LP8863-Q1 [TI]

具有 6 个 150mA 通道的 LP8863-Q1 汽车显示屏 LED 背光驱动器;
LP8863-Q1
型号: LP8863-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 6 个 150mA 通道的 LP8863-Q1 汽车显示屏 LED 背光驱动器

驱动 驱动器
文件: 总92页 (文件大小:3815K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
LP8863-Q1 具有 6 150mA 通道的汽车显示 LED 背光驱动器  
1 特性  
2 应用  
1
符合汽车类应用的 要求  
为以下应用提供背光:  
具有符合 AEC-Q100 标准的下列特性:  
汽车信息娱乐系统  
汽车仪表盘  
器件温度 1 级:-40℃ 至 +125℃ 的环境运行温  
度范围  
智能车镜  
输入电压工作范围:3V 48V  
抬头显示屏 (HUD)  
中央信息显示屏 (CID)  
音视频导航 (AVN)  
六路高精度电流阱  
电流匹配度为 1%(典型值)  
使用 152Hz LED 输出 PWM 频率时,调光比为  
32000:1  
3 说明  
使用 SPII2C PWM 输入时,最高 16 位  
LED 调光分辨率  
LP8863-Q1 是带有升压控制器的汽车高效 LED 驱动  
器。六路高精度电流阱支持相移,它可根据使用的通道  
数自动调整。可通过 SPI I2C 接口单独和全局控制  
电流阱亮度;也可以通过 PWM 输入全局控制亮度。  
自动检测使用过的 LED 灯串并调整 LED 通道  
相移  
每个通道的独立电流控制  
升压控制器具有基于 LED 电流阱余量电压的自适应输  
出电压控制。该特性可在所有条件下将电压调节到能够  
满足需要的最低水平,从而更大限度降低功耗。凭借宽  
范围可调频率,LP8863-Q1 能够避免 AM 无线电频带  
的干扰。  
混合 PWM 和电流调光功能  
最高 47V 输出电压升压或 SEPIC 直流/直流控制器  
开关频率:300kHz 2.2MHz  
升压扩频功能可降低 EMI  
升压同步输入以从外部时钟设置升压开关频率  
集成电荷泵支持低 VIN 条件,如冷启动  
禁用升压时,输出电压自动放电  
LP8863-Q1 支持内置混合 PWM 和电流调光,从而降  
低了 EMI、延长了 LED 使用寿命并提高了总光学效  
率。  
详尽的故障诊断  
器件信息(1)  
简化原理图  
D1  
器件编号  
LP8863-Q1  
封装  
封装尺寸(标称值)  
RISENSE  
Q2  
L1  
VIN  
VOUT  
HTSSOP (38)  
9.70mm x 4.40mm  
CIN  
COUT  
RSD  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
CPUMP  
RFB1  
RFB2  
CPUMP  
CPUMP  
Q1  
GD  
GD  
ISNS  
系统效率  
C1N  
C1P  
PGND  
C2x  
RSENSE  
PGND  
95  
ISNSGND  
VDD  
CVDD  
FB  
VDD  
DISCHARGE  
GND  
VLDO  
90  
85  
CLDO  
LED0  
LED1  
LED2  
LED3  
LP8863-Q1  
VDDIO  
IFSEL  
EN  
INT  
SDO_PWM  
SDI_SDA  
SCLK_SCL  
LED4  
LED5  
ISET  
80  
75  
VOUT = 29 V  
VOUT = 36 V  
VOUT = 42 V  
VOUT = 46 V  
SS_ADDRSEL  
BST_SYNC  
RISET  
PWM_FSET  
BST_FSET  
RPWM_FSET  
RBST_FSET  
Copyright © 2017, Texas Instruments Incorporated  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Brightness (%)  
D007  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVSAB6  
 
 
 
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
目录  
7.16 Typical Characteristics.......................................... 13  
Detailed Description ............................................ 14  
8.1 Overview ................................................................. 14  
8.2 Functional Block Diagram ....................................... 15  
8.3 Feature Description................................................. 16  
8.4 Device Functional Modes........................................ 38  
8.5 Programming .......................................................... 42  
8.6 Register Maps......................................................... 46  
Application and Implementation ........................ 68  
9.1 Application Information............................................ 68  
9.2 Typical Applications ................................................ 68  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 7  
7.4 Thermal Information.................................................. 8  
7.5 Electrical Characteristics........................................... 8  
7.6 Protection Electrical Characteristics ......................... 8  
8
9
10 Power Supply Recommendations ..................... 81  
11 Layout................................................................... 82  
11.1 Layout Guidelines ................................................. 82  
11.2 Layout Example .................................................... 83  
12 器件和文档支持 ..................................................... 84  
12.1 器件支持................................................................ 84  
12.2 接收文档更新通知 ................................................. 84  
12.3 社区资源................................................................ 84  
12.4 ....................................................................... 84  
12.5 静电放电警告......................................................... 84  
12.6 术语表 ................................................................... 84  
13 机械、封装和可订购信息....................................... 84  
7.7 LED Current Sink and LED PWM Electrical  
Characteristics ........................................................... 9  
7.8 Power-Line FET and RISENSE Electrical  
Characteristics ........................................................... 9  
7.9 Input PWM Electrical Characteristics...................... 10  
7.10 Boost Converter Electrical Characteristics............ 10  
7.11 Oscillator ............................................................... 11  
7.12 Charge Pump........................................................ 11  
