided.  
These add parasitic inductances and resistance that results in inferior performance especially during transient  
conditions  
10.1.1 X2SON Mounting  
The X2SON package thermal pad must be soldered to the printed circuit board for proper thermal and  
mechanical performance. For more information, see the QFN/SON PCB Attachment application report.  
10.1.2 DSBGA Mounting  
The DSBGA package requires specific mounting techniques, which are detailed in AN-1112 DSBGA Wafer Level  
Chip Scale Package. For best results during assembly, alignment ordinals on the PC board may be used to  
facilitate placement of the DSBGA device.  
10.1.3 DSBGA Light Sensitivity  
Exposing the DSBGA device to direct light may cause incorrect operation of the device. Light sources such as  
halogen lamps can affect electrical performance if they are situated in proximity to the device. Light with  
wavelengths in the red and infrared part of the spectrum have the most detrimental effect; thus, the fluorescent  
lighting used inside most buildings has very little effect on performance.  
10.2 Layout Examples  
V
V
OUT  
IN  
C
IN  
OUT  
5
C
1
2
3
OUT  
IN  
GND  
GND  
GND  
EN  
Enable  
4
N/C  
Figure 24. LP5907MF-x.x (SOT-23) Typical Layout  
18  
Submit Documentation Feedback  
Copyright © 2012–2020, Texas Instruments Incorporated  
Product Folder Links: LP5907  
LP5907  
www.ti.com  
SNVS798O APRIL 2012REVISED JUNE 2020  
Layout Examples (continued)  
LP5907SN  
VOUT  
VIN  
1
4
3
COUT  
CIN  
2
Power Ground  
VEN  
Figure 25. LP5907SN-xx (X2SON) Typical Layout  
VIN  
VOUT  
LP5907UV  
A1  
A2  
B2  
COUT  
CIN  
B1  
Power Ground  
VEN  
Figure 26. LP5907A/UV-x.x (DSBGA) Typical Layout  
Copyright © 2012–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LP5907  
LP5907  
SNVS798O APRIL 2012REVISED JUNE 2020  
www.ti.com  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LP5907 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
11.1.2 Related Documentation  
For related documentation, see the following:  
Texas Instruments, AN-1112 DSBGA Wafer Level Chip Scale Package application note  
Texas Instruments, QFN/SON PCB Attachment application report  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 Trademarks  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
20  
Submit Documentation Feedback  
Copyright © 2012–2020, Texas Instruments Incorporated  
Product Folder Links: LP5907  
LP5907  
www.ti.com  
SNVS798O APRIL 2012REVISED JUNE 2020  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2012–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LP5907  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Oct-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
YKM  
YKM  
YKM  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DQN  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP5907A28YKMR  
LP5907A29YKMR  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
4
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
Green (RoHS  
& no Sb/Br)  
SAC396  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Q
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
SAC396  
SAC396  
SN  
Y
LP5907A33YKMR  
Green (RoHS  
& no Sb/Br)  
N
LP5907MFX-1.2/NOPB  
LP5907MFX-1.5/NOPB  
LP5907MFX-1.8/NOPB  
LP5907MFX-2.5/NOPB  
LP5907MFX-2.8/NOPB  
LP5907MFX-2.85/NOPB  
LP5907MFX-2.9/NOPB  
LP5907MFX-3.0/NOPB  
LP5907MFX-3.1/NOPB  
LP5907MFX-3.2/NOPB  
