LP8725TLE-C/NOPB [TI]

面向应用/多媒体处理器和子系统的电源管理 IC (PMIC) | YZR | 30 | -40 to 85;
LP8725TLE-C/NOPB
型号: LP8725TLE-C/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

面向应用/多媒体处理器和子系统的电源管理 IC (PMIC) | YZR | 30 | -40 to 85

集成电源管理电路
文件: 总46页 (文件大小:1486K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
LP8725 Power Management Unit for Application or  
Multimedia Processors and Subsystems  
Check for Samples: LP8725  
1
FEATURES  
KEY SPECIFICATIONS  
2
Two High-Efficiency Step-Down DC-DC  
190 mV typ. Dropout Voltage on digital LDOs  
Converters, IOUT = 600 mA, With a 4-MHz  
Switching Frequency Using Small 1-µH  
Inductors, With Options up to 800 mA  
@ 300 mA  
2% typ. Output Voltage Accuracy on digital  
and analog LDOs  
Three Digital LDOs for up to 300-mA Load  
Current Each  
10 μVrms Output Noise on analog LDOs  
±2% typ. Output Voltage Bucks up to 93%  
efficiency  
Two Low-Noise Analog 300-mA LDOs  
Two Low-Input Low-Output Regulators,  
IOUT = 300 mA  
30-bump DSBGA package (0.5 mm pitch)  
I2C-Compatible Interface for Control of Internal  
Registers  
DESCRIPTION  
This device is a multi-function programmable Power  
Management Unit (PMU), optimized for sub block  
power solutions. This device integrates two highly  
efficient 600-mA step-down DC-DC converters  
configurable up to 800-mA load with Dynamic Voltage  
Scaling (DVS) via the serial interface, two low-noise  
analog LDOs, three digital LDOs for up to 300 mA  
load current each, two Low-Input Low-Output (LILO)  
regulators, and an I2C-compatible serial interface to  
allow a host controller access to the internal control  
registers. The device also features programmable  
power-on sequencing. LDO regulators provide high  
PSRR and low noise ideally suited for supplying  
power to both analog and digital loads.  
Adjustable Startup Sequence Through Serial  
Interface or Configuration  
Thermal Shutdown Protection  
APPLICATIONS  
Multimedia Processors  
Portable Handheld Products  
The device can be configured either as a Sub_PMU  
for modules (for example, camera or multimedia  
modules) or as a stand-alone PMU that powers the  
processor itself.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2009–2013, Texas Instruments Incorporated  
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
TYPICAL APPLICATION (SUB-PMU)  
VIN3  
VIN1  
VIN2  
VIN2  
2.2 mF  
2.2 mF  
2.2 mF  
VIN1  
VIN3  
VINB1  
VINB1  
LDO1  
1.2V to 3.3V  
@ 300 mA  
4.7 µF  
LDO 1  
D
FB1  
1 µF  
Buck 1  
LP8725  
SW1  
LDO2  
1.2V to 3.3V  
@ 300 mA  
1 mH  
0.8V to 3.0V  
@ 800 mA  
Voltage  
LDO 2  
D
GNDB1  
4.7 µF  
Reference  
1 µF  
VINB2  
Thermal  
Shutdown  
VINB2  
FB2  
LDO3  
4.7 µF  
1.2V to 3.3V  
@ 300 mA  
UVLO  
LDO3  
D
1 µF  
Buck 2  
SW2  
LDO3_EN  
1 mH  
0.8V to 3.0V  
@ 800 mA  
4.7 µF  
GNDB2  
LDO4  
VSI  
1.2V to 3.3V  
@ 300 mA  
B2_EN  
LDO4  
A
1 µF  
10k 1.5k 1.5k  
SDA  
SCL  
LDO5  
1.2V to 3.3V  
@ 300 mA  
LDO5  
A
RESET_N  
EN  
1 µF  
Serial Interface  
and  
Control  
LILO1  
0.8V to 3.3V  
@300 mA  
DVS  
LILO 1  
D
1 µF  
DEFSEL  
CONFIG  
LILO2  
VINLILO1  
0.8V to 3.3V  
@300 `mA  
LILO 2  
D
1 µF  
VINLILO2  
2.2 mF  
2.2 mF  
GND  
2
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
TYPICAL APPLICATION (PMU)  
VIN3  
VIN1  
VIN2  
2.2 µF  
2.2 µF  
2.2 µF  
VIN1  
VIN3  
VIN2  
VINB1  
VINB1  
LDO1  
1.2V to 3.3V  
@ 300 mA  
4.7 mF  
LDO 1  
D
FB1  
1 µF  
Buck 1  
LP8725  
SW1  
LDO2  
1.2V to 3.3V  
@ 300 mA  
1 µH  
0.8V to 3.0V  
@ 800 mA  
Voltage  
LDO 2  
D
GNDB1  
4.7 µF  
Reference  
1µF  
VINB2  
Thermal  
Shutdown  
VINB2  
FB2  
LDO3  
4.7 µF  
1.2V to 3.3V  
@ 300 mA  
UVLO  
LDO3  
D
1 µF  
Buck 2  
SW2  
LDO3_EN  
1 µH  
0.8V to 3.0V  
@ 800 mA  
4.7 µF  
GNDB2  
LDO4  
VSI  
1.2V to 3.3V  
@ 300 mA  
PS_HOLD  
LDO4  
A
1 µF  
10k 1.5k 1.5k  
SDA  
SCL  
LDO5  
1.2V to 3.3V  
@ 300 mA  
LDO5  
A
RESET_N  
PWR_ON  
1 µF  
Serial Interface  
&
Control  
LILO1  
0.8V to 3.3V  
@ 300 mA  
DVS  
LILO 1  
D
1 µF  
DEFSEL  
VIN1  
CONFIG  
LILO2  
VINLILO1  
0.8V to 3.3V  
@ 300 mA  
LILO 2  
D
1 µF  
VINLILO2  
2.2 µF  
2.2 µF  
GND  
Copyright © 2009–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LP8725  
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
CONNECTION DIAGRAMS  
5
GNDB1  
SW1  
FB1  
VINB1  
SCL  
VINB2  
SDA  
SW2  
FB2  
GNDB2  
5
GNDB2  
SW2  
FB2  
VINB2  
SDA  
VINB1  
SCL  
SW1  
FB1  
GNDB1  
VIN  
LILO1  
VIN  
LILO2  
VIN  
LILO2  
VIN  
LILO1  
4
3
2
1
4
3
2
1
EN/  
PWR_  
ON  
EN/  
PWR_  
ON  
B2_EN/  
PS_HOLD  
B2_EN/  
PS_HOLD  
RESET_N  
DVS  
LILO1  
VIN1  
LDO1  
F
GND  
LILO2  
VIN3  
LDO4  
A
RESET_N  
DVS  
LILO2  
VIN3  
GND  
LILO1  
VIN1  
CON  
FIG  
DEF  
SEL  
LDO3_  
EN  
LDO3_  
EN  
DEF  
SEL  
CON  
FIG  
LDO2  
VIN2  
LDO3  
C
LDO5  
LDO4  
LDO5  
LDO3  
VIN2  
LDO2  
LDO1  
E
D
B
A
B
C
D
E
F
Bottom View  
Top View  
4
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
PIN DESCRIPTIONS  
Name  
Pin No. Description  
CONFIG=0: B2_EN is the enable for BUCK2 output if this pin is high and if BUCK2_EN register bit is set to  
0. (B2_EN and the register bit are logical OR.) Internal 500 Kpull-down resistor in this configuration only.  
CONFIG=1: PS_HOLD is a power supply hold input from an external processor.  
B2_EN/PS_HOLD  
CONFIG  
B3  
E2  
Connect to GND for SUB_PMU or connect to VIN1 for PMU.  
Control input that sets default voltages and start-up sequence. Must be hard wired to VIN1 or GND for  
specific application.  
When DEFSEL=VIN1 then setup 1 is used for default voltages and startup sequences.  
When DEFSEL=GND then setup 2 is used for default voltages and startup sequences.  
DEFSEL  
D2  
Dynamic Voltage Scaling (operational when REG 0x00<2> is '0').  
DVS=1 then BUCK voltage set BUCK1_V1 is in use.  
DVS=0 then BUCK voltage set BUCK1_V2 is in use.  
DVS  
C2  
E3  
This pin must be driven to its logic high or low whenever the BUCK1 or BUCK2 outputs are enabled.  
CONFIG=0: EN=1 turns on outputs or standby mode if EN=0.  
CONFIG=1: PWR_ON=1 starts power up sequence after 30 ms of de-bounce time. Internal 500K pull-  
down resistor.  
EN/PWR_ON  
FB1  
E4  
B4  
D3  
F5  
A5  
F1  
E1  
C1  
B2  
BUCK1 Feedback. Active pull-down when BUCK1 turns off.  
FB2  
BUCK2 Feedback. Active pull-down when BUCK2 turns off.  
GND  
IC Ground  
GNDB1  
GNDB2  
LDO1  
LDO2  
LDO3  
LDO3_EN  
BUCK1 Ground.  
BUCK2 Ground.  
LDO1 output.  
LDO2 output.  
LDO3 output.  
Enable for LDO3 output if this pin is high and if LDO3_EN register bit is set to 0. (LDO3_EN and the  
register bit are logical OR.) Internal 500 Kpull-down resistor.  
LDO4  
LDO5  
LILO1  
LILO2  
A1  
B1  
F3  
A3  
LDO4 output.  
LDO5 output  
LILO1 output.  
LILO2 output.  
CONFIG=0: Goes high typ. 30 ms after EN=1 and goes low when EN=0.  
CONFIG=1: Goes high typ. 60 ms after PWR_ON=1 and goes low 30 ms after PS_HOLD=0.  
External pull-up resistor is needed, typical 10 k.  
RESET_N  
C3  
SCL  
D4  
C4  
E5  
B5  
F2  
D5  
D1  
C5  
A2  
F4  
A4  
Serial Interface Clock Input. External pull-up resistor is needed, typical 1.5 k.  
SDA  
Serial Interface Data Input/Output. Open Drain output, external pull-up resistor is needed, typical 1.5 k.  
SW1  
BUCK1 Switch node of DC-DC converter BUCK1.  
BUCK2 Switch node of DC-DC converter BUCK2.  
Input for LDO1.  
SW2  
VIN1  
VINB1  
VIN2  
Input for BUCK1.  
Input for LDO2 and LDO3.  
Input for BUCK2.  
VINB2  
VIN3  
Input for LDO4 and LDO5.  
Input for LILO1.  
VINLILO1  
VINLILO2  
Input for LILO2.  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
Copyright © 2009–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LP8725  
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
DEVICE DESCRIPTION  
Operation Modes  
POWER-ON-RESET: In SUB_PMU configuration - After VIN1 goes above UVLO high threshold, then all internal  
registers of LP8725 are reset to the default values from the DEFSEL setting, after which LP8725 goes to  
STANDBY mode. In PMU configuration - When PWR_ON goes high while VIN1 is above the UVLO high  
threshold, all internal registers of LP8725 are reset to the default values from the DEFSEL setting. This  
process duration max is typically 500 µs.  
STANDBY: In STANDBY mode only serial interface is working and all other PMU functions are disabled – PMU  
is in low-power condition. In STANDBY mode LP8725 can be (re)configured via Serial Interface. The  
LP8725 only enters STANDBY mode automatically in SUB_PMU configuration.  
STARTUP: STARTUP sequence is defined by registers contents. STARTUP sequence starts:  
1) If rising edge on EN-pin in SUB_PMU configuration.  
2) After cooling down from thermal shutdown event if EN=1 in SUB_PMU configuration.  
3) If PWR_ON is still high after 30 ms (typical de-bounce time) in PMU configuration. It is not  
recommended to write to LP8725 registers during STARTUP. If doing so then current STARTUP  
sequence may become undefined.  
In SUB_PMU configuration RESET_N is de-asserted 30 ms (typical) after EN=1. In PMU configuration  
RESET_N is de-asserted a further 30 ms (typical) after PWR_ON de-bounce time has ended.  
It is not recommended to write to LP8725 registers during startup. If doing so then current STARTUP  
sequence may become undefined.  
IDLE: The LP8725 will enter into IDLE mode (normal operating mode) after end of startup sequence. In IDLE  
mode all LDOs and BUCK can be enabled/disabled via Serial Interface. Also in IDLE mode the LP8725  
can be (re)configured via Serial Interface.  
SHUTDOWN: SHUTDOWN sequence follows the reverse order of the startup sequence defined by registers  
contents:  
1) If falling edge on EN-pin in SUB_PMU configuration.  
2) If PS_HOLD and PWR_ON both go low for typically 30 ms in PMU configuration. Device immediately  
shuts down if the temperature exceeds thermal shutdown threshold TSD +160°C.  
RESET_N is asserted when the device starts to shut down.  
It is not recommended to write to LP8725 registers during SHUT DOWN. If doing so then current  
SHUTDOWN sequence may become undefined.  
In SUB_PMU configuration the device shuts down to STANDBY mode.  
In PMU configuration the device shuts down completely (so registers will be reset on next PWR_ON high).  
SLEEP: The load current for each of the LDO outputs should be no greater than 5mA when the device is put into  
SLEEP mode. In Sleep mode Ground current is minimized. SLEEP mode is controlled by the serial  
interface, Register 0x00 bit 1.  
SLEEP Mode is controlled by the Serial Interface.  
Table 1. Application Configuration(1)(2)  
CONFIG  
Application  
Pin B3 Function  
Pin E3 Function  
Slave Address,  
DEFSEL = 1  
Slave Address,  
DEFSEL = 0  
GND  
VIN1  
SUB_PMU  
PMU  
B2_EN  
EN  
7h'78  
7h'79  
7h'7A  
7h'7B  
PS_HOLD  
PWR_ON  
(1) The LP8725 and LP8725-A are both configured as either SUB_PMU or PMU by the wiring of the CONFIG pin on the application of  
power to the device.  
(2) These are dependent on whether DEFSEL is connected to VIN1 or GND when PWR_ON/EN=1.  
6
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
 
