LP8754 [TI]

多相位 6 核降压转换器;
LP8754
型号: LP8754
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

多相位 6 核降压转换器

转换器
文件: 总53页 (文件大小:1898K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
LP8754 多相位六核降压转换器  
1 特性  
3 说明  
1
6 个高效降压 DC-DC 转换器内核:  
LP8754 旨在满足移动电话和类似便携式应用中最新应  
用处理器的电源管理需求。 此器件包含 6 个降压 DC-  
DC 转换器内核,一起捆绑在 6 相位降压转换器中,。  
此器件由动态电压调节 (DVS) 接口或 I2C 兼容串行接  
口完全控制。  
最大输出电流为 10A  
各内核捆绑到一个 6 相位转换器  
负载电流报告  
可编程过流保护 (OCP)  
自动脉宽调制 (PWM)/脉冲频率调制 (PFM) 和  
强制 PWM 操作以及自动低功耗模式设置  
自动 PWM/PFM 操作搭配自动增相/切相功能,最大程  
度提高了宽泛输出电流范围内的效率。 LP8754 支持  
进行远程差分电压感测,以补偿稳压器输出与负载点之  
间的 IR 下降,从而提高输出电压的精度。  
自动增相/切相  
远程差分反馈电压感测  
输出电压斜升控制  
保护特性包括短路保护、电流限制、输入  
VOUT 范围为 0.6V 1.67V进行动态电压调节  
OVPUVLO、温度警告以及关断功能。 此器件还提  
供多个错误标志,用于指示集成电路 (IC) 的状态信  
息。 此外,I2C 回读信息包括总负载电流以及各降压内  
核的负载电流:LP8754 无需添加电流感测电阻就能感  
测到传递给负载的电流。在启动期间,器件会控制输出  
电压转换率,以最大程度降低过冲和浪涌电流。  
(DVS)  
I2C 兼容接口,支持标准 (100kHz)、快速 (400kHz)  
和高速 (3.4MHz) 三种模式  
四个可选的 I2C 地址  
具有可编程屏蔽的中断功能  
输出短路和输入过压保护 (OVP)  
扩展频谱与相位控制,用于降低电磁干扰 (EMI)  
过温保护 (OTP)  
器件信息(1)  
器件型号  
LP8754  
封装  
封装尺寸(最大值)  
欠压闭锁 (UVLO)  
DSBGA (49)  
3.022mm x 2.882mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
2 应用  
智能手机、电子书和平板电脑  
效率与 负载电流间的关系  
GSMGPRSEDGELTECDMA WCDMA  
手机  
100  
Low-Power PFM Mode  
PFM Mode  
游戏设备  
PWM Mode  
90  
80  
70  
60  
50  
VIN = 3.7 V, VOUT = 1.1 V  
1
10  
100  
1000  
10000  
OUTPUT CURRENT (mA)  
C027  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SNVS861  
 
 
 
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
目录  
7.3 Features Descriptions ............................................. 17  
7.4 Device Functional Modes........................................ 25  
7.5 Programming .......................................................... 27  
7.6 Register Maps......................................................... 29  
Application and Implementation ........................ 38  
8.1 Application Information............................................ 38  
8.2 Typical Application .................................................. 38  
Power Supply Recommendations...................... 46  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ..................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions ...................... 5  
6.4 Thermal Information.................................................. 6  
6.5 General Electrical Characteristics............................. 7  
6.6 6-Phase Buck Electrical Characteristics ................... 8  
6.7 6-Phase Buck System Characteristics...................... 9  
6.8 Protection Features Characteristics........................ 10  
6.9 I2C Serial Bus Timing Parameters.......................... 12  
6.10 Typical Characteristics.......................................... 14  
Detailed Description ............................................ 16  
7.1 Overview ................................................................. 16  
7.2 Functional Block Diagram ....................................... 17  
8
9
10 Layout................................................................... 46  
10.1 Layout Guidelines ................................................. 46  
10.2 Layout Example .................................................... 47  
11 器件和文档支持 ..................................................... 48  
11.1 器件支持................................................................ 48  
11.2 文档支持 ............................................................... 48  
11.3 ....................................................................... 48  
11.4 静电放电警告......................................................... 48  
11.5 术语表 ................................................................... 48  
12 机械封装和可订购信息 .......................................... 48  
7
4 修订历史记录  
日期  
修订版本  
注释  
2014 8 月  
版本 A  
初始 Web 版本  
2
Copyright © 2014, Texas Instruments Incorporated  
 