LP5907MFX-3.3/NOPB  
LP5907MFX-4.5/NOPB  
LP5907SNX-1.2/NOPB  
Green (RoHS  
& no Sb/Br)  
LLTB  
LN8B  
LLUB  
LN7B  
LLYB  
LN4B  
1E5X  
LLZB  
LN5B  
LN6B  
LLVB  
LLXB  
CF  
Green (RoHS  
& no Sb/Br)  
SN  
Green (RoHS  
& no Sb/Br)  
SN  
Green (RoHS  
& no Sb/Br)  
SN  
Green (RoHS  
& no Sb/Br)  
SN  
Green (RoHS  
& no Sb/Br)  
SN  
Green (RoHS  
& no Sb/Br)  
SN  
Green (RoHS  
& no Sb/Br)  
SN  
Green (RoHS  
& no Sb/Br)  
SN  
Green (RoHS  
& no Sb/Br)  
SN  
Green (RoHS  
& no Sb/Br)  
SN  
Green (RoHS  
& no Sb/Br)  
SN  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Oct-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
YKE  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP5907SNX-1.8/NOPB  
LP5907SNX-1.9  
ACTIVE  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
DSBGA  
DSBGA  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
CG  
3Z  
EP  
F9  
CH  
HI  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
LP5907SNX-2.2/NOPB  
LP5907SNX-2.5/NOPB  
LP5907SNX-2.7/NOPB  
LP5907SNX-2.75  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
LP5907SNX-2.8/NOPB  
LP5907SNX-2.85/NOPB  
LP5907SNX-2.9/NOPB  
LP5907SNX-3.0/NOPB  
LP5907SNX-3.1/NOPB  
LP5907SNX-3.2/NOPB  
LP5907SNX-3.3/NOPB  
LP5907SNX-4.0/NOPB  
LP5907SNX-4.5/NOPB  
LP5907UVE-1.2/NOPB  
LP5907UVE-1.8/NOPB  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-1-260C-UNLIM  
CI  
Green (RoHS NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
CJ  
GV  
CK  
CL  
CM  
CN  
GU  
CO  
R
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS NIPDAU | NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
YKE  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
S
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Oct-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP5907UVE-2.8/NOPB  
LP5907UVE-2.85/NOPB  
LP5907UVE-3.0/NOPB  
LP5907UVE-3.1/NOPB  
LP5907UVE-3.2/NOPB  
LP5907UVE-3.3/NOPB  
LP5907UVE-4.5/NOPB  
LP5907UVX-1.2/NOPB  
LP5907UVX-1.6/NOPB  
LP5907UVX-1.8/NOPB  
LP5907UVX-2.2/NOPB  
LP5907UVX-2.5/NOPB  
LP5907UVX-2.8/NOPB  
LP5907UVX-2.85/NOPB  
LP5907UVX-3.0/NOPB  
LP5907UVX-3.1/NOPB  
LP5907UVX-3.2/NOPB  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
U
V
B
X
C
D
Z
R
J
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SAC396  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SAC396  
S
5
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
E
U
V
B
X
C
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Oct-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP5907UVX-3.3/NOPB  
LP5907UVX-4.5/NOPB  
LP5907UVX19/NOPB  
LP5907UVX37/NOPB  
LP5907YKGR-2.0  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YKE  
4
4
4
4
4
4
4
4
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
D
Z
8
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
YKE  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
SNAGCU  
Call TI  
YKE  
Green (RoHS  
& no Sb/Br)  
YKE  
Green (RoHS  
& no Sb/Br)  
9
YKG  
YKG  
YKG  
YKG  
Green (RoHS  
& no Sb/Br)  
W
3
LP5907YKGR-2.8  
Green (RoHS  
& no Sb/Br)  
Call TI  
LP5907YKGR-2.825  
LP5907YKGR-2.85  
Green (RoHS  
& no Sb/Br)  
Call TI  
5
Green (RoHS  
& no Sb/Br)  
SAC396  
P
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Oct-2020  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LP5907 :  