7.13 Logic Interface Characteristics.............................. 11  
7.14 Timing Requirements for SPI Interface................. 12  
7.15 Timing Requirements for I2C Interface ................ 12  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (June 2017) to Revision B  
Page  
已添加 TI 参考设计顶部导航链接............................................................................................................................................ 1  
Added note "When internal charge pump is disabled and CPUMP pin is used as an input, max rating is 5.5 V same  
as VDD." ................................................................................................................................................................................ 7  
Added note "When internal charge pump is disabled and CPUMP pin is used as an input, max rating is 5.5V same  
as VDD." ................................................................................................................................................................................ 7  
Deleted "ƒOSC" row ................................................................................................................................................................. 8  
Deleted "led_driver_headroom = 01b" .................................................................................................................................. 9  
Changed to "325" from "200" ................................................................................................................................................. 9  
Changed to "450" from "400" ................................................................................................................................................. 9  
Changed to "18.6" from "18.8" ............................................................................................................................................. 11  
Changed to "21.4" from "21.2" ............................................................................................................................................. 11  
Added VSDOOL and VSDOOH two rows................................................................................................................................ 11  
已更改 Data hold time to rising edge of SCLK in SPI Timing Diagram ............................................................................... 12  
已更改 to "VDD" from "EN" .................................................................................................................................................. 14  
已更改 to "90%" from "88%" ................................................................................................................................................ 18  
已更改 to "1.21 V" from "1.2 V" ........................................................................................................................................... 19  
已更改 to "1.21 V" from "1.2 V" ........................................................................................................................................... 20  
已更改 to "1.76 V" from "1.423 V" ....................................................................................................................................... 20  
已更改 to "1.21 V" from "1.2 V" ........................................................................................................................................... 21  
已更改 to "ISEL_MAX" from "ISEL_MAX" ................................................................................................................................. 22  
已更改 to "1.21 V and 2560" from "1.2 V and 2580" in 公式 11........................................................................................... 24  
2
版权 © 2017–2018, Texas Instruments Incorporated  
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
修订历史记录 (接下页)  
已更改 to "DITHER_SELECT[2:0]" from "DITHER_SELECT[1:0]" ...................................................................................... 29  
已更改 to "110 ms" from "1600 milliseconds" ...................................................................................................................... 34  
已更改 to "overcurrent" from "undervoltage" ....................................................................................................................... 34  
已更改 to "Boost does not start up. Fault is cleared by VDD cycling with correct resistor connection at FSET pin."  