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
5 Pin Configuration and Functions  
DSBGA (YFQ)  
49 Pins  
Top View  
GND  
GND  
GND  
B0  
GND  
B0  
VIO  
SYS  
VLDO  
GNDA  
7
B3  
B3  
BUCK0  
BUCK1  
BUCK2  
BUCK3  
SW  
B3  
SW  
B0  
SW  
B0  
FB  
B0+/B0  
SW  
B3  
NSLP  
INT  
6
5
VIN  
B3/B4  
VIN  
B0/B1  
VIN  
B0/B1  
VIN  
B0/B1  
FB  
B0-/B1  
VIN  
B3/B4  
VIN  
B3/B4  
SW  
B4  
SW  
B1  
SW  
B1  
FB  
B2  
SW  
B4  
ADDR  
NRST  
BUCK4  
BUCK5  
4
3
2
1
GND  
B4/B5  
GND  
B1/B2  
GND  
B1/B2  
GND  
B1/B2  
FB  
B3+/B3  
GND  
B4/B5  
GND  
B4/B5  
SW  
B5  
SW  
B2  
SW  
B2  
SCL  
SYS  
FB  
B3-/B4  
SCL  
SR  
SW  
B5  
VIN  
B5  
VIN  
B2  
VIN  
B2  
SDA  
SYS  
FB  
B5  
SDA  
SR  
VDDA  
5V  
A
B
C
D
E
F
G
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NUMBER  
NAME  
Input for Buck 2. The separate power pins VINBXX are not connected together internally -  
VINBXX pins must be connected together in the application and be locally bypassed.  
A1, B1  
VINB2  
P
A2, B2  
A3, B3, C3  
A4, B4  
SWB2  
GNDB1/B2  
SWB1  
A
G
A
Buck 2 switch node  
Power Ground for Buck 1 and Buck 2  
Buck 1 switch node  
Input for Buck 0 and Buck 1. The separate power pins VINBXX are not connected together  
internally - VINBXX pins must be connected together in the application and be locally bypassed.  
A5, B5, C5  
VINB0/B1  
P
A6, B6  
A7, B7  
C1  
SWB0  
GNDB0  
SDASYS  
SCLSYS  
A
G
Buck 0 switch node  
Power Ground for Buck 0  
D/I/O  
D/I  
Serial interface data input and output for system access. Connect a pullup resistor.  
Serial interface clock input for system access. Connect a pullup resistor.  
C2  
Serial bus address selection. Connect to GND (addr = 60h), VIOSYS (addr = 61h), SDASYS  
(addr = 62h) or SCLSYS (addr = 63h).  
C4  
C6  
ADDR  
NSLP  
D/I  
D/I  
Full Power to Low Power state transition control signal (By default active LOW for Low-Power  
PFM mode)  
Internal supply voltage capacitor pin. A ceramic low ESR 1-µF capacitor should be connected  
from this pin to GNDA. The LDO voltage is generated internally, do NOT supply or load this pin  
externally.  
C7  
VLDO  
A
D1  
D2  
D3  
D4  
FBB5  
FBB3/B4  
FBB3+/B3  
FBB2  
A
A
A
A
Not used for six-phase converter. Connect to GND.  
Not used for six-phase converter. Connect to GND.  
Not used for six-phase converter. Connect to GND.  
Not used for six-phase converter. Connect to GND.  
Copyright © 2014, Texas Instruments Incorporated  
3
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NUMBER  
NAME  
Remote sensing (negative). Connect to the respective sense pin of the processor or to the  
negative power supply trace of the processor as close as possible to the processor.  
D5  
FBB0/B1  
A
Remote sensing (positive). Connect to the respective sense pin of the processor or to the  
positive power supply trace of the processor as close as possible to the processor.  
D6  
D7  
E1  
FBB0+/B0  
GNDA  
A
G
Ground  
Serial Interface data input and output for Dynamic Voltage Scaling (DVS). Connect a pullup  
resistor / connect to GND if not used.  
SDASR  
D/I/O  
E2  
E3, F3, G3  
E4  
SCLSR  
GNDB4/B5  
NRST  
D/I  
G
Serial Interface clock input for DVS. Connect a pullup resistor / connect to GND if not used.  
Power Ground for Buck 4 and Buck 5  
A
Voltage reference input for DVS interface. Setting NRST input HIGH triggers start-up sequence.  
Input for Buck 3 and Buck 4.The separate power pins VINBXX are not connected together  
internally - VINBXX pins must be connected together in the application and be locally bypassed.  
E5, F5, G5  
E6  
VINB3/B4  
INT  
P
D/O  
Open-drain interrupt output. Active LOW. Connect a pullup resistor to I/O supply.  
This pin shall be tied to the system I/O-voltage. Bias supply voltage for the device. Enables the  
I/O interface: All registers are accessible via serial bus interface when this pin is pulled high. An  
internal power-on reset (POR) occurs when VIOSYS is toggled low/high. The I2C host should  
allow at least 500 µs before sending data to the LP8754 after the rising edge of the VIOSYS line.  
E7  
VIOSYS  
A
F1  
VDDA5V  
SWB5  
P
A
A
A
G
Input for Analog blocks  
Buck 5 switch node  
Buck 4 switch node  
Buck 3 switch node  
Power Ground for Buck 3  
F2, G2  
F4, G4  
F6, G6  
F7, G7  
SWB4  
SWB3  
GNDB3  
Input for Buck 5. The separate power pins VINBXX are not connected together internally -  
VINBXX pins must be connected together in the application and be locally bypassed.  
G1  
VINB5  
P
A: Analog Pin, D: Digital Pin, G: Ground Pin, P: Power Pin, I: Input Pin, O: Output Pin  
4
Copyright © 2014, Texas Instruments Incorporated  
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
6 Specifications  
6.1 Absolute Maximum Ratings  
MIN  
MAX  
UNIT  
INPUT VOLTAGE  
Voltage on power connections (VIOSYS, VDDA5V, VINBXX)  
0.3  
0.3  
6
6
V
Voltage on logic pins (input or output pins) (SCLSYS, SDASYS, NRST,  
NSLP, ADDR, INT, SCLSR, SDASR)  
Buck switch nodes (SWBXX)  
0.3  
0.3  
0.3  
(VVINBXX + 0.2 V) with 6 V max  
V
V
VLDO, FBB0+/B0, FBB0/B1, FBB2, FBB3+/B3, FBB3/B4, FBB5  
All other analog pins  
2
6
TEMPERATURE  
Junction temperature (TJ-MAX  
Maximum lead temperature (soldering, 10 s)(1)  
)
150  
260  
150  
°C  
Storage temperature, Tstg  
65  
(1) For detailed soldering specifications and information, please refer to Texas Instruments AN-1112: DSBGA Wafer-Level Chip-Scale  
Package (SNVA009).  
6.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
MAX  
UNIT  
INPUT VOLTAGE  
Voltage on power connections (VDDA5V, VINBXX)  
2.5  
1.8  
5
V
V
smaller of 3.3 V or  
VVINBXX  
Voltage on VIOSYS  
SCLSYS, SDASYS, ADDR  
SCLSR, SDASR, NSLP, INT  
NRST  
0
0
0
VVIOSYS  
VNRST  
1.8  
V
V
V
TEMPERATURE  
Junction temperature (TJ)  
Ambient temperature (TA)  
40  
40  
125  
85  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground pin.  
Copyright © 2014, Texas Instruments Incorporated  
5
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
6.4 Thermal Information  
LP8754  
YFQ  
49 PINS  
49.2  
0.2  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
6.6  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.9  
ψJB  
6.5  
RθJCbot  
n/a  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6
Copyright © 2014, Texas Instruments Incorporated  
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
6.5 General Electrical Characteristics  
Minimum (MIN) and maximum (MAX) limits apply over the full ambient temperature range –40°C TA 85°C; typical (TYP)  
values at TA = 25°C (unless otherwise noted). VVDDA5V = VVINBXX = 3.7 V, VVIOSYS = VNRST = 1.8 V, VOUT = 1.1 V (unless  
otherwise noted).(1)(2)  
PARAMETER  
TEST CONDITIONS  
VVIOSYS = 0 V, VNRST = 0 V  
VVIOSYS = 1.8 V, VNRST = 0 V  
MIN  
TYP  
0.1  
50  
MAX UNIT  
CURRENTS  
Shutdown supply current.  
Total current into power  
connections VDDA5V and  
VINBXX  
ISHDN  
2
µA  
Standby mode supply current.  
Total current into power  
connections VDDA5V and  
VINBXX  
ISTBY  
Low-power PFM Mode, no load, one core  
active  
130  
400  
µA  
µA  
Active mode current  
consumption. Total current  
into power connections  
VDDA5V and VINBXX  
IActive  
PFM Mode, no load, one core active  
Forced PWM Mode, no load, one core  
active  
14.5  
mA  
LOGIC AND CONTROL INPUTS SCLSYS, SDASYS, ADDR  
0.3 x  
VVIOSYS  
VIL  
VIH  
Vhys  
Ci  
Input low level  
VVIOSYS = 1.8 V to 3.3 V  
VVIOSYS = 1.8 V to 3.3 V  
Input high level  
0.7 x VVIOSYS  
0.1 x VVIOSYS  
V
Hysteresis of Schmitt trigger  
inputs (SCLSYS, SDASYS)  
Capacitance of pins  
See(3)  
4
pF  
LOGIC AND CONTROL INPUTS SCLSR, SDASR, NSLP, NRST  
VIL  
VIH  
Input low level  
Input high level  
VNRST = 1.8 V  
VNRST = 1.8 V  
0.3 x VNRST  
0.7 x VNRST  
0.1 x VNRST  
V
Hysteresis of Schmitt trigger  
inputs (SCLSR, SDASR)  
Vhys  
Capacitance of SCLSR and  
SDASR pins  
Ci  
4
pF  
RIN  
Input resistance  
NRST pulldown resistor to GND  
1200  
kΩ  
VIL_NRST Input low level NRST  
VIH_NRST Input high level NRST  
LOGIC AND CONTROL OUTPUTS  
0.54  
V
1.3  
Voltage on INT pin, ISINK = 3 mA,  
VNRST = VVIOSYS = 1.8 V  
0.4  
VOL  
Output low level  
V
Voltage on SDASYS, SDASR, ISINK = 3  
mA,  
0.36  
VNRST = VVIOSYS = 1.8 V  
RP  
External pullup resistor for INT To I/O Supply  
10  
kΩ  
ALL LOGIC AND CONTROL INPUTS  
All logic inputs over pin voltage range.  
Note that NRST pin does have an 1.2-MΩ  
internal pulldown resistor and current  
through this resistor is not included into  
ILEAK rating. TA = 25°C  
ILEAK  
Input current  
1  
1
µA  
(1) All voltage values are with respect to network ground pin.  
(2) Minimum (Min) and Maximum (Max) limits are specified by design, test, or statistical analysis. Typical (Typ.) numbers are not ensured,  
but do represent the most likely norm.  
(3) Maximum capacitance of SCLSYS or SDASYS line is 8 pF, if ADDR pin is connected to line for serial bus address selection.  
Copyright © 2014, Texas Instruments Incorporated  
7
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
6.6 6-Phase Buck Electrical Characteristics  
Minimum (MIN) and maximum (MAX) limits apply over the full ambient temperature range –40°C TA 85°C; typical (TYP)  
values at TA = 25°C (unless otherwise noted). VVDDA5V = VVINBXX = 3.7 V, VVIOSYS = VNRST = 1.8 V, VOUT = 1.1 V (unless  
otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PWM Mode, VOUTSET = 0.6 V to 1.67 V,  
I
min  
max(VOUTS  
ET + 2.5%,  
VOUTSET  
OUT 10 A(2)  
(VOUTSET  
2.5%,  
VOUTSET – 25  
mV)  
VOUTSET  
+
25 mV)  
PFM Mode, VOUTSET = 0.6 V to 1.67 V,  
OUT 375 mA  
min  
(VOUTSET –  
2.5%,  
VOUTSET – 25  
mV)  
Differential feedback  
voltage(1)  
VFB0+/B0 - VFB0-/B1  
max(VOUTS  
ET + 2.5%,  
VOUTSET +  
I
VFB  
V
VOUTSET  
25 mV)  
Low-Power PFM Mode, VOUTSET = 0.6 V  
to 1.67 V,  
min  
max(VOUTS  
ET + 3%,  
VOUTSET +  
(VOUTSET  
VOUTSET  
IOUT 30 mA  
3%, VOUTSET  
30 mV)  
2050  
650  
30 mV)  
3300  
1050  
1.67  
ILIMITP  
ILIMITN  
High side switch current limit 2.5-A register setting  
Low side switch current limit Reverse current  
2600  
900  
1.1  
10  
mA  
Range, programmable by register setting  
0.6  
V
VOUT  
Output voltage  
Step  
mV  
MHz  
fSW  
Switching frequency  
Pin-pin resistance for PFET  
2.5 V VVINBXX 5 V  
Test current = 200 mA; Split FET  
Test current = 200 mA; Full FET  
2.7  
3.0  
120  
60  
3.4  
RDSON_P  
mΩ  
RDSON_N  
ILK_HS  
Pin-pin resistance for NFET IOUT = –200 mA  
50  
High-side leakage current  
Low-side leakage current  
VSW = 0 V, Per Buck Core  
2
2
µA  
ILK_LS  
VSW = 3.7 V = VVINBXX, per buck core  
Enabled via control register, Active only  
when converter disabled, Per Buck Core  
RPD  
Pull-down resistor  
250  
300  
Differential feedback Input  
resistance(3)  
RIN_FB  
TA = 25°C  
200  
400  
kΩ  
(1) Due to the nature of the converter operating in PFM Mode/Low-Power Mode, the feedback voltage accuracy specification is for the lower  
point of the ripple. Thus the converter will position the average output voltage typically slightly above the nominal PWM-Mode output  
voltage.  
(2) The power switches in the LP8754 are designed to operate continuously with currents up to the switch current limit thresholds. However,  
when continuously operating at high current levels there will be significant heat generated within the IC and thus sustained total DC  
current which the device can support is typically limited by thermal constraints. Thermal issues will become extremely important when  
designing PCB and the thermal environment of the LP8754. PCB with high thermal efficiency is required to ensure the junction  
temperature is kept below 125°C. Completing thermal analyses in early stages of the product design process is highly recommended to  
predict thermal performance at board level. Under high current load conditions the serial bus master device must monitor the  
temperature of the converter using the Thermal warning feature, see Protection Features Characteristics. If the 2nd thermal warning is  
triggered at 120°C, the application must quickly decrease the load current to keep the converter within its recommended operating  
temperature.  
(3) Datasheet min/max specification limits are specified by design.  
8
Copyright © 2014, Texas Instruments Incorporated  
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
6.7 6-Phase Buck System Characteristics  
Minimum (MIN) and maximum (MAX) limits apply over the full ambient temperature range –40°C TA 85°C; typical (TYP)  
values at TA = 25°C (unless otherwise noted). VVDDA5V = VVINBXX = 3.7 V, VVIOSYS = VNRST = 1.8 V, VOUT = 1.1 V (unless  
otherwise noted).  
PARAMETER  
TEST CONDITIONS  
Programmable via control register(1)  
RAMP_B0[2:0] = 000  
MIN  
TYP  
MAX  
UNIT  
30  
15  
RAMP_B0[2:0] = 001  
RAMP_B0[2:0] = 010  
7.5  
KRAMP  
Ramp timer  
RAMP_B0[2:0] = 011  
3.8  
mV/µs  
RAMP_B0[2:0] = 100  
1.9  
RAMP_B0[2:0] = 101  
0.94  
0.47  
0.23  
25  
RAMP_B0[2:0] = 110  
RAMP_B0[2:0] = 111  
TSTART  
TRAMP  
Start-up time  
Time from NRST-HIGH to start of switching  
Time to ramp from 5% to 95% of VOUT  
Average output current, programmable via  
µs  
µs  
VOUT rise time  
20  
(2)  
control register, VOUT = 1.1 V.  
PFM_EXIT_B0[2:0] = 011  
175  
225  
275  
325  
375  
PFM-to-PWM switch–over  
current threshold  
PFM_EXIT_B0[2:0] = 100  
IPFM–PWM  
mA  
PFM_EXIT_B0[2:0] = 101  
PFM_EXIT_B0[2:0] = 110  
PFM_EXIT_B0[2:0] = 111  
Average output current, Programmable via  
(2)  
control register, VOUT = 1.1 V  
PFM_ENTRY_B0[2:0] = 000  
PFM_ENTRY_B0[2:0] = 001  
PFM_ENTRY_B0[2:0] = 010  
PFM_ENTRY_B0[2:0] = 011  
PFM_ENTRY_B0[2:0] = 100  
ADD_PH_B0[2:0] = 010  
ADD_PH_B0[2:0] = 011  
ADD_PH_B0[2:0] = 100  
ADD_PH_B0[2:0] = 101  
ADD_PH_B0[2:0] = 110  
ADD_PH_B0[2:0] = 111  
SHED_PH_B0[2:0] = 000  
SHED_PH_B0[2:0] = 001  
SHED_PH_B0[2:0] = 010  
SHED_PH_B0[2:0] = 011  
SHED_PH_B0[2:0] = 100  
SHED_PH_B0[2:0] = 101  
100  
125  
150  
175  
225  
500  
600  
700  
800  
900  
1000  
300  
400  
500  
600  
700  
800  
PWM-to-PFM switchover current  
threshold  
IPWM–PFM  
mA  
IADD  
Phase adding level  
mA  
mA  
ISHED  
Phase shedding level  
(1) In the real application, achievable output voltage ramp profiles are influenced by a number of factors, including the amount of output  
capacitance, the load current level, the load characteristic (either resistive or constant-current), and the voltage ramp amplitude. Typical  
values are measured with typical conditions. The falling edge ramp rate can be limited by the negative current limit ILIMITN  
.
(2) The final PFM-to-PWM and PWM-to-PFM switchover current varies slightly and is dependant on the output voltage, input voltage, and  
the inductor current level. Typical values are measured with typical conditions.  
Copyright © 2014, Texas Instruments Incorporated  
9
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
6-Phase Buck System Characteristics (continued)  
Minimum (MIN) and maximum (MAX) limits apply over the full ambient temperature range –40°C TA 85°C; typical (TYP)  
values at TA = 25°C (unless otherwise noted). VVDDA5V = VVINBXX = 3.7 V, VVIOSYS = VNRST = 1.8 V, VOUT = 1.1 V (unless  
otherwise noted).  
PARAMETER  
TEST CONDITIONS  
2.5 V VVINBXX 5 V  
ILOAD = 1 A, forced PWM  
MIN  
TYP  
MAX  
UNIT  
Line regulation  
0.05  
%/V  
Load regulation in PWM mode of 100 mA ILOAD 10 A, Differential sensing  
0.2  
±30  
±20  
±60  
%/A  
mV  
mV  
mV  
operation  
enabled  
AUTO (no Low-Power PFM) mode, IOUT 0.5  
mA 500 mA 0.5 mA, 100 ns load step  
ΔVOUT  
PWM mode, IOUT 0.6 A 2 A 0.6 A, 400-ns  
load step  
Transient load step response  
PWM mode, IOUT 1 A 8 A 1 A, 400-ns  
load step  
VVINBXX stepping 3.3 V <—> 3.8 V, tr = tf = 10  
Transient line response  
Output current  
µs,  
±15  
mV  
mA  
µF  
IOUT = 2000 mA DC  
DC load each phase  
Six phases combined(3)  
1670  
IOUT  
10000  
Effective capacitance during operation, VOUT  
0.6 V to 1.67 V, Min value over TA –40°C to  
85°C  
=
COUT  
Output capacitance(4)  
30  
50  
10  
Input capacitance on each input Effective capacitance during operation, 2.5 V ≤  
CIN  
2.5  
µF  
µH  
voltage rail(4)(5)  
VVINBXX 5 V  
L
Output inductance  
Effective inductance during operation  
0.25  
0.47  
1
IBALANCE  
Current balancing accuracy  
IOUT 1000 mA  
< 10%  
COUT ESR = 10 mΩ  
PWM mode, IOUT = 200 mA  
Switching frequency = 3 MHz  
Output voltage ripple PWM  
mode, One phase active(6)  
VRIPPLE_PWM  
VRIPPLE_PFM  
VRIPPLE_LP  
7
8
8
mVPP  
mVPP  
mVPP  
COUT ESR = 10 mΩ  
PFM mode  
IOUT = 100 µA  
Output voltage ripple PFM  
mode(6)  
COUT ESR = 10 mΩ  
Low-power PFM mode  
IOUT = 100 µA  
Output Voltage Ripple Low-  
Power PFM mode(6)  
(3) The power switches in the LP8754 are designed to operate continuously with currents up to the switch current limit thresholds. However,  
when continuously operating at high current levels there will be significant heat generated within the IC and thus sustained total DC  
current which the device can support is typically limited by thermal constraints. Thermal issues will become extremely important when  
designing PCB and the thermal environment of the LP8754. PCB with high thermal efficiency is required to ensure the junction  
temperature is kept below 125°C. Completing thermal analyses in early stages of the product design process is highly recommended to  
predict thermal performance at board level. Under high current load conditions the serial bus master device must monitor the  
temperature of the converter using the Thermal warning feature, see Protection Features Characteristics. If the 2nd thermal warning is  
triggered at 120°C, the application must quickly decrease the load current to keep the converter within its recommended operating  
temperature.  
(4) Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics. The performance of the LP8754 device  
depends greatly on the care taken in designing the Printed Circuit Board (PCB). The use of low inductance and low serial resistance  
ceramic capacitors is strongly recommended, while proper grounding is crucial. Attention should be given to decoupling the power  
supplies. Decoupling capacitors must be connected close to the IC and between the power and ground pins to support high peak  
currents being drawn from System Power Rail during turn-on of the switching MOSFETs. Keep input and output traces as short as  
possible, because trace inductance, resistance and capacitance can easily become the performance limiting items.  
(5) In addition to these capacitors, at least one higher value capacitor (for example, 22 µF) should be placed close to the power pins. Note  
that cores B0-B1 and B3-B4 do have combined power input pins.  
(6) Ripple voltage should be measured at COUT electrode on a well-designed PCB, using suggested inductors and capacitors and with a  
high-quality scope probe.  
6.8 Protection Features Characteristics  
Minimum (MIN) and maximum (MAX) limits apply over the full ambient temperature range –40°C TA 85°C; typical (TYP) at  
TA = 25°C (unless otherwise noted). VVDDA5V = VVINBXX = 3.7 V, VVIOSYS = VNRST = 1.8 V, VOUT = 1.1 V (unless otherwise  
noted).  
10  
Copyright © 2014, Texas Instruments Incorporated  
 