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
OFF  
UVLO=1  
(POR)  
OFF  
UVLO=1  
AND  
PWR_ON=1  
STANDBY  
PS_HOLD=0  
(SHUTDOWN SEQ)  
(POR AND  
STARTUP  
SEQ)  
EN=0  
SHUTDOWN SEQ  
EN=1  
STARTUP SEQ  
IDLE  
PS_HOLD=1  
SLEEP_MODE=1  
SLEEP_MODE=1  
SLEEP  
IDLE  
SLEEP  
SLEEP_MODE=0  
SLEEP_MODE=0  
Figure 1. SUB-PMU Mode, CONFIG = 0  
Figure 2. PMU Mode, CONFIG = 1  
Additional Functions  
DVS: Dynamic Voltage Scaling allows using 2 set voltages for BUCKs. This is controlled via Serial Interface.  
BUCK1 can also be controlled by the external DVS pin.  
FAULT DETECTIONIf BUCK1/BUCK2 and LDO1 are not masked then if one of the outputs is pulled down - e.g.,  
short circuit, then RESET_N is asserted (low)..  
Table 2. Default Start-Up Enable Sequence(1)  
Part No.  
DEFSEL  
Start-Up Sequence  
Shut Down Sequence  
LP8725  
VIN1 (setup 1)  
BUCK1 then BUCK2 and LILO2 then LDO1, LDO2, LDO4  
and LDO5 then LDO3 and LILO1  
In reverse order of start-up  
sequence.  
LP8725  
GND (setup 2)  
VIN1 (setup 1)  
GND (setup 2)  
VIN1 or GND  
VIN1 or GND  
VIN1 or GND  
BUCK1 and LILO2 then BUCK2, LDO1, LDO2, LDO5 and  
LILO1 then LDO3 and LDO4.  
In reverse order of start-up  
sequence.  
LP8725-A  
LP8725-A  
LP8725-B  
LP8725-C  
LP8725-D  
LDO1, LDO2, LDO5 and LILO1 then LDO4 and LILO2  
In reverse order of start-up  
sequence.  
BUCK1 and BUCK2 then LDO2 and LDO3 then LDO1,  
LDO4 and LDO5 then LILO1 and LILO2  
In reverse order of start-up  
sequence.  
BUCK1 then BUCK2 then LDO1 then LILO2  
In reverse order of start-up  
sequence.  
BUCK1 then BUCK2 and LDO5 then LDO1 and LDO2 and  
LILO 1and LILO 2 then LDO3 and LDO4  
In reverse order of start-up  
sequence.  
BUCK1 then BUCK2, LDO3, LILO1 and LILO2  
In reverse order of start-up  
sequence.  
(1) These are dependent on whether DEFSEL is connected to VIN1 or GND when PWR_ON/EN=1.  
Copyright © 2009–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LP8725  
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
Power On and Power Off Sequences  
EN  
EN  
BUCK  
BUCK  
(note 1)  
(note 1)  
DVS Control  
LDO  
LDO  
(note 1)  
(note 1)  
30 ms  
RESET_N  
RESET_N  
Figure 3. Simplified startup Sequence if CONFIG=GND (SUB_PMU)  
PWR_ON  
PWR_ON  
30 ms  
BUCK  
BUCK  
(note 1)  
DVS Control  
(note 1)  
LDO  
LDO  
(note 1)  
(note 1)  
30 ms  
RESET_N  
PS_HOLD  
RESET_N  
PS_HOLD  
30 ms  
(note 2)  
All timing is typical.  
Note 1 See detailed on/off sequence diagrams for the different DEFSEL options.  
Note 2 PS_HOLD needs to be held low for >30 ms before RESET_N is asserted low. PMU should then start  
shutdown sequence opposite of startup sequence.  
Figure 4. Simplified Startup Sequence if CONFIG=VIN1 (PMU)  
8
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
Figure 5. LP8725 Startup and Shutdown Sequence if CONFIG=VIN1 Note 1, Note 2  
SHUT DOWN sequence  
is in reverse order of START UP sequence  
Timing Code  
START UP sequence  
Timing Code  
5 4  
3 2 1 0  
0 1 2 3  
6
4 5 6  
PWR_ON  
PS_HOLD  
PWR_ON  
PS_HOLD  
Buck 1  
Buck 1  
Buck 2  
LDO1  
Buck 2  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LILO 1  
LILO 2  
LDO2  
LDO3  
LDO4  
LDO5  
LILO 1  
LILO 2  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
S
OFF  
ON  
S
S
S
S
S
S
S
S
S
S
S
Note 4  
IDLE  
START UP  
SHUT DOWN  
All timing is typical.  
tON/OFF 30 ms typ. de-bounce times  
tS Programmable time steps. (Typically 64 µs/step.) Time step accuracy is defined by OSC frequency accuracy.  
Note 1 STARTUP and SHUTDOWN sequences are defined by registers. Sequences given here are valid if there the  
registers are not rewritten via Serial Interface.  
Note 2 The timing showed here define time points when LDOs and BUCK are enabled/disabled. Enabling /disabling  
process duration depends on voltages and loading conditions. Buck startup duration is typically 170 µs. LDO startup  
duration is typically 35 µs. For details please see LDOs and BUCK Electrical Specifications.  
Note 4 At this time point registers are reset to POR default values.  
Copyright © 2009–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LP8725  
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
Figure 6. LP8725 Startup and Shutdown Sequence if CONFIG=GND, DEFSEL=GND Note 1, Note 2  
START UP sequence  
Timing Code  
SHUT DOWN sequence  
is in reverse order of START UP sequence  
Timing Code  
5
3 2 1 0  
4
0 1 2 3  
4 5 6  
6
EN  
EN  
Buck 1  
Buck 2  
Buck 1  
Buck 2  
LDO1  
LDO2  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LILO 1  
LILO 2  
LDO3  
LDO4  
LDO5  
LILO 1  
LILO 2  
t
t
S
t
S
t
t
t
t
t
S
t
S
t
S
t
S
t
S
t
S
BON  
S
S
S
S
Note 4  
START UP  
IDLE  
SHUT DOWN  
STANDBY  
STANDBY  
All timing is typical.  
tBON 75 µs - Reference and bias turn ON.  
ts Programmable time steps. (Typically 64 µs/step.) Time step accuracy is defined by OSC frequency accuracy.  
Note 1 STARTUP and SHUTDOWN sequences are defined by registers. Sequences given here are valid if there the  
registers are not rewritten via Serial Interface.  
Note 2 The timing showed here define time points when LDOs and BUCK are enabled/disabled. Enabling /disabling  
process duration depends on voltages and loading conditions. Buck startup duration is typically 170 µs. LDO startup  
duration is typically 35 µs. For details please see LDOs and BUCK Electrical Specifications.  
Note 4 At this time point registers are reset to POR default values.  
10  
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
Figure 7. LP8725-A Startup and Shutdown Sequence if CONFIG=GND, DEFSEL=VIN1 Note 1, Note 2  
SHUT DOWN sequence  
START UP sequence  
is in reverse order of START UP sequence  
Timing Code  
Timing Code  
5
3 2 1 0  
4
0 1 2 3  
4 5 6  
6
EN  
EN  
Note 3  
Note 5  
Buck 1  
Buck 1  
Buck 2  
LDO1  
Buck 2  
LDO1  
LDO2  
LDO3  
LDO2  
LDO3  
Note 5  
LDO4  
LDO4  
LDO5  
LDO5  
LILO 1  
LILO 1  
LILO 2  
LILO 2  
t
t
t
t
t
t
t
t
S
t
S
t
S
t
S
t
S
t
S
BON  
S
S
S
S
S
S
Note 4  
START UP  
IDLE  
SHUT DOWN  
STANDBY  
STANDBY  
All timing is typical.  
tBON 75 µs - Reference and bias turn ON.  
tS Programmable time steps. (Typically 64 µs/step.) Time step accuracy is defined by OSC frequency accuracy.  
Note 1 STARTUP and SHUTDOWN sequences are defined by registers. Sequences given here are valid if there the  
registers are not rewritten via Serial Interface.  
Note 2 The timing showed here define time points when LDOs and BUCK are enabled/disabled. Enabling /disabling  
process duration depends on voltages and loading conditions. Buck startup duration is typically 170 µs. LDO startup  
duration is typically 35 µs. For details please see LDOs and BUCK Electrical Specifications.  
Note 3 BUCK1 is disabled. If it is enabled via Serial Interface and the startup sequence is not changed, then it will be  
disabled, with no delay, from falling edge of EN-pin.  
Note 4 At this time point registers are reset to POR default values.  
Note 5 BUCK2 and LDO3 are enabled by B2_EN and LDO3_EN respectively (or via serial interface). If these inputs  
are high when EN goes high then these outputs turn on after ts= 6.  
Copyright © 2009–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LP8725  
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
Figure 8. LP8725-A Startup and Shutdown Sequence if CONFIG=GND, DEFSEL=GND Note 1, Note 2  
SHUT DOWN sequence  
START UP sequence  
is in reverse order of START UP sequence  
Timing Code  
Timing Code  
5
3 2 1 0  
4
0 1 2 3  
4 5 6  
6
EN  
EN  
Buck 1  
Buck 1  
Buck 2  
LDO1  
Buck 2  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LILO 1  
LILO 2  
LDO2  
LDO3  
LDO4  
LDO5  
LILO 1  
LILO 2  
t
t
t
t
t
t
t
t
t
t
t
t
t
S
BON  
S
S
S
S
S
S
S
S
S
S
S
Note 4  
START UP  
IDLE  
SHUT DOWN  
STANDBY  
STANDBY  
All timing is typical.  
tBON 75 µs - Reference and bias turn ON.  
tS Programmable time steps. (Typically 64 µs/step.) Time step accuracy is defined by OSC frequency accuracy.  
Note 1 STARTUP and SHUTDOWN sequences are defined by registers. Sequences given here are valid if there the  
registers are not rewritten via Serial Interface.  
Note 2 The timing showed here define time points when LDOs and BUCK are enabled/disabled. Enabling /disabling  
process duration depends on voltages and loading conditions. Buck startup duration is typically 170 µs. LDO startup  
duration is typically 35 µs. For details please see LDOs and BUCK Electrical Specifications.  
Note 4 At this time point registers are reset to POR default values.  
12  
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
Figure 9. LP8725-B Startup and Shutdown Sequence if CONFIG=VIN1,  
DEFSEL=VIN1 or DEFSEL=GND Note 1, Note 2  
SHUT DOWN sequence  
is in reverse order of START UP sequence  
Timing Code  
START UP sequence  
Timing Code  
5
3 2 1 0  
4
0 1 2 3  
4 5 6  
6
PWR_ON  
PS_HOLD  
PWR_ON  
PS_HOLD  
Buck 1  
Buck 1  
Buck 2  
LDO1  
Buck 2  
LDO1  
Note 3  
LDO2  
LDO3  
LDO4  
LDO5  
LILO 1  
LILO 2  
LDO2  
LDO3  
LDO4  
Note 5  
Note 3  
Note 3  
Note 3  
LDO5  
LILO 1  
LILO 2  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
S
OFF  
ON  
S
S
S
S
S
S
S
S
S
S
S
Note 4  
IDLE  
START UP  
SHUT DOWN  
All timing is typical.  
tON/OFF 30 ms typ. de-bounce times.  
tS Programmable time steps. (Typically 64 µs/step.) Time step accuracy is defined by OSC frequency accuracy.  
Note 1 STARTUP and SHUTDOWN sequences are defined by registers. Sequences given here are valid if there the  
registers are not rewritten via Serial Interface.  
Note 2 The timing showed here define time points when LDOs and BUCK are enabled/disabled. Enabling /disabling  
process duration depends on voltages and loading conditions. Buck startup duration is typically 170 µs. LDO startup  
duration is typically 35 µs. For details please see LDOs and BUCK Electrical Specifications.  
Note 3 LDO2, 4, 5 and LILO1 are disabled. If they are enabled via Serial Interface and the startup sequence is not  
changed, then they will be disabled, with no delay, from falling edge of EN-pin.  
Note 4 At this time point registers are reset to POR default values.  
Note 5 LDO3 is enabled by LDO3_EN (or via serial interface). If this input is high when PWR_ON goes high then this  
output turns on after ts= 6.  
Copyright © 2009–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LP8725  
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
Figure 10. LP8725-B Startup and Shutdown Sequence if CONFIG=GND,  
DEFSEL=VIN1 or DEFSEL=GND Note 1, Note 2  
SHUT DOWN sequence  
is in reverse order of START UP sequence  
Timing Code  
START UP sequence  
Timing Code  
5
3 2 1 0  
4
0 1 2 3  
4 5 6  
6
EN  
EN  
Buck 1  
Buck 2  
LDO1  
Buck 1  
Buck 2  
LDO1  
Note 3  
LDO2  
LDO3  
LDO4  
LDO5  
LILO 1  
LILO 2  
LDO2  
LDO3  
LDO4  
Note 5  
Note 3  
Note 3  
Note 3  
LDO5  
LILO 1  
LILO 2  
t
t
t
t
t
t
t
t
t
t
t
t
t
S
BON  
S
S
S
S
S
S
S
S
S
S
S
Note 4  
STANDBY  
SHUT DOWN  
STANDBY  
IDLE  
START UP  
All timing is typical.  
tBON 75 µs - Reference and bias turn ON.  
tS Programmable time steps. (Typically 64 µs/step.) Time step accuracy is defined by OSC frequency accuracy.  
Note 1 STARTUP and SHUT DOWN sequences are defined by registers. Sequences given here are valid if there the  
registers are not rewritten via Serial Interface.  
Note 2 The timing showed here define time points when LDOs and BUCK are enabled/disabled. Enabling /disabling  
process duration depends on voltages and loading conditions. Buck startup duration is typically 170 µs. LDO startup  
duration is typically 35 µs. For details please see LDOs and BUCK Electrical Specifications.  
Note 3 LDO2, 4, 5 and LILO1 are disabled. If they are enabled via Serial Interface and the startup sequence is not  
changed, then they will be disabled, with no delay, from falling edge of EN-pin.  
Note 4 At this time point registers are reset to POR default values.  
Note 5 LDO3 is enabled by LDO3_EN (or via serial interface). If this input is high when PWR_ON goes high then this  
output turns on after ts= 6.  
14  
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
Figure 11. LP8725-C Startup and Shutdown Sequence if CONFIG=VIN1,  
DEFSEL=VIN1 or DEFSEL=GND Note 1, Note 2  
SHUT DOWN sequence  
is in reverse order of START UP sequence  
Timing Code  
START UP sequence  
Timing Code  
5
3 2 1 0  
4
0 1 2 3  
4 5  
6
6
PWR_ON  
PS_HOLD  
PWR_ON  
PS_HOLD  
Buck 1  
Buck 2  
LDO1  
Buck 1  
Buck 2  
LDO1  
LDO2  
LDO3  
LDO4  
LDO2  
LDO3  
LDO4  
LDO5  
LILO 1  
LILO 2  
LDO5  
LILO 1  
LILO 2  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
S
OFF  
ON  
S
S
S
S
S
S
S
S
S
S
S
Note 4  
IDLE  
START UP  
SHUT DOWN  
All timing is typical.  
tON/OFF 30 ms typ. de-bounce times.  
tS Programmable time steps. (Typically 64 µs/step.) Time step accuracy is defined by OSC frequency accuracy.  
Note 1 STARTUP and SHUTDOWN sequences are defined by registers. Sequences given here are valid if there the  