from "Device starts up using fail-safe values." .................................................................................................................... 36  
已更改 to "400-ms" from "300-ms" ...................................................................................................................................... 39  
已更改 to "VDD" from "EN" .................................................................................................................................................. 39  
已添加 " For proper operation of discharge function, pull the EN pin before VDD pin. VIN and VDDIO can be set low  
any time after EN low." ........................................................................................................................................................ 41  
Changed to "8B0h' from "B0h" ............................................................................................................................................ 49  
Changed to "R/W-2h' from 'R/W-0h" ................................................................................................................................... 49  
Changed to "2h" from "0h" ................................................................................................................................................... 49  
Changed to "100h" from "0h" ............................................................................................................................................... 57  
Changed to "100h" from "0h" ............................................................................................................................................... 57  
Changed to "100h" from "0h" ............................................................................................................................................... 57  
Changed to "100h" from "0h" ............................................................................................................................................... 58  
Changed to "000h - 0FFh = 0 °C to 255 °C, 100h - 1FFh = –256 °C to –1 °C" from "0h = –1 to –255 °C" ........................ 58  
Changed to "000h - 0FFh = 0 °C to 255 °C, 100h - 1FFh = –256 °C to –1 °C" from "0h = –1 to –255 °C" ....................... 58  
Changed to "000h - 0FFh = 0 °C to 255 °C, 100h - 1FFh = –256 °C to –1 °C" from "0h = –1 to –255 °C" ....................... 58  
Changed to "1C0h" from "0h" .............................................................................................................................................. 63  
Changed to "1C0h" from "0h" .............................................................................................................................................. 63  
Changed to "1C0h" from "0h" .............................................................................................................................................. 63  
Changed to "1C0h" from "0h" .............................................................................................................................................. 64  
Changed to "2882h" from "882h" ......................................................................................................................................... 64  
Changed to "2h" from "0h" ................................................................................................................................................... 64  
Changed to "2h" from "0h" ................................................................................................................................................... 64  
Changed Description of FSM_LIVE_STATUS .................................................................................................................... 65  
已更改 to "VIN(min) × D / ( ƒSW × L )" from "VIN(min)× D / ƒSW × L" ........................................................................................... 70  
已更改 to "Current set resistor for 100 mA maximum" from "Maximum current set resistor" ............................................. 73  
已更改 to "43.5 V" from "40 V" ............................................................................................................................................ 75  
已更改 to "10-µF" from "10-µH" ........................................................................................................................................... 78  
已更改 to "Current set resistor for 150 mA max" from "Maximum current set resistor" ...................................................... 80  
Changes from Original (March 2017) to Revision A  
Page  
首次公开发布的完整产品说明书 ............................................................................................................................................. 1  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
5 Device Comparison Table  
LP8863-Q1  
LP8860-Q1  
LP8862-Q1  
LP8861-Q1  
TPS61193-Q1  
TPS61194-Q1  
TPS61196-Q1  
VIN range  
3 V to 48 V  
3 V to 48 V  
4.5 V to 45 V  
4.5 V to 45 V  
4.5 V to 45 V  
4.5 V to 45 V  
8 V to 30 V  
Number of LED  
channels  
6
4
2
4
3
4
6
LED current /  
channel  
150 mA  
150 mA  
160 mA  
100 mA  
100 mA  
100 mA  
200 mA  
I2C/SPI support  
SEPIC support  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
6 Pin Configuration and Functions  
DCP Package  
38-Pin HTSSOP  
Top View  
VDD  
SD  
1
2
3
4
5
6
7
8
9
38 GND  
37  
36 NC  
VLDO  
VSENSE_N  
35  
34  
NC  
VSENSE_P  
C1N  
PWM_FSET  
33 BST_FSET  
C1P  
CPUMP  
CPUMP  
32  
31  
30  
29  
28  
SS_ADDRSEL  
SCLK_SCL  
SDI_SDA  
GD  
SDO_PWM  
BST_SYNC  
GD 10  
PGND 11  
PGND 12  
27 IFSEL  
INT  
ISNSGND 13  
26  
25  
24  
23  
14  
15  
16  
17  
ISNS  
FB  
VDDIO  
EN  
DISCHARGE  
LED5  
ISET  
22 LED0  
21 LED1  
20 LED2  
Exposed Pad  
(GND_LED)  
LED4 18  
LED3 19  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
NAME  
Power input for LDO, charge pump, and analog blocks - a 4.7–µF decoupling capacitor is  
recommended.  
1
VDD  
Power  
2
3
4
5
6
SD  
VSENSE_N  
VSENSE_P  
C1N  
Analog  
Analog  
Analog  
Analog  
Analog  
Power line FET control. If unused, leave this pin floating.  