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
Protection Features Characteristics (continued)  
Minimum (MIN) and maximum (MAX) limits apply over the full ambient temperature range –40°C TA 85°C; typical (TYP) at  
TA = 25°C (unless otherwise noted). VVDDA5V = VVINBXX = 3.7 V, VVIOSYS = VNRST = 1.8 V, VOUT = 1.1 V (unless otherwise  
noted).  
PARAMETER  
VOLTAGE MONITORING  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power good threshold for voltage  
decreasing, % of setting, VOUT = 1.1 V  
VPG  
Power good threshold voltage  
90%  
5.3  
Input overvoltage protection trigger  
point(1)(2)  
VIN rising. Voltage monitored on VDDA5V  
pin  
VOVP  
5.15  
2.15  
5.45  
2.35  
V
Input undervoltage lockout (UVLO)  
turn-on threshold(1)  
VIN falling. Voltage monitored on VDDA5V  
pin  
VUVLO  
VSCP  
2.25  
400  
400  
400  
Detected by sensing the voltage on  
converter output with respect to GND.  
Output short-circuit fault threshold  
SCP masking time  
mV  
µs  
Triggered by converter start-up, specified by  
design  
tMASKSCP  
Triggered by converter start-up, specified by  
design  
µs  
Triggered by VSET transition, specified by  
design  
Slew Rate setting mV/µs  
30  
50  
100  
15  
tMASKPG  
Power Good masking time  
7.5  
200  
3.8  
400  
µs  
1.9  
800  
0.94  
0.47  
0.23  
1600  
3200  
6400  
(1) Undervoltage lockout (UVLO) and overvoltage protection (OVP) circuits shut down the LP8754 when the system input voltage is outside  
the desired operating range.  
(2) Limits for OVP trigger points apply when VVIOSYS is high. False OVP alarm may occur, if the input voltage rises close to 5 V while  
VVIOSYS is low.  
Copyright © 2014, Texas Instruments Incorporated  
11  
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Protection Features Characteristics (continued)  
Minimum (MIN) and maximum (MAX) limits apply over the full ambient temperature range –40°C TA 85°C; typical (TYP) at  
TA = 25°C (unless otherwise noted). VVDDA5V = VVINBXX = 3.7 V, VVIOSYS = VNRST = 1.8 V, VOUT = 1.1 V (unless otherwise  
noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
THERMAL SHUTDOWN AND MONITORING  
TSHUT  
Thermal shutdown (TSD)  
Thermal warning  
Threshold, Temperature rising  
Hysteresis  
Temperature rising, 1st warning, Interrupt  
only  
150  
25  
85  
°C  
Hysteresis  
10  
TWARN  
Thermal warning prior to TSD  
Temperature rising, 2nd warning, Interrupt  
and flag set  
120  
Hysteresis  
10  
6.9 I2C Serial Bus Timing Parameters  
Serial bus address is selected by the ADDR pin. Connect the pin to GND (addr = 60h), VIOSYS (addr = 61h), SDASYS (addr  
= 62h), or SCLSYS (addr = 63h). Both of the serial buses share the same address; that is, if addr = 60h is selected for the  
System bus, the Dynamic Voltage Scaling bus will respond to the same address. Start conditions are used to secure the I2C  
slave address. During the I2C bus start condition, it is detected whether the ADDR is connected to SDASYS, SCLSYS, GND,  
or VIOSYS. The I2C host should allow at least 500 µs before sending data to the LP8754 after the rising edge of the VIOSYS  
line.  
These specifications are ensured by design. Limits apply over the full ambient temperature range –40°C TA 85°C, VVDDA5V  
= VVINBXX = 3.7 V, VVIOSYS = VNRST = 1.8 V, VOUT = 1.1 V (unless otherwise noted) (See Figure 1) .  
MIN  
NOM  
MAX  
UNIT  
DIGITAL TIMING SPECIFICATIONS (SCL, SDA)(1)(2)(3)  
Standard mode  
100  
400  
3.4  
kHz  
kHz  
Fast mode  
fCLK  
Serial clock frequency  
High-speed mode, Cb = 100 pF (max)  
High-speed mode, Cb = 400 pF (max)(4)  
Standard mode  
MHz  
MHz  
1.7  
4.7  
1.3  
160  
320  
4
µs  
ns  
µs  
ns  
Fast mode  
tLOW  
SCL low time  
High-speed mode, Cb = 100 pF (max)  
High-speed mode, Cb = 400 pF (max)(4)  
Standard mode  
Fast mode  
0.6  
60  
120  
250  
100  
10  
0
tHIGH  
SCL high time  
Data setup time  
Data hold time  
High-speed mode, Cb = 100 pF (max)  
High-speed mode, Cb = 400 pF (max)(4)  
Standard mode  
tSU;DAT  
Fast mode  
ns  
High-speed mode  
Standard mode  
3.45  
0.9  
µs  
ns  
Fast mode  
0
tHD;DAT  
High-speed mode, Cb = 100 pF (max)  
High-speed mode, Cb = 400 pF (max)(4)  
0
70  
0
150  
(1) Unless otherwise stated, 'SDA' in this paragraph refers to both of the SDASR and SDASYS signals, and respectively 'SCL' refers to  
SCLSR and SCLSYS signals.  
(2) Cb refers to the capacitance of one bus line. Cb is expressed in pF units. The specification table provided applies to both of the  
interfaces; DVS and System interface.  
(3) The power-on default setting for the system bus and the DVS bus is High-speed-enabled, there is no handshaking required to initiate  
high speed.  
(4) For bus line loads Cb between 100 pF and 400 pF the timing parameters must be linearly interpolated.  
12  
Copyright © 2014, Texas Instruments Incorporated  
 
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
I2C Serial Bus Timing Parameters (continued)  
Serial bus address is selected by the ADDR pin. Connect the pin to GND (addr = 60h), VIOSYS (addr = 61h), SDASYS (addr  
= 62h), or SCLSYS (addr = 63h). Both of the serial buses share the same address; that is, if addr = 60h is selected for the  
System bus, the Dynamic Voltage Scaling bus will respond to the same address. Start conditions are used to secure the I2C  
slave address. During the I2C bus start condition, it is detected whether the ADDR is connected to SDASYS, SCLSYS, GND,  
or VIOSYS. The I2C host should allow at least 500 µs before sending data to the LP8754 after the rising edge of the VIOSYS  
line.  
These specifications are ensured by design. Limits apply over the full ambient temperature range –40°C TA 85°C, VVDDA5V  
= VVINBXX = 3.7 V, VVIOSYS = VNRST = 1.8 V, VOUT = 1.1 V (unless otherwise noted) (See Figure 1) .  
MIN  
4.7  
0.6  
160  
4.0  
0.6  
160  
4.7  
1.3  
4.0  
0.6  
160  
NOM  
MAX  
UNIT  
Standard mode  
µs  
Set-up time for a repeated  
start condition  
tSU;STA  
Fast mode  
High-speed mode  
ns  
Standard mode  
µs  
Hold time for a start or a  
repeated start condition  
tHD;STA  
Fast mode  
High-speed mode  
ns  
Standard mode  
Bus free time between a stop  
and start condition  
tBUF  
µs  
Fast mode  
Standard mode  
µs  
Set-up time for a stop  
condition  
tSU;STO  
Fast mode  
High-speed mode  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Standard mode  
1000  
300  
80  
Fast mode  
20  
10  
20  
trDA  
Rise time of SDA signal  
Fall time of SDA signal  
Rise time of SCL signal  
High-speed mode, Cb = 100 pF (max)  
High-speed mode, Cb = 400 pF (max)(4)  
Standard mode  
160  
300  
300  
80  
Fast Mode  
6.5  
10  
20  
tfDA  
High-speed mode, Cb = 100 pF (max)  
High-speed mode, Cb = 400 pF (max)(4)  
Standard mode  
160  
1000  
300  
40  
Fast mode  
20  
10  
20  
10  
trCL  
trCL1  
tfCL  
High-speed mode, Cb = 100 pF (max)  
High-speed mode, Cb = 400 pF (max)(4)  
High-speed mode, Cb = 100 pF (max)  
80  
Rise time of SCL signal after  
a repeated start condition and  
after acknowledge bit  
80  
High-speed mode, Cb = 400 pF (max)(4)  
20  
160  
ns  
Standard mode  
300  
300  
40  
ns  
ns  
ns  
ns  
Fast mode  
6.5  
10  
20  
Fall time of a SCL signal  
High-speed mode, Cb = 100 pF (max)  
High-speed mode, Cb = 400 pF (max)(4)  
80  
Capacitive load for each bus  
line (SCL and SDA)  
Cb  
400  
pF  
ns  
Fast mode  
50  
10  
Pulse width of spike  
suppressed(5)  
tSP  
High-speed mode  
(5) Spike suppression filtering on SCLSYS, SCLSR, SDASYS and SDASR will suppress spikes that are less than the indicated width.  
Copyright © 2014, Texas Instruments Incorporated  
13  
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
t
BUF  
SDA  
t
t
HD;STA  
t
fDA  
t
rDA  
rCL  
t
t
LOW  
fCL  
t
SP  
SCL  
tHD;STA  
t
t
SU;STA  
SU;STO  
t
HIGH  
t
HD;DAT  
t
SU;DAT  
START  
STOP START  
REPEATED  
START  
Figure 1. I2C Timing  
6.10 Typical Characteristics  
Unless otherwise specified: VVDDA5V = VVINBXX = 3.7 V, VOUT = 1.1 V, TA = 25°C  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
500 mA  
600 mA  
700 mA  
800 mA  
900 mA  
1000 mA  
300 mA  
400 mA  
500 mA  
600 mA  
700 mA  
800 mA  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
C017  
C018  
Figure 2. Phase Adding vs Load Current with  
Different Level Settings  
Figure 3. Phase Shedding vs Load Current with  
Different Level Settings  
55.0  
54.0  
53.0  
52.0  
51.0  
50.0  
49.0  
48.0  
47.0  
140  
138  
136  
134  
132  
130  
128  
126  
124  
122  
120  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
C010  
C001  
VVIOSYS = 1.8 V  
VNRST = 0 V  
Low-Power Mode  
No load  
One core active  
Figure 4. Standby Mode Current Consumption vs VIN  
Figure 5. Low-Power PFM Mode Current Consumption vs  
VIN  
14  
Copyright © 2014, Texas Instruments Incorporated  
 
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
Typical Characteristics (continued)  
Unless otherwise specified: VVDDA5V = VVINBXX = 3.7 V, VOUT = 1.1 V, TA = 25°C  
388.0  
387.5  
387.0  
386.5  
386.0  
385.5  
385.0  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
C002  
C003  
PFM Mode  
No load  
One core active  
PWM Mode  
No load  
One core active  
Figure 6. PFM Mode Current Consumption vs VIN  
Figure 7. PWM Mode Current Consumption vs VIN  
Copyright © 2014, Texas Instruments Incorporated  
15  
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LP8754 is a high-efficiency, high-performance power supply IC with six step-down DC-DC converter cores. It  
delivers 0.6 V to 1.67 V regulated voltage rail from either a single Li-Ion or three cell NiMH/NiCd batteries to  
portable devices such as cell phones and PDAs.  
There are three modes of operation for the 6-phase converter, depending on the output current required: PWM  
(Pulse Width Modulation), PFM (Pulse-Frequency Modulation), and Low-Power PFM. Converter operates in  
PWM mode at high load currents of approximately 250 mA or higher, depending on register setting. Lighter  
output current loads will cause the converter to automatically switch into PFM or Low-Power PFM mode for  
reduced current consumption and a longer battery life. Forced PWM is also available for highest transient  
performance.  
Under no-load conditions the device can be set to Standby or Shutdown. Shutdown mode turns off the device,  
offering the lowest current consumption (ISHDN = 0.1 µA typ.). Additional features include soft-start, undervoltage  
lockout, input overvoltage protection, current overload protection, thermal warning, and thermal shutdown.  
The modes and features can be programmed via control registers. All the registers can be accessed with both  
I2C serial interfaces: System serial interface and Dynamic voltage scaling (DVS) interface. Using DVS interface  
for dynamic voltage scaling prevents latencies if System serial interface is busy. Using DVS interface is optional;  
System serial interface can also be used for dynamic voltage scaling.  
7.1.1 Buck Information  
The LP8754 has six integrated high-efficiency buck converter cores. The cores are designed for flexibility; most  
of the functions are programmable, thus allowing optimization of the SMPS operation for each application. The  
cores are bundled together to establish a multi-phase converter This is shown in Figure 24.  
Operating Modes:  
OFF: Output is isolated from the input voltage rail in this mode. Output has an optional pulldown resistor  
which can be enabled with BUCK0_CTRL.RDIS_B0 bit.  
PWM: Converter operates in buck configuration. Average switching frequency is constant.  
PFM: Converter switches only when output voltage decreases below programmed threshold. Inductor current  
is discontinuous.  
Low-Power PFM: This mode is similar to PFM mode, but used with lower load conditions. In this mode some  
of the internal blocks are turned off between the PFM pulses. Load transient response is compromised due to  
the wake-up time.  
Features:  
DVS support  
Automatic mode control based on the loading  
Synchronous rectification  
Current mode loop with PI compensator  
Soft start  
Power good flag with maskable interrupt  
Overvoltage comparator  
Phase control and spread spectrum techniques for reducing EMI  
Average output current sensing (for PFM/PWM entry/exit, phase adding/shedding, and load current reporting)  
Current balancing between the phases of the converter  
Differential voltage sensing  
Dynamic phase adding/shedding, each output being phase shifted  
16  
Copyright © 2014, Texas Instruments Incorporated  
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
Overview (continued)  
Programmability (The following parameters can be programmed via registers):  
Output voltage  
Forced PWM operation  
Switch current limits for high side FET  
PWM/PFM mode entry and exit (based on average output current)  
Phase adding and shedding levels  
Output voltage slew rate  
7.2 Functional Block Diagram  
LP8754  
VLDO  
INTERNAL  
LDO  
FBB0+ / B0  
FBB0- / B1  
1
F
POWER  
INPUTS  
Configurable  
Feedback  
Amplifiers  
FBB2  
SYSTEM  
POWER  
FBB3+ / B3  
FBB3- / B4  
FBB5  
Logic Control  
(chip EN)  
VIOSYS  
SWB0  
SWB1  
SWB2  
SWB3  
SWB4  
SWB5  
Buck 0 /  
Master 0  
SCLSYS  
SYS IO  
Domain  
EPROM  
SDASYS  
ADDR  
Buck 1  
Buck 2  
Reference  
Voltage  
SCLSR  
SDASR  
Oscillator  
INT  
SR IO  
Domain  
Buck 3 /  
Master 1  
Thermal  
Monitoring  
NSLP  
NRST  
Buck 4  
Buck 5  
Voltage  
Monitoring  
Internal  
Pull-down  
1.1 M  
POWER  
GROUNDS  
AGND  
7.3 Features Descriptions  
7.3.1 Multi-Phase DC-DC Converters  
A multi-phase synchronous buck converter offers several advantages over a single power-stage converter. For  
application processor power delivery, lower ripple on the input and output currents and faster transient response  
to load steps are the most significant advantages. Also, since the load current is evenly shared among multiple  
channels, the heat generated is greatly reduced for each channel due to the fact that power loss is proportional  
to square of current. Physical size of the output inductor shrinks significantly for the similar reason.  
Copyright © 2014, Texas Instruments Incorporated  
17  
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Features Descriptions (continued)  
PMOS  
CURRENT  
SENSE  
DIFFERENTIAL TO  
SINGLE-ENDED  
FBP  
+
VIN  
SW  
POS  
CURRENT  
LIMIT  
SLAVE  
PHASE  
CONTROL  
-
FBN  
RAMP  
GENERATOR  
V
OUT  
-
GATE  
CONTROL  
ERROR  
AMP  
+
LOOP  
COMP  
VOLTAGE  
NEG  
CURRENT  
LIMIT  
POWER  
GOOD  
+
SETTING  
SLEW RATE  
CONTROL  
VDAC  
-
ZERO  
CROSS  
DETECT  
NMOS  
CURRENT  
SENSE  
MASTER  
INTERFACE  
PROGRAMMABLE  
PARAMETERS  
CONTROL  
BLOCK  
SLAVE  
INTERFACE  
IADC  
GND  
Figure 8. Detailed Block Diagram Showing One Buck Core  
7.3.1.1 Multi-Phase Operation and Phase-Shedding  
Under heavy load conditions, the switching phase of the bucks are interleaved. As a result, the 6-phase  
converter has higher effective switching frequency than the switching frequency of any one phase.  
The parallel operation decreases the efficiency at low load conditions. In order to overcome this operational  
inefficiency, the LP8754 automatically changes the number of active phases to maximize the efficiency. This is  
called phase-shedding and the concept is illustrated in Figure 9.  
BEST EFFICIENCY OBTAINED WITH  
N=1  
N=2  
N=3  
N=6  
N=4  
N=5  
LOAD CURRENT  
(1)  
Figure 9. Multi-phase Buck Converter Efficiency vs Number of Phases; All Converters in PWM Mode  
(1) Graph is not to scale and is for illustrative purposes only.  
18  
Copyright © 2014, Texas Instruments Incorporated  
 