registers are not rewritten via Serial Interface.  
Note 2 The timing showed here define time points when LDOs and BUCK are enabled/disabled. Enabling /disabling  
process duration depends on voltages and loading conditions. Buck startup duration is typically 170 µs. LDO startup  
duration is typically 35 µs. For details please see LDOs and BUCK Electrical Specifications.  
Note 4 At this time point registers are reset to POR default values.  
Copyright © 2009–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LP8725  
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
Figure 12. LP8725-D Startup and Shutdown Sequence if CONFIG=VIN1,  
DEFSEL=VIN1 or DEFSEL=GND Note 1, Note 2  
SHUT DOWN sequence  
is in reverse order of START UP sequence  
Timing Code  
START UP sequence  
Timing Code  
5
3 2 1 0  
4
0 1 2 3  
4 5 6  
6
PWR_ON  
PS_HOLD  
PWR_ON  
PS_HOLD  
Buck 1  
Buck 1  
Buck 2  
LDO1  
Buck 2  
LDO1  
Note 3  
Note 3  
LDO2  
LDO3  
LDO4  
LDO5  
LILO 1  
LILO 2  
LDO2  
LDO3  
LDO4  
Note 3  
Note 3  
LDO5  
LILO 1  
LILO 2  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
S
OFF  
ON  
S
S
S
S
S
S
S
S
S
S
S
Note 4  
IDLE  
START UP  
SHUT DOWN  
All timing is typical.  
tON/OFF 30 ms typ. de-bounce times.  
tS Programmable time steps. (Typically 64 µs/step.) Time step accuracy is defined by OSC frequency accuracy.  
Note 1 STARTUP and SHUTDOWN sequences are defined by registers. Sequences given here are valid if there the  
registers are not rewritten via Serial Interface.  
Note 2 The timing showed here define time points when LDOs and BUCK are enabled/disabled. Enabling /disabling  
process duration depends on voltages and loading conditions. Buck startup duration is typically 170 µs. LDO startup  
duration is typically 35 µs. For details please see LDOs and BUCK Electrical Specifications.  
Note 3 LDO1, 2, 4, 5 are disabled. If they are enabled via Serial Interface and the startup sequence is not changed,  
then they will be disabled, with no delay, from falling edge of EN-pin.  
Note 4 At this time point registers are reset to POR default values.  
Note 5 LDO3 is enabled by LDO3_EN (or via serial interface). If this input is high when PWR_ON goes high then this  
output turns on after ts= 6.  
16  
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
Table 3. Default Output Voltages(1)(2)  
Output  
Max Current (mA)  
Voltage Range (V)  
Default output Voltage [V] and default ON/OFF  
(PWR_ON/EN=1)  
DEFSEL = VIN1  
1.0*/1.2** ON  
1.8*/1.8** ON  
2.8 ON  
DEFSEL = GND  
1.2*/1.0** ON  
1.8*/1.8** ON  
2.6 ON  
BUCK1  
BUCK2  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LILO1  
LILO2  
800  
600  
300  
300  
300  
300  
300  
300  
300  
0.8 to 3.0  
0.8 to 3.0  
1.2 to 3.3  
1.2 to 3.3  
1.2 to 3.3  
1.2 to 3.3  
1.2 to 3.3  
0.8 to 3.3  
0.8 to 3.3  
1.8 ON  
2.8 ON  
3.3 ON  
2.8 ON  
3.3 ON  
2.8 ON  
2.8 ON  
2.8 ON  
1.2 ON  
3.3 ON  
1.2 ON  
1.2 ON  
(1) These are dependent on whether DEFSEL is connected to VIN1 or GND when PWR_ON/EN=1.  
(2) BUCK1 voltages are set to *BUCK1_V1 and **BUCK1_V2 as selected by DVS1_V and the DVS pin.  
BUCK2 voltages are set to *BUCK2_V1 and **BUCK2_V2 as selected by DVS2_V.  
Table 4. LP8725-A Alternative Part's Default Output Voltages(1)(2)  
Output  
Max Current (mA)  
Voltage Range (V)  
Default output Voltage [V] and default ON/OFF  
(PWR_ON/EN=1)  
DEFSEL = VIN1  
1.1*/1.0** OFF  
1.1*/1.0** OFF***  
2.6 ON  
DEFSEL = GND  
1.3*/1.2** ON  
1.3*/1.2** ON  
2.8 ON  
BUCK1  
BUCK2  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LILO1  
LILO2  
800  
600  
300  
300  
300  
300  
300  
300  
300  
0.8 to 3.0  
0.8 to 3.0  
1.2 to 3.3  
1.2 to 3.3  
1.2 to 3.3  
1.2 to 3.3  
1.2 to 3.3  
0.8 to 3.3  
0.8 to 3.3  
3.0 ON  
2.8 ON  
3.3 OFF****  
3.0 ON  
2.8 ON  
2.8 ON  
2.8 ON  
2.8 ON  
1.8 ON  
1.8 ON  
1.0 ON  
1.8 ON  
(1) These are dependent on whether DEFSEL is connected to VIN1 or GND when PWR_ON/EN=1.  
(2) BUCK1 voltages are set to *BUCK1_V1 and **BUCK1_V2 as selected by DVS1_V and the DVS pin.  
BUCK2 voltages are set to *BUCK2_V1 and **BUCK2_V2 as selected by DVS2_V.  
*** Only if pin B2_EN=0 if in SUB_PMU configuration  
**** Only if pin LDO3_EN=0  
Copyright © 2009–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LP8725  
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
Table 5. LP8725-B Alternative Part's Default Output Voltages(1)(2)  
Output  
Max Current (mA)  
Voltage Range (V)  
Default output Voltage [V] and default ON/OFF  
(PWR_ON/EN=1)  
DEFSEL = VIN1  
DEFSEL = GND  
1.2*/1.2** ON  
1.8*/1.8** ON  
1.8 ON  
BUCK1  
BUCK2  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LILO1  
LILO2  
800  
600  
300  
300  
300  
300  
300  
300  
300  
0.8 to 3.0  
0.8 to 3.0  
1.2 to 3.3  
1.2 to 3.3  
1.2 to 3.3  
1.2 to 3.3  
1.2 to 3.3  
0.8 to 3.3  
0.8 to 3.3  
1.2*/1.2** ON  
1.8*/1.8** ON  
2.6 ON  
2.8 OFF  
2.8 OFF  
2.8 OFF***  
1.2 OFF  
2.8 OFF***  
1.2 OFF  
1.2 OFF  
1.2 OFF  
2.5 OFF  
2.5 OFF  
3.3 ON  
3.3 ON  
(1) These are dependent on whether DEFSEL is connected to VIN1 or GND when PWR_ON/EN=1.  
(2) BUCK1 voltages are set to *BUCK1_V1 and **BUCK1_V2 as selected by DVS1_V and the DVS pin.  
BUCK2 voltages are set to *BUCK2_V1 and **BUCK2_V2 as selected by DVS2_V.  
*** Only if pin LDO3_EN=0  
(1)  
Table 6. LP8725-C Alternative Part's Default Output Voltages  
Output  
Max Current (mA)  
Voltage Range (V)  
Default output Voltage [V] and default ON/OFF  
(PWR_ON/EN=1)  
DEFSEL = VIN1  
1.2 ON  
DEFSEL = GND  
1.2 ON  
BUCK1  
BUCK2  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LILO1  
LILO2  
800  
600  
300  
300  
300  
300  
300  
300  
300  
0.8 to 3.0  
0.8 to 3.0  
1.2 to 3.3  
1.2 to 3.3  
1.2 to 3.3  
1.2 to 3.3  
1.2 to 3.3  
0.8 to 3.3  
0.8 to 3.3  
1.8 ON  
1.8 ON  
2.6 ON  
2.6 ON  
2.8 ON  
2.8 ON  
2.8 ON  
2.8 ON  
2.5 ON  
2.5 ON  
3.3 ON  
3.3 ON  
1.2 ON  
1.2 ON  
1.2 ON  
1.2 ON  
(1) These are dependent on whether DEFSEL is connected to VIN1 or GND when PWR_ON/EN=1.  
18  
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
Table 7. LP8725-D Alternative Part's Default Output Voltages(1)(2)  
Output  
Max Current (mA)  
Voltage Range (V)  
Default output Voltage [V] and default ON/OFF  
(PWR_ON/EN=1)  
DEFSEL = VIN1  
1.3*/1.3** ON  
1.8*/1.8** ON  
2.8 OFF  
DEFSEL = GND  
1.3*/1.3** ON  
1.8*/1.8** ON  
2.8 OFF  
BUCK1  
BUCK2  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LILO1  
LILO2  
800  
800  
300  
300  
300  
300  
300  
300  
300  
0.8 to 3.0  
0.8 to 3.0  
1.2 to 3.3  
1.2 to 3.3  
1.2 to 3.3  
1.2 to 3.3  
1.2 to 3.3  
0.8 to 3.3  
0.8 to 3.3  
1.8 OFF  
1.8 OFF  
1.8 ON  
1.8 ON  
3.0 OFF  
3.0 OFF  
1.8 OFF  
1.2 OFF  
3.0 ON  
3.0 ON  
3.0 ON  
3.0 ON  
(1) These are dependent on whether DEFSEL is connected to VIN1 or GND when PWR_ON/EN=1.  
(2) BUCK1 voltages are set to *BUCK1_V1 and **BUCK1_V2 as selected by DVS1_V and the DVS pin.  
BUCK2 voltages are set to *BUCK2_V1 and **BUCK2_V2 as selected by DVS2_V.  
Copyright © 2009–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LP8725  
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ABSOLUTE MAXIMUM RATINGS(1) (2)  
VIN1  
-0.3V to +6V  
VIN2, VIN3, VINLILO1, VINLILO2, VINB1, VINB2  
Logic and control pins: Voltage to GND  
Continuous Power Dissipation(3)  
-0.3V to VIN1+0.3V and <6.0V  
-0.3V to VIN1+0.3V and <6.0V  
Internally Limited  
150°C  
Junction Temperature (TJ-MAX  
Storage Temperature Range  
ESD Rating(4)  
)
-65 to 150°C  
2kV  
Human Body Model  
Machine Model  
200V  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the potential at the GND pin.  
(3) Internal thermal shutdown circuitry protects the device fro permanent damage. Thermal shutdown engages at TJ = 150°C (typ.) and  
disengages at TJ = 130°C.  
(4) The human-body model is 100 pF discharged through 1.5 k. The machine model is a 200 pF capacitor discharged directly into each  
pin, MIL-STD-883 3015.7.  
(1) (2)  
OPERATING RATINGS  
VIN1  
2.6 to 4.5V  
2.6V to VIN1  
1.8V to VIN1  
0V to VIN1  
-40 to 125°C  
-40 to 85°C  
1.3 W  
VIN2, VIN3, VINB1, VINB2  
VINLILO1, VINLILO2  
All input-only pins  
Junction Temperature (TJ)  
Ambient Temperature (TA)  
(3)  
Maximum Power Dissipation (TA = 70°C)  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the potential at the GND pin.  
(3) In applications where high power dissipation and/or poor package resistance is present, the maximum ambient temperature may have to  
be de-rated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX), The  
maximum power dissipation of the device in the application (PD-MAX) and the junction to ambient thermal resistance of the package (θJA  
in the application, as given by the following equation: TA-MAX = TJ-MAX (θJA x PD-MAX). Due to the pulsed nature of testing the part, the  
temp in the Electrical Characteristic table is specified as TA = TJ.  
)
THERMAL PROPERTIES  
Junction-to-Ambient Thermal Resistance (θJA  
)
(1), θJA 4–Layer JEDEC Board(2)  
41°C/W  
(1) In applications where high power dissipation and/or poor package resistance is present, the maximum ambient temperature may have to  
be de-rated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX), The  
maximum power dissipation of the device in the application (PD-MAX) and the junction to ambient thermal resistance of the package (θJA  
in the application, as given by the following equation: TA-MAX = TJ-MAX (θJA x PD-MAX). Due to the pulsed nature of testing the part, the  
temp in the Electrical Characteristic table is specified as TA = TJ.  
)
(2) Junction-to-ambient thermal resistance is highly application and board layout dependent. In applications where high power dissipation  
exists, special care must be given to thermal dissipation issues in board design.  
20  
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
CURRENT CONSUMPTION  
Unless otherwise noted, VIN1=VIN2=VIN3=VINB1=VINB2=VINLILO1=VINLILO2=3.6V; CLDOX=1µF; CBUCKOUT=CBUCKIN=4.7 µF;  
CVIN1–3=CVINLILO1=CVINLILO2=2.2 µF. Typical values and limits appearing in normal type apply for TJ=25°C. Limits appearing in  
(1)  
boldface type apply over the entire junction temperature range for operation, TJ= -40 to +125°C.  
Symbol  
IQ(STANDBY)  
IQ(SLEEP)  
Parameter  
Standby Current  
Conditions  
Min  
Typ  
3.3  
50  
Max  
8
Unit  
All outputs disabled EN = 0  
Current in SLEEP Mode at Outputs disabled via control registers  
80  
no load  
Only Buck1 and LDO1 enabled  
95  
All outputs enabled  
205  
145  
205  
420  
280  
210  
µA  
IQ(IDLE)  
Current at no load  
Outputs disabled via control registers  
Only Buck1 and LDO1 enabled  
All outputs enabled  
600  
(1) Min and Max limits are specified by design, test or statistical analysis. Typical numbers are not verified, but do represent the most likely  
norm.  
THERMAL SHUTDOWN  
The Thermal Shutdown (TSD) function monitors the chip temperature (TJ) to protect the chip from temperature damage  
(1)  
caused, e.g., by excessive power dissipation.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
160  
20  
Max  
Unit  
°C  
TSD  
TSD Hysteresis  
°C  
(1) Min and Max limits are specified by design, test or statistical analysis. Typical numbers are not verified, but do represent the most likely  
norm.  
UNDER-VOLTAGE LOCK OUT  
This device has Under-Voltage Lock Out (UVLO) that checks VIN1-pin voltage before starting Power On sequence. UVLO is  
also checked during Power On sequence. If the VDD voltage is less than UVLO threshold the PMU will not Power On. After  
(1)  
the PMU successfully passed Power On sequence UVLO is not monitored.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
2.3  
Max  
Unit  
CONFIG = 0  
CONFIG = 1  
CONFIG = 0  
CONFIG = 1  
UVLO Threshold  
VIN1 rising  
V
2.825  
3.0  
3.185  
VUVLO  
400  
800  
Hysteresis  
mV  
(1) Min and Max limits are specified by design, test or statistical analysis. Typical numbers are not verified, but do represent the most likely  
norm.  
LOGIC AND CONTROL  
Unless otherwise noted, VIN1=VIN2=VIN3=VINB1 =VINB2=VINLILO1=VINLILO2=3.6V; CLODX=1µF; CBUCKOUT=CBUCKIN=4.7 µF,  
CVIN1–3=CVINLILO1CVINLILO2=2.2 µF. Typical values and limits appearing in normal type apply for TJ=25°C. Limits appearing in  
(1)  
boldface type apply over the entire junction temperature range for operation, TJ= -40 to +125°C.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
0.4  
Unit  
Logic and Control Inputs  
VIL  
VIH  
IIL  
Input Low Level  
Input High Level  
Input Low Level Current  
EN, SCL, SDA, DVS, PS_HOLD,  
PWR_ON BUCK2_EN, LDO3_EN  
V
V
EN, SCL, SDA, DVS, PS_HOLD  
PWR_ON, BUCK2_EN, LDO3_EN  
1.2  
EN, SCL, SDA, DVS, PS_HOLD  
PWR_ON, DVS, DEFSEL, CONFIG,  
BUCK2_EN, LDO3_EN  
VIL = 0V  
0
2
µA  
(1) Min and Max limits are specified by design, test or statistical analysis. Typical numbers are not verified, but do represent the most likely  
norm.  
Copyright © 2009–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LP8725  
 