Pin for input current sense. If input current sense is not used tie to VSENSE_P.  
Pin for OVP/UVLO protection and input current sense.  
Negative pin for charge pump flying capacitor. If feature not used, leave this pin floating.  
Positive pin for charge pump flying capacitor. If feature not used, leave this pin floating.  
C1P  
Charge pump output pin. If charge pump is not used connect to VDD. TI recommends a  
10–µF decoupling capacitor.  
7
CPUMP  
Power  
8
CPUMP  
GD  
Power  
Analog  
Analog  
Ground  
Ground  
Ground  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Input  
Charge pump output pin. If charge pump is not used connect to VDD.  
Gate driver output for boost FET  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
GD  
Gate driver output for boost FET  
PGND  
PGND  
ISNSGND  
ISNS  
Power ground  
Power ground  
Current sense resistor GND of boost controller  
Boost current sense pin  
FB  
Boost feedback input  
DISCHARGE  
LED5  
LED4  
LED3  
LED2  
LED1  
LED0  
ISET  
Boost output voltage discharge pin. Leave floating if unused.  
LED current sink output. If unused tie to ground.  
LED current sink output. If unused tie to ground.  
LED current sink output. If unused tie to ground.  
LED current sink output. If unused tie to ground.  
LED current sink output. If unused tie to ground.  
LED current sink output. If unused tie to ground.  
LED current setting input  
EN  
Enable input  
VDDIO  
Power  
Supply input for digital IO pins - a 4.7–µF decoupling capacitor is recommended.  
LP8863-Q1 device fault interrupt output, open drain. Requires an external pullup resistor to  
VDDIO - a 10-kpullup resistor is recommended.  
26  
27  
28  
INT  
Output  
Input  
IFSEL  
Serial control interface selection: low = SPI, high = I2C  
Input for synchronizing boost. When synchronization is not used, connect this pin to ground  
to disable spread spectrum or to VDDIO to enable spread spectrum.  
BST_SYNC  
Input  
IFSEL=GND, slave data output for SPI. IFSEL=VDDIO, PWM input for brightness control. Tie  
to GND if unused.  
29  
SDO_PWM  
Input/Output  
30  
31  
32  
33  
34  
35  
36  
SDI_SDA  
SCLK_SCL  
SS_ADDRSEL  
BST_FSET  
PWM_FSET  
NC  
Input  
Input  
Input  
Analog  
Analog  
N/A  
IFSEL=GND, slave data input for SPI; IFSEL=VDDIO, serial data for I2C  
IFSEL=GND, serial clock for SPI; IFSEL=VDDIO, serial clock for I2C  
IFSEL=GND, slave select for SPI; IFSEL=VDDIO, I2C address selection  
Resistor for setting boost FSW frequency. Do not leave floating.  
Resistor for setting LED PWM frequency. Do not leave floating.  
No connect — leave floating.  
NC  
N/A  
No connect — leave floating.  
Internal 1.8-V LDO output. Connect bypass capacitor to this pin - a 10–µF decoupling  
capacitor is recommended.  
37  
VLDO  
Power  
38  
GND  
Ground  
Ground  
Ground for LDO — charge pump and analog blocks  
LED ground connection  
DAP  
GND_LED  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
-0.3  
MAX  
50  
UNIT  
V_SENSE_P, VSENSE_N, SD, LED0 to LED5, FB, DISCHARGE  
V
Voltage on pins  
VDD, EN, ISNS  
5.5  
VDDIO, SCLK_SCL, SDI_SDA, SDO_PWM, SS_ADDRSEL, INT,  
IFSEL, BST_FSET, PWM_FSET, ISET  
-0.3  
3.6  
Voltage on pins  
V
(2)  
C1P, C1N, CPUMP , GD  
-0.3  
-0.3  
12  
2
VLDO  
Thermal  
Continuous power dissipation  
Internally  
limited  
Internally  
limited  
Ambient temperature  
-40  
-40  
125  
150  
260  
150  
°C  
°C  
°C  
°C  
Junction temperature  
Maximum lead temperature (soldering)  
Storage temperature, Tstg  
-65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) When internal charge pump is disabled and CPUMP pin is used as an input, maximum rating is 5.5 V same as VDD.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per AEC Q100-002,(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
discharge  
V(ESD)  
All pins  
V
Corner pins  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted). All voltages are with respect to the potential at the GND  
pins.  