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
Features Descriptions (continued)  
7.3.1.2 Transitions Between Low-Power PFM, PFM, and PWM Modes  
Normal PWM-mode operation with phase-shedding can optimize efficiency at mid-to-full load, but this is usually  
at the expense of light-load efficiency. The LP8754 converter operates in PWM mode at a load current of 100 to  
375 mA or higher; this mode transition trip-point is set by register. Lighter load current causes the device to  
automatically switch into PFM mode for reduced current consumption. By combining PFM and PWM modes in  
the same regulator and providing automatic switching, high efficiency can be achieved over a wide output load  
current range.  
Efficiency is further enhanced when the converter enters Low-Power PFM mode. The LP8754 includes Low-  
Power mode function for low-current consumption. In this mode most of the internal blocks are disabled between  
the inductor current ramp up and ramp down phases to reduce the operating current. However, as a result, the  
transient performance of the converter is compromised. The Low-Power mode can be enabled by control register  
setting. Also, the application processor or the PMIC may provide an HW signal (NSLP) to the LP8754 input to  
indicate when the processor has entered a low-power state. When the signal is asserted, the LP8754 Low-Power  
PFM function will be enabled, and the LP8754 will run with a reduced input current. The right timing of the NSLP  
signal from the system is important for best load-transient performance. The NSLP signal should be asserted  
only when load current is stable and below 30 mA. Before the load current increases above 30 mA, the NSLP  
signal should be de-asserted 100 µs (minimum) prior to a load step to prepare the converter for the higher load  
current.  
7.3.1.3 Buck Converter Load Current  
The buck load current can be monitored via I2C registers. Current of different buck converter cores or the total  
load current of the master can be selected from register 0x21 (see SEL_I_LOAD). A write to this selection  
register starts a current measurement sequence. The measurement sequence is a minimum of 50 µs long. When  
a measurement sequence starts, the FLAGS_1.I_LOAD_READY bit in register 0x0E is set to '0'. After the  
measurement sequence is finished, the FLAGS_1.I_LOAD_READY bit is set to '1'. (Note that by default this bit is  
'0'.) The measurement result can be read from registers 0x22 (LOAD_CURR.BUCK_LOAD_CURR[7:0]) and  
0x21 (SEL_I_LOAD.BUCK_LOAD_CURR[10:8]). The measurement result [10:0] LSB is 10 mA, and the  
maximum value of the measurement is 20 A. The LP8754 can be configured to give out an interrupt after the  
load current measurement sequence is finished. Load current measurement interrupt can be masked with  
INT_MASKS_2.MASK_I_LOAD_READY bit.  
7.3.1.4 Spread Spectrum Mode  
Systems with periodic switching signals may generate a large amount of switching noise in a set of narrowband  
frequencies (the switching frequency and its harmonics). The usual solution to reduce noise coupling is to add  
EMI-filters and shields to the boards. The LP8754's register-selectable spread spectrum mode minimizes the  
need for output filters, ferrite beads, or chokes. In spread spectrum mode, the switching frequency varies  
randomly around the center frequency, reducing the EMI emissions radiated by the converter, associated passive  
components, and PCB traces. See Figure 10.  
Copyright © 2014, Texas Instruments Incorporated  
19  
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Features Descriptions (continued)  
FREQUENCY  
Where a fixed-frequency converter exhibits large amounts of spectral energy at the switching frequency, the spread  
spectrum architecture of the LP8754 spreads that energy over a large bandwidth.  
Figure 10. Spread Spectrum Modulation  
7.3.2 Power-Up and Output Voltage Sequencing  
The power-up sequence for the LP8754 is as follows:  
VVINBXX and VVDDA5V reach min recommended levels.  
VVIOSYS set high. Enables the system I/O interface. For power-on-reset (POR), the I2C host should allow at  
least 500 µs before sending data to the LP8754 after the rising edge of the VIOSYS line.  
VLDO voltage is raising. The LDO voltage is generated internally. The internal POR signal is activated.  
Internal POR deasserted, OTP read.  
Device enters standby mode.  
DC-DC enable, output voltage, voltage slew rate programmed over I2C as needed by the application.  
NRST set high. The DC-DC converter can be enabled and disabled by VSET_B0.EN_DIS_B0 bit or using the  
NRST signal.  
VVDDA5V  
t
0
VVIOSYS  
LDO  
(internal)  
t
1
t2  
NRST  
LP8754 receiving/sending data across the system I2C bus.  
t
I2CT  
Figure 11. Timing Diagram for the Power-Up Sequence  
20  
Copyright © 2014, Texas Instruments Incorporated  
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
Features Descriptions (continued)  
Table 1. Power-Up Sequence  
PARAMETER  
CONDITION(1)  
MIN  
TYP  
MAX  
UNIT  
µs  
t0  
t1  
VVDDA5V to VVIOSYS assertion  
0
LDOON Delay Time  
LDOON to NRST HIGH  
CLDO = 1 µF  
<100  
150  
µs  
t2  
0
µs  
tI2CT  
Device ready for I2C data transfer  
500  
µs  
(1) These specification table entries are specified by design. The power input lines VVINBXX, VVDDA5V and VVIOSYS must be stable before the  
NRST line goes High. Also, the VLDO line must be stable 1.8 V before the NRST line goes High.  
7.3.3 Device Reset Scenarios  
There are three reset methods implemented on the LP8754:  
Software reset  
Hardware reset  
Power-on reset (POR)  
An SW-reset occurs when the RESET.SW_RESET bit is written first with 1, followed by 0 right after that. This  
event resets the control registers shown in Table 2 to the default values. The temperature, power good, and  
other faults are persistent over the SW reset to allow for the system to identify to cause of the failure.  
An internal power-on reset (POR) occurs when the supply voltage (VVDDA5V) transitions above the POR threshold  
or VVIOSYS is toggled low/high. Each of the registers contain a factory-defined value upon POR, and this data  
remains there until any of the following occurs:  
Device sets a Flag bit, causing the Status register to be updated. The other registers remain untouched.  
A different data word is written to a writable register.  
The internal registers will lose their contents if the supply voltage (VVDDA5V) goes below 1 V (typ.).  
An NRST high-to-low transition initiates the hardware reset. This event resets the control registers shown in  
Table 2 to the default values.  
Under OVP, UVLO, TSD, or VVIOSYS low (while NRST still high) conditions, a Fast Power-Down is launched.  
Normal Power-Down Sequence Follows This Event  
(Marked as '1')  
Fast Power-Down Follows This Event  
VVDDA5V  
VVIOSYS  
NRST  
VVDDA5V  
2
VVIOSYS  
1
NRST  
Figure 12. The External Power Control System De-  
asserts NRST  
Figure 13. NRST Stays HIGH While VVIOSYS  
Transition from HIGH to LOW Happens (Marked as  
'2')  
Copyright © 2014, Texas Instruments Incorporated  
21  
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Inductor Current Dropping to Zero in ~2 µs (All  
Converters, All Phases)  
t
t
RST2  
RST1  
HW RST by NRST  
OTP_MEM_READ  
t
RST2  
SW RST by I2C  
OTP_MEM_READ  
0
Time  
~2 Ps  
Figure 14. Fast Power-Down  
Figure 15. Reset Timings  
PARAMETER  
LIMIT  
tRST1  
tRST2  
NRST active low pulse width  
NRST inactive or I2C reset  
1 µs min + value on DELAY_BUCK0 register.  
25 µs max  
event to MEMORY READ end  
Table 2. Hardware Reset, Power-On Reset (POR) and Software Reset: Registers After Reset  
SOFTWARE RESET  
I2C RESET  
HARDWARE RESET  
POWER-ON RESET  
VVIOSYS LOW  
(1)  
HEX ADDRESS  
0x00  
REGISTER  
VSET_B0  
NRST LOW  
All bits retained  
All bits cleared  
All bits cleared  
All bits retained  
All bits retained  
All bits cleared  
All bits cleared  
N/A  
All bits retained  
All bits cleared  
All bits cleared  
All bits retained  
All bits retained  
All bits cleared  
All bits cleared  
All bits cleared  
All bits cleared  
Read Only  
All bits cleared  
All bits cleared  
All bits cleared  
All bits cleared  
All bits cleared  
All bits cleared  
All bits cleared  
All bits cleared  
All bits cleared  
0x06  
FPWM  
0x07 to 0x0C  
0x0D  
BUCK0_CTRL to BUCK5_CTRL  
FLAGS_0  
0x0E  
FLAGS_1  
0x0F  
INT_MASK0  
GENERAL  
0x10  
0x11  
RESET  
0x12  
DELAY_BUCK0  
CHIP_ID  
All bits cleared  
0x18  
0x19  
PFM_LEV_B0  
PHASE_LEV_B0  
SEL_I_LOAD  
LOAD_CURR  
INT_MASK_2  
All bits cleared  
All bits cleared  
All bits retained  
All bits cleared  
All bits cleared  
All bits retained  
Read Only  
All bits cleared  
All bits cleared  
All bits cleared  
0x1F  
0x21  
0x22  
0x2E  
All bits cleared  
All bits cleared  
All bits cleared  
(1) Reset is falling-edge sensitive and it will take effect upon complete of the power-down sequence. The registers can be updated by I2C  
writing when NRST is low.  
22  
Copyright © 2014, Texas Instruments Incorporated  
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
7.3.4 Diagnosis and Protection Features  
The LP8754 is capable of providing two levels of protection features: warnings for diagnosis and faults which are  
causing the converters to shut down. When the device detects warning or fault conditions, the LP8754 sets the  
flag bits indicating which fault or warning conditions have occurred; the INT pin will be pulled low. INT will be  
released again after a clear of flags is complete. The flag bits are persistent over reset to allow for the system to  
identify what was causing the interrupt and/or converter shutdown.  
Also, the LP8754 has a soft-start circuit that limits in-rush current during start-up. The output voltage increase  
rate is 30 mV/µs (default) during soft-start.  
Table 3. Summary of Exceptions and Interrupt Signals  
EVENT  
REGISTER.BIT  
INTERRUPT SIGNAL  
PRODUCED?  
INT MASK AVAILABLE?  
SCP triggered  
Not PowerGood  
FLAGS_1.SCP  
FLAGS_0.nPG_B0  
FLAGS_0.TEMP[1:0]  
Yes  
Yes  
Yes  
Yes  
Yes  
TEMP status change  
On any temperature change  
except for the case when  
TEMP[1:0] = 0b11  
Thermal warning  
Thermal shutdown  
OVP triggered  
FLAGS_1.T_WARNING  
FLAGS_1.THSD  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
FLAGS_1.OVP  
Yes  
Yes  
Load current measurement  
ready  
FLAGS_1.I_LOAD_READY  
UVLO triggered  
FLAGS_1.UVLO  
Yes  
Yes  
7.3.4.1 Warnings for Diagnosis (No Power Down)  
7.3.4.1.1 Short-Circuit Protection (SCP)  
A short-circuit protection feature allows the LP8754 to protect itself and external components during overload  
conditions. The output short-circuit fault threshold is 400 mV (typ.) .  
7.3.4.1.2 Power Good Monitoring  
When the converter's feedback-pin voltage falls lower than 90% (typ.) of the set voltage, the FLAGS_0.nPG_B0  
flag is set. To prevent a false alarm, the power good circuit is masked during converter start-up and voltage  
transitions. The duration of the power good mask is set to 400 µs for converter start-up. For voltage ramps the  
masking time is extended by an internal logic circuit up to 6.4 ms. (See Protection Features Characteristics.)  
tMASK, START  
tMASK, RAMP  
V
OUT  
Time  
Masking time for start-up is constant 400 µs (typ.). Masking time for voltage transitions depends on the selected ramp  
rates.  
Figure 16. Power Good Masking Principle  
7.3.4.1.3 Thermal Warnings  
Prior to the thermal shutdown, thermal warnings are set. The first warning is set at 85°C (INT pin low), and the  
second at 120°C (INT pin pulled low and FLAGS_1.T_WARNING flag set). If the chip temperature crosses any of  
the thresholds of 85°C, 120°C, or 150°C (see FLAGS_0 register) the INT pin will be triggered. INT will be cleared  
upon read of FLAGS_0.TEMP[1:0] bits except if FLAGS_0.TEMP [1:0] = 0b11, which is a thermal fault event.  
Copyright © 2014, Texas Instruments Incorporated  
23  
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
7.3.4.2 Faults (Fault State and Fast Power Down)  
7.3.4.2.1 Undervoltage Lockout (UVLO)  
When the input voltage falls below VUVLO (typ. 2.25 V) at the VDDA5V pin, the LP8754 indicates a fault by  
activating the FLAGS_1.UVLO flag. The buck converter shut down without a power-down sequence(Fast Power-  
Down). The flag will remain active until the input voltage is raised above the UVLO threshold. If the flag is  
cleared while the fault persists, the flag is immediately re-asserted, and interrupt remains active.  
7.3.4.2.2 Overvoltage Protection (OVP)  
When an input voltage greater than VOVP (typ. 5.3 V) is detected at the VDDA5V pin, the LP8754 indicates a fault  
by activating the FLAGS_1.OVP flag. The buck converter is shut down immediately (Fast Power-Down). The flag  
will remain active until the input voltage is below the OVP threshold. If the flag is cleared while the fault persists,  
the flag is immediately re-asserted and interrupt remains active.  
7.3.4.2.3 Thermal Shutdown (THSD)  
The LP8754 has a thermal overload protection function that operates to protect itself from short-term misuse and  
overload conditions. When the junction temperature exceeds around 150°C, the device enters shutdown via fault-  
state. INT will be cleared upon write of the FLAGS_1.THSD flag even when thermal shutdown is active. This  
allows automatic recovery when temperature decreases below thermal shutdown level. See Figure 17 for  
LP8754 thermal diagnosis and protection features.  
24  
Copyright © 2014, Texas Instruments Incorporated  
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
Clear THSD  
E\ꢀZULWLQJꢀ¶0'  
Read FLAGS_0  
INT Released  
THSD De-asserted  
Yes  
TEMP[1:0] = 0b11  
Power Outputs Disabled  
INT Requested  
THSD Asserted  
No  
Tj < 125°C  
Tj > 150°C  
Clear T_WARNING  
Read FLAGS_0  
E\ꢀZULWLQJꢀ¶0'  
No  
INT by T_WARNING  
released  
INT by change in  
TEMP released  
Yes  
INT Requested  
If THSD low then enable  
power outputs  
TEMP[1:0] = 0b10  
Yes  
INT Requested  
T_WARNING Asserted  
No  
Tj < 110°C  
Tj > 120°C  
Read FLAGS_0  
No  
INT Released  
Yes  
INT Requested  
TEMP[1:0] = 0b01  
Yes  
INT Requested  
No  
Tj < 75°C  
Tj > 85°C  
Read FLAGS_0  
No  
Yes  
INT Requested  
INT Released  
TEMP[1:0] = 0b00  
Note that INT is asserted whenever any of the thermal thresholds is crossed, if unmasked. Note also the 10°C  
Hysteresis on the TJ Thresholds.  
Figure 17. Thermal Warnings and Thermal Shutdown Flow  
7.4 Device Functional Modes  
SHUTDOWN: All switch, reference, control and bias circuitry of the LP8754 are turned off. The main battery  
supply voltage is high enough to start the buck power-up sequence but VVIOSYS and NRST are  
LOW.  
STANDBY: Setting VVIOSYS HIGH enables standby-operation. All registers can be read or written by the system  
master via the system serial interface. Recovery from UVLO, TSD, or OVP event also leads to  
standby.  
ACTIVE:  
Regulated DC-DC converters are on or can be enabled with full current capability. In this mode, all  
features and control registers are available via the system serial bus and via DVS interface.  
LOW-POWER: At light loads (less than approximately 30 mA), and when the load does not require highest level  
of transient performance, the device enters automatically Low-Power mode. In this mode the part  
operates at low IQ. Conditions entering and exiting Low-Power mode are shown in Figure 18.  
Copyright © 2014, Texas Instruments Incorporated  
25  
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Device Functional Modes (continued)  
V
FROM ANY  
STATE  
VIOSYS  
LOW  
SHUTDOWN  
V
VIOSYS  
HIGH  
READ  
OTP  
REG  
RESET ***  
STANDBY  
THERMAL  
SHUTDOWN  
or  
UVLO/OVP  
RELEASED  
and  
NRST LOW  
or  
2
I C RESET  
NRST HIGH  
2
I C RESET  
FLAG(s) CLEARED  
ACTIVE  
FAULT CONDITION  
DETECTED  
**  
*
FROM ANY STATE  
EXCEPT SHUTDOWN  
ACTIVE  
LOW POWER  
*) HIGH LOAD CURRENT OR ANY OF  
THE FOLLOWING CONDITIONS:  
**) LOW LOAD CURRENT AND ALL  
THE FOLLOWING CONDITIONS  
NSLP (pin)  
HIGH  
µ0¶  
µ0¶  
NSLP (pin)  
LOW  
LP_B0 (bit)  
LP_EN (bit)  
FPWM_B0 (bit)  
LP_B0 (bit)  
LP_EN (bit)  
FPWM_B0 (bit)  
µ1¶  
µ1¶  
µ0¶  
µ1¶  
***) 6((ꢀ´5(6(7ꢀ6&(1$5,26´ꢀ)25ꢀ  
DETAILS  
Figure 18. Device Operation Modes  
26  
Copyright © 2014, Texas Instruments Incorporated  
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
7.5 Programming  
7.5.1 I2C-Compatible Interface  
The I2C-compatible synchronous serial interface provides access to the programmable functions and registers on  
the device. This protocol uses a two-wire interface for bidirectional communications between the IC's connected  
to the bus. The two interface lines are the Serial Data Line (SDA), and the Serial Clock Line (SCL). Every device  
on the bus is assigned a unique address and acts as either a Master or a Slave depending on whether it  
generates or receives the serial clock SCL. The SCL and SDA lines should each have a pullup resistor placed  
somewhere on the line and remain HIGH even when the bus is idle. Note: CLK pin is not used for serial bus data  
transfer. There are two buses implemented: the System I2C bus and the DVS bus. In the following paragraphs,  
SCL refers to both SCLSYS and SCLSR, and SDA refers to SDASYS and SDASR. The LP8754 supports  
standard mode (100 kHz), fast mode (400 kHz) and high-speed mode (3.4 MHz).  
7.5.1.1 Data Validity  
The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of  
the data line can only be changed when clock signal is LOW.  
SCL  
SDA  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
change  
allowed  
data  
valid  
Figure 19. Data Validity Diagram  
7.5.1.2 Start and Stop Conditions  
The LP8754 is controlled via an I2C-compatible interface. START and STOP conditions classify the beginning  
and end of the I2C session. A START condition is defined as SDA transitions from HIGH to LOW while SCL is  
HIGH. A STOP condition is defined as SDA transition from LOW to HIGH while SCL is HIGH. The I2C master  
always generates the START and STOP conditions.  
SDA  
SCL  
S
P
Start Condition  
Stop Condition  
Figure 20. Start and Stop Sequences  
The I2C bus is considered busy after a START condition and free after a STOP condition. During data  
transmission the I2C master can generate repeated START conditions. A START and a repeated START  
condition are equivalent function-wise. The data on SDA must be stable during the HIGH period of the clock  
signal (SCL). In other words, the state of SDA can only be changed when SCL is LOW. Figure 1 shows the SDA  
and SCL signal timing for the I2C-Compatible Bus. See the I2C Serial Bus Timing Parameters for timing values.  
7.5.1.3 Transferring Data  
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first.  
Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated  
by the master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The LP8754 pulls  
down the SDA line during the 9th clock pulse, signifying an acknowledge. The LP8754 generates an  
acknowledge after each byte has been received.  
Copyright © 2014, Texas Instruments Incorporated  
27  
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Programming (continued)  
There is one exception to the “acknowledge after every byte” rule. When the master is the receiver, it must  
indicate to the transmitter an end of data by not-acknowledging (“negative acknowledge”) the last byte clocked  
out of the slave. This “negative acknowledge” still includes the acknowledge clock pulse (generated by the  
master), but the SDA line is not pulled down.  
After the START condition, the bus master sends a chip address. This address is seven bits long followed by an  
eighth bit which is a data direction bit (READ or WRITE). For the eighth bit, a “0” indicates a WRITE and a “1”  
indicates a READ. The second byte selects the register to which the data will be written. The third byte contains  
data to write to the selected register.  
ack from slave  
ack from slave  
ack from slave  
start  
MSB Chip Addr LSB  
w
ack MSB Register Addr LSB ack  
MSB Data LSB ack stop  
SCL  
SDA  
start  
id = 60h  
w
ack  
addr = 40h  
ack  
address 40h data  
ack stop  
Figure 21. Write Cycle (w = write; SDA = '0'), id = device address = 60Hex for LP8754.  
ack from slave  
ack from slave repeated start  
ack from slave data from slave nack from master  
start  
MSB Chip Addr LSB  
w
MSB Register Addr LSB  
rs  
MSB Chip Address LSB  
r
MSB Data LSB  
stop  
SCL  
SDA  
start  
id =60h  
w
ack  
address = 3Fh  
ack rs  
id = 60h  
r
ack  
address 3Fh data  
nack stop  
When READ function is to be accomplished, a WRITE function must precede the READ function as shown above.  
Figure 22. Read Cycle ( r = read; SDA = '1'), id = device address = 60Hex for LP8754.  
7.5.1.4 I2C-Compatible Chip Address  
The device address for the LP8754 is 0x60 (ADDR pin tied to the GND). After the START condition, the I2C  
master sends the 7-bit address followed by an eighth bit, read or write (R/W). R/W = 0 indicates a WRITE and  
R/W = 1 indicates a READ. The second byte following the device address selects the register address to which  
the data will be written. The third byte contains the data for the selected register.  
MSB  
LSB  
1
Bit 7  
1
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
R/W  
Bit 0  
2
I C Slave Address (chip address)  
Here device address is 1100000Bin = 60 Hex.  
Figure 23. Device Address  
28  
Copyright © 2014, Texas Instruments Incorporated  
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
Programming (continued)  
7.5.1.5 Auto-Increment Feature  
The auto-increment feature allows writing several consecutive registers within one transmission. Every time an 8-  
bit word is sent to the LP8754, the internal address index counter will be incremented by one, and the next  
register will be written. Table 4 shows writing sequence to two consecutive registers. Note: the auto-increment  
feature does not work for read.  
Table 4. Auto-Increment Example  
Master  
Action  
Start  
Device  
Address  
= 60H  
Write  
Register  
Address  
Data  
Data  
Stop  
LP8754  
Action  
ACK  
ACK  
ACK  
ACK  
7.6 Register Maps  
7.6.1 Register Descriptions  
The LP8754 is controlled by a set of registers through the system serial interface port or through the Dynamic  
Voltage Scaling interface. Table 5 lists device registers, their addresses and their abbreviations. A more detailed  
description is given in the sections VSET_B0 to INT_MASK_2.  
Many registers contain bits, that are reserved for future use. When writing to a register, any reserved bits should  
not be changed.  
Table 5. Register Descriptions  
Read /  
Write  
Addr  
Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_DIS_B  
0
0x00  
VSET_B0  
R/W  
VSET_B0[6:0]  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
FPWM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reserved  
RDIS_B0  
FPWM_B0  
BUCK0_CTRL  
BUCK1_CTRL  
BUCK2_CTRL  
BUCK3_CTRL  
BUCK4_CTRL  
BUCK5_CTRL  
FLAGS_0  
OC_LEV_B0[1:0]  
OC_LEV_B1[1:0]  
OC_LEV_B2[1:0]  
OC_LEV_B3[1:0]  
OC_LEV_B4[1:0]  
OC_LEV_B5[1:0]  
LP_B0  
Reserved  
RAMP_B0[2:0]  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
nPG_B0  
THSD  
TEMP[1:0]  
I_LOAD_REA  
DY  
T_WARNIN  
G
0x0E  
0x0F  
FLAGS_1  
R/W  
R/W  
Reserved  
Reserved  
UVLO  
OVP  
SCP  
MASK_nPG  
_B0  
INT_MASK_0  
Reserved  
EN_SS  
MASK_OVP MASK_SCP  
0x10  
0x11  
0x12  
0x18  
0x19  
0x1F  
0x21  
0x22  
GENERAL  
RESET  
R/W  
R/W  
R/W  
R
Reserved DIS_DIF_B0  
Reserved  
Reserved  
SLP_POL  
LP_EN  
SW_RESET  
DELAY_BUCK0  
CHIP_ID  
DELAY_B0[7:0]  
OTP_REV[4:0]  
DEVICE  
Reserved  
Reserved  
Reserved  
DIE_REV[1:0]  
PFM_LEV_B0  
PHASE_LEV_B0  
SEL_I_LOAD  
LOAD_CURR  
R/W  
R/W  
R/W  
R
PFM_ENTRY_B0[2:0]  
ADD_PH_B0[2:0]  
Reserved  
Reserved  
Reserved  
PFM_EXIT_B0[2:0]  
SHED_PH_B0[2:0]  
BUCK_LOAD_CURR[10:8]  
LOAD_CURRENT_SOURCE[2:0]  
BUCK_LOAD_CURR[7:0]  
MASK_ILOA MASK_UVL MASK_TWA MASK_TEM  
0x2E  
INT_MASK_2  
R/W  
Reserved  
D_READY RNING  
O
P
Copyright © 2014, Texas Instruments Incorporated  
29  
 