Automotive: LP5907-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 5  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Oct-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP5907A28YKMR  
LP5907A29YKMR  
LP5907A33YKMR  
DSBGA  
DSBGA  
DSBGA  
YKM  
YKM  
YKM  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DQN  
DQN  
DQN  
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
9.5  
9.5  
9.5  
0.74  
0.74  
0.74  
3.2  
0.74  
0.74  
0.74  
3.2  
0.54  
0.54  
0.54  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q2  
Q2  
Q2  
LP5907MFX-1.2/NOPB SOT-23  
LP5907MFX-1.5/NOPB SOT-23  
LP5907MFX-1.8/NOPB SOT-23  
LP5907MFX-2.5/NOPB SOT-23  
LP5907MFX-2.8/NOPB SOT-23  
LP5907MFX-2.85/NOPB SOT-23  
LP5907MFX-2.9/NOPB SOT-23  
LP5907MFX-3.0/NOPB SOT-23  
LP5907MFX-3.1/NOPB SOT-23  
LP5907MFX-3.2/NOPB SOT-23  
LP5907MFX-3.3/NOPB SOT-23  
LP5907MFX-4.5/NOPB SOT-23  
LP5907SNX-1.2/NOPB X2SON  
LP5907SNX-1.8/NOPB X2SON  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
0.63  
0.63  
0.63  
LP5907SNX-1.9  
X2SON  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Oct-2020  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP5907SNX-2.2/NOPB X2SON  
LP5907SNX-2.5/NOPB X2SON  
LP5907SNX-2.7/NOPB X2SON  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
9.5  
9.5  
9.5  
9.5  
9.5  
9.5  
9.5  
9.5  
9.5  
9.5  
9.5  
9.5  
9.5  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
0.74  
0.71  
0.71  
0.74  
0.71  
0.74  
0.74  
0.71  
0.71  
0.74  
0.74  
0.71  
0.71  
0.74  
0.74  
0.71  
0.71  
0.74  
0.71  
0.74  
0.74  
0.71  
0.74  
0.74  
0.71  
0.74  
0.71  
0.74  
0.71  
0.71  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
1.16  
0.74  
0.71  
0.71  
0.74  
0.71  
0.74  
0.74  
0.71  
0.71  
0.74  
0.74  
0.71  
0.71  
0.74  
0.74  
0.71  
0.71  
0.74  
0.71  
0.74  
0.74  
0.71  
0.74  
0.74  
0.71  
0.74  
0.71  
0.74  
0.71  
0.71  
0.63  
0.63  
0.63  
0.63  
0.63  
0.63  
0.63  
0.63  
0.63  
0.63  
0.63  
0.63  
0.63  
0.5  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
LP5907SNX-2.75  
X2SON  
LP5907SNX-2.8/NOPB X2SON  
LP5907SNX-2.85/NOPB X2SON  
LP5907SNX-2.9/NOPB X2SON  
LP5907SNX-3.0/NOPB X2SON  
LP5907SNX-3.1/NOPB X2SON  
LP5907SNX-3.2/NOPB X2SON  
LP5907SNX-3.3/NOPB X2SON  
LP5907SNX-4.0/NOPB X2SON  
LP5907SNX-4.5/NOPB X2SON  
LP5907UVE-1.2/NOPB DSBGA  
LP5907UVE-1.2/NOPB DSBGA  
LP5907UVE-1.8/NOPB DSBGA  
LP5907UVE-1.8/NOPB DSBGA  
LP5907UVE-2.8/NOPB DSBGA  
LP5907UVE-2.8/NOPB DSBGA  
LP5907UVE-2.85/NOPB DSBGA  
LP5907UVE-2.85/NOPB DSBGA  
LP5907UVE-3.0/NOPB DSBGA  
LP5907UVE-3.0/NOPB DSBGA  
LP5907UVE-3.1/NOPB DSBGA  
LP5907UVE-3.1/NOPB DSBGA  
LP5907UVE-3.2/NOPB DSBGA  
LP5907UVE-3.2/NOPB DSBGA  
LP5907UVE-3.3/NOPB DSBGA  
LP5907UVE-3.3/NOPB DSBGA  
LP5907UVE-4.5/NOPB DSBGA  
LP5907UVE-4.5/NOPB DSBGA  
LP5907UVX-1.2/NOPB DSBGA  
LP5907UVX-1.2/NOPB DSBGA  
LP5907UVX-1.6/NOPB DSBGA  
LP5907UVX-1.8/NOPB DSBGA  
LP5907UVX-1.8/NOPB DSBGA  
LP5907UVX-2.2/NOPB DSBGA  
LP5907UVX-2.5/NOPB DSBGA  
LP5907UVX-2.8/NOPB DSBGA  
LP5907UVX-2.8/NOPB DSBGA  
LP5907UVX-2.85/NOPB DSBGA  
LP5907UVX-2.85/NOPB DSBGA  
LP5907UVX-3.0/NOPB DSBGA  
250  
0.51  
0.51  
0.5  
250  
250  
250  
0.51  
0.5  
250  
250  
0.5  
250  
0.51  
0.51  
0.5  
250  
250  
250  
0.5  
250  
0.51  
0.51  
0.5  
250  
250  
250  
0.5  
250  
0.51  
0.51  
0.5  
250  
250  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
0.51  
0.5  
0.5  
0.51  
0.5  
0.5  
0.51  
0.5  
0.51  
0.5  
0.51  
