LP5910-1.0DRVR [TI]

具有反向电流保护和使能功能的 300mA、低噪声、低 IQ、低压降稳压器 | DRV | 6 | -40 to 125;
LP5910-1.0DRVR
型号: LP5910-1.0DRVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有反向电流保护和使能功能的 300mA、低噪声、低 IQ、低压降稳压器 | DRV | 6 | -40 to 125

光电二极管 输出元件 稳压器 调节器
文件: 总31页 (文件大小:2342K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LP5910  
SNVSA91F – SEPTEMBER 2015 – REVISED APRIL 2021  
LP5910 300-mA Low-Noise, Low-IQ LDO  
1 Features  
3 Description  
Input voltage range: 1.3 V to 3.3 V  
Output voltage range: 0.8 V to 2.3 V  
Output current: 300 mA  
The LP5910 is a low-noise LDO that can supply  
up to 300 mA of output current. Designed to meet  
the requirements of RF and analog circuits, this  
device provides low noise, high PSRR, low quiescent  
current, and superior line transient and load transient  
response. Using new innovative design techniques  
the LP5910 offers class-leading noise performance  
without a noise bypass capacitor and with the option  
for remote output capacitor placement.  
PSRR: 75 dB at 1 kHz  
Output voltage tolerance: ±2%  
Low dropout: 120 mV (typical)  
Very low IQ (enabled, no load): 12 µA  
Low output-voltage noise: 12 µVRMS  
Stable with ceramic input and output capacitors  
Thermal overload protection  
Short-circuit protection  
Reverse current protection  
Automatic output discharge for fast turnoff  
The device contains a reverse current protection  
circuit that prevents a reverse current flow through the  
LDO to the IN pin when the input voltage is lower than  
the output voltage.  
2 Applications  
When the Enable (EN) pin is low, and the output is  
in an OFF state, an automatic output discharge circuit  
discharges the output capacitance for fast turnoff.  
Mobile phones and tablets  
Digital cameras and audio devices  
Portable and battery-powered equipment  
Portable medical equipment  
Virtual reality  
With its low input and low output voltage range the  
LP5910 is well-suited as a post DC-DC regulator  
(post BUCK regulator) or for single- or dual-cell  
applications.  
RF, PLL, VCO, and clock power supplies  
IP cameras  
The device is designed to work with a 1-μF input and  
a 1-μF output ceramic capacitor. A separate noise  
bypass capacitor is not required.  
This device is available with fixed output voltages  
from 0.8 V to 2.3 V in 25-mV steps. Contact Texas  
Instruments Sales for specific voltage option needs.  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE  
WSON (6)  
2.00 mm × 2.00 mm (NOM)  
LP5910  
DSBGA (4) 0.742 mm × 0.742 mm (MAX)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
VIN  
VOUT  
IN  
OUT  
CIN  
COUT  
LP5910  
Enable  
EN  
GND  
Simplified Schematic  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
LP5910  
www.ti.com  
SNVSA91F – SEPTEMBER 2015 – REVISED APRIL 2021  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description......................................................11  
7.1 Overview................................................................... 11  
7.2 Functional Block Diagram......................................... 11  
7.3 Feature Description...................................................11  
7.4 Device Functional Modes..........................................12  
8 Applications and Implementation................................13  
8.1 Application Information............................................. 13  
8.2 Typical Application.................................................... 13  
9 Power Supply Recommendations................................17  
10 Layout...........................................................................18  
10.1 Layout Guidelines................................................... 18  
10.2 Layout Examples.................................................... 18  
11 Device and Documentation Support..........................19  
11.1 Documentation Support.......................................... 19  
11.2 Receiving Notification of Documentation Updates..19  
11.3 Support Resources................................................. 19  
11.4 Trademarks............................................................. 19  
11.5 Electrostatic Discharge Caution..............................19  
11.6 Glossary..................................................................19  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision E (July 2017) to Revision F (April 2021)  
Page  
Updated the numbering format for tables, figures, and cross-references throughout the document .................1  
Deleted WEBENCH links from document...........................................................................................................1  
Deleted last bullet from Features section........................................................................................................... 1  
Changed Dropout Voltage specifications for 1.5V ≤ VIN < 1.8V; added new rows in Dropout Voltage  
specifications for this voltage range....................................................................................................................5  
Deleted Custom Design With WEBENCH® Tools section from Detailed Design Procedure ...........................13  
Deleted Custom Design With WEBENCH® Tools section from Documentation Support ................................19  
Changes from Revision D (August 2016) to Revision E (July 2017)  
Added new package, YKA0004-C01 associated with orderables LP5910-1.1BYKAR and LP5910-1.1BYKAT;  
added links for WEBENCH.................................................................................................................................1  
Page  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LP5910  
 
LP5910  
www.ti.com  
SNVSA91F – SEPTEMBER 2015 – REVISED APRIL 2021  
5 Pin Configuration and Functions  
IN  
A1  
OUT  
A2  
IN  
OUT  
A2  
A1  
B1  
B2  
B1  
B2  
EN  
GND  
GND  
EN  
Figure 5-1. YKA Package, 4-Pin Ultra-Thin DSBGA,  
Top View  
Figure 5-2. YKA Package, 4-Pin Ultra-Thin DSBGA,  
Bottom View  
1
6
5
4
IN  
OUT  
2
3
GND  
EN  
NC  
NC  
Figure 5-3. DRV Package, 6-Pin WSON With Thermal Pad, Top View  
Table 5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
DSBGA  
WSON  
Enable input; disables the regulator when logic low. Enables the regulator when logic  
high. An internal 1-MΩ pull down resistor connects this input to ground.  
EN  
B1  
4
I
GND  
IN  
B2  
A1  
5
6
I
Common ground  
Voltage supply input. A 1-μF capacitor must be connected at this input.  
No internal connection. Connect to ground or leave open.  
NC  
2, 3  
Voltage output. A 1-µF low-ESR capacitor must be connected from this pin to the  
GND pin. Connect this output to the load circuit.  
OUT  
A2  
1
O
The exposed thermal pad on the bottom of the package must be connected to a  
copper area under the package on the PCB. Connect to ground potential or leave  
floating. Do not connect to any potential other than the same ground potential seen at  
device pin 5 (GND). See the Power Dissipation section for more information.  
Exposed Pad  
Thermal Pad  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LP5910  
 