 
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
7.6.2 VSET_B0  
Address: 0x00  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
EN_DIS_B0  
VSET_B0[6:0]  
Bits  
Field  
Type  
Default  
Description  
7
EN_DIS_B0  
R/W  
1
DC-DC converter Buck0 Enable/Disable. The Enable of the master Buck0 controls the  
operation of the slave bucks.  
0 = Converter disabled  
1 = Converter enabled  
Note: When a disable request is received the converter is disabled immediately.  
6:0  
VSET_B0[6:0]  
R/W  
011 1100 Sets the output voltage.  
Defined by:  
VOUT = 0.5 V + 10 mV * VSET_B0  
VOUT range = 0.6 V to 1.67 V  
NOTE: Do not use VSET_B0 values < 0001010 (10 dec) = 0.6 V.  
NOTE: Register settings starting from 1110110 up to 1111111 are clamped to 1.67 V.  
7.6.3 FPWM  
Address: 0x06  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
FPWM_B0  
Bits  
7:1  
0
Field  
Type  
R/W  
R/W  
Default  
001 1111  
1
Description  
Reserved  
FPWM_B0  
Forced PWM mode of operation, Buck regulator 0 (Master). The setting of the master  
controls the operation of the slave bucks.  
0 = PWM, PFM or Low-Power PFM operation mode.  
1 = This will force the master converter and the slaves to operate always in the PWM  
mode.  
7.6.4 BUCK0_CTRL  
Address: 0x07  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OC_LEV_B0[1:0]  
LP_B0  
RDIS_B0  
Reserved  
RAMP_B0[2:0]  
Bits  
Field  
Type  
Default  
Description  
7:6  
OC_LEV_B0[1:0]  
R/W  
10  
Inductor positive current limit on Buck 0. Note that OC_LEV_B0...B5 should have the  
same value.  
00 = 1.5 A  
01 = 2.0 A  
10 = 2.5 A  
11 = 3.0 A  
5
4
3
LP_B0  
R/W  
R/W  
R/W  
0
1
0
Allows converter to enter into Low-Power PFM mode.  
1 = Entering to Low-Power PFM mode is allowed.  
0 = Entering to Low-Power PFM more is not allowed.  
RDIS_B0  
Reserved  
Enables the output discharge resistors when the VOUT supply has been disabled.  
1 = Enable pull-down  
0 = Disable pull-down  
30  
Copyright © 2014, Texas Instruments Incorporated  
LP8754  
www.ti.com.cn  
Bits  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
Field  
Type  
Default  
Description  
2:0  
RAMP_B0[2:0]  
R/W  
001  
This set the output voltage change ramp as follows:  
000 = 30 mV/µs  
001 = 15 mV/µs  
010 = 7.5 mV/µs  
011 = 3.8 mV/µs  
100 = 1.9 mV/µs  
101 = 0.94 mV/µs  
110 = 0.47 mV/µs  
111 = 0.23 mV/µs  
7.6.5 BUCK1_CTRL  
Address: 0x08  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OC_LEV_B1[1:0]  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7:6  
OC_LEV_B1[1:0]  
R/W  
10  
Inductor positive current limit on Buck 1. Note that OC_LEV_B0...B5 should have the  
same value.  
00 = 1.5 A  
01 = 2.0 A  
10 = 2.5 A  
11 = 3.0 A  
5:0  
Reserved  
R/W  
01 0001  
7.6.6 BUCK2_CTRL  
Address: 0x09  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OC_LEV_B2[1:0]  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7:6  
OC_LEV_B2[1:0]  
R/W  
10  
Inductor positive current limit on Buck 2. Note that OC_LEV_B0...B5 should have the  
same value.  
00 = 1.5 A  
01 = 2.0 A  
10 = 2.5 A  
11 = 3.0 A  
5:0  
Reserved  
R/W  
01 0001  
7.6.7 BUCK3_CTRL  
Address: 0x0A  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OC_LEV_B3[1:0]  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7:6  
OC_LEV_B3[1:0]  
R/W  
10  
Inductor positive current limit on Buck 3. Note that OC_LEV_B0...B5 should have the  
same value.  
00 = 1.5 A  
01 = 2.0 A  
10 = 2.5 A  
11 = 3.0 A  
5:0  
Reserved  
R/W  
01 0001  
Copyright © 2014, Texas Instruments Incorporated  
31  
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
7.6.8 BUCK4_CTRL  
Address: 0x0B  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OC_LEV_B4[1:0]  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7:6  
OC_LEV_B4[1:0]  
R/W  
10  
Inductor positive current limit on Buck 4. Note that OC_LEV_B0...B5 should have the  
same value.  
00 = 1.5 A  
01 = 2.0 A  
10 = 2.5 A  
11 = 3.0 A  
5:0  
Reserved  
R/W  
01 0001  
7.6.9 BUCK5_CTRL  
Address: 0x0C  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
OC_LEV_B5[1:0]  
Reserved  
Bits  
Field  
Type  
Default  
Description  
7:6  
OC_LEV_B5[1:0]  
R/W  
10  
Inductor positive current limit on Buck 5. Note that OC_LEV_B0...B5 should have the  
same value.  
00 = 1.5 A  
01 = 2.0 A  
10 = 2.5 A  
11 = 3.0 A  
5:0  
Reserved  
R/W  
01 0001  
7.6.10 FLAGS_0  
Address: 0x0D  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
nPG_B0  
TEMP[1:0]  
Bits  
7:3  
2
Field  
Type  
R/W  
R/W  
Default  
X XXXX  
0
Description  
Reserved  
nPG_B0  
(1)  
Flag Bit  
Power good fault flag for VOUT rail  
1 = Power fault detected  
0 = Power good  
1:0  
TEMP[1:0]  
R
00  
indicates the die temperature as follows:  
00: die temperature lower than 85ºC  
01: 85ºC die temperature < 120ºC  
10: 120ºC die temperature < 150ºC  
11: die temperature 150ºC or higher  
(1) The flag bit can be cleared only by writing a zero to the associated register bit or power cycling the device (VVIOSYS to LOW). Reading or  
RESET does not clear the flag bits. After clearing, the nPG_B0 fault flag will be raised again '1' if the fault condition persists. Any  
unmasked flag bit High will cause the interrupt to be asserted on the INT pin. The INT pin will be pulled Low until all the unmasked flags  
are clear again.  
7.6.11 FLAGS_1  
Address: 0x0E  
32  
Copyright © 2014, Texas Instruments Incorporated  
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
I_LOAD_READ  
Y
UVLO  
T_WARNING  
THSD  
OVP  
SCP  
Bits  
7:6  
5
Field  
Type  
Default  
Description  
Reserved  
R/W  
R/W  
00  
0
I_LOAD_READY  
Flag Bit(1)  
1 = Buck load current measurement data ready  
0 = Buck load current measurement data not ready  
(1)  
4
3
UVLO  
R/W  
R/W  
0
0
Flag Bit  
1= Input undervoltage lockout (UVLO): Input voltage sagged below UVLO threshold.  
0 = No UVLO  
(1)  
T_WARNING  
Flag Bit  
1= Thermal warning: The IC temperature exceeds 120°C, in advance of the thermal  
shutdown protection.  
0 = No thermal warning  
(1)  
2
1
0
THSD  
OVP  
SCP  
R/W  
R/W  
R/W  
0
0
0
Flag Bit  
1 = Thermal shutdown event detected  
0 = No thermal shutdown  
(1)  
Flag Bit  
1= Indicates overvoltage protection (OVP) circuit activation.  
0 = No OVP event. The OVP circuitry monitors VDDA5V power input.  
(1)  
Flag Bit  
1= Indicates short-circuit protection (SCP) circuit activation. The bit is activated when a  
short-circuit condition is detectedon output rail.  
0 = No SCP event  
(1) The flag bit(s) can be cleared only by writing a zero to the associated register bit(s) or power cycling the device (VVIOSYS to LOW).  
Reading or RESET does not clear the flag bits. After clearing, the OVP, SCP fault flag(s) will be raised again '1' if the fault condition  
persists. The THSD flag will remain '0' after clear, even though the fault condition persists. Any unmasked flag bit High will cause the  
interrupt to be asserted on the INT pin. The INT pin will be pulled Low until all the unmasked flags are clear again.  
7.6.12 INT_MASK_0  
Address: 0x0F  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
MASK_nPG_B  
0
MASK_OVP  
MASK_SCP  
Bits  
7:3  
2
Field  
Type  
R/W  
R/W  
Default  
1 1111  
0
Description  
Reserved  
MASK_nPG_B0  
MASK_OVP  
MASK_SCP  
Interrupt mask for power good fault flag  
1 = nPG_B0 does not set interrupt.  
0 = nPG_B0 sets interrupt, when triggered.  
1
0
R/W  
R/W  
0
0
Interrupt mask for Overvoltage Protection (OVP) fault flag  
1 = OVP does not set interrupt.  
0 = OVP sets interrupt, when triggered.  
Interrupt mask for short-circuit protection SCP fault flag  
1 = SCP does not set interrupt.  
0 = SCP sets interrupt, when triggered.  
7.6.13 GENERAL  
Address: 0x10  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
EN_SS  
Reserved  
DIS_DIF_B0  
Reserved  
SLP_POL  
LP_EN  
Copyright © 2014, Texas Instruments Incorporated  
33  
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Bits  
7:6  
5
Field  
Reserved  
EN_SS  
Type  
R/W  
R/W  
Default  
Description  
00  
0
Spread Spectrum  
1 = Spread Spectrum enabled  
0 = Spread Spectrum disabled  
4
3
Reserved  
R/W  
R/W  
0
0
DIS_DIF_B0  
Disable Differential-to-single-ended amplifier  
1 = Differential amplifier disabled  
0 = Differential amplifier enabled  
2
1
Reserved  
SLP_POL  
R/W  
R/W  
0
0
Sets the polarity of the NSLP pin  
1 = NSLP is active high  
0 = NSLP is active low  
0
LP_EN  
R/W  
1
1 = allows Low-Power PFM mode. In order to reduce power consumption under low  
load conditions, the unit will automatically switch off unused internal blocks.  
0 = Low-Power mode not allowed  
7.6.14 RESET  
Address: 0x11  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
SW_RESET  
Bits  
7:1  
0
Field  
Type  
R/W  
R/W  
Default  
000 0000  
0
Description  
Reserved  
SW_RESET  
Writing this bit with '1' and '0', in this order, will reset the registers to the default values.  
If NRST is still kept HIGH, the converter output(s) will be regulated to the programmed  
register values. If a full POR reset is required VVIOSYS must be pulled low. The fault  
flags are persistent over SW-reset.  
7.6.15 DELAY_BUCK0  
Address: 0x12  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DELAY_B0  
Bits  
Field  
Type  
Default  
Description  
7:0  
DELAY_B0  
R/W  
0000 0000 Master delay  
Sets the delay time from when NRST is asserted to when the VOUT rail is enabled.  
Sets the delay time from when NRST is de-asserted to when the VOUT rail is disabled.  
DELAY = DELAY_B0 * 100 µs  
(1)  
If DELAY_B0 = FFh, supply is never enabled.  
(1) If this register is set to FFh when the converter is already started, it will cause an immediate power down of the converter.  
7.6.16 CHIP_ID  
Address: 0x18  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DEVICE  
OTP_REV  
DIE_REV  
Bits  
Field  
Type  
Default  
Description  
7
DEVICE  
R
1
DEVICE  
Contains Device ID  
6:2  
OTP_REV  
R
0 0001  
OTP_REV  
Contains OTP Version ID  
34  
Copyright © 2014, Texas Instruments Incorporated  
LP8754  
www.ti.com.cn  
Bits  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
Field  
DIE_REV  
Type  
Default  
Description  
1:0  
R
00  
DIE_REV  
Contains Revision ID  
7.6.17 PFM_LEV_B0  
Address: 0x19  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
PFM_ENTRY_B0[2:0]  
Reserved  
PFM_EXIT_B0[2:0]  
Bits  
Field  
Type  
Default  
0
Description  
7
Reserved  
R/W  
R/W  
(1)  
6:4  
PFM_ENTRY_B0  
011  
PFM_ENTRY_B0  
Sets the target PFM entry level for Buck 0. The final PWM-to-PFM switchover current  
varies slightly and is dependant on the output voltage, input voltage and the inductor  
current level.  
000 = 100 mA  
001 = 125 mA  
010 = 150 mA  
011 = 175 mA  
100 = 225 mA  
101 = Reserved  
110 = Reserved  
111 = Reserved  
3
Reserved  
R/W  
R/W  
0
(1)  
2:0  
PFM_EXIT_B0  
110  
PFM_EXIT_B0  
Sets the target PFM exit level for Buck 0. The final PFM-to-PWM switchover current  
varies slightly and is dependant on the output voltage, input voltage and the inductor  
current level.  
000 = Reserved  
001 = Reserved  
010 = Reserved  
011 = 175 mA  
100 = 225 mA  
101 = 275 mA  
110 = 325 mA  
111 = 375 mA  
(1) For proper operation, the PFM exit current level should be at least 150 mA higher than the PFM entry current level.  
7.6.18 PHASE_LEV_B0  
Address: 0x1F  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
ADD_PH_B0[2:0]  
Reserved  
SHED_PH_B0[2:0]  
Bits  
Field  
Type  
Default  
0
Description  
7
Reserved  
R/W  
R/W  
6:4  
ADD_PH_B0  
100  
ADD_PH_B0(1)  
Sets the level on which a phase is added.  
000 = Reserved  
001 = Reserved  
010 = 0.5 A * No. of Active Phases  
011 = 0.6 A * No. of Active Phases  
100 = 0.7 A * No. of Active Phases  
101 = 0.8 A * No. of Active Phases  
110 = 0.9 A * No. of Active Phases  
111 = 1.0 A * No. of Active Phases  
3
Reserved  
R/W  
0
(1) ADD_PH_B0 and SHED_PH_B0 values must be chosen so that the resulting hysteresis is a minimum of 100 mA and ADD_PH_B0 >  
SHED_PH_B0.  
Copyright © 2014, Texas Instruments Incorporated  
35  
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Bits  
Field  
Type  
Default  
Description  
2:0  
SHED_PH_B0  
R/W  
010  
SHED_PH_B0(1)  
Sets the level of phase shedding.  
000 = 0.3 A * No. of Active Phases  
001 = 0.4 A * No. of Active Phases  
010 = 0.5 A * No. of Active Phases  
011 = 0.6 A * No. of Active Phases  
100 = 0.7 A * No. of Active Phases  
101 = 0.8 A * No. of Active Phases  
110 = Reserved  
111 = Reserved  
7.6.19 SEL_I_LOAD  
Address: 0x21  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Reserved  
BUCK_LOAD_CURR[10:8]  
Reserved  
LOAD_CURRENT_SOURCE[2:0]  
Bits  
Field  
Type  
R/W  
R
Default  
0
Description  
7
Reserved  
6:4  
BUCK_LOAD_  
CURR[10:8]  
000  
BUCK_LOAD_CURR  
This register reports 3 MSB bits of the magnitude of the average load current of the  
selected Buck Converter. See LOAD_CURR register.  
3
Reserved  
R/W  
R/W  
0
2:0 LOAD_CURRENT_  
SOURCE[2:0]  
000  
LOAD_CURRENT_SOURCE  
These bits are used for choosing the Buck Converter whose load current will be  
measured.  
000 = Converter 0 load current will be measured.  
001 = Converter 1 load current will be measured.  
010 = Converter 2 load current will be measured.  
011 = Converter 3 load current will be measured.  
100 = Converter 4 load current will be measured.  
101 = Converter 5 load current will be measured.  
110 = Master total load current will be measured.  
111 = Reserved  
7.6.20 LOAD_CURR  
Address: 0x22  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BUCK_LOAD_CURR[7:0]  
Bits  
Field  
Type  
Default  
Description  
7:0  
BUCK_LOAD_  
CURR[7:0]  
R
0000 0000 BUCK_LOAD_CURR  
This register reports 8 LSB bits of the magnitude of the average load current of the  
selected Buck Converter. The value is reported with a resolution of 10 mA per LSB  
and 20A max current. Three MSB bits are reported by  
SEL_I_LOAD.BUCK_LOAD_CURR[10:8] bits, see SEL_I_LOAD.  
The current reported is an average over the last 5 milliseconds. The host system has  
read-only access to this register. This register is cleared to 0 on all resets.  
000 0000 0000 Load current lower than 10 mA  
000 0000 0001 10 mA Load current < 20 mA  
...  
111 1111 1110 20460 mA Load current < 20470 mA  
111 1111 1111 Load current 20470 mA or higher.  
Note: Not production tested. Typical values for reference only.  
7.6.21 INT_MASK_2  
Address: 0x2E  
36  
Copyright © 2014, Texas Instruments Incorporated  
 