MIN  
3
NOM  
MAX  
48  
UNIT  
V_SENSE_P, VSENSE_N, SD  
Voltage on pins  
EN, ISNS  
12  
V
0
48  
0
5.5  
5.5  
VDD  
2.7  
3.3/5  
Voltage on pins  
VDDIO, SCLK_SCL, SDI_SDA, SDO_PWM, SS_ADDRSEL,  
INT, IFSEL, BST_FSET, PWM_FSET, ISET  
1.65  
1.8/3.3  
3.6  
VLDO  
0
0
1.8  
2
11  
(1)  
C1P, C1N, CPUMP , GD  
6.6/10  
Thermal  
Ambient temperature  
-40  
125  
°C  
(1) When internal charge pump is disabled and CPUMP pin is used as an input, maximum rating is 5.5 V same as VDD.  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
7.4 Thermal Information  
LP8863  
THERMAL METRIC(1)  
DCP (HTSSOP)  
UNIT  
38 PINS  
32.4  
19.5  
8.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
8.9  
RθJC(bot)  
2.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
Limits apply over the full operating ambient temperature range -40°C TA +125°C, Unless otherwise specified, VDD = 3.3V,  
VIN = 12V, VDDIO = 1.8V  
PARAMETER  
TEST CONDITIONS  
VDD < VPOR, EN = L  
MIN  
TYP  
0.3  
75  
MAX  
2
UNIT  
μA  
Shutdown mode current, VDD pin  
Standby mode current, VDD pin  
VDD > VPOR, EN = L  
300  
μA  
LP8863-Q1 enabled, boost enabled  
IQ  
(ILED = 150mA), CP enabled, VDD  
3.3V, fSW = 300kHz, Boost FET -  
IPD25N06S4L-30  
=
Active mode current , VDD pin  
Power-on reset threshold  
15  
40(1)  
2.65  
mA  
V
VPOR  
VDD pin voltage.  
(1) Ensured by design.  
7.6 Protection Electrical Characteristics  
Limits apply over the full operating ambient temperature range –40°C TA +125°C, Unless otherwise specified, VDD = 3.3 V,  
VIN = 12 V, VDDIO = 1.8 V.  
PARAMETER  
TEST CONDITIONS  
VDD falling  
MIN  
TYP  
2.7  
MAX  
UNIT  
V
VDDUVLO  
VDD UVLO threshold  
2.6  
2.8  
VDDUVLO_ VDD UVLO hysteresis  
0.1  
V
H
VINUVLO  
VINUVLO_H VIN UVLO hysteresis  
VINOVP VIN OVP threshold  
VINOVP _H VIN OVP hysteresis  
VIN UVLO threshold  
VIN falling  
2.7  
40.8  
155  
2.8  
0.35  
43  
2.9  
45.2  
175  
V
V
VIN rising  
V
2.5  
V
TTSD  
Thermal shutdown threshold  
Temperature rising  
165  
°C  
°C  
Temperature falling from TSD  
threshold  
TTSD_H  
Thermal shutdown hysteresis  
20  
TTWR_H  
TTWR_L  
VDDIO  
Thermal high warning threshold  
Thermal low warning threshold  
VDDIO supply voltage  
temperature_limit_high = 0x07D  
temperature_limit_low = 0x069  
115  
95  
125  
105  
135  
115  
3.6  
°C  
°C  
V
1.65  
VDDIOIQ  
VLDO  
VDDIO supply current  
1
μA  
V
LDO output voltage  
1.8  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
7.7 LED Current Sink and LED PWM Electrical Characteristics  
Limits apply over the full operating ambient temperature range -40°C TA +125°C, Unless otherwise specified, VDD = 3.3 V,  
VIN = 12 V, VDDIO = 1.8 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.1  
MAX UNIT  
Outputs LED0 to LED5 = VOUT  
45 V, EN = Low  
=
ILEAKAGE  
Leakage current  
2.5  
µA  
IMAX  
Max LED sink current  
LED0 to LED5  
150  
mA  
IACC  
LED sink current accuracy(1)  
LED sink current matching(1)  
IOUT = 150 mA, PWM duty =100%  
IOUT = 150 mA, PWM duty =100%  
IOUT = 150 mA  
4%  
4%  
3.5%  
0.79  
IMATCH  
VSAT  
1%  
0.4  
(2)  
Saturation voltage  
V
fPWM_OUT_MIN  
Minimum LED PWM output  
frequency  
0.152  
kHz  
fPWM_OUT_MAX  
DIM  