LP5910  
www.ti.com  
SNVSA91F – SEPTEMBER 2015 – REVISED APRIL 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
3.6  
UNIT  
V
Input voltage, VIN  
Output voltage, VOUT  
3.6  
V
Enable input voltage, VEN  
Continuous power dissipation(3)  
Junction temperature, TJ(MAX)  
Storage temperature, Tstg  
3.6  
V
Internally limited  
W
150  
150  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the GND pin.  
(3) Internal thermal shutdown circuitry protects the device from permanent damage.  
6.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
3.3  
UNIT  
V
Input voltage, VIN  
1.3  
0.8  
0
Output voltage, VOUT  
Enable input voltage, VEN  
Output current, IOUT  
2.3  
V
3.3  
V
0
300  
125  
85  
mA  
°C  
°C  
(1)  
Junction temperature, TJ  
Ambient temperature, TA  
–40  
–40  
(1)  
(1) The maximum ambient temperature, (TA(MAX)) is a recommended value only and can vary depending on device power dissipation and  
RθJA. For reliable operation, the junction temperature (TJ) must be limited to a maximum of 125°C. Ambient temperature (TA), thermal  
resistance (RθJA) , VIN, VOUT, and IOUT all define TJ : TJ = TA + (RθJA × ((VIN – VOUT) × IOUT).  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LP5910  
 
 
 
 
 
 
 
 
 
 
LP5910  
www.ti.com  
SNVSA91F – SEPTEMBER 2015 – REVISED APRIL 2021  
6.4 Thermal Information  
LP5910  
THERMAL METRIC(1)  
YKA (DSBGA)  
DRV (WSON)  
6 PINS  
79.2(3)  
110.2  
UNIT  
4 PINS  
202.8  
3.3  
(2)  
RθJA  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance, High-K  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
36.0  
0.4  
48.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
5.2  
ψJB  
36.0  
n/a  
49.1  
RθJC(bot)  
18.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Thermal resistance value RθJA is based on the EIA/JEDEC High-K printed circuit board defined by: JESD51-7 - High Effective Thermal  
Conductivity Test Board for Leaded Surface Mount Packages.  
(3) The PCB for the WSON/DRV package RθJA includes two (2) thermal vias under the exposed thermal pad per EIA/JEDEC JESD51-5.  
6.5 Electrical Characteristics  
VIN = VOUT(NOM) + 0.5 V, VEN = 1 V, IOUT = 1 mA, CIN = 1 µF, and COUT = 1 µF (unless otherwise noted)(1) (2) (3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
GENERAL  
ΔVOUT  
VIN = (VOUT(NOM) + 0.5 V) to 3.3 V,  
IOUT = 1 mA to 300 mA  
Output voltage tolerance  
Line regulation  
–2  
2
%VOUT  
%/V  
VIN = (VOUT(NOM) + 0.5 V) to 3.3 V,  
IOUT = 1 mA  
0.01  
Load regulation  
Load current  
IOUT = 1 mA to 300 mA  
See(4)  
0.002  
%/mA  
mA  
ILOAD  
IQ  
0
300  
25  
VEN = 1 V, IOUT = 0 mA  
VEN = 1 V, IOUT = 300 mA  
12  
Quiescent current(5)  
230  
350  
µA  
Quiescent current in  
shutdown(5)  
IQ(SD)  
VEN = 0.3 V, 40°C ≤ TJ ≤ 85°C  
0.02  
2
Output reverse current(7)  
VOUT > VIN  
VOUT = 3.3 V, VIN = VEN = 0 V  
VOUT = 3.3 V, VIN = VEN = 1.3 V  
IOUT = 0 mA (VOUT = 2.3 V)  
1.3 V ≤ VOUT < 1.5 V,  
–20  
0
0
µA  
µA  
µA  
IRO  
IG  
50  
Ground current(6)  
15  
DSBGA only  
200  
300  
235  
180  
370  
270  
220  
IOUT = 300 mA  
1.5 V ≤ VOUT <1.8V,  
IOUT = 300 mA  
DSBGA only  
DSBGA only  
WSON only  
WSON only  
WSON only  
160  
120  
245  
195  
145  
450  
1.8 V ≤ VOUT ≤ 2.3 V,  
IOUT = 300 mA  
VDO  
Dropout voltage(8)  
mV  
1.3 V ≤ VOUT < 1.5 V,  
IOUT = 300 mA  
1.5 V ≤ VOUT < 1.8V,  
IOUT = 300 mA  
1.8 V ≤ VOUT ≤ 2.3 V,  
IOUT = 300 mA  
VOUT = VOUT(NOM) – 0.1 V  
VIN = VOUT(NOM) + 0.5 V  
ILIMIT  
Output current limit  
mA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LP5910  
 
 
 
 
 