 
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
D7  
D6  
D5  
D4  
D3  
MASK_ILOAD_ MASK_UVLO MASK_TWARN MASK_TEMP  
READY ING  
D2  
D1  
D0  
Reserved  
Bits  
Field  
Reserved  
Type  
R/W  
R/W  
Default  
0000  
1
Description  
7:4  
3
MASK_ILOAD_  
READY  
Interrupt mask for load current measurement flag  
1 = FLAGS_1.I_LOAD_READY does not set interrupt.  
0 = FLAGS_1.I_LOAD_READY sets interrupt.  
2
1
0
MASK_UVLO  
R/W  
R/W  
R/W  
0
1
1
Interrupt mask for undervoltage lock-out flag  
1 = FLAGS_1.UVLO does not set interrupt.  
0 = FLAGS_1.UVLO sets interrupt, when triggered.  
MASK_  
TWARNING  
Interrupt mask for thermal warning flag  
1 = FLAGS_1.T_WARNING does not set interrupt.  
0 = FLAGS_1.T_WARNING sets interrupt, when triggered.  
MASK_TEMP  
Interrupt mask for die temperature flag bits  
1 = FLAGS_0.TEMP[1:0] value change does not set interrupt.  
0 = FLAGS_0.TEMP[1:0] value change sets interrupt.  
Copyright © 2014, Texas Instruments Incorporated  
37  
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LP8754 is a multi-phase step-down converter with 6 switcher cores bundled together.  
8.2 Typical Application  
SYSTEM VOLTAGE  
2.5 V - 5.0 V  
LP8754: 6-PHASE  
CONFIGURATION  
OUTPUT  
VOLTAGE  
L0 0.47 PH  
L1 0.47 PH  
L2 0.47 PH  
SWB0  
VINB0/B1  
CIN0  
10 PF  
APPLICATIONS  
PROCESSOR  
VINB2  
SWB1  
SWB2  
CIN1  
10 PF  
COUT6PH  
VINB3/B4  
VINB5  
CPU  
LOAD  
10A  
4 x 22 PF  
CIN2  
10 PF  
0.47 PH  
L3  
MAX  
SWB3  
CIN3  
10 PF  
L4 0.47 PH  
L5 0.47 PH  
SWB4  
SWB5  
VDDA5V  
VIOSYS  
CVDD  
VIO1V8  
1 PF  
CVIOSYS  
1 PF  
SDASR  
SCLSR  
FBB0+/B0  
FBB0-/B1  
NSLP  
OPTIONAL  
VLDO  
FBB2  
CLDO  
VIO1V8  
1 PF  
RP1  
SDASYS  
SCLSYS  
FBB3+/B3  
RP2  
FBB3-/B4  
FBB5  
RP3  
INT  
CPU POWER REQUEST  
NRST  
Figure 24. 6-Phase Configuration Schematic  
38  
Copyright © 2014, Texas Instruments Incorporated  
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
Typical Application (continued)  
8.2.1 Design Requirements  
Table 6 shows requirements for 6-phase configuration.  
Table 6. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
2.5 V to 5 V  
1.1 V  
Output voltage  
Converter operation mode  
Maximum load current  
Inductor current limit  
Forced PWM  
10 A  
2.5 A  
8.2.2 Detailed Design Procedure  
The performance of the LP8754 device depends greatly on the care taken in designing the Printed Circuit Board  
(PCB). The use of low inductance and low serial resistance ceramic capacitors is strongly recommended, while  
proper grounding is crucial. Attention should be given to decoupling the power supplies. Decoupling capacitors  
must be connected close to the IC and between the power and ground pins to support high peak currents being  
drawn from System Power Rail during turn-on of the switching MOSFETs. Keep input and output traces as short  
as possible, because trace inductance, resistance and capacitance can easily become the performance limiting  
items. The separate power pins VINBXX are not connected together internally. The VINBXX power connections  
shall be connected together outside the package using power plane construction.  
8.2.2.1 Inductor Selection  
The DC bias current characteristics of inductors must be considered. Different manufacturers follow different  
saturation current rating specifications, so attention must be given to details. (Please request DC bias curves  
from the manufacturer as part of the inductor selection process.) Minimum effective value of inductance to  
ensure good performance is 0.25 µH at 2.5 A (Default ILIMITP typical) bias current over the inductor's operating  
temperature range. The inductor’s DC resistance should be less than 0.05 for good efficiency at high-current  
condition. The inductor AC loss (resistance) also affects conversion efficiency. Higher Q factor at switching  
frequency usually gives better efficiency at light load to middle load. Table 7 lists suggested inductors and  
suppliers. Shielded inductors radiate less noise and are preferable.  
Table 7. Suggested Inductors  
ITEM  
MODEL  
VENDOR  
DIMENSIONS LxWxH (mm)  
D.C.R (m) MAX  
L0 to L5; Step-down  
converter inductor 0.47 µH  
LQM21PNR47MGH  
DFE252012 R47  
DFE201612C R47N  
Murata  
TOKO  
TOKO  
2.0 x 1.2 x 1.0  
2.5 x 2 x 1.2  
2.0 x 1.6 x 1.2  
40 (typ)  
39  
50  
8.2.2.2 Input Capacitor Selection  
A ceramic input capacitor of 10 µF, 10 V is sufficient for most applications. Place the input capacitor as close as  
possible to the VINBXX pin and GND pin of the device. A larger value or higher voltage rating may be used to  
improve input voltage filtering. Use X7R or X5R types, do not use Y5V. DC bias characteristics of ceramic  
capacitors must be considered when selecting case sizes like 0402. Minimum effective input capacitance to  
ensure good performance is 2.5 µF at maximum input voltage DC bias including tolerances and over ambient  
temp range, assuming that there is at least 22 µF of additional capacitance common for all the power input pins  
on the system power rail.  
The input filter capacitor supplies current to the PFET (high-side) switch in the first half of each cycle and  
reduces voltage ripple imposed on the input power source. A ceramic capacitor's low equivalent series resistance  
(ESR) provides the best noise filtering of the input voltage spikes due to this rapidly changing current. Select an  
input filter capacitor with sufficient ripple current rating.  
For additional noise immunity, adding a high-frequency decoupling capacitor of 100 nF to 1 µF between VDDA5V  
pin and GND is recommended.  
Copyright © 2014, Texas Instruments Incorporated  
39  
 