Maximum LED PWM output  
frequency  
19.5  
kHz  
Dimming ratio  
fPWM_OUT = 152 Hz  
32000:1  
8000:1  
fPWM_OUT = 4.8 kHz with hybrid  
dimming  
fPWM_OUT = 4.8 kHz  
1000:1  
0.55  
0.5  
VHEADROOM  
LED sink headroom  
V
V
VHEADROOM_HYST  
LED sink headroom hysteresis  
shorted_led_thresh = 000  
shorted_led_thresh = 001  
shorted_led_thresh = 010  
shorted_led_thresh = 011  
shorted_led_thresh = 100  
shorted_led_thresh = 101  
shorted_led_thresh = 110  
shorted_led_thresh = 111  
2.6  
3.0  
3.5  
3.8  
VLEDSHORT  
LED short detection threshold  
LED output minimum pulse  
V
4.1  
4.6  
5.2  
5.9  
tPWM_OUT  
200  
ns  
(1) Output Current Accuracy is the difference between the actual value of the output current and programmed value of this current.  
Matching is the maximum difference from the average. For the constant current sinks on the part (LED0 to LED5), the following are  
determined: the maximum output current (MAX), the minimum output current (MIN), and the average output current of all outputs (AVG).  
Matching number is calculated: (MAX-MIN)/AVG. The typical specification provided is the most likely norm of the matching figure for all  
parts. LED current sinks were characterized with 1 V headroom voltage. Note that some manufacturers have different definitions in use.  
(2) Saturation voltage is defined as the voltage when the LED current has dropped 10% from the value measured at 1 V.  
7.8 Power-Line FET and RISENSE Electrical Characteristics  
Limits apply over the full operating ambient temperature range -40°C TA +125°C, Unless otherwise specified, VDD = 3.3 V,  
VIN = 12 V, VDDIO = 1.8 V.  
PARAMETER  
TEST CONDITIONS  
RISENSE = 20 mΩ  
MIN  
TYP  
11  
1
MAX UNIT  
IOCP  
Input over current threshold  
VSENSE_P pin leakage current  
VSENSE_N pin leakage current  
SD pin leakage current  
Power line FET soft start  
SD Pull-down current  
9.35  
12.65  
A
ILEAK_VSENSE_P  
ILEAK_VSENSE_N  
ILEAK_SD  
VSENSE_P = 48 V  
VSENSE_N = 48 V  
VSD = 48 V  
µA  
µA  
µA  
ms  
µA  
1
1
tSOFT_START  
ISD  
When RISENSE is used  
RSD = 20 kΩ  
50  
325  
450  
Copyright © 2017–2018, Texas Instruments Incorporated  
9
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
7.9 Input PWM Electrical Characteristics  
Limits apply over the full operating ambient temperature range -40°C TA +125°C, Unless otherwise specified, VDD = 3.3V,  
VIN = 12V, VDDIO = 1.8V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
fPWM_IN  
PWM input frequency  
PWM input minimum on time  
PWM input resolution  
100  
20 000  
Hz  
ns  
bit  
tPWM_MIN_ON  
INPWMRES  
200  
16  
fPWM_IN = 100 Hz  
fPWM_IN = 20 kHz  
10  
7.10 Boost Converter Electrical Characteristics  
Limits apply over the full operating ambient temperature range -40°C TA +125°C, Unless otherwise specified, VDD = 3.3V,  
VIN = 12V, VDDIO = 1.8V  
PARAMETER  
Input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
3
48  
V
Boost mode (RFBTOP = 910 kΩ, RFBBOT  
100 kΩ)  
=
20  
6
47  
24  
VOUT  
Output voltage  
V
SEPIC mode (RFBTOP = 560 kΩ, RFBBOT  
170 kΩ)  
=
ƒSW  
Switching frequency  
BST_FSET = 3.93 kΩ  
303  
400  
kHz  
BST_FSET = 4.75 kΩ  
BST_FSET = 5.76 kΩ  
606  
BST_FSET = 7.87 kΩ  
800  