LP5910  
www.ti.com  
UNIT  
SNVSA91F – SEPTEMBER 2015 – REVISED APRIL 2021  
6.5 Electrical Characteristics (continued)  
VIN = VOUT(NOM) + 0.5 V, VEN = 1 V, IOUT = 1 mA, CIN = 1 µF, and COUT = 1 µF (unless otherwise noted)(1) (2) (3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
80  
75  
65  
40  
25  
65  
65  
65  
40  
25  
12  
12  
160  
15  
MAX  
ƒ = 100 Hz, IOUT = 20 mA, VOUT ≥ 1 V  
ƒ = 1 kHz, IOUT = 20 mA, VOUT ≥ 1 V  
ƒ = 10 kHz, IOUT = 20 mA, VOUT ≥ 1 V  
ƒ = 100 kHz, IOUT = 20 mA, VOUT ≥ 1 V  
ƒ = 2 MHz, IOUT = 20 mA, VOUT ≥ 1 V  
PSRR  
Power supply rejection ratio(10)  
dB  
ƒ = 100 Hz, IOUT = 20 mA, 0.8 V < VOUT < 1 V  
ƒ = 1 kHz, IOUT = 20 mA, 0.8 V < VOUT < 1 V  
ƒ = 10 kHz, IOUT = 20 mA, 0.8 V < VOUT < 1 V  
ƒ = 100 kHz, IOUT = 20 mA, 0.8 V < VOUT < 1 V  
ƒ = 2 MHz, IOUT = 20 mA, 0.8 V < VOUT < 1 V  
IOUT = 1 mA  
BW = 10 Hz to 100 kHz  
eN  
Output noise voltage(10)  
µVRMS  
IOUT = 300 mA  
Thermal shutdown  
Thermal hysteresis  
TJ rising until output is OFF  
TJ falling from shutdown  
TSD  
°C  
LOGIC INPUT THRESHOLDS  
VIL  
VIH  
EN low threshold (Off)  
EN high threshold (On)  
0.3  
V
VIN = 1.3 V to 3.3 V  
1
VEN = 3.3 V, VIN = 3.3 V  
VEN = 0 V, VIN = 3.3 V  
3.3  
IEN  
EN pin current(9)  
µA  
0.001  
TRANSIENT CHARACTERISTICS(9)  
VIN = (VOUT(NOM) + 0.5 V) to (VOUT(NOM) + 1 V)  
in 30 µs  
IOUT = 1 mA  
0
0
1
Line transient(10)  
mV  
mV  
VIN = (VOUT(NOM) + 1 V) to (VOUT(NOM) + 0.5 V)  
in 30 µs  
–1  
ΔVOUT  
IOUT = 1 mA  
IOUT = 1 mA to 100 mA in 10 µs  
IOUT = 100 mA to 1 mA in 10 µs  
–45  
Load transient(10)  
45  
5%  
Overshoot on start-up(10)  
tON  
OUTPUT DISCHARGE  
Output discharge pulldown  
resistance  
Turnon time  
From VEN > VIH to VOUT = 95% of VOUT(NOM)  
80  
200  
µs  
Ω
RAD  
VEN = 0 V, VIN = 2.3 V  
160  
(1) All voltages are with respect to the device GND pin.  
(2) Minimum and maximum limits are ensured through test, design, or statistical correlation over the TJ range of –40°C to 125°C, unless  
otherwise stated. Typical values represent the most likely parametric norm at TA = 25°C, and are provided for reference purposes only.  
(3) CIN, COUT: Low-ESR Surface-Mount-Ceramic Capacitors (MLCCs) used in setting electrical characteristics.  
(4) The device maintains a stable, regulated output voltage without a load current.  
(5) Quiescent current is defined here as the difference in current between the input voltage source and the load at VOUT. IQ = (IIN – IOUT  
(6) Ground current is defined here as the total current flowing to ground as a result of all input voltages applied to the device.  
(7) Output reverse current (IRO) is measured at the IN pin.  
)
(8) Dropout voltage is the voltage difference between the input and the output at which the output voltage drops to 100 mV below its  
nominal value. Dropout voltage is not a valid condition for output voltages less than 1.3 V as compliance with the minimum operating  
input voltage can not be ensured.  
(9) There is a 1-MΩ resistor between EN and ground on the device.  
(10) This specification is verified by design.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LP5910  
 
 
 
 
 
 
 
 
 
 
LP5910  
www.ti.com  
SNVSA91F – SEPTEMBER 2015 – REVISED APRIL 2021  
6.6 Typical Characteristics  
VOUT = 1.8 V, VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TJ = 25°C (unless otherwise noted)  
1.2  
1.1  
1
1.2  
1.1  
1
ON (VIH)  
OFF (VIL)  
ON (VIH)  
OFF (VIL)  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
1
1
0
1.5  
2
2.5  
3
3.5  
-50  
-25  
0
25  
50  
Junction Temperature (°C)  
75  
100  
125  
VIN (V)  
D002  
D001  
VIN = 2.3 V  
VOUT = 1.8 V  
Figure 6-2. VEN Thresholds vs VIN  
Figure 6-1. VEN Threshold vs Temperature  
1.2  
1.1  
1
1.2  
1.1  
1
ON (VIH)  
OFF (VIL)  
ON (VIH)  
OFF (VIL)  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
1
1.5  
2
2.5  
3
3.5  
1.5  
2
2.5  
3
3.5  
VIN (V)  
VIN (V)  
D003  
D004  
TJ = –40°C  
Figure 6-3. VEN Thresholds vs VIN  
TJ = 125°C  
Figure 6-4. VEN Thresholds vs VIN  
2
1.8  
1.6  
1.4  
1.2  
1
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
18 kW (100 µA)  
1.8 kW (1 mA)  
180 W (10 mA)  
180 W (10 mA)  
18 W (100 mA)  
6 W (300 mA)  
0
0.5  
1
1.5  
VIN (V)  
2
2.5  
3
3.5  
0.5  
1
1.5  
VIN (V)  
2
2.5  
3
3.5  
D005  
D006  
VEN = VIN  
VEN = VIN  
Figure 6-5. VOUT vs VIN  
Figure 6-6. VOUT vs VIN  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LP5910  
 