0.51  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Oct-2020  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP5907UVX-3.0/NOPB DSBGA  
LP5907UVX-3.1/NOPB DSBGA  
LP5907UVX-3.1/NOPB DSBGA  
LP5907UVX-3.2/NOPB DSBGA  
LP5907UVX-3.2/NOPB DSBGA  
LP5907UVX-3.3/NOPB DSBGA  
LP5907UVX-3.3/NOPB DSBGA  
LP5907UVX-4.5/NOPB DSBGA  
LP5907UVX-4.5/NOPB DSBGA  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKG  
YKG  
YKG  
YKG  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
9.2  
9.2  
9.2  
9.2  
0.74  
0.71  
0.74  
0.74  
0.71  
0.71  
0.74  
0.74  
0.71  
0.71  
0.74  
0.74  
0.71  
0.72  
0.72  
0.72  
0.72  
0.74  
0.71  
0.74  
0.74  
0.71  
0.71  
0.74  
0.74  
0.71  
0.71  
0.74  
0.74  
0.71  
0.72  
0.72  
0.72  
0.72  
0.5  
0.51  
0.5  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
0.5  
0.51  
0.51  
0.5  
0.5  
0.51  
0.51  
0.5  
LP5907UVX19/NOPB  
LP5907UVX19/NOPB  
LP5907UVX37/NOPB  
LP5907UVX37/NOPB  
LP5907YKGR-2.0  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
0.5  
0.51  
0.39  
0.39  
0.39  
0.39  
LP5907YKGR-2.8  
LP5907YKGR-2.825  
LP5907YKGR-2.85  
*All dimensions are nominal  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Oct-2020  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP5907A28YKMR  
LP5907A29YKMR  
DSBGA  
DSBGA  
DSBGA  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
X2SON  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YKM  
YKM  
YKM  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
DQN  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
250  
220.0  
220.0  
220.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
220.0  
210.0  
210.0  
220.0  
210.0  
220.0  
220.0  
210.0  
210.0  
220.0  
220.0  
210.0  
210.0  
220.0  
220.0  
220.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
184.0  
220.0  
185.0  
185.0  
220.0  
185.0  
220.0  
220.0  
185.0  
185.0  
220.0  
220.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
19.0  
19.0  
19.0  
19.0  
19.0  
19.0  
19.0  
19.0  
19.0  
19.0  
19.0  
19.0  
19.0  
19.0  
19.0  
19.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
LP5907A33YKMR  
LP5907MFX-1.2/NOPB  
LP5907MFX-1.5/NOPB  
LP5907MFX-1.8/NOPB  
LP5907MFX-2.5/NOPB  
LP5907MFX-2.8/NOPB  
LP5907MFX-2.85/NOPB  
LP5907MFX-2.9/NOPB  
LP5907MFX-3.0/NOPB  
LP5907MFX-3.1/NOPB  
LP5907MFX-3.2/NOPB  
LP5907MFX-3.3/NOPB  
LP5907MFX-4.5/NOPB  
LP5907SNX-1.2/NOPB  
LP5907SNX-1.8/NOPB  
LP5907SNX-1.9  
LP5907SNX-2.2/NOPB  
LP5907SNX-2.5/NOPB  
LP5907SNX-2.7/NOPB  
LP5907SNX-2.75  
LP5907SNX-2.8/NOPB  
LP5907SNX-2.85/NOPB  
LP5907SNX-2.9/NOPB  
LP5907SNX-3.0/NOPB  
LP5907SNX-3.1/NOPB  
LP5907SNX-3.2/NOPB  
LP5907SNX-3.3/NOPB  
LP5907SNX-4.0/NOPB  
LP5907SNX-4.5/NOPB  
LP5907UVE-1.2/NOPB  
LP5907UVE-1.2/NOPB  
LP5907UVE-1.8/NOPB  
LP5907UVE-1.8/NOPB  
LP5907UVE-2.8/NOPB  
LP5907UVE-2.8/NOPB  
LP5907UVE-2.85/NOPB  
LP5907UVE-2.85/NOPB  
LP5907UVE-3.0/NOPB  
LP5907UVE-3.0/NOPB  
LP5907UVE-3.1/NOPB  
LP5907UVE-3.1/NOPB  
LP5907UVE-3.2/NOPB  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
250  
Pack Materials-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Oct-2020  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP5907UVE-3.2/NOPB  
LP5907UVE-3.3/NOPB  
LP5907UVE-3.3/NOPB  
LP5907UVE-4.5/NOPB  
LP5907UVE-4.5/NOPB  
LP5907UVX-1.2/NOPB  
LP5907UVX-1.2/NOPB  
LP5907UVX-1.6/NOPB  
LP5907UVX-1.8/NOPB  
LP5907UVX-1.8/NOPB  
LP5907UVX-2.2/NOPB  
LP5907UVX-2.5/NOPB  