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
LOGIC AND CONTROL (continued)  
Unless otherwise noted, VIN1=VIN2=VIN3=VINB1 =VINB2=VINLILO1=VINLILO2=3.6V; CLODX=1µF; CBUCKOUT=CBUCKIN=4.7 µF,  
CVIN1–3=CVINLILO1CVINLILO2=2.2 µF. Typical values and limits appearing in normal type apply for TJ=25°C. Limits appearing in  
(1)  
boldface type apply over the entire junction temperature range for operation, TJ= -40 to +125°C.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
2
Unit  
IIH  
Input High Level Current  
PS_HOLD, DEFSEL, CONFIG, DVS  
VIH = VIN1  
0
RPD  
Pull Down Resistance  
From EN, PWR_ON, B2_EN, and  
LDO3_EN  
500  
kΩ  
Logic and Control Outputs  
VOL Output Low Level  
SDA, RESET_N  
IOUT = 2mA  
0.14  
0
0.3  
2
V
IOH  
Output High Level  
SDA, RESET_N have Open drain  
outputs  
µA  
VOH = VIN1  
BUCK CONVERTERS  
Unless otherwise noted, VIN1=VIN2=VIN3=VINB1 =VINB2=VINLILO1=VINLILO2=3.6V; CLODX=1µF; CBUCKOUT=CBUCKIN=4.7 µF,  
CVIN1–3=CVINLILO1CVINLILO2=2.2 µF. Typical values and limits appearing in normal type apply for TJ=25°C. Limits appearing in  
(1) (2)  
boldface type apply over the entire junction temperature range for operation, TJ= -40 to +125°C.  
Symbol  
Parameter  
Conditions  
Min  
-2  
Typ  
Max  
+2  
Unit  
BUCK1 Feedback Voltage  
BUCK2 Feedback Voltage  
VFB  
VOUT = 1.8V  
%
-3  
+3  
RDSON(P)  
RDSON(N)  
Pin-Pin resistance for PFET IOUT = 200 mA  
265  
150  
mΩ  
mΩ  
Pin-Pin resistance for NFET IOUT = 200 mA  
Open-loop, programmable:  
460  
780  
250 mA max IOUT typ  
450 mA max IOUT typ  
600 mA max IOUT typ  
800 mA max IOUT typ  
ILIM  
Switch Peak Current Limit  
mA  
750  
3.6  
1050  
1370  
170  
1500  
4.4  
tSTUP  
fSW  
Startup Time  
IOUT = 0mA to 100 mA  
µs  
Switching Frequency  
4.1  
MHz  
(1) Min and Max limits are specified by design, test or statistical analysis. Typical numbers are not verified, but do represent the most likely  
norm.  
(2) The parameters in the electrical characteristic table are tested under open loop conditions at VIN = 3.6V unless otherwise specified. For  
performance over the input voltage range and closed loop condition, refer to the datasheet curves.  
DIGITAL LDOs (1, 2, 3)  
Unless otherwise noted, VIN1=VIN2=VIN3=VINB1=VINB2=VINLILO1=VINLILO2=3.6V; CLODX=1µF; CBUCKOUT=CBUCKIN=4.7 µF,  
CVIN1–3=CVINLILO1CVINLILO2=2.2 µF. Typical values and limits appearing in normal type apply for TJ=25°C. Limits appearing in  
(1)  
boldface type apply over the entire junction temperature range for operation, TJ= -40 to +125°C.  
Symbol  
Parameter  
Conditions  
IOUT = 1mA, VOUT = 2.8V  
VOUT + 0.5V VIN2 4.5V  
Min  
1.5  
2  
Typ  
Max  
+1.5  
+2  
Unit  
LDO1 Output Voltage  
Accuracy  
VOUT  
%
2  
+2  
LDOs 2 & 3 Output Voltage  
Accuracy  
2.5  
+2.5  
Line Regulation  
Load Regulation  
2
2
mV  
(2)  
IOUT = 1mA  
ΔVOUT  
1 < IOUT < 300 mA  
(1) Min and Max limits are specified by design, test or statistical analysis. Typical numbers are not verified, but do represent the most likely  
norm.  
(2) The minimum input voltage equals VOUT (nom) + 0.5V or 2.5V, which ever is greater.  
22  
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
DIGITAL LDOs (1, 2, 3) (continued)  
Unless otherwise noted, VIN1=VIN2=VIN3=VINB1=VINB2=VINLILO1=VINLILO2=3.6V; CLODX=1µF; CBUCKOUT=CBUCKIN=4.7 µF,  
CVIN1–3=CVINLILO1CVINLILO2=2.2 µF. Typical values and limits appearing in normal type apply for TJ=25°C. Limits appearing in  
(1)  
boldface type apply over the entire junction temperature range for operation, TJ= -40 to +125°C.  
Symbol  
Parameter  
Dropout Voltage  
Conditions  
IOUT = 300 mA  
Nominal VOUT = 2.8V  
Min  
Typ  
Max  
270  
Unit  
VDO  
IOUT  
190  
mV  
(3)  
Output Current  
0
300  
1
mA  
mA  
ISLEEP  
Max Output Current in  
Sleep Mode  
ISC  
eN  
Output Current Limit  
Output Voltage Noise  
VOUT = 0V  
650  
35  
mA  
10 Hz f 100 KHz  
µVRMS  
IOUT = 300 mA  
PSRR  
Power Supply Rejection  
Ratio  
f 10 KHz, IOUT = 20 mA  
65  
20  
dB  
tSTUP  
VOS  
Startup Time  
IOUT = 0 mA to 300 mA in Idle mode.  
µs  
(4)  
Start-up Overshoot  
IOUT = 300 mA  
30  
20  
mV  
(4)  
COUT  
External Output  
Capacitance for Stability  
0.5  
1
µF  
(3) Dropout voltage is the voltage difference between the input and the output at which the output voltage drops to 100 mV below its  
nominal value.  
(4) This specification is guaranteed by design.  
LOW-NOISE ANALOG LDOs (4, 5)  
Unless otherwise noted, VIN1=VIN2=VIN3=VINB1=VINB2=VINLILO1=VINLILO2=3.6V; CLODX=1µF; CBUCKOUT=CBUCKIN=4.7 µF,  
CVIN1–3=CVINLILO1CVINLILO2=2.2 µF. Typical values and limits appearing in normal type apply for TJ=25°C. Limits appearing in  
(1)  
boldface type apply over the entire junction temperature range for operation, TJ= -40 to +125°C.  
Symbol  
Parameter  
Output Voltage Accuracy  
Line Regulation  
Conditions  
IOUT = 1mA, VOUT = 2.8V  
VOUT + 0.5V VIN3 4.5V  
Min  
2  
Typ  
Max  
+2  
Unit  
VOUT  
%
2.5  
+2.5  
1
1
(2)  
IOUT = 1mA  
ΔVOUT  
mV  
mV  
Load Regulation  
Dropout Voltage  
1 < IOUT < 300 mA  
VDO  
IOUT = 300 mA  
Nominal VOUT = 2.8V  
220  
310  
(3)  
IOUT  
Output Current  
0
300  
1
mA  
mA  
ISLEEP  
Max Output Current in  
Sleep Mode  
ISC  
eN  
Output Current Limit  
Output Voltage Noise  
VOUT = 0V  
625  
10  
mA  
10 Hz f 100 KHz  
IOUT = 300 mA  
10  
µVRMS  
PSRR  
Power Supply Rejection  
Ratio  
f 10 KHz, IOUT = 20 mA  
75  
35  
dB  
tSTUP  
VOS  
Startup Time  
IOUT = 0 mA to 300 mA in Idle mode.  
µs  
(4)  
Start-up Overshoot  
IOUT = 300 mA  
30  
20  
mV  
(4)  
COUT  
External Output  
Capacitance for Stability  
0.5  
1
µF  
(1) Min and Max limits are specified by design, test or statistical analysis. Typical numbers are not verified, but do represent the most likely  
norm.  
(2) The minimum input voltage equals VOUT (nom) + 0.5V or 2.5V, which ever is greater.  
(3) Dropout voltage is the voltage difference between the input and the output at which the output voltage drops to 100 mV below its  
nominal value.  
(4) This specification is guaranteed by design.  
Copyright © 2009–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LP8725  
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
LOW-INPUT LOW-OUTPUT LDO (LILO1, LILO2)  
Unless otherwise noted, VIN1=VIN2=VIN3=VINB1=VINB2=VINLILO1=VINLILO2=3.6V; CLODX=1µF; CBUCKOUT=CBUCKIN=4.7 µF,  
CVIN1–3=CVINLILO1CVINLILO2=2.2 µF. Typical values and limits appearing in normal type apply for TJ=25°C. Limits appearing in  
(1)  
boldface type apply over the entire junction temperature range for operation, TJ= -40 to +125°C.  
Symbol  
Parameter  
Conditions  
Min  
2  
Typ  
Max  
+2  
Unit  
LILO1 Output Voltage  
Accuracy  
3  
+3  
VOUT  
IOUT = 1mA, VOUT = 1.8V  
%
3  
+3  
LILO2 Output Voltage  
Accuracy  
4  
+4  
Line Regulation  
VOUT + 0.5V VLILO 4.5V  
IOUT = 1mA  
1
5
ΔVOUT  
mV  
mV  
Load Regulation  
Dropout Voltage  
1 < IOUT < 300 mA  
IOUT = 300 mA  
Nominal VOUT = 1.8V  
VDO  
230  
310  
300  
1
(2)  
IOUT  
Output Current  
0
mA  
mA  
ISLEEP  
Max Output Current in  
Sleep Mode  
ISC  
eN  
Output Current Limit  
Output Voltage Noise  
VOUT = 0V  
670  
80  
mA  
10 Hz f 100 KHz  
µVRMS  
IOUT = 300 mA  
PSRR  
Power Supply Rejection  
Ratio  
f 10 KHz, IOUT = 20 mA  
60  
65  
dB  
tSTUP  
VOS  
Startup Time  
IOUT = 0 mA to 300 mA in Idle mode.  
(3)  
µs  
Start-up Overshoot  
30  
20  
mV  
(3)  
COUT  
External Output  
Capacitance for Stability  
0.5  
1
µF  
(1) Min and Max limits are specified by design, test or statistical analysis. Typical numbers are not verified, but do represent the most likely  
norm.  
(2) Dropout voltage is the voltage difference between the input and the output at which the output voltage drops to 100 mV below its  
nominal value.  
(3) This specification is guaranteed by design.  
24  
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
LP8725 CONTROL REGISTERS  
Table 8. Control Registers  
Register  
Name  
ADDR  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
Bit 7  
Bit 6  
Bit 5  
0
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SHORT_  
TIMESTEP  
BUCK2_  
EN  
SLEEP_  
MODE  
BUCK1_  
EN  
GENERAL  
TIMESTEP  
DVS2_V  
DVS1_V  
LDO1  
T[2]  
LDO1  
T[1]  
LDO1  
T[0]  
LDO1  
V[4]  
LDO1  
V[3]  
LDO1  
V[2]  
LDO1  
V[1]  
LDO1  
V[0]  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LILO1  
LILO2  
LDO2  
T[2]  
LDO2  
T[1]  
LDO2  
T[0]  
LDO2  
V[4]  
LDO2  
V[3]  
LDO2  
V[2]  
LDO2  
V[1]  
LDO2  
V[0]  
LDO3  
T[2]  
LDO3  
T[1]  
LDO3  
T[0]  
LDO3  
V[4]  
LDO3  
V[3]  
LDO3  
V[2]  
LDO3  
V[1]  
LDO3  
V[0]  
LDO4  
T[2]  
LDO4  
T[1]  
LDO4  
T[0]  
LDO4  
V[4]  
LDO4  
V[3]  
LDO4  
V[2]  
LDO4  
V[1]  
LDO4  
V[0]  
LDO5  
T[2]  
LDO5  
T[1]  
LDO5  
T[0]  
LDO5  
V[4]  
LDO5  
V[3]  
LDO5  
V[2]  
LDO5  
V[1]  
LDO5  
V[0]  
LILO1_  
T[2]  
LILO1_  
T[1]  
LILO1_  
T[0]  
LILO1_  
V[4]  
LILO1  
V[3]  
LILO1_  
V[2]  
LILO1_  
V[1]  
LILO1_  
V[0]  
LILO2_  
T[2]  
LILO2_  
T[1]  
LILO2_  
T[0]  
LILO2_  
V[4]  
LILO2_  
V[3]  
LILO2_  
V[2]  
LILO2_  
V[1]  
LILO2_  
V[0]  
BUCK1_  
T[2]  
BUCK1_  
T[1]  
BUCK1_  
T[0]  
BUCK1_  
V1[4]  
BUCK1_  
V1[3]  
BUCK1_  
V1[2]  
BUCK1_  
V1[1]  
BUCK1_  
V1[0]  
0x08 BUCK1 V1  
0x09 BUCK1 V2  
0x0A BUCK2 V1  
0x0B BUCK2 V2  
BUCK1_  
CL[1]  
BUCK1_  
CL[0]  
BUCK1_  
V2[4]  
BUCK1_  
V2[3]  
BUCK1_  
V2[2]  
BUCK1_  
V2[1]  
BUCK1_  
V2[0]  
0
BUCK2_  
T[2]  
BUCK2_  
T[1]  
BUCK2_  
T[0]  
BUCK2_  
V1[4]  
BUCK2_  
V1[3]  
BUCK2_  
V1[2]  
BUCK2_  
V1[1]  
BUCK2_  
V1[0]  
BUCK2_  
CL[1]  
BUCK2_  
CL[0]  
BUCK2_  
V2[4]  
BUCK2_  
V2[3]  
BUCK2_  
V2[2]  
BUCK2_  
V2[1]  
BUCK2_  
V2[0]  
0
BUCK  
0x0C  
BK2_  
FLAG MASK  
BK1_  
FLAG MASK  
PWM_  
BUCK2  
PDN_  
BUCK2  
PWM_  
BUCK1  
PDN_  
BUCK1  
0
0
CONTROL  
LDO  
0x0D  
LDO1_  
FLAG MASK  
LILO2_  
EN  
LILO1_  
EN  
LDO5_  
EN  
LDO4_  
EN  
LDO3_  
EN  
LDO2_  
EN  
LDO1_  
EN  
CONTROL  
PULL  
DOWN  
BITS  
APU_  
TSD  
PDN  
LILO2  
PDN  
LILO1  
PDN  
LDO5  
PDN  
LDO4  
PDN  
LDO3  
PDN  
LDO2  
PDN  
LDO1  
0x0E  
0x0F  
STATUS  
BITS  
LDO1_  
OKN  
B2_  
OKN  
B1_  
OKN  
REVISION[3]  
REVISION[2]  
REVISION[1]  
REVISION[0]  
TSD  
Table 9. Control Register Defaults  
LP8725 Defaults: DEFSEL state  
LP8725-A Defaults: DEFSEL state  
LP8725-B Defaults: DEFSEL state  
ADDR  
VIN1  
GND  
VIN1  
GND  
VIN1  
GND  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0101 1001  
1001 1001  
1000 1100  
1011 1111  
1001 1111  
1001 1001  
1010 1000  
0100 1000  
0000 0100  
1100 1000  
0101 0001  
1001 0001  
0111 1111  
0101 1001  
0011 0101  
0011 1001  
0101 1001  
0101 1001  
0011 1001  
0011 1111  
0000 1000  
0000 1000  
1100 0100  
0011 0001  
1001 0001  
0001 0001  
0000 0000  
0001 0101  
0001 1101  
1111 1111  
0011 1101  
0001 1001  
0001 0000  
0010 0100  
1110 0110  
1100 0100  
1110 0110  
1000 0100  
1101 0001  
0101 0001  
1001 1001  
0111 1001  
0111 1001  
1001 1001  
1001 1001  
1011 0000  
1011 0000  
0000 1010  
1100 1000  
0000 1010  
1000 1000  
1101 0001  
1101 1101  
1011 0101  
1111 1001  
1111 1001  
1110 0000  
1110 0000  
1111 0111  
1101 1111  
0000 1000  
1100 1000  
1001 0001  
1001 0001  
0001 0001  
1101 1101  
1010 1100  
1111 1001  
1111 1001  
1110 0000  
1110 0000  
1111 0111  
1101 1111  
0000 1000  
1100 1000  
1001 0001  
1001 0001  
0001 0001  
Copyright © 2009–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LP8725  
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
Table 9. Control Register Defaults (continued)  
LP8725 Defaults: DEFSEL state  
LP8725-A Defaults: DEFSEL state  
LP8725-B Defaults: DEFSEL state  
ADDR  
VIN1  
GND  
VIN1  
GND  
VIN1  
GND  
0x0D  
0x0E  
0x0F  
0111 1111  
0111 1111  
0000 0000  
0111 1111  
0111 1111  
0000 0000  
1111 1011  
0111 1111  
0000 0000  
1111 1111  
0111 1111  
0000 0000  
0100 0001  
0111 1111  
0000 0000  
0100 0001  
0111 1111  
0000 0000  
LP8725-C Defaults: DEFSEL state  
LP8725-D Defaults: DEFSEL state  