LP5910  
www.ti.com  
SNVSA91F – SEPTEMBER 2015 – REVISED APRIL 2021  
6.6 Typical Characteristics (continued)  
VOUT = 1.8 V, VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TJ = 25°C (unless otherwise noted)  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
125°C  
85°C  
25°C  
-40°C  
125°C  
85°C  
25°C  
-40°C  
0
0
0
0.5  
1
1.5  
VIN (V)  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
VIN (V)  
2
2.5  
3
3.5  
D008  
D007  
VOUT = 1.2 V  
VEN = VIN  
Figure 6-8. IQ vs VIN  
No load  
VOUT = 0.8 V  
VEN = VIN  
Figure 6-7. IQ vs VIN  
No load  
25  
25  
125°C  
85°C  
25°C  
-40°C  
125°C  
85°C  
25°C  
-40°C  
20  
15  
10  
5
20  
15  
10  
5
0
0
0
0.5  
1
1.5  
VIN (V)  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
VIN (V)  
2
2.5  
3
3.5  
D009  
D010  
VOUT = 1.8 V  
VEN = VIN  
Figure 6-9. IQ vs VIN  
No load  
VOUT = 2.3 V  
VEN = VIN  
Figure 6-10. IQ vs VIN  
No load  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-100  
10  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
D012  
D011  
VOUT = 1.8 V  
VIN = 2.3 V  
IOUT = 20 mA  
VOUT = 0.8 V  
VIN = 1.3 V  
IOUT = 20 mA  
Figure 6-12. PSRR vs Frequency  
Figure 6-11. PSRR vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LP5910  
LP5910  
www.ti.com  
SNVSA91F – SEPTEMBER 2015 – REVISED APRIL 2021  
6.6 Typical Characteristics (continued)  
VOUT = 1.8 V, VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TJ = 25°C (unless otherwise noted)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0.5  
0.45  
0.4  
1 mA  
300 mA  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
0.05  
0
10  
100  
1000 10000  
Frequency (Hz)  
100000  
1000000  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
D014  
D013  
VOUT = 0.8 V  
VIN = 1.3 V  
VOUT = 2.3 V  
VIN = 2.8 V  
IOUT = 20 mA  
Figure 6-14. Noise Density  
Figure 6-13. PSRR vs Frequency  
0.5  
0.45  
0.4  
1.5  
1 mA  
300 mA  
1.25  
1
0.75  
0.5  
0.35  
0.3  
0.25  
0
0.25  
0.2  
-0.25  
-0.5  
-0.75  
-1  
0.15  
0.1  
0.05  
0
-1.25  
-1.5  
10  
100  
1000 10000  
Frequency (Hz)  
100000  
1000000  
-50  
-25  
0
25  
50  
Junction Temperature (°C)  
75  
100  
125  
D015  
D016  
VOUT = 2.3 V  
VIN = 2.8 V  
VIN = VOUT + 0.5 V  
IOUT = 1 mA  
Figure 6-15. Noise Density  
Figure 6-16. ΔVOUT vs Temperature  
250  
250  
225  
200  
175  
150  
125  
100  
75  
VIN = 3.3 V  
VIN = 1.3 V  
VIN = 3.3 V  
VIN = 2.3 V  
225  
200  
175  
150  
125  
100  
75  
50  
50  
25  
25  
0
0
0
50  
100  
150  
IOUT (mA)  
200  
250  
300  
0
50  
100  
150  
IOUT (mA)  
200  
250  
300  
D017  
D018  
VOUT = 0.8 V  
VOUT = 1.8 V  
Figure 6-17. IGND vs IOUT  
Figure 6-18. IGND vs IOUT  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LP5910  
LP5910  
www.ti.com  
SNVSA91F – SEPTEMBER 2015 – REVISED APRIL 2021  
6.6 Typical Characteristics (continued)  
VOUT = 1.8 V, VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TJ = 25°C (unless otherwise noted)  
250  
225  
200  
175  
150  
125  
100  
75  
300  
250  
200  
150  
100  
50  
VIN = 3.3 V  
VIN = 2.8 V  
VOUT = 1.2 V  
VOUT = 1.8 V  
VOUT = 2.3 V  
50  
25  
0
0
0
50  
100  
150  
IOUT (mA)  
200  
250  
300  
0
50  
100  
150  
IOUT (mA)  
200  
250  
300  
D019  
D020  
VOUT = 2.3 V  
Figure 6-19. IGND vs IOUT  
Figure 6-20. Dropout Voltage vs IOUT  
2.5  
2.5  
2
120  
12  
8
100  
80  
60  
40  
20  
0
2
1.5  
1
4
1.5  
1
0
-4  
-8  
0.5  
0.5  
VIN  
VOUT  
IOUT  
DVOUT  
0
0
-12  
-25  
0
25  
50  
Time (µs)  
75  
100  
125  
150  
-20 -10  
0
10  
20  
30  
Time (µs)  
40  
50  
60  
70  
80  
D021  
D022  
VEN = VIN  
VOUT = 1.8 V  
COUT = 1 µF  
VIN = 2.3 V  
IOUT = 1 mA to 100 mA  
VOUT = 1.8 V  
COUT = 1 µF  
tRISE = 10 µs  
Figure 6-21. Turnon Time  
Figure 6-22. Load Transient Response  
120  
100  
80  
60  
40  
20  
0
12  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
12  
8
IOUT  
DVOUT  
8
4
4
0
0
-4  
-8  
-12  
-4  
-8  
-12  
VIN (V)  
DVOUT (mV)  
-20 -10  
0
10  
20  
30  
Time (µs)  
40  
50  
60  
70  
80  
0
50 100 150 200 250 300 350 400 450 500  
Time (ms)  
D023  
D024  
VIN = 2.3 V  
VOUT = 1.8 V  
tFALL = 10 µs  
COUT = 1 µF  
ΔVIN = 0.5 V  
VOUT = 1.8 V  
IOUT = 1 mA  
COUT = 1 µF  
IOUT = 100 mA to 1 mA  
tRISE = tFALL = 30 µs  
Figure 6-23. Load Transient Response  
Figure 6-24. Line Transient Response  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LP5910  
LP5910  
www.ti.com  
SNVSA91F – SEPTEMBER 2015 – REVISED APRIL 2021  
7 Detailed Description  
7.1 Overview  
The LP5910 is a linear regulator capable of supplying 300-mA output current. Designed to meet the  
requirements of RF and analog circuits, the LP5910 device provides low noise, high PSRR, low quiescent  
current, and low line/load transient response figures. Using new innovative design techniques the LP5910 offers  
class-leading noise performance without a noise bypass capacitor and the option for remote output capacitor  
placement.  
7.2 Functional Block Diagram  
Current  
limit  
IN  
OUT  
VIN  
EA  
Bandgap  
Output  
discharge  
EN  
Control  
EN  
GND  
7.3 Feature Description  
7.3.1 No-Load Stability  
The LP5910 remains stable and in regulation with no external load.  
7.3.2 Thermal Overload Protection  
The LP5910 contains a thermal shutdown protection circuit to turn off the output current when excessive heat  
is dissipated in the LDO. Thermal shutdown occurs when the thermal junction temperature (TJ) of the main  
pass-FET exceeds 160°C (typical). Thermal shutdown hysteresis assures that the LDO again resets (turns on)  
when the temperature falls to 145°C (typical).  
7.3.3 Short-Circuit Protection  
The LP5910 contains internal current limit which reduces output current to a safe value if the output is  
overloaded or shorted. Depending upon the value of VIN, thermal limiting may also become active as the  
average power dissipated causes the die temperature to increase to the limit value (about 160°C). The  
hysteresis of the thermal shutdown circuitry can result in a cyclic behavior on the output as the die temperature  
heats and cools.  
7.3.4 Output Automatic Discharge  
The LP5910 output employs an internal 160-Ω (typical) pulldown resistance to discharge the output when the EN  
pin is low, and the device is disabled.  
7.3.5 Reverse Current Protection  
The device contains a reverse current protection circuit that prevents a backward current flowing through the  
LDO from the OUT pin to the IN pin.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LP5910  
 