BST_FSET = 11 kΩ  
1000  
1250  
1667  
2200  
BST_FSET = 17.8 kΩ  
BST_FSET = 42.2 kΩ  
BST_FSET = 140 kΩ  
Boost mode, IOUT = 6 x 150 mA  
Boost mode, IOUT = 6 x 85 mA  
SEPIC mode  
5.5(1)  
10(1)  
5(1)  
11  
VOUT/VIN  
Max conversion ratio  
0.2  
9
IMAX  
Boost switching current limit  
External FET gate drive voltage  
RSENSE = 20 mΩ  
10  
5
A
V
VDD = 5 V +/-10%, CP Disabled  
VDD = 3.3 V +/-10%, CP Enabled  
VDD = 5 V +/-10%, CP Enabled  
4.5  
6
5.5  
VGD  
6.6  
10  
7.2  
9
11  
Source, VGD/(GDRDSON + Total resistance  
to gate input of SW FET) must not be  
higher than 2.5A  
RDSON of internal high side FET to  
drive gate of external FET  
GDRDSONH  
GDRDSONL  
1.4  
Ω
Ω
RDSON of internal low side FET to  
drive gate of external FET  
Sink, VGD/(GDRDSON + Total resistance to  
gate input of SW FET) must not be higher  
than 2.5A  
0.75  
Delay from beginning of boost soft start to  
when LED drivers can begin  
tSTART-UP  
Start-up time  
50  
ms  
TON  
Minimum switch on time  
Minimum switch off time  
120  
70  
ns  
ns  
TOFF  
BOOST_OVP low threshold at FB  
pin  
VBST_OVPL  
VBST_OVPH  
1.423  
1.76  
V
V
BOOST_OVP high threshold at FB  
pin  
(1) Ensured by design  
10  
Copyright © 2017–2018, Texas Instruments Incorporated  
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
7.11 Oscillator  
Limits apply over the full operating ambient temperature range -40°C TA +125°C, Unless otherwise specified, VDD = 3.3V,  
VIN = 12V, VDDIO = 1.8V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fOSC  
Oscillator frequency  
18.6  
20  
21.4  
MHz  
7.12 Charge Pump  
Limits apply over the full operating ambient temperature range -40°C TA +125°C, Unless otherwise specified, VDD = 3.3V,  
VIN = 12V, VDDIO = 1.8V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fCP  
Charge pump switching frequency  
387  
417  
447  
kHz  
7.13 Logic Interface Characteristics  
Limits apply over the full operating ambient temperature range -40°C TA +125°C, Unless otherwise specified, VDD = 3.3V,  
VIN = 12V, VDDIO = 1.8V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.4  
UNIT  
LOGIC INPUT EN  
VENIL  
VENIH  
IENI  
Input low level  
Input high level  
Input current  
V
V
1.2  
5
5
30  
µA  
EN pin internal pull-down  
resistance  
RPDEN  
MΩ  
LOGIC INPUT SCLK_SCL, SDI_SDA, SS_ADDRSEL, PWM, IF_SEL, BST_SYNC  
0.2 x  
VDDIO  
VIL  
VIH  
Input low level  
Input high level  
V
V
0.8 x  
VDDIO  
II  
Input current  
5
µA  
V
VSDOOL  
Output low level  
IOUT = 3 mA  
0.3  
0.5  
0.7 x  
VDDIO VDDIO  
0.9 x  
VSDOOH  
Output high level  
IOUT = –2 mA  
V
LOGIC OUTPUT SDA  
VSDAOL  
Output low level  
I = 3 mA  
0.3  
0.5  
1
V
ISDALEAKAGE Output leakage current  
LOGIC OUTPUT INT  
V = 5.5 V  
μA  
VINTOL  
Output low level  
IOUT = 3 mA  
0.3  
0.5  
1
V
IINTLEAK  
Output leakage current  
μA  
Copyright © 2017–2018, Texas Instruments Incorporated  
11  
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
7.14 Timing Requirements for SPI Interface  
MIN  
100  
50  
NOM  
MAX  
UNIT  
ns  
1
Cycle time  
2
Enable lead time  
Enable lag time  
Clock low time  
Clock high time  
Data setup time  
Data hold time  
Disable time  
ns  
3
50  
ns  
4
45  
ns  
5
45  