LP5907UVX-2.8/NOPB  
LP5907UVX-2.8/NOPB  
LP5907UVX-2.85/NOPB  
LP5907UVX-2.85/NOPB  
LP5907UVX-3.0/NOPB  
LP5907UVX-3.0/NOPB  
LP5907UVX-3.1/NOPB  
LP5907UVX-3.1/NOPB  
LP5907UVX-3.2/NOPB  
LP5907UVX-3.2/NOPB  
LP5907UVX-3.3/NOPB  
LP5907UVX-3.3/NOPB  
LP5907UVX-4.5/NOPB  
LP5907UVX-4.5/NOPB  
LP5907UVX19/NOPB  
LP5907UVX19/NOPB  
LP5907UVX37/NOPB  
LP5907UVX37/NOPB  
LP5907YKGR-2.0  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKE  
YKG  
YKG  
YKG  
YKG  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
250  
220.0  
220.0  
210.0  
210.0  
220.0  
210.0  
220.0  
220.0  
210.0  
220.0  
220.0  
210.0  
220.0  
210.0  
220.0  
210.0  
210.0  
220.0  
210.0  
220.0  
220.0  
210.0  
210.0  
220.0  
220.0  
210.0  
210.0  
220.0  
220.0  
210.0  
220.0  
220.0  
220.0  
220.0  
220.0  
220.0  
185.0  
185.0  
220.0  
185.0  
220.0  
220.0  
185.0  
220.0  
220.0  
185.0  
220.0  
185.0  
220.0  
185.0  
185.0  
220.0  
185.0  
220.0  
220.0  
185.0  
185.0  
220.0  
220.0  
185.0  
185.0  
220.0  
220.0  
185.0  
220.0  
220.0  
220.0  
220.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
250  
250  
250  
250  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
LP5907YKGR-2.8  
LP5907YKGR-2.825  
LP5907YKGR-2.85  
Pack Materials-Page 5  
PACKAGE OUTLINE  
YKG0004  
DSBGA - 0.33mm MAX HEIGHT  
S
C
A
L
E
1
5
.
0
0
0
DIE SIZE BALL GRID ARRAY  
A
D
B
E
BUMP A1 CORNER  
0.33 MAX  
C
SEATING PLANE  
0.05 C  
0.12  
0.09  
BUMP  
0.175  
B
A
D: Max = 0.675 mm, Min =0.615 mm  
E: Max = 0.675 mm, Min =0.615 mm  
0.175  
0.35  
0.20  
4X  
1
2
0.16  
0.015  
C A B  
0.35  
4218366/E 05/2020  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per  
ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YKG0004  
DSBGA - 0.33mm MAX HEIGHT  
DIE SIZE BALL GRID ARRAY  
SYMM  
4X ( 0.18)  
(0.175)  
1
2
A
SYMM  
(0.35)  
B
(0.175)  
(0.35)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:60X  
0.0375 MIN  
(
0.18)  
0.0375 MAX  
(
0.18)  
SOLDERMASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDERMASK  
OPENING  
NON SOLDERMASK  
DEFINED  
SOLDERMASK  
DEFINED  
(PREFERRED)  
SOLDERMASK DETAILS  
NOT TO SCALE  
4218366/E 05/2020  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
Refer to Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YKG0004  
DSBGA - 0.33mm MAX HEIGHT  
DIE SIZE BALL GRID ARRAY  
(R0.05)  
TYP  
METAL  
TYP  
SYMM  
2
1
A
4X  
(
0.21)  
(0.175)  
SYMM  
(0.35)  
B
(0.175)  
(0.35)  
SOLDERPASTE EXAMPLE  
BASED ON 0.075 mm THICK STENCIL  
SCALE:80X  
4218366/E 05/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
2X 0.95  
1.9  
3.05  
2.75  
1.9  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/E 09/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/E 09/2019  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/E 09/2019  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
YKM0004  
DSBGA - 0.495 mm max height  
SCALE 12.000  
DIE SIZE BALL GRID ARRAY  
A
D
B
E
BALL A1  
CORNER  
BACK COATING  
0.495 MAX  
C
SEATING PLANE  
BALL TYP  
0.18  
0.14  
0.35  
TYP  
B
0.35  
TYP  
D: Max = 0.675 mm, Min =0.615 mm  
E: Max = 0.675 mm, Min =0.615 mm  
A
0.225  
0.195  
C A B  
1
2
4X  
0.015  
4223494/A 11/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YKM0004  
DSBGA - 0.495 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
SYMM  
4X ( 0.18)  
(0.35) TYP  
A
B
1
2