 
 
 
LP5910  
www.ti.com  
SNVSA91F – SEPTEMBER 2015 – REVISED APRIL 2021  
7.4 Device Functional Modes  
7.4.1 Enable (EN)  
The LP5910 may be switched to the ON or OFF state by logic input at the EN pin. A logic-high voltage on the EN  
pin turns the device to the ON state. A logic-low voltage on the EN pin turns the device to the OFF state. If the  
application does not require the shutdown feature, the EN pin must be tied to VIN to keep the regulator output  
permanently in the ON state when power is applied  
To ensure proper operation, the signal source used to drive the EN input must be able to swing above and below  
the specified turnon or turnoff voltage thresholds listed in the Electrical Characteristics section under VIL and VIH.  
A 1-MΩ pulldown resistor ties the EN input to ground. If the EN pin is left open, the internal 1-MΩ pulldown  
resistor ensures that the device is turned into an OFF state by default.  
When the EN pin is low, and the output is in an OFF state, the output activates an internal pulldown resistance to  
discharge the output capacitance for fast turnoff.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LP5910  
 
LP5910  
www.ti.com  
SNVSA91F – SEPTEMBER 2015 – REVISED APRIL 2021  
8 Applications and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The LP5910 is designed to meet the requirements of RF and analog circuits, by providing low noise, high  
PSRR, low quiescent current, and low line or load transient response figures. The device offers excellent noise  
performance without the need for a noise bypass capacitor and is stable with input and output capacitors with  
a value of 1 µF. The LP5910 delivers this performance in an industry-standard DSBGA package which, for this  
device, is specified with a TJ of –40°C to +125°C.  
8.2 Typical Application  
Figure 8-1 shows the typical application circuit for the LP5910. Input and output capacitances may need to be  
increased above 1-µF minimum for some applications.  
VIN  
VOUT  
IN  
OUT  
1 µF  
1 µF  
LP5910  
Enable  
EN  
GND  
Figure 8-1. LP5910 Typical Application  
8.2.1 Design Requirements  
For typical LP5910 applications, use the parameters listed in Table 8-1.  
Table 8-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
1.3 V to 3.3 V  
0.8 V to 2.3 V  
300 mA  
Input voltage  
Output voltage  
Output current  
Output capacitor range  
1 µF to 10 µF  
8.2.2 Detailed Design Procedure  
8.2.2.1 External Capacitors  
Like most low-dropout regulators, the LP5910 requires external capacitors for regulator stability. The device is  
specifically designed for portable applications requiring minimum board space and smallest components. These  
capacitors must be correctly selected for good performance.  
8.2.2.2 Input Capacitor  
An input capacitor is required for stability. It is recommended that a 1-µF capacitor be connected from the  
LP5910 IN pin to ground. (This capacitance value may be increased without limit.) The input capacitor must be  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LP5910  
 
 
 
 
 