ADDR  
VIN1  
GND  
VIN1  
GND  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
1101 1101  
1001 0101  
1001 1001  
1011 1001  
1011 0100  
0101 1111  
1000 1000  
1000 1000  
0000 1000  
1100 1000  
0101 0001  
1001 0001  
0001 0001  
0111 1111  
0111 1111  
0000 0000  
1101 1101  
1001 0101  
1001 1001  
1011 1001  
1011 0100  
0101 1111  
1000 1000  
1000 1000  
0000 1000  
1100 1000  
0101 0001  
1001 0001  
0001 0001  
0111 1111  
0111 1111  
0000 0000  
1001 1101  
1111 1001  
1110 1100  
0100 1100  
1111 1101  
1110 0000  
0101 1101  
0101 1101  
0000 1010  
1100 1010  
0101 0001  
1101 0001  
0001 0001  
0110 0100  
0111 1111  
0000 0000  
1001 1101  
1111 1001  
1110 1100  
0100 1100  
1111 1101  
1110 1100  
0101 1101  
0101 1101  
0000 1010  
1100 1010  
0101 0001  
1101 0001  
0001 0001  
0110 0100  
0111 1111  
0000 0000  
Table 10. Register 0X00  
Addr  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit2  
Bit 1  
Bit 0  
0x00  
GENERAL  
TIMESTEP  
SHORT_  
TIMESTEP  
BUCK2_E  
N
DVS2_V  
DVS1_V  
SLEEP_MO BUCK1_EN  
DE  
BUCK1_EN  
BUCK2_EN  
BUCK1, BUCK2 enable control  
In STANDBY mode  
In IDLE mode the bit has immediate effect.  
1: During next STARTUP sequence will be enabled. 1: Enable  
0: During next STARTUP sequence will be NOT  
enabled  
0: Disable  
For proper operation output timing having “111 - NO  
startup” should have corresponding enable bit 0  
(disable)  
SLEEP_MODE  
LDO Sleep Control  
1: SLEEP mode  
0: normal  
DVS1_V  
DVS2_V  
1: drive buck voltage to value stored in BUCK1_V1[4:0]  
0: Buck output voltage controlled by external DVS pin.  
1: drive buck voltage to value stored in BUCK2_V1[4:0]  
0: Buck output voltage to value stored in BUCK2_V2[4:0]  
SHORT_TIMESTEP  
TIMESTEP  
TIMESTEP = 0  
TIMESTEP = 1  
SHORT_TIMESTEP = 0 — time step ts = 32 µs  
SHORT_TIMESTEP = 1 — time step ts = 64 µs  
SHORT_TIMESTEP = 0 — time step ts = 128 µs  
SHORT_TIMESTEP = 1— time step ts = 256 µs  
26  
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
Table 11. Registers 0x01-0x05, 0x06-0x07, 0x08-0x0B  
Addr  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit2  
Bit 1  
Bit 0  
0x01  
LDO1 O/P  
LDO1  
T[2]  
LDO1  
T[1]  
LDO1  
T[0]  
LDO1  
V[4]  
LDO1  
V[3]  
LDO1  
V[2]  
LDO1  
V[1]  
LDO1  
V[0]  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
LDO2 O/P  
LDO3 O/P  
LDO2  
T[2]  
LDO2  
T[1]  
LDO2  
T[0]  
LDO2  
V[4]  
LDO2  
V[3]  
LDO2  
V[2]  
LDO2  
V[1]  
LDO2  
V[0]  
LDO3  
T[2]  
LDO3  
T[1]  
LDO3  
T[0]  
LDO3  
V[4]  
LDO3  
V[3]  
LDO3  
V[2]  
LDO3  
V[1]  
LDO3  
V[0]  
LDO4 O/P  
LDO4  
T[2]  
LDO4  
T[1]  
LDO4  
T[0]  
LDO4  
V[4]  
LDO4  
V[3]  
LDO4  
V[2]  
LDO4  
V[1]  
LDO4  
V[0]  
LDO5 O/P  
LDO5  
T[2]  
LDO5  
T[1]  
LDO5  
T[0]  
LDO5  
V[4]  
LDO5  
V[3]  
LDO5  
V[2]  
LDO5  
V[1]  
LDO5  
V[0]  
LILO1 O/P  
LILO1_  
T[2]  
LILO1_  
T[1]  
LILO1_  
T[0]  
LILO1_  
V[4]  
LILO1_  
V[3]  
LILO1_  
V[2]  
LILO1_  
V[1]  
LILO1_  
V[0]  
LILO2 O/P  
LILO2_  
T[2]  
LILO2_  
T[1]  
LILO2_  
T[0]  
LILO2_  
V[4]  
LILO2_  
V[3]  
LILO2_  
V[2]  
LILO2_  
V[1]  
LILO2_  
V[0]  
BUCK1 O/P1  
BUCK1 O/P2  
BUCK2 O/P1  
BUCK2 O/P2  
BUCK1_  
T[2]  
BUCK1_  
T[1]  
BUCK1_  
T[0]  
BUCK1_  
V1[4]  
BUCK1_  
V1[3]  
BUCK1_  
V1[2]  
BUCK1_  
V1[1]  
BUCK1_  
V1[0]  
BUCK1_  
CL[1]  
BUCK1_  
CL[0]  
BUCK1_  
V2[4]  
BUCK1_  
V2[3]  
BUCK1_  
V2[2  
BUCK1_  
V2[1]  
BUCK1_  
V2[0]  
BUCK2_  
T[2]  
BUCK2_  
CL[2]  
BUCK2_  
T[0]  
BUCK2_  
V1[4]  
BUCK2_  
V1[3]  
BUCK2_  
V1[2]  
BUCK2_  
V1[1]  
BUCK2_  
V1[0]  
BUCK2_  
CL[1]  
BUCK2_  
CL[0]  
BUCK2_  
V2[4]  
BUCK2_  
V2[3]  
BUCK2_  
V2[2]  
BUCK2_  
V2[1]  
BUCK2_  
V2[0]  
Registers 0x01 - 0x05  
Output Voltage Selection  
LDO1_V[4:0]  
LDO2_V[4:0]  
LDO3_V[4:0]  
LDO4_V[4:0]  
LDO5_V[4:0]  
00000  
1.20V  
1.25V  
1.30V  
1.35V  
1.40V  
1.45V  
1.50V  
1.55V  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
1.60V  
1.65V  
1.70V  
1.75V  
1.80V  
1.85V  
1.90V  
2.00V  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
2.10V  
2.20V  
2.30V  
2.40V  
2.50V  
2.60V  
2.65V  
2.70V  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
2.75V  
2.80V  
2.85V  
2.90V  
2.95V  
3.00V  
3.10V  
3.30V  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
Registers 0x06 - 0x07  
Output Voltage Selection  
LILO1_V[4:0]  
LILO2_V[4:0]  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
0.80V  
0.85V  
0.90V  
0.95V  
1.00V  
1.05V  
1.10V  
1.15V  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
1.20V  
1.25V  
1.30V  
1.35V  
1.40V  
1.50V  
1.60V  
1.70V  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
1.80V  
1.90V  
2.00V  
2.10V  
2.20V  
2.30V  
2.40V  
2.50V  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
2.60V  
2.70V  
2.80V  
2.85V  
2.90V  
3.00V  
3.10V  
3.30V  
Registers 0x08 - 0x0B  
Output Voltage Selection  
BUCK1_V[4:0]  
BUCK2_V[4:0]  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
0.80V  
0.85V  
0.90V  
0.95V  
1.00V  
1.05V  
1.10V  
1.15V  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
1.20V  
1.25V  
1.30V  
1.35V  
1.40V  
1.50V  
1.60V  
1.70V  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
1.75V  
1.80V  
1.85V  
1.90V  
2.00V  
2.10V  
2.20V  
2.30V  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
2.40V  
2.50V  
2.60V  
2.70V  
2.80V  
2.85V  
2.90V  
3.00V  
Copyright © 2009–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LP8725  
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
Registers 0x01 - 0x08, 0x0A  
Startup Delay Selection  
LDO1_T[2:0]  
LDO2_T[2:0]  
LDO3_T[2:0]  
LDO4_T[2:0]  
LDO5_T[2:0]  
LILO1_T[2:0]  
LILO2_T[2:0]  
BUCK1_T[2:0]  
BUCK2_T[2:0]  
000 - startup delay 0  
001 - startup delay = 1 * time step ts  
010 - startup delay = 2 * time step ts  
011 - startup delay = 3 * time step ts  
100 - startup delay = 4 * time step ts  
101 - startup delay = 5 * time step ts  
110 - startup delay = 6 * time step ts  
111 - NO startup  
For proper startup operation “NO startup” <111> should have the corresponding  
enable bit in registers 0x00 & 0x0D set to 0 (disable)  
Registers 0x09, 0x0B  
Buck Current Limit Selection  
BUCK1_CL[1:0]  
BUCK2_CL[1:0]  
00 - 460 mA peak (250 mA max IOUT  
01 - 780 mA peak (450 mA max IOUT  
)
)
10 - 1050 mA peak (600 mA max IOUT  
11 - 1370 mA peak (800 mA max IOUT  
)
)
Register 0x0C  
PDN_BUCK1  
PDN_BUCK2  
Pull-down BUCK1/2:  
1 - Pull down enabled  
0 - Pull down disabled  
PWM_BUCK1  
PWM_BUCK2  
1 - BUCK1/2 is forced to work in PWM mode  
0 - BUCK1/2 works in automatic ECO/PWM selection mode  
BK1_FLAG MASK  
BK2_FLAG MASK  
1 - Mask the BUCK OK flag  
0 - No masking of BUCK OK flag  
Register 0x0D  
LDO Enable Control  
LDO1_EN  
In STANDBY mode:  
In IDLE mode the bit has immediate effect.  
LDO2_EN  
LDO3_EN  
LDO4_EN  
LDO5_EN  
LILO1_EN  
LILO2_EN  
1 - During next STARTUP sequence will be 1 - Enable  
enabled.  
0 - Disable  
0 - During next startup sequence will be  
NOT enabled.  
LDO1_FLAG MASK  
1- Mask the LDO1 OK flag  
0 - No masking of LDO1 OK flag  
Register 0x0E  
Pull Down  
PDNLDO1  
PDNLDO2  
PDNLDO3  
PDNLDO4  
PDNLDO5  
PDNLILO1  
PDNLILO2  
LDO pull-down control  
1 - Pull down enabled  
0 - Pull down disabled  
APU_TSD  
This bit defines either to reset registers or not before the PMU automatically starts startup  
sequence from Thermal Shutdown after cooling down if EN-pin is High.  
1 - No change to registers - content stays the same as before Thermal Shutdown.  
0 - If CONFIG = '1' Reset registers to default values before startup from Thermal  
Shutdown.  
28  
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
Table 12. Register 0x0F (Read Only Register)  
Addr  
Register Bit 7  
STATUS REVISION[3]  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0x10  
REVISION[2]  
REVISION[1]  
REVISION[0]  
LDO1_OK B2_OKN B1_OKN TSD  
N
TSD  
1 - Device is in Thermal Shutdown  
0 - Device is NOT in Thermal Shutdown  
B1_OKN  
B2_OKN  
1 - Output voltage not in regulation  
0 - Output voltage in regulation  
LDO1_OKN  
REVISION[3:0]  
LP8725 Mask set revision.  
To be incremented, whenever the mask set is edited.  
Copyright © 2009–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LP8725  
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
OPERATION DESCRIPTION  
Device Information  
Using voltage mode architecture with synchronous rectification, the LP8725 has the ability to deliver up to 800  
mA per DC-DC convertor depending on the input voltage and output voltage, ambient temperature, and the  
inductor chosen.  
There are two modes of operation depending on the current required - PWM (Pulse Width Modulation), and ECO  
The device operates in PWM mode at load currents of approximately 75 mA (typ.) or higher. Lighter output  
current loads cause the device to automatically switch into ECO mode for reduced current consumption.  
Circuit Operation  
The DC-DC convertor operates as follows. During the first portion of each switching cycle, the control block in the  
turns on the internal PFET switch. This allows current to flow from the input through the inductor to the output  
filter capacitor and load. The inductor limits the current to a ramp with a slope of (VIN VOUT)/L, by storing energy  
in a magnetic field. During the second portion of each cycle, the controller turns the PFET switch off, blocking  
current flow from the input, and then turns the NFET synchronous rectifier on. The inductor draws current from  
ground through the NFET to the output filter capacitor and load, which ramps the inductor current down with a  
slope of –VOUT/L.  
The output filter stores charge when the inductor current is high, and releases it when low, smoothing the voltage  
across the load. The output voltage is regulated by modulating the PFET switch on time to control the average  
current sent to the load. The effect is identical to sending a duty-cycle modulated rectangular wave formed by the  
switch and synchronous rectifier at the SW pin to a low-pass filter formed by the inductor and output filter  
capacitor. The output voltage is equal to the average voltage at the SW pin.  
PWM Operation  
During PWM operation the converter operates as a voltage-mode controller with input voltage feed forward. This  
allows the converter to achieve excellent load and line regulation. The DC gain of the power stage is proportional  
to the input voltage. To eliminate this dependence, feed forward inversely proportional to the input voltage is  
introduced. While in PWM mode, the output voltage is regulated by switching at a constant frequency and then  
modulating the energy per cycle to control power to the load. At the beginning of each clock cycle the PFET  
switch is turned on and the inductor current ramps up until the comparator trips and the control logic turns off the  
switch. The current limit comparator can also turn off the switch in case the current limit of the PFET is  
exceeded. Then the NFET switch is turned on and the inductor current ramps down. The next cycle is initiated by  
the clock turning off the NFET and turning on the PFET.  
Figure 13. Typical PWM Operation  
30  
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
Internal Synchronous Rectification  
While in PWM mode, the DC-DC convertor uses an internal NFET as a synchronous rectifier to reduce rectifier  
forward voltage drop and associated power loss. Synchronous rectification provides a significant improvement in  
efficiency whenever the output voltage is relatively low compared to the voltage drop across an ordinary rectifier  
diode.  
Current Limiting  
A current limit feature allows the DC-DC convertor to protect itself and external components during overload  
conditions. PWM mode implements current limit using an internal comparator that trips at 1.05A (typ.) assuming  
IOUT = 600 mA. If the output is shorted to ground and output voltage becomes lower than 0.3V (typ.), the device  