 
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
Table 8. Suggested Input Capacitors (X5R Dielectric)  
MANUFACTURER  
Murata  
PART NUMBER  
GRM188R60J106ME84  
C1608X5R1A106KT  
LMK107BJ106MALTD  
CL10A226MP8NUNE  
VALUE  
CASE SIZE  
0603  
VOLTAGE RATING  
10 µF (20%)  
10 µF (10%)  
10 µF (20%)  
22 µF (20%)  
6.3 V  
10 V  
10 V  
10 V  
TDK  
0603  
Taiyo Yuden  
Samsung  
0603  
0603  
8.2.2.3 Output Capacitor Selection  
Use ceramic capacitor, X7R or X5R types; do not use Y5V. DC bias voltage characteristics of ceramic capacitors  
must be considered. DC bias characteristics vary from manufacturer to manufacturer, and DC bias curves should  
be requested from them as part of the capacitor selection process. The output filter capacitor smooths out current  
flow from the inductor to the load, helps maintain a steady output voltage during transient load changes and  
reduces output voltage ripple. These capacitors must be selected with sufficient capacitance and sufficiently low  
ESR to perform these functions. Minimum effective output capacitance to ensure good performance in 6-phase  
configuration is 30 µF at the output voltage DC bias including tolerances and over ambient temp range.  
The output voltage ripple is caused by the charging and discharging of the output capacitor and also due to its  
RESR. The RESR is frequency dependent (as well as temperature dependent); make sure the value used for  
selection process is at the switching frequency of the part.  
A higher output capacitance improves the load step behavior and reduces the output voltage ripple as well as  
decreasing the PFM switching frequency. For most 6-phase applications 4 x 22-µF 0603 capacitors for COUT is  
suitable. Although the converter's loop compensation can be programmed to adapt to virtually several hundreds  
of microfarads COUT, an effective COUT less than 120 µF is preferred -- there is not necessarily any benefit to  
having a COUT higher than 120 µF. Note that the output capacitor may be the limiting factor in the output voltage  
ramp, especially for very large (> 100 µF) output capacitors. For large output capacitors, the output voltage might  
be slower than the programmed ramp rate at voltage transitions, because of the higher energy stored on the  
output capacitance. Also at start-up, the time required to charge the output capacitor to target value might be  
longer. At shutdown, if the output capacitor is discharged by the internal discharge resistor, more time is required  
to settle VOUT down as a consequence of the increased time constant.  
Table 9. Suggested Output Capacitor  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
VOLTAGE RATING  
Samsung  
CL10A226MP8NUNE  
22 µF (20%)  
0603  
10 V  
8.2.2.4 LDO Capacitor Selection  
A ceramic low ESR 1-μF capacitor should be connected between the VLDO and GNDA pins.  
Table 10. Suggested LDO Capacitor  
MANUFACTURER  
PART NUMBER  
VALUE  
CASE SIZE  
VOLTAGE RATING  
Samsung  
CL03A105MQ3CSNH  
1 µF (20%)  
0201  
6.3 V  
8.2.2.5 VIOSYS Capacitor Selection  
Adding a ceramic low ESR 1-μF capacitor between the VIOSYS pin and GND is recommended. If VVIOSYS signal  
is low noisy the capacitor is not required.  
40  
Copyright © 2014, Texas Instruments Incorporated  
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
8.2.3 Application Curves  
Unless otherwise specified: VVDDA5V = VVINBXX = 3.7 V, VOUT = 1.1 V, TA = 25°C  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
1500 mV  
1300 mV  
1100 mV  
900 mV  
700 mV  
1500 mV  
1300 mV  
1100 mV  
900 mV  
700 mV  
0
2000  
4000  
6000  
8000  
10000  
0
2000  
4000  
6000  
8000  
10000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
C028  
C029  
VIN = 3.7 V  
Inductor: Murata LQM21PNR47MGH  
VIN = 2.7 V  
Inductor: Murata LQM21PNR47MGH  
Figure 25. Efficiency vs Load Current in Forced PWM  
Mode  
Figure 26. Efficiency vs Load Current in Forced PWM  
Mode  
100  
100  
1500 mV  
1300 mV  
1100 mV  
900 mV  
90  
80  
70  
60  
50  
40  
30  
700 mV  
90  
80  
70  
1300 mV LP PFM  
1100 mV LP PFM  
900 mV LP PFM  
1300 mV PFM  
1100 mV PFM  
900 mV PFM  
1300 mV PWM  
1100 mV PWM  
900 mV PWM  
1
10  
100  
1000  
10000  
2500  
3000  
3500  
4000  
4500  
5000  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (mV)  
C033  
C030  
VOUTSET = 900, 1100 and 1300 mV  
Inductor: Murata LQM21PNR47MGH  
IOUT = 1 A  
Inductor: Murata LQM21PNR47MGH  
Figure 27. Efficiency vs Load Current in Low-Power PFM  
Mode, PFM Mode, and Forced PWM Mode  
Figure 28. Efficiency vs Input Voltage in PWM Mode  
100  
100  
1500 mV  
1300 mV  
1100 mV  
900 mV  
700 mV  
1500 mV  
1300 mV  
1100 mV  
900 mV  
700 mV  
95  
90  
85  
80  
75  
70  
95  
90  
85  
80  
75  
70  
2500  
3000  
3500  
4000  
4500  
5000  
2500  
3000  
3500  
4000  
4500  
5000  
INPUT VOLTAGE (mV)  
INPUT VOLTAGE (mV)  
C031  
C032  
IOUT = 3 A  
Inductor: Murata LQM21PNR47MGH  
IOUT = 6 A  
Inductor: Murata LQM21PNR47MGH  
Figure 29. Efficiency vs Input Voltage in PWM Mode  
Figure 30. Efficiency vs Input Voltage in PWM Mode  
Copyright © 2014, Texas Instruments Incorporated  
41  
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
1105  
1104  
1103  
1102  
1101  
1100  
1099  
1098  
1097  
1096  
1095  
1110  
1108  
1106  
1104  
1102  
1100  
1098  
1096  
1094  
1092  
1090  
VIN = 2.5 V  
VIN = 3.7 V  
VIN = 5 V  
VIN = 2.5 V  
VIN = 3.7 V  
VIN = 5 V  
0
1
2
3
4
5
6
7
8
9
10  
0
100  
200  
300  
400  
500  
LOAD CURRENT (A)  
LOAD CURRENT (mA)  
C019  
C026  
VOUTSET = 1.1 V  
VOUTSET = 1.1 V  
Figure 31. Output Voltage vs Load Current in Forced PWM  
Mode  
Figure 32. Output Voltage vs Load Current in PFM/PWM  
Mode  
1100.0  
1110  
1108  
1106  
1104  
1102  
1100  
1098  
1096  
1099.5  
1099.0  
1098.5  
1098.0  
1094  
PWM, ILOAD = 3 A  
1092  
PFM, ILOAD = 100 mA  
1090  
0
20  
40  
60  
80  
100  
120  
2500  
3000  
3500  
4000  
4500  
5000  
±40  
±20  
TEMPERATURE (C)  
INPUT VOLTAGE (mV)  
C042  
C037  
VOUTSET = 1.1 V  
ILOAD = 1.0 A  
VOUTSET = 1.1 V  
Figure 33. Output Voltage vs Temperature  
Figure 34. Line Regulation  
2000  
1800  
1600  
1400  
1200  
1000  
800  
10.0  
2000  
1800  
1600  
1400  
1200  
1000  
800  
10.0  
Buck 0 Iout (mA)  
Buck 1 Iout (mA)  
Buck 2 Iout (mA)  
Buck 3 Iout (mA)  
Buck 4 Iout (mA)  
Buck 5 Iout (mA)  
Accuracy  
Buck 0 Iout (mA)  
Buck 1 Iout (mA)  
Buck 2 Iout (mA)  
Accuracy  
8.0  
6.0  
4.0  
2.0  
0.0  
8.0  
6.0  
4.0  
2.0  
0.0  
600  
600  
400  
400  
200  
200  
0
0
0
2000  
4000  
6000  
8000  
10000  
0
1000  
2000  
3000  
4000  
5000  
TOTAL IOUT (mA)  
TOTAL IOUT (mA)  
C038  
C040  
Figure 35. Phase Currents and Current Balancing  
Accuracy, 6 Phases Active (Currents measured by  
LP8754)  
Figure 36. Phase Currents and Current Balancing  
Accuracy, 3 Phases Active (Currents measured by  
LP8754)  
42  
Copyright © 2014, Texas Instruments Incorporated  
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
20.0  
18.0  
16.0  
14.0  
12.0  
10.0  
8.0  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
20.0  
IOUT  
IOUT  
18.0  
Accuracy  
Accuracy  
16.0  
14.0  
12.0  
10.0  
8.0  
6.0  
6.0  
4.0  
4.0  
2.0  
2.0  
0
0
0.0  
10000  
0
0.0  
5000  
2000  
4000  
6000  
8000  
0
1000  
2000  
3000  
4000  
REAL IOUT (mA)  
REAL IOUT (mA)  
C039  
C041  
Figure 37. Load Current Measured by LP8754 vs Real Load  
Current, 6 Phases Active  
Figure 38. Load Current Measured by LP8754 vs Real Load  
Current, 3 Phases Active  
VOUT AC COUPLED  
20 mV/DIV  
VOUT AC COUPLED  
20 mV/DIV  
ILOAD 4 A/DIV  
ILOAD 1 A/DIV  
TIME 20 Ps/DIV  
TIME 20 Ps/DIV  
IOUT 1 A 8 A 1 A  
tr = tf = 400 ns  
IOUT 0.6 A 2 A 0.6 A  
tr = tf = 400 ns  
Figure 39. Transient Load Step Response, PWM Mode  
Figure 40. Transient Load Step Response, PWM Mode  
VIN 500 mV/DIV  
VOUT AC COUPLED  
20 mV/DIV  
VOUT AC COUPLED  
10 mV/DIV  
ILOAD 200 mA/DIV  
TIME 40 Ps/DIV  
VIN 3.3 V 3.8 V 3.3 V  
TIME 20 Ps/DIV  
IOUT 0.5 mA 0.5 A 0.5 mA  
tr = tf = 100 ns  
tr = tf = 10 µs  
IOUT = 2000 mA DC  
Figure 42. Transient Line Response  
Figure 41. Transient Load Step Response, AUTO Mode  
Copyright © 2014, Texas Instruments Incorporated  
43  
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
VOUT AC COUPLED 10 mV/DIV  
VOUT AC COUPLED  
10 mV/DIV  
SW 1 V/DIV  
SW 1 V/DIV  
TIME 400 µs/DIV  
TIME 200 ns/DIV  
IOUT = 100 µA  
IOUT = 200 mA  
Figure 43. Output Voltage Ripple, PFM Mode  
NRST 2 V/DIV  
Figure 44. Output Voltage Ripple, PWM Mode, One Phase  
Active  
NRST 2 V/DIV  
VOUT 200 mV/DIV  
VOUT 200 mV/DIV  
LOAD 1 A/DIV  
SW 5 V/DIV  
SW 5 V/DIV  
TIME 20 Ps/DIV  
TIME 20 Ps/DIV  
No Load  
3-A Load  
Figure 45. Start-up with NRST, Forced PWM  
Figure 46. Start-up with NRST, Forced PWM  
NRST 2 V/DIV  
VOUT 200 mV/DIV  
TIME 400 µs/DIV  
VOUT 200 mV/DIV  
SW 5 V/DIV  
TIME 10 ms/DIV  
No Load  
Figure 47. Shutdown with NRST, Forced PWM  
Figure 48. VOUT Transition from 0.6 V to 1.4 V with  
Different Ramp Settings  
44  
Copyright © 2014, Texas Instruments Incorporated  
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
VOUT AC COUPLED 10 mV/DIV  
VOUT AC COUPLED 10 mV/DIV  
IL_B0 200 mV/DIV  
LOAD 1 A/DIV  
TIME 100 ms/DIV  
VSW 2 V/DIV  
TIME 2 µs/DIV  
IOUT 0 A 5 A 0 A  
Figure 49. Load Ramp  
Figure 50. Transient from PFM to PWM Mode  
INT 500 mV/DIV  
VOUT AC COUPLED 10 mV/DIV  
VOUT 200 mV/DIV  
LOAD 5 A/DIV  
VSW 2 V/DIV  
TIME 2 µs/DIV  
TIME 400 Ps/DIV  
Figure 52. Interrupt Line Going Low with Not Power Good  
Activation  
Figure 51. Transient from PWM to PFM Mode  
SW 2 V/DIV  
VOUT 200 mV/DIV  
INT 500 mV/DIV  
TIME 10 Ps/DIV  
Figure 53. Metallic Short Applied at VOUT  
Copyright © 2014, Texas Instruments Incorporated  
45  
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.5 V and 5 V. This input supply  
should be well regulated and able to withstand maximum input current and maintain stable voltage without  
voltage drop even at load transition condition. The resistance of the input supply rail should be low enough that  
the input current transient does not cause too high drop in the LP8754 supply voltage that can cause false UVLO  
fault triggering. If the input supply is located more than a few inches from the LP8754 additional bulk capacitance  
may be required in addition to the ceramic bypass capacitors.  
10 Layout  
10.1 Layout Guidelines  
The high frequency and large switching currents of the LP8754 make the choice of layout important. Good power  
supply results will only occur when care is given to proper design and layout. Bad layout will affect noise pickup  
and generation and can cause a good design to perform with less-than-expected results. With a range of output  
currents from milliamps to 10 A, good power-supply layout is more challenging than for most general PCB  
design. The following steps should be used as a reference to ensure the device is stable and maintains proper  
voltage and current regulation across its intended operating voltage and current range:  
1. Place CIN as close as possible to the VINBXX pin and the GND pin. Route the VIN trace wide and thick to  
avoid IR drops. The trace between the input capacitor's positive node and LP8754’s VINBXX pin(s) as well  
as the trace between the input capacitor's negative node and power GND pin(s) must be kept as short as  
possible. The input capacitance provides a low-impedance voltage source for the switching converter. The  
parasitic inductance on these traces must be kept as tiny as possible for proper device operation.  
2. The output filter for each buck, consisting of COUT and L, converts the switching signal at SW to the noiseless  
output voltage. For optimal EMI behavior, it should be placed as close as possible to the device, keeping the  
switch node small. Route the traces between the LP8754's output capacitors and the load's input capacitors  
direct and wide to avoid losses due to the IR drop.  
3. Input for analog blocks (VDDA5V and GNDA) should be isolated from noisy signals. Connect VDDA5V  
directly to a quiet system voltage node and GNDA to a quiet ground point where no IR drop occurs. For  
additional noise immunity, adding a high-frequency decoupling capacitor of 100 nF to 1 µF is recommended.  
Place the decoupling capacitor as close to the VDDA5V pin as possible. VDDA5V trace is low current, so the  
trace width does not need to be optimized.  
4. If the processor load supports voltage remote sensing, connect the LP8754 feedback pins FBBXX to the  
respective sense pins on the processor. The sense lines are susceptible to noise. They must be kept away  
from noisy signals such as GNDBXX, VIN, and SW, as well as high bandwidth signals such as the I2C. Avoid  
both capacitive as well as inductive coupling by keeping the sense lines short, direct, and close to each  
other. Run the lines in a quiet layer. Isolate them from noisy signals by a voltage or ground plane if possible.  
Running the signal as a differential pair is recommended.  
5. GNDBXX, VIN, and SW should be routed on thick layers. They must not surround inner signal layers which  
are not able to withstand interference from noisy GNDBXX, VIN, and SW. This can create noise coupling to  
inner signal layers.  
Due to the small package of this converter and the overall small solution size, the thermal performance of the  
PCB layout is important. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and  
convection surfaces, and the presence of other heat-generating components affect the power dissipation limits of  
a given component. Proper PCB layout, focusing on thermal performance, results in lower die temperatures.  
Wide power traces come with the ability to sink dissipated heat. This can be improved further on multi-layer PCB  
designs with vias to different planes. This results in reduced junction-to-ambient (RθJA) and junction-to-board  
(RθJB) thermal resistances, thereby reducing the device junction temperature, TJ. It's strongly recommended to  
perform a careful system-level 2D or full 3D dynamic thermal analysis at the beginning of the product design  
process, using a thermal modeling analysis software.  
46  
Copyright © 2014, Texas Instruments Incorporated  
LP8754  
www.ti.com.cn  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
10.2 Layout Example  
Via to GND plane  
Via to VIN plane  
VOUT  
COUT1  
L1  
L0  
L2  
COUT0  
CIN1  
CIN0  
VIN  
Input capacitors  
GND  
GND  
VIN  
GND  
B1/  
B2  
VIN  
B0/  
B1  
Pin A1  
VIN  
B2  
SW  
B2  
SW  
B1  
SW  
B0  
GND  
B0  
VIN  
CIN4  
GND  
CVIOSYS  
GND  
B1/  
B2  
VIN  
B0/  
B1  
VIN  
B2  
SW  
B2  
SW  
B1  
SW  
B0  
GND  
B0  
CVLDO  
GND  
B1/  
B2  
VIN  
B0/  
B1  
SDA  
SYS  
SCL  
SYS  
ADD  
R
VLD  
O
NSLP  
FB  
B3-/  
B4  
FB  
B3+/  
B3  
FB  
B0-/  
B1  
FB  
B0+/  
B0  
FB  
B5  
FB  
B2  
GND  
A
GND  
B4/  
B5  
VIN  
B3/  
B4  
SDA  
SR  
SCL  
SR  
NRS  
T
VIO  
SYS  
INT  
VIN  
GND  
B4/  
B5  
VIN  
B3/  
B4  
VDD  
A5V  
SW  
B5  
SW  
B4  
SW  
B3  
GND  
B3  
CVDD  
GND  
B4/  
B5  
VIN  
B3/  
B4  
VIN  
B5  
SW  
B5  
SW  
B4  
SW  
B3  
GND  
B3  
GND  
GND  
VIN  
VIN  
CIN2  
CIN3  
GND  
Input capacitors  
COUT2  
L3  
L4  
L5  
COUT3  
Figure 54. LP8754 Board Layout  
版权 © 2014, Texas Instruments Incorporated  
47  
LP8754  
ZHCSDB8A FEBRUARY 2014REVISED AUGUST 2014  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 文档支持  
11.2.1 相关文档ꢀ  
相关文档如下:  
德州仪器 (TI) 应用手册DSBGA 晶圆级芯片规模封装》(文献编号:SNVA009)。  
11.3 商标  
All trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。  
48  
版权 © 2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP875484YFQR  
ACTIVE  
DSBGA  
YFQ  
49  
1000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 85  
754A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Oct-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP875484YFQR  
DSBGA  
YFQ  
49  
1000  
178.0  
12.4  
3.06  
3.2  
0.9  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Oct-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
DSBGA YFQ 49  
SPQ  
Length (mm) Width (mm) Height (mm)  
208.0 191.0 35.0  
LP875484YFQR  
1000  
Pack Materials-Page 2  
MECHANICAL DATA  
YFQ0049x
D
0.600±0.075  
E
TMD49XXX (Rev A)  
D: Max = 3.022 mm, Min =2.962 mm  
E: Max = 2.882 mm, Min =2.822 mm  
4215087/A  
12/12  
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.  
B. This drawing is subject to change without notice.  
NOTES:  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LP875484YFQR