 
LP5910  
www.ti.com  
SNVSA91F – SEPTEMBER 2015 – REVISED APRIL 2021  
located a distance of not more than 1 cm from the IN pin and returned to a clean analog ground. Any good  
quality ceramic, tantalum, or film capacitor may be used at the input.  
Note  
Tantalum capacitors can suffer catastrophic failures due to surge current when connected to a low-  
impedance source of power (like a battery or a very large capacitor). If a tantalum capacitor is used  
at the input, it must be guaranteed by the manufacturer to have a surge current rating sufficient for  
the application. There are no requirements for the equivalent series resistance (ESR) on the input  
capacitor, but tolerance and temperature coefficient must be considered when selecting the capacitor  
to ensure the capacitance remains 1 µF ±30% over the entire operating temperature range.  
8.2.2.3 Output Capacitor  
For capacitance values in the range of 1 µF to 4.7 µF, ceramic capacitors are the smallest, least expensive  
and have the lowest ESR values, thus making them best for eliminating high frequency noise. The ESR of a  
typical 1-µF ceramic capacitor is in the range of 20 mΩ to 40 mΩ, which easily meets the ESR requirement for  
stability for the LP5910. The temperature performance of ceramic capacitors varies by type. Most large value  
ceramic capacitors ( ≥ 2.2 µF) are manufactured with Z5U or Y5V temperature characteristics, which results in  
the capacitance dropping by more than 50% as the temperature goes from 25°C to 85°C.  
A better choice for temperature coefficient in a ceramic capacitor is X7R. This type of capacitor is the  
most stable and holds the capacitance within ±15% over the temperature range. Tantalum capacitors are  
less desirable than ceramic for use as output capacitors because they are more expensive when comparing  
equivalent capacitance and voltage ratings in the 1-µF to 4.7-µF range.  
8.2.2.4 Capacitor Characteristics  
The LP5910 is designed to work with ceramic capacitors on the input and output to take advantage of the  
benefits they offer. For capacitance values in the range of 1 µF to 10 µF, ceramic capacitors are the smallest,  
least expensive and have the lowest ESR values, thus making them best for eliminating high frequency noise.  
The ESR of a typical 1-µF ceramic capacitor is in the range of 20 mΩ to 40 mΩ, which easily meets the ESR  
requirement for stability for the LP5910.  
A better choice for temperature coefficient in a ceramic capacitor is X7R. This type of capacitor is the  
most stable and holds the capacitance within ±15% over the temperature range. Tantalum capacitors are  
less desirable than ceramic for use as output capacitors because they are more expensive when comparing  
equivalent capacitance and voltage ratings in the 1-µF to 10-µF range.  
Another important consideration is that tantalum capacitors have higher ESR values than equivalent size  
ceramics. This means that while it may be possible to find a tantalum capacitor with an ESR value within  
the stable range, it would have to be larger in capacitance (which means bigger and more costly) than a ceramic  
capacitor with the same ESR value. Also, the ESR of a typical tantalum increases about 2:1 as the temperature  
goes from 25°C down to –40°C, so some guard band must be allowed.  
8.2.2.5 Remote Capacitor Operation  
The LP5910 requires at least a 1-µF capacitor at the OUT pin, but there is no strict requirements about the  
location of the capacitor in regards to the pin. In practical designs the output capacitor may be located up to  
10 cm away from the LDO. This means that there is no need to have a special capacitor close to the OUT pin  
if there is already respective capacitors in the system (like a capacitor at the input of supplied part). The remote  
capacitor feature helps user to minimize the number of capacitors in the system.  
As a good design practice, keep the wiring parasitic inductance at a minimum, using as wide as possible traces  
from the LDO output to the capacitors, keeping the LDO output trace layer as close as possible to ground layer  
and avoiding vias on the path. If there is a need to use vias, implement as many vias as possible between the  
connection layers. It is recommended to keep parasitic wiring inductance less than 35 nH. For the applications  
with fast load transients, an input capacitor is recommended, equal to or larger to the sum of the capacitance at  
the output node, for the best load-transient performance.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LP5910  
LP5910  
www.ti.com  
SNVSA91F – SEPTEMBER 2015 – REVISED APRIL 2021  
8.2.2.6 No-Load Stability  
The LP5910 remains stable, and in regulation, with no external load.  
8.2.2.7 Enable Control  
The LP5910 may be switched to an ON or OFF state by a logic input at the EN pin. A voltage on this pin greater  
than VIH turns the device on, while a voltage less than VIL turns the device off.  
When the EN pin is low, the regulator output is off and the device typically consumes less than 1 µA. Additionally,  
an output pulldown circuit is activated which ensures that any charge stored on COUT is discharged to ground.  
If the application does not require the use of the shutdown feature, the EN pin can be tied directly to the IN pin to  
keep the regulator output permanently on.  
An internal 1-MΩ pulldown resistor ties the EN input to ground, ensuring that the device remains off if the EN pin  
is left open circuit. To ensure proper operation, the signal source used to drive the EN pin must be able to swing  
above and below the specified turn-on/off voltage thresholds listed in the Electrical Characteristics under VIL and  
VIH.  
Table 8-2. Recommended Output Capacitor Specification  
PARAMETER  
TEST CONDITIONS  
Capacitance for stability  
ESR  
MIN  
0.7  
5
NOM  
MAX  
10  
UNIT  
µF  
1
Output capacitor, COUT  
500  
mΩ  
8.2.2.8 Power Dissipation  
Knowing the device power dissipation and proper sizing of the thermal plane connected to the tab or pad is  
critical to ensuring reliable operation. Device power dissipation depends on input voltage, output voltage, and  
load conditions and can be calculated with Equation 1.  
PD(MAX) = (VIN(MAX) – VOUT) × IOUT(MAX)  
(1)  
Power dissipation can be minimized, and greater efficiency can be achieved, by using the lowest available  
voltage drop option that would still be greater than the dropout voltage (VDO). However, keep in mind that higher  
voltage drops result in better dynamic (that is, PSRR and transient) performance.  
On the WSON (DRV) package, the primary conduction path for heat is through the exposed power pad to the  
PCB. To ensure the device does not overheat, connect the exposed pad, through thermal vias, to an internal  
ground plane with an appropriate amount of copper PCB area .  
On the DSBGA (YKA) package, the primary conduction path for heat is through the four bumps to the PCB.  
The maximum allowable junction temperature (TJ(MAX)) determines maximum power dissipation allowed  
(PD(MAX)) for the device package.  
Power dissipation and junction temperature are most often related by the junction-to-ambient thermal resistance  
(RθJA) of the combined PCB and device package and the temperature of the ambient air (TA), according to  
Equation 2 or Equation 3:  
T
J(MAX) = TA(MAX) + (RθJA × PD(MAX)  
)
(2)  
(3)  
PD(MAX) = (TJ(MAX) - TA(MAX)) / RθJA  
Unfortunately, this RθJA is highly dependent on the heat-spreading capability of the particular PCB design,  
and therefore varies according to the total copper area, copper weight, and location of the planes. The RθJA  
recorded in Thermal Information is determined by the specific EIA/JEDEC JESD51-7 standard for PCB and  
copper-spreading area, and is to be used only as a relative measure of package thermal performance. For  
a well-designed thermal layout, RθJA is actually the sum of the package junction-to-case (bottom) thermal  
resistance (RθJCbot) plus the thermal resistance contribution by the PCB copper area acting as a heat sink.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LP5910  
 
 
 