enters a timed current limit mode where the switching frequency will be one fourth, and NFET synchronous  
rectifier is disabled, thereby preventing excess current and thermal runaway.  
The current limit for each DC-DC convertor is selectable via serial interface by registers 0x09 bits 6, 7 and 0x0B  
bits 6, 7. The current limit selected should be ~ 1.5x to2x greater than the output current required.  
ECO Mode Operation  
By default the DC-DC converter will be in Auto (ECO/PWM) Mode . By doing so the part switches from ECO  
(ECOnomy) state to PWM (Pulse Width Modulation) state based on output load current. At light loads (less than  
75mA approx) the converter enters ECO mode. In this mode the part operates with low Iq. During ECO operation  
the converter positions the output voltage slightly higher (+30mV typ.) than the nominal output voltage in PWM  
operation. Because the reference is set higher, the output voltage increases to reach the target voltage when the  
part goes from sleep state to switching state. Once this voltage is reached the converter enters sleep mode,  
thereby reducing switching losses and improving light load efficiency. The output voltage ripple is slightly higher  
in ECO mode (30mV p–p typ.).  
Figure 14. Typical ECO Operation  
Note that ground noise may impact quiescent current in ECO mode and care at board layout is important to  
minimize this risk. See section on layout guidelines.  
Startup  
The LP8725 bucks have a ‘soft-start’ feature to limit the in-rush current. This prevents large current spikes and  
voltage overshoot and also limits the cases in which the inductor may saturate. At or close to 0V the inrush  
current to the capacitor (and load) is limited to its short circuit protection limit of typically 500 mA. Above a  
threshold of around 150 mV, the current limit is increased to the buck’s peak current limit set by the control  
registers. (For a 600 mA max load this is set to approx. 1050 mA.)  
While in short-circuit protection, the output switches off, but will continue to attempt to restart. If the total  
capacitance on the buck output is large or if the inductor value drops too low, the threshold might never be  
reached, so the buck may not start. See Inductor Selection and Output Capacitor Selection sections.  
Copyright © 2009–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LP8725  
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
Stability  
The stability of the buck is optimized for the 4.7 µF capacitors recommended in the datasheet. Either too small or  
too large a capacitance can cause an oscillation at the output and/or excessive ringing during load transients.It is  
advisable not to exceed a total of 15 µF capacitance at the output. See Table 14 for recommended output  
capacitors.  
See also the recommended inductors table (Table 13) as stability may be compromised by the use of inductors  
whose actual value may change significantly from its nominal value due to the operating conditions. This may be  
the case for the smaller case size chip inductors.  
32  
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
APPLICATION INFORMATION  
Inductor Selection  
DC bias current characteristics of inductors must be considered. Different manufacturers follow different  
saturation current rating specifications, so attention must be given to details. DC bias curves should be requested  
from them as part of the inductor selection process.  
Minimum value of inductance to guarantee good performance is 0.5 µH at 1.5A (ILIM typ.) bias current  
over the ambient temp range. The inductor’s DC resistance should be less than 0.1for good efficiency at  
high current condition. The inductor AC loss (resistance) also affects conversion efficiency. Higher Q factor at  
switching frequency usually gives better efficiency at light load to medium load instead. Table 13 lists suggested  
inductors and suppliers.  
Input Capacitor Selection  
A ceramic input capacitor of 4.7μF, 6.3V/10V is sufficient for most applications. Place the input capacitor as close  
as possible to the VIN pin and GND pin of the device. A larger value or higher voltage rating may be used to  
improve input voltage filtering. Use X7R, X5R or B types, do not use Y5V or F.  
Minimum input capacitance to guarantee good performance is 4.7 µF at maximum input voltage DC bias  
including tolerances and over ambient temp range. The input filter capacitor supplies current to the PFET  
(high-side) switch in the first half of each cycle and reduces voltage ripple imposed on the input power source. A  
ceramic capacitor's low ESR provides the best noise filtering of the input voltage spikes due to this rapidly  
changing current. Select an input filter capacitor with sufficient ripple current rating. The input current ripple can  
be calculated as:  
r2  
12  
VOUT  
VIN  
VOUT  
VIN  
IRMS = IOUTMAX  
x
x 1 -  
+
(1)  
(2)  
(Vin œ Vout) x Vout  
where  
r =  
L x f x Ioutmax x Vin  
Output Capacitor Selection  
Use a 4.7μF, 6.3V ceramic capacitor, X7R, X5R or B types, do not use Y5V or F. DC bias voltage characteristics  
of ceramic capacitors must be considered. DC bias characteristics vary from manufacturer to manufacturer and  
DC bias curves should be requested from them as part of the capacitor selection process. The output filter  
capacitor smooths out current flow from the inductor to the load, helps maintain a steady output voltage during  
transient load changes and reduces output voltage ripple. These capacitors must be selected with sufficient  
capacitance and sufficiently low ESR to perform these functions.  
Minimum output capacitance to guarantee good performance is 2.2 µF at the output voltage DC bias  
including tolerances and over ambient temp range. The output voltage ripple is caused by the charging and  
discharging of the output capacitor and also due to its ESR and can be calculated as:  
IRIPPLE  
VPP-C  
=
4 x f x C  
Voltage peak to peak ripple due to capacitance =  
Voltage peak-to-peak ripple due to ESR = VPP-ESR = (2 x IRIPPLE) x RESR  
Because these two components are out of phase the rms value can be used to get an approximate value of  
peak-to-peak ripple.  
2
VPP-RMS  
=
VPP-C2 + VPP-ESR  
Voltage peak-to-peak ripple, root mean squared =  
Note that the output ripple is dependent on the current ripple and the equivalent series resistance of the output  
capacitor (ESR). The RESR is frequency dependent (as well as temperature dependent); make sure the value  
used for calculations is at the switching frequency of the part.  
Table 14 lists suggested capacitors and suppliers.  
Copyright © 2009–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LP8725  
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
Table 13. Suggested Inductors and Suppliers  
Model  
Vendor  
Murata  
FDK  
Dimensions LxWxH (mm)  
2.5 x 2.0 x 1.0 (Max)  
2.5 x 2.0 x 1.0 (Max)  
2.0 x 1.25 x 1.0 (Max)  
3.3 x 3.3 x 1.0 (Max)  
DCR (m)  
LQM2HPN 1R0MG0  
MIPSZ2520D1R0  
MIPSZ2012D1R0  
LPS3010-102NLC  
55  
90  
90  
85  
FDK  
Coilcraft  
Table 14. Suggested Capacitors and Suppliers  
Model  
Type  
Vendor  
Voltage Rating  
Case Size Inch (mm)  
4.7 µF for CIN and COUT  
C1608X5R0J475K  
C1608X5R1A475K  
Ceramic  
Ceramic  
TDK  
TDK  
6.3  
10  
0603 (1608)  
0603 (1608)  
Dynamic Voltage Scaling  
Buck 1 and Buck 2 can be switched between two output values stored in registers 0x08 and 0x09 for Buck1 and  
0x0A and 0x0B for Buck2.  
For Buck 2 output this control is achieved by changing the DVS2_V bit in the GENERAL register 0x00 (bit 3).  
DVS2_V  
OUTPUT  
Reg0x00 Bit3  
0
1
BUCK2_V2  
BUCK2_V1  
Reg 0x0B[4-0]  
Reg 0x0A[4-0]  
For Buck 1 this control can be either via the external DVS pin or via the DVS1_V bit in the GENERAL register  
0x00 (bit 2). The control configurations are shown in the following table.  
DVS1  
DVS pin  
OUTPUT  
Reg0x00 Bit2  
0
0
1
1
0
1
0
1
BUCK1_V2  
BUCK1_V1  
BUCK1_V2  
BUCK1_V1  
Reg 0x09[4-0]  
Reg 0x08[4-0]  
Reg 0x09[4-0]  
Reg 0x08[4-0]  
LDO Information  
There are all together 7 LDOs in LP8725 grouped as  
DIGITAL;  
ANALOG; and  
LOW INPUT LOW OUTPUT (LILO)  
All LDOs can be programmed through serial interface for different output voltage values, which are summarized  
in the output voltage selection tables.  
At the PMU power on, LDOs startup according to the selected startup sequence and the default voltages. See  
STARTUP and SHUTDOWN Sequences for details.  
For stability all LDOs need to have external capacitors COUT connected to the output with recommended value of  
1µF. It is important to select the type of capacitor whose capacitance will in no case (voltage, temperature, etc)  
be outside of limits specified in the LDO electrical characteristics.  
34  
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
Analog-Type LDOs  
The analog LDOs are optimized for supplying analog loads having ULTRA LOW NOISE (10 µVRMS for  
IOUT>5mA) and excellent PSRR (70 dB at 10 kHz) performance. They can be programmed through serial  
interface for different output voltage values.  
For fast discharging of output capacitors in shutdown, the LDOs may be connected to a 300pull down resistor  
to output.  
In sleep mode quiescent current is lowered down to 30 µA for energy saving. In this mode these LDOs should  
not loaded more than 3-5 mA of output current.  
Digital-Type LDOs  
The Digital LDOs are optimized for dynamic performance for fast changing digital loads whilst consuming very  
little quiescent current ~ 20 µA . They can be programmed through serial interface for different output voltage  
values.  
For fast discharging of output capacitors in shutdown, the LDOs may be connected to a 300pull down resistor  
to output.  
In sleep mode quiescent current is lowered down to 10 µA for energy saving. In this mode these LDOs should  
not loaded more than 3-5 mA of output current.  
LILO-Type LDOs  
The LILO-type LDO is optimized for low output voltage and for good dynamic performance to supply different fast  
changing (digital) loads. These LDOs can be operated as digital LDOs also albeit with lower PSRR and Noise  
performance.  
An innovative design of the all the LDOs reduces sensitivity to the placement of the output capacitor. The output  
capacitor may not be placed as close as possible to the output pin, like on conventional LDOs. The general  
purpose LDOs do not need output capacitor close to the PMU. If a (1 µF or more) capacitor is attached to a  
circuit load, customer may skip the output capacitor at the PMU.  
I2C-Compatible Serial Bus Interface  
Interface Bus Overview  
The I2C-compatible synchronous serial interface provides access to the programmable functions and registers on  
the device.  
This protocol uses a two-wire interface for bi-directional communications between the ICs connected to the bus.  
The two interface lines are the Serial Data Line (SDA), and the Serial Clock Line (SCL). These lines should be  
connected to a positive supply, via a pull-up resistor of 1.5 Kand remain HIGH even when the bus is idle.  
Every device on the bus is assigned a unique address and acts as either a Master or a Slave depending on  
whether it generates or receives the serial clock (SCL).  
Data Transactions  
One data bit is transferred during each clock pulse. Data is sampled during the high state of the serial clock  
(SCL). Consequently, throughout the clock’s high period, the data should remain stable. Any changes on the  
SDA line during the high state of the SCL and in the middle of a transaction, aborts the current transaction. New  
data should be sent during the low SCL state. This protocol permits a single data line to transfer both  
command/control information and data using the synchronous serial clock.  
Copyright © 2009–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: LP8725  
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
SDA  
SCL  