多相位 6 核降压转换器 | YFQ | 49 | -40 to 85
TI

LP8755A

Parallel I/O Port, 16 I/O, MOS, PDIP40, PLASTIC, DIP-40
INTEL

LP8755A-2

Parallel I/O Port, 16 I/O, CMOS, PDIP40, DIP-40
INTEL

LP8755KME/NOPB

Multi-phase 6-Core Step-Down Converter 49-DSBGA -40 to 85
TI

LP8755KMX/NOPB

Multi-phase 6-Core Step-Down Converter 49-DSBGA -40 to 85
TI

LP87561-Q1

具有集成开关的汽车类多相 16A 降压转换器
TI

LP87561-Q1_V02

LP8756x-Q1 16-A Buck Converter With Integrated Switches
TI

LP875610BRNFRQ1

具有集成开关的汽车类多相 16A 降压转换器 | RNF | 26 | -40 to 125
TI

LP875610RNFRQ1

具有集成开关的汽车类多相 16A 降压转换器 | RNF | 26 | -40 to 125
TI

LP875610RNFTQ1

具有集成开关的汽车类多相 16A 降压转换器 | RNF | 26 | -40 to 125
TI

LP87561IRNFRQ1

具有集成开关的汽车类多相 16A 降压转换器 | RNF | 26 | -40 to 125
TI

LP87561IRNFTQ1

具有集成开关的汽车类多相 16A 降压转换器 | RNF | 26 | -40 to 125
TI