 
LP5910  
www.ti.com  
SNVSA91F – SEPTEMBER 2015 – REVISED APRIL 2021  
8.2.2.9 Estimating Junction Temperature  
The EIA/JEDEC standard recommends the use of psi (Ψ) thermal characteristics to estimate the junction  
temperatures of surface mount devices on a typical PCB board application. These characteristics are not true  
thermal resistance values, but rather package specific thermal characteristics that offer practical and relative  
means of estimating junction temperatures. These psi metrics are determined to be significantly independent of  
copper-spreading area. The key thermal characteristics (ΨJT and ΨJB) are given in Thermal Information and are  
used in accordance with Equation 4 or Equation 5.  
TJ(MAX) = TTOP + (ΨJT × PD(MAX)  
)
(4)  
where  
PD(MAX) is explained in Equation 1.  
TTOP is the temperature measured at the center-top of the device package.  
TJ(MAX) = TBOARD + (ΨJB × PD(MAX)  
)
(5)  
where  
PD(MAX) is explained in Equation 1.  
TBOARD is the PCB surface temperature measured 1-mm from the device package and centered on the  
package edge.  
For more information about the thermal characteristics ΨJT and ΨJB, see the Semiconductor and IC Package  
Thermal Metrics application report, available for download at www.ti.com.  
For more information about measuring TTOP and TBOARD, see the Using New Thermal Metrics application report,  
available for download at www.ti.com.  
For more information about the EIA/JEDEC JESD51 PCB used for validating RθJA, see the Thermal  
Characteristics of Linear and Logic Packages Using JEDEC PCB Designs application report, available for  
download at www.ti.com.  
8.2.3 Application Curves  
2.5  
2.5  
2
120  
100  
80  
60  
40  
20  
0
12  
8
2
4
1.5  
1
1.5  
1
0
-4  
-8  
0.5  
0.5  
IOUT  
DVOUT  
VIN  
VOUT  
-12  
0
0
-20 -10  
0
10  
20  
30  
Time (µs)  
40  
50  
60  
70  
80  
-25  
0
25  
50  
Time (µs)  
75  
100  
125  
150  
D022  
D021  
VIN = 2.3 V  
IOUT = 1 mA to 100 mA  
VOUT = 1.8 V  
COUT = 1 µF  
tRISE = 10 µs  
VEN = VIN  
VOUT = 1.8 V  
COUT = 1 µF  
Figure 8-2. Turnon Time  
Figure 8-3. Load Transient Response  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LP5910  
 
 
LP5910  
www.ti.com  
SNVSA91F – SEPTEMBER 2015 – REVISED APRIL 2021  
9 Power Supply Recommendations  
This device is designed to operate from an input supply voltage range of 1.3 V to 3.3 V. The input supply must  
be well regulated and free of spurious noise. To ensure that the LP5910 output voltage is well regulated and  
dynamic performance is optimum, the input supply must be at least VOUT + 0.5 V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LP5910  
 
LP5910  
www.ti.com  
SNVSA91F – SEPTEMBER 2015 – REVISED APRIL 2021  
10 Layout  
10.1 Layout Guidelines  
The dynamic performance of the LP5910 is dependant on the layout of the PCB. PCB layout practices that are  
adequate for typical LDOs may degrade the PSRR, noise, or transient performance of the LP5910.  
Best performance is achieved by placing CIN and COUT on the same side of the PCB as the LP5910 device, and  
as close as is practical to the package. The ground connections for CIN and COUT must be back to the LP5910  
GND pin using as wide and as short of a copper trace as is practical.  
Avoid connections using long trace lengths, narrow trace widths, and/or connections through vias. These add  
parasitic inductances and resistance that results in inferior performance especially during transient conditions.  
10.1.1 DSBGA Mounting  
The DSBGA package requires specific mounting techniques, which are detailed in the DSBGA Wafer Level Chip  
Scale Package application note. For best results during assembly, alignment ordinals on the PC board may be  
used to facilitate placement of the DSBGA device.  
10.1.2 DSBGA Light Sensitivity  
Exposing the DSBGA device to direct light may cause incorrect operation of the device. High intensity light  
sources such as halogen lamps can affect electrical performance if they are situated in close proximity to the  
device. The wavelengths that have the most detrimental effect are reds and infra-reds, which means that the  
fluorescent lighting used inside most buildings has little effect on performance.  
10.2 Layout Examples  
IN  
OUT  
A2  
A1  
COUT  
CIN  
Via  
B1  
B2  
EN  
GND  
Figure 10-1. LP5910 Typical DSBGA Layout  
1
2
3
6
5
4
IN  
OUT  
NC  
COUT  
CIN  
GND  
EN  
NC  
Figure 10-2. LP5910 Typical WSON Layout  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LP5910  
 
 
 