Data Line  
Stable:  
Data Valid  
Change  
of Data  
Allowed  
Figure 15. Bit Transfer  
Each data transaction is composed of a Start Condition, a number of byte transfers (set by the software) and a  
Stop Condition to terminate the transaction. Every byte written to the SDA bus must be 8 bits long and is  
transferred with the most significant bit first. After each byte, an Acknowledge signal must follow. The following  
sections provide further details of this process.  
Start and Stop  
The Master device on the bus always generates the Start and Stop Conditions (control codes). After a Start  
Condition is generated, the bus is considered busy and it retains this status until a certain time after a Stop  
Condition is generated. A high-to-low transition of the data line (SDA) while the clock (SCL) is high indicates a  
Start Condition. A low-to-high transition of the SDA line while the SCL is high indicates a Stop Condition.  
SDA  
SCL  
S
START CONDITION  
P
STOP CONDITION  
Figure 16. Start and Stop Conditions  
In addition to the first Start Condition, a repeated Start Condition can be generated in the middle of a transaction.  
This allows another device to be accessed, or a register read cycle.  
Acknowledge Cycle  
The Acknowledge Cycle consists of two signals: the acknowledge clock pulse the master sends with each byte  
transferred, and the acknowledge signal sent by the receiving device. The master generates the acknowledge  
clock pulse on the ninth clock pulse of the byte transfer. The transmitter releases the SDA line (permits it to go  
high) to allow the receiver to send the acknowledge signal. The receiver must pull down the SDA line during the  
acknowledge clock pulse and ensure that SDA remains low during the high period of the clock pulse, thus  
signaling the correct reception of the last data byte and its readiness to receive the next byte.  
36  
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
Transmitter Stays Off the  
Bus During the  
Acknowledgement Clock  
Data Output  
by  
Transmitter  
Data Output  
by  
Acknowledgement  
Signal From Receiver  
Receiver  
3 - 6  
SCL  
1
2
7
8
9
S
Start  
Condition  
Figure 17. Bus Acknowledge Cycle  
”Acknowledge after Every Byte” Rule  
The master generates an acknowledge clock pulse after each byte transfer. The receiver sends an acknowledge  
signal after every byte received.  
There is one exception to the “acknowledge after every byte” rule.  
When the master is the receiver, it must indicate to the transmitter an end of data by not-acknowledging  
(“negative acknowledge”) the last byte clocked out of the slave. This “negative acknowledge” still includes the  
acknowledge clock pulse (generated by the master), but the SDA line is not pulled down.  
Addressing Transfer Formats  
Each device on the bus has a unique slave address. The LP8725 operates as a slave device. Slave address is  
selectable by CONFIG and DEFSEL pins.  
For the actual slave addresses, see Table 1.  
Before any data is transmitted, the master transmits the address of the slave being addressed. The slave device  
should send an acknowledge signal on the SDA line, once it recognizes its address.  
The slave address is the first seven bits after a Start Condition. The direction of the data transfer (R/W) depends  
on the bit sent after the slave address the eighth bit.  
When the slave address is sent, each device in the system compares this slave address with its own. If there is a  
match, the device considers itself addressed and sends an acknowledge signal. Depending upon the state of the  
R/W bit (1:read, 0:write), the device acts as a transmitter or a receiver.  
Control Register Write Cycle  
Master device generates start condition.  
Master device sends slave address (7 bits) and the data direction bit (r/w = '0').  
Slave device sends acknowledge signal if the slave address is correct.  
Master sends control register address (8 bits).  
Slave sends acknowledge signal.  
Master sends data byte to be written to the addressed register.  
Slave sends acknowledge signal.  
If master will send further data bytes the control register address will be incremented by one after  
acknowledge signal.  
Write cycle ends when the master creates stop condition.  
Control Register Read Cycle  
Master device generates a start condition.  
Master device sends slave address (7 bits) and the data direction bit (r/w = '0').  
Slave device sends acknowledge signal if the slave address is correct.  
Copyright © 2009–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: LP8725  
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
Master sends control register address (8 bits).  
Slave sends acknowledge signal.  
Master device generates repeated start condition.  
Master sends the slave address (7 bits) and the data direction bit (r/w = “1”).  
Slave sends acknowledge signal if the slave address is correct.  
Slave sends data byte from addressed register.  
If the master device sends acknowledge signal, the control register address will be incremented by one. Slave  
device sends data byte from addressed register.  
Read cycle ends when the master does not generate acknowledge signal after data byte and generates stop  
condition.  
Address Mode  
Data Read  
<Start Condition>  
<Slave Address><r/w = ‘0’>[Ack]  
<Register Addr.>[Ack]  
<Repeated Start Condition>  
<Slave Address><r/w = ‘1’>[Ack]  
[Register Data]<Ack or NAck>  
… additional reads from subsequent register address possible  
<Stop Condition>  
Data Write  
<Start Condition>  
<Slave Address><r/w = ‘0’>[Ack]  
<Register Addr.>[Ack]  
<Register Data>[Ack]  
… additional writes to subsequent register address possible  
<Stop Condition>  
< > Data from master [ ] Data from slave  
Register Read and Write Detail  
Slave Address  
(7 bits)  
Control Register Add.  
(8 bits)  
Register Data  
(8 bits)  
S
'0'  
A
A
A P  
Data transferred, byte +  
Ack  
R/W  
From Slave to Master  
From Master to Slave  
A - ACKNOWLEDGE (SDA Low)  
S - START CONDITION  
P - STOP CONDITION  
Figure 18. Register Write Format  
38  
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
LP8725  
www.ti.com  
SNVS618G DECEMBER 2009REVISED MAY 2013  
Slave Address  
(7 bits)  
Control Register Add.  
(8 bits)  
Slave Address  
(7 bits)  
Register Data  
(8 bits)  
A/  
NA  
S
'0'  
A
A Sr  
'1'  
A
P
Data transferred, byte +  
Ack/NAck  
R/W  
R/W  
Direction of the transfer  
will change at this point  
A - ACKNOWLEDGE (SDA Low)  
NA - ACKNOWLEDGE (SDA High)  
S - START CONDITION  
From Slave to Master  
From Master to Slave  
Sr - REPEATED START CONDITION  
P - STOP CONDITION  
Figure 19. Register Read Format  
Layout Guidelines  
As for all DC-DC buck regulators board layout is very important to ensure best performance.  
The 4.7 µF input capacitors should be placed first, as near to VINB1/2 pin and GNDB1/2 as possible. VINB1/2  
are the voltage rails for the high-side power FETs. GNDB1/2 are the return paths for the low-side power FETs.  
The Input capacitors should have their associated pads very near the pins that they will decouple. These  
capacitors are important in sourcing charge during switching events. In this device we have the two buck inputs  
side by side but we recommend that separate traces are taken to each device pin to ensure this proper  
decoupling. This can be seen in the example layout shown in the layout scheme below.  
The 4.7 µF output capacitors should be the next components to be placed in conjunction with the inductor. The  
switch node should be kept as small as possible but otherwise the inductor placement is least sensitive to layout  
variation. Best performance of the LP8725 will be realized by maintaining tight physical coupling of the grounds  
of the input capacitor, output capacitor and GND pin for each switcher. The inductor should be placed in a way  
that best allows the switching node, output node, and track to the load circuit to be routed easily.  
The grounding is very important and any additional resistance/inductance should be minimized. A ground  
polygon and/or plane should be used to tie all capacitor grounds together and directly to the buck GNDs. See the  
layout scheme below as an example.  
Finally, the feedback nets should be routed, where possible route this away from any switching nodes and tie  
into the output node of the regulator. The FB lines should closely match the GND routing to reduce the inductive  
loop of this pair. The FB and GND lines make up a high-side and low-side sense connection to maintain the  
accuracy of the switcher outputs. If the FB line should cross the switching trace make this as close to  
perpendicular as possible.  
Low impedance power connections should be maintained for all of these connections. Care should also be given  
to the ground routing for input lines and output lines to minimize inductive loops, normally this should be taken  
care of by suitable ground planes.  
As this is a dual buck device there are a number of aspects to be aware of. The switchers are almost a complete  
mirror image of one another on the part which leads to the possibility of symmetrical placement and layout about  
the part. Symmetrical layout will give best matching between the two buck devices. However we recommend that  
the inputs are kept separate into the device. There are some compromises that have to be considered. In the  
case of our example we have used vias to route the VINB12 and VINB2 to allow the close placement of the input  
capacitors. The switch node must also be routed via layer2 on the board. Here we have placed a number of vias  
to reduce any additional impedance.  
Copyright © 2009–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: LP8725  
LP8725  
SNVS618G DECEMBER 2009REVISED MAY 2013  
www.ti.com  
Figure 20. Layout Scheme used on Eval Board  
40  
Submit Documentation Feedback  
Copyright © 2009–2013, Texas Instruments Incorporated  
Product Folder Links: LP8725  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP8725TLE-A/NOPB  
LP8725TLE-B/NOPB  
LP8725TLE-C/NOPB  
LP8725TLE-D/NOPB  
LP8725TLE/NOPB  
LP8725TLX-A/NOPB  
LP8725TLX-B/NOPB  
LP8725TLX-C/NOPB  
LP8725TLX-D/NOPB  
LP8725TLX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
250  
250  
250  
250  
250  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
V023  
V028  
V040  
V031  
8725  
V023  
V028  
V040  
V031  
8725  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
-40 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP8725TLE-A/NOPB  
LP8725TLE-B/NOPB  
LP8725TLE-C/NOPB  
LP8725TLE-D/NOPB  
LP8725TLE/NOPB  
LP8725TLX-A/NOPB  
LP8725TLX-B/NOPB  
LP8725TLX-C/NOPB  
LP8725TLX-D/NOPB  
LP8725TLX/NOPB  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
250  
250  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
2.74  
2.74  
2.74  
2.74  
2.74  
2.74  
2.74  
2.74  
2.74  
2.74  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
3.15  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
250  
250  
250  
3000  
3000  
3000  
3000  
3000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LP8725TLE-A/NOPB  
LP8725TLE-B/NOPB  
LP8725TLE-C/NOPB  
LP8725TLE-D/NOPB  
LP8725TLE/NOPB  
LP8725TLX-A/NOPB  
LP8725TLX-B/NOPB  
LP8725TLX-C/NOPB  
LP8725TLX-D/NOPB  
LP8725TLX/NOPB  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
30  
30  
30  
30  
30  
30  
30  
30  
30  
30  
250  
250  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
208.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
250  
250  
250  
3000  
3000  
3000  
3000  
3000  
Pack Materials-Page 2  
MECHANICAL DATA  
YZR0030xxx  
D
0.600±0.075  
E
TLA30XXX (Rev C)  
D: Max = 2.99 mm, Min = 2.93 mm  
E: Max = 2.59 mm, Min = 2.53 mm  
4215057/A  
12/12  
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.  
B. This drawing is subject to change without notice.  
NOTES:  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