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:40X  
(
0.18)  
0.04 MAX  
METAL UNDER  
SOLDER MASK  
0.04 MIN  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
(
0.18)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223494/A 11/2014  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
Refer to Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YKM0004  
DSBGA - 0.495 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
4X ( 0.21)  
(R0.05) TYP  
A
B
SYMM  
(0.35)  
TYP  
1
2
SYMM  
METAL  
TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 - 0.1mm THICK STENCIL  
SCALE:40X  
4223494/A 11/2014  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
PACKAGE OUTLINE  
YKE0004  
DSBGA - 0.445mm max height  
SCALE 12.000  
DIE SIZE BALL GRID ARRAY  
A
D
B
E
BALL A1  
CORNER  
0.445 MAX  
C
SEATING PLANE  
BALL TYP  
0.18  
0.14  
0.35  
TYP  
B
0.35  
TYP  
D: Max = 0.675 mm, Min =0.615 mm  
E: Max = 0.675 mm, Min =0.615 mm  
A
0.225  
0.195  
1
2
4X  
0.005  
C A  
B
4220102/A 11/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YKE0004  
DSBGA - 0.445mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
SYMM  
4X 0.18 0.02  
A
B
(0.35) TYP  
1
2
SYMM  
LAND PATTERN EXAMPLE  
SCALE:40X  
(
0.18)  
0.04 MAX  
METAL UNDER  
SOLDER MASK  
0.04 MIN  
METAL  
(
0.18)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4220102/A 11/2014  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
Refer to Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YKE0004  
DSBGA - 0.445mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
4X ( 0.21)  
(R0.05) TYP  
A
B
SYMM  
(0.35)  
TYP  
1
2
SYMM  
METAL  
TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 - 0.1mm THICK STENCIL  
SCALE:40X  
4220102/A 11/2014  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
PACKAGE OUTLINE  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
1.05  
0.95  
A
B
1
1.05  
0.95  
PIN 1  
INDEX AREA  
C
0.4 MAX  
SEATING PLANE  
0.08  
NOTE 6  
+0.12  
-0.1  
0.05  
0.00  
0.48  
(0.05) TYP  
NOTE 6  
2
1
3
EXPOSED  
THERMAL PAD  
5
2X 0.65  
(0.07) TYP  
NOTE 5  
4
0.28  
PIN 1 ID  
(OPTIONAL)  
NOTE 4  
4X  
0.15  
(0.11)  
0.3  
0.2  
0.1  
C A B  
0.05  
C
0.30  
0.15  
3X  
4215302/E 12/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
4. Features may not exist. Recommend use of pin 1 marking on top of package for orientation purposes.  
5. Shape of exposed side leads may differ.  
6. Number and location of exposed tie bars may vary.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.86)  
SYMM  
SEE DETAIL  
4X  
4X (0.36)  
(0.03)  
4
4X (0.21)  
1
5
SYMM  
(0.65)  
4X (0.18)  
2
3
(
0.48)  
(0.22) TYP  
EXPOSED METAL  
CLEARANCE  
LAND PATTERN EXAMPLE  
SCALE: 40X  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAIL  
4215302/E 12/2016  
NOTES: (continued)  
7. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
8. If any vias are implemented, it is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
X2SON - 0.4 mm max height  
DQN0004A  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
SYMM  
4X (0.4)  
4X (0.03)  
4
1
4X (0.21)  
5
SYMM  
(0.65)  
SOLDER MASK  
EDGE  
4X (0.22)  
2
3
(
0.45)  
4X (0.235)  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 - 0.1mm THICK STENCIL  
EXPOSED PAD  
88% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 60X  
4215302/E 12/2016  
NOTES: (continued)  
9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