LP5910  
www.ti.com  
SNVSA91F – SEPTEMBER 2015 – REVISED APRIL 2021  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, AN-1112 DSBGA Wafer Level Chip Scale Package application note  
Texas Instruments, Semiconductor and IC Package Thermal Metrics application report  
Texas Instruments, Using New Thermal Metrics application report  
Texas Instruments, Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs  
application report  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
11.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LP5910  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-May-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP5910-0.9YKAR  
LP5910-1.0DRVR  
LP5910-1.0YKAR  
LP5910-1.1BYKAR  
LP5910-1.1BYKAT  
LP5910-1.1YKAR  
LP5910-1.2PYCPR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PREVIEW  
DSBGA  
WSON  
YKA  
DRV  
YKA  
YKA  
YKA  
YKA  
YCP  
4
6
4
4
4
4
4
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
D
NIPDAU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
Call TI  
59A  
A
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
T
250  
RoHS & Green  
T
3000 RoHS & Green  
E
3000  
Non-RoHS &  
Non-Green  
LP5910-1.2YKAR  
LP5910-1.725YKAR  
LP5910-1.825YKAR  
LP5910-1.825YKAT  
LP5910-1.8DRVR  
LP5910-1.8DRVT  
LP5910-1.8YKAR  
LP5910-1.8YKAT  
PLP5910-1.2PYCPR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
WSON  
WSON  
DSBGA  
DSBGA  
DSBGA  
YKA  
YKA  
YKA  
YKA  
DRV  
DRV  
YKA  
YKA  
YCP  
4
4
4
4
6
6
4
4
4
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
Call TI  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
B
N
O
250  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
RoHS & Green  
O
59C  
59C  
C
250  
RoHS & Green  
C
3000  
Non-RoHS &  
Non-Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-May-2021  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-May-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP5910-0.9YKAR  
LP5910-1.0DRVR  
LP5910-1.0YKAR  
LP5910-1.1BYKAR  
LP5910-1.1BYKAT  
LP5910-1.1YKAR  
LP5910-1.2YKAR  
LP5910-1.725YKAR  
LP5910-1.825YKAR  
LP5910-1.825YKAT  
LP5910-1.8DRVR  
LP5910-1.8DRVT  
LP5910-1.8YKAR  
LP5910-1.8YKAT  
DSBGA  
WSON  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
WSON  
WSON  
DSBGA  
DSBGA  
YKA  
DRV  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
DRV  
DRV  
YKA  
YKA  
4
6
4
4
4
4
4
4
4
4
6
6
4
4
3000  
3000  
3000  
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
0.8  
2.3  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
2.3  
2.3  
0.8  
0.8  
0.8  
2.3  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
2.3  
2.3  
0.8  
0.8  
0.47  
1.15  
0.47  
0.47  
0.47  
0.47  
0.47  
0.47  
0.47  
0.47  
1.15  
1.15  
0.47  
0.47  
2.0  
4.0  
2.0  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q2  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q2  
Q2  
Q1  
Q1  
3000  
3000  
3000  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-May-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP5910-0.9YKAR  
LP5910-1.0DRVR  
LP5910-1.0YKAR  
LP5910-1.1BYKAR  
LP5910-1.1BYKAT  
LP5910-1.1YKAR  
LP5910-1.2YKAR  
LP5910-1.725YKAR  
LP5910-1.825YKAR  
LP5910-1.825YKAT  
LP5910-1.8DRVR  
LP5910-1.8DRVT  
LP5910-1.8YKAR  
LP5910-1.8YKAT  
DSBGA  
WSON  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
WSON  
WSON  
DSBGA  
DSBGA  
YKA  
DRV  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
YKA  
DRV  
DRV  
YKA  
YKA  
4
6
4
4
4
4
4
4
4
4
6
6
4
4
3000  
3000  
3000  
3000  
250  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
3000  
3000  
3000  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRV 6  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4206925/F  
PACKAGE OUTLINE  
DRV0006A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
1
0.1  
EXPOSED  
THERMAL PAD  
3
4
6
2X  
7
1.3  
1.6 0.1  
1
4X 0.65  
0.35  
0.25  
6X  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
6X  
0.1  
C A  
C
B
0.05  
4222173/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.45)  
6X (0.3)  
(1)  
1
7
6
SYMM  
(1.6)  
(1.1)  
4X (0.65)  
4
3
SYMM  
(1.95)  
(R0.05) TYP  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222173/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
7
6X (0.45)  
METAL  
1
6
6X (0.3)  
(0.45)  
SYMM  
4X (0.65)  
(0.7)  
4
3
(R0.05) TYP  
(1)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD #7  
88% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222173/B 04/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
YKA0004  
DSBGA - 0.4 mm max height  
SCALE 14.000  
DIE SIZE BALL GRID ARRAY  
A
D
B
E
BALL A1  
CORNER  
0.4 MAX  
C
SEATING PLANE  
0.05 C  
0.18  
0.13  
BALL TYP  
0.35 TYP  
B
A
SYMM  
0.35  
TYP  
D: Max = 0.742 mm, Min =0.682 mm  
E: Max = 0.742 mm, Min =0.682 mm  
1
2
0.25  
0.15  
C A B  
4X  
0.015  
SYMM  
4221909/B 08/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YKA0004  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
4X ( 0.2)  
(0.35) TYP  
2
1
A
B
SYMM  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:60X  
(
0.2)  
0.0325 MIN  
0.0325 MAX  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
(
0.2)  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221909/B 08/2018  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YKA0004  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
4X ( 0.21)  
(R0.05) TYP  
2
1
A
B
SYMM  
(0.35)  
TYP  
METAL  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 mm - 0.1 mm THICK STENCIL  
SCALE:60X  
4221909/B 08/2018  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

LP5910-1.0YKAR

具有反向电流保护和使能功能的 300mA、低噪声、低 IQ、低压降稳压器 | YKA | 4 | -40 to 125
TI

LP5910-1.1BYKAR

具有反向电流保护和使能功能的 300mA、低噪声、低 IQ、低压降稳压器 | YKA | 4 | -40 to 125
TI

LP5910-1.1BYKAT

具有反向电流保护和使能功能的 300mA、低噪声、低 IQ、低压降稳压器 | YKA | 4 | -40 to 125
TI

LP5910-1.1YKAR

具有反向电流保护和使能功能的 300mA、低噪声、低 IQ、低压降稳压器 | YKA | 4 | -40 to 125
TI

LP5910-1.2YKAR

具有反向电流保护和使能功能的 300mA、低噪声、低 IQ、低压降稳压器 | YKA | 4 | -40 to 125
TI

LP5910-1.725YKAR

LP5910 300-mA Low-Noise, Low-IQ LDO
TI

LP5910-1.825YKAR

具有反向电流保护和使能功能的 300mA、低噪声、低 IQ、低压降稳压器 | YKA | 4 | -40 to 125
TI

LP5910-1.825YKAT

具有反向电流保护和使能功能的 300mA、低噪声、低 IQ、低压降稳压器 | YKA | 4 | -40 to 125
TI

LP5910-1.8DRVR

具有反向电流保护和使能功能的 300mA、低噪声、低 IQ、低压降稳压器 | DRV | 6 | -40 to 125
TI

LP5910-1.8DRVT

具有反向电流保护和使能功能的 300mA、低噪声、低 IQ、低压降稳压器 | DRV | 6 | -40 to 125
TI

LP5910-1.8YKAR

具有反向电流保护和使能功能的 300mA、低噪声、低 IQ、低压降稳压器 | YKA | 4 | -40 to 125
TI

LP5910-1.8YKAT

具有反向电流保护和使能功能的 300mA、低噪声、低 IQ、低压降稳压器 | YKA | 4 | -40 to 125
TI