LP8725TLE-D

Power Management Unit for Application/Multimedia Processors and Sub-Systems
NSC

LP8725TLE-D/NOPB

面向应用/多媒体处理器和子系统的电源管理 IC (PMIC) | YZR | 30
TI

LP8725TLE/NOPB

面向应用/多媒体处理器和子系统的电源管理 IC (PMIC) | YZR | 30 | -40 to 85
TI

LP8725TLX

Power Management Unit for Application/Multimedia Processors and Sub-Systems
NSC

LP8725TLX-A

Power Management Unit for Application/Multimedia Processors and Sub-Systems
NSC

LP8725TLX-A/NOPB

面向应用/多媒体处理器和子系统的电源管理 IC (PMIC) | YZR | 30 | -40 to 85
TI

LP8725TLX-B

Power Management Unit for Application/Multimedia Processors and Sub-Systems
NSC

LP8725TLX-B/NOPB

面向应用/多媒体处理器和子系统的电源管理 IC (PMIC) | YZR | 30 | -40 to 85
TI

LP8725TLX-C/NOPB

面向应用/多媒体处理器和子系统的电源管理 IC (PMIC) | YZR | 30 | -40 to 85
TI

LP8725TLX-D

Power Management Unit for Application/Multimedia Processors and Sub-Systems
NSC

LP8725TLX-D/NOPB

面向应用/多媒体处理器和子系统的电源管理 IC (PMIC) | YZR | 30
TI

LP8725TLX/NOPB

面向应用/多媒体处理器和子系统的电源管理 IC (PMIC) | YZR | 30 | -40 to 85
TI