LP590T11CJT

Parallel - 3Rd Overtone Quartz Crystal, 59MHz Nom,
CTS

LP590T12CKT

Parallel - 3Rd Overtone Quartz Crystal, 59MHz Nom,
CTS

LP590T1XIAT

Parallel - 3Rd Overtone Quartz Crystal, 59MHz Nom,
CTS

LP590T1XIFT

Parallel - 3Rd Overtone Quartz Crystal, 59MHz Nom,
CTS

LP590T22IAT

Parallel - 3Rd Overtone Quartz Crystal, 59MHz Nom,
CTS

LP590T22IBT

Parallel - 3Rd Overtone Quartz Crystal, 59MHz Nom,
CTS

LP590T25IST

Series - 3Rd Overtone Quartz Crystal, 59MHz Nom,
CTS

LP590T2XIBT

Parallel - 3Rd Overtone Quartz Crystal, 59MHz Nom,
CTS

LP590T2YILT

Parallel - 3Rd Overtone Quartz Crystal, 59MHz Nom,
CTS

LP590T31CBT

Parallel - 3Rd Overtone Quartz Crystal, 59MHz Nom,
CTS

LP590T31CET

Parallel - 3Rd Overtone Quartz Crystal, 59MHz Nom,
CTS

LP590TX3CLT

Parallel - 3Rd Overtone Quartz Crystal, 59MHz Nom,
CTS