ns  
6
20  
ns  
7
20  
ns  
8
30  
35  
ns  
9
Data valid  
ns  
10  
Cb  
SS inactive time  
Bus capacitance  
50  
5
ns  
40  
pF  
7.15 Timing Requirements for I2C Interface  
MIN  
NOM  
MAX  
UNIT  
kHz  
µs  
ƒSCLK  
Clock frequency  
400  
1
2
3
4
5
6
7
8
9
10  
Hold time (repeated) START Condition  
Clock low time  
0.6  
1.3  
µs  
Clock high time  
600  
600  
50  
ns  
Set-up time for a repeated START condition  
Data hold time  
ns  
ns  
Data setup time  
100  
ns  
Rise Time of SDA and SCL  
Fall Time of SDA and SCL  
Set-up time for STOP condition  
Bus free time between a STOP and a START Condition  
300  
300  
ns  
ns  
600  
1.3  
ns  
µs  
SS  
t10t  
t2t  
t1t  
7
4
5
3
SCLK  
SDI  
6
MSB IN  
BIT 30  
BIT 16  
R/W  
BIT 15  
BIT 1  
BIT 1  
LSB IN  
9
8
High  
Impedance  
9
SDO  
MSBOUT  
LSB OUT  
Address  
Data  
1. SPI Timing Diagram  
SDA  
SCL  
10  
8
7
6
1
7
9
2
8
4
1
5
3
2. I2C Timing Diagram  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
7.16 Typical Characteristics  
Unless otherwise specified: CIN = COUT = 2 × 10-μF ceramic and 2 × 33-μF electrolytic, VDD = 3.3 V, charge pump enabled,  
TA = 25°C  
100  
95  
90  
85  
80  
75  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VIN = 9 V  
VIN = 9 V  
VIN = 12 V  
VIN = 16 V  
VIN = 24 V  
VIN = 12 V  
VIN = 16 V  
VIN = 24 V  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Brightness (%)  
8 LEDs/string  
6 strings  
Brightness (%)  
8 LEDs/string  
6 strings  
D001  
D002  
ƒSW = 303 kHz  
L1 = 22 µH  
150 mA/string  
ƒSW = 2.2 MHz  
L1 = 10 µH  
150 mA/string  
3. Boost Efficiency  
4. Boost Efficiency  
90  
85  
80  
75  
70  
65  
60  
55  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 6 V  
VIN = 12 V  
VIN = 17 V  
VIN = 6 V  
VIN = 12 V  
VIN = 17 V  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Brightness (%)  
Brightness (%)  
D003  
D004  
ƒSW = 303 kHz  
2 LEDs/string  
150 mA/string  
6 strings  
ƒSW = 2.2 MHz  
2 LEDs/string  
150 mA/string  
6 strings  
L1 = 10 µH, L2 = 15 µH  
L1 = L2 = 4.7 µH  
5. SEPIC Efficiency  
6. SEPIC Efficiency  
150  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
15 mA  
25 mA  
50 mA  
80 mA  
120 mA  
120  
150 mA  
90  
60  
30  
0
0
8192 16384 24576 32768 40960 49152 57344 65536  
0
8192 16384 24576 32768 40960 49152 57344 65536  
Brightness Code  
Brightness Code  
D005  
D006  
7. Current Linearity  
8. Current Matching  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LP8863-Q1 device is a high-voltage LED driver for automotive infotainment, clusters, and other automotive  
display LED backlight applications. It supports conventional LED backlight applications and cluster-mode  
applications requiring independent duty and current control of each channel.  
The LP8863-Q1 device uses the PWM input for brightness control by default. Alternatively, the brightness can  
also be controlled by I2C or SPI. When two LP8863-Q1 devices are used in the system, individual I2C addresses  
can be selected independently with the SS_ADDRSEL pin. In cluster-mode applications each of the six LED  
brightness levels can be individually controlled via the I2C or SPI interface.  
The boost frequency, LED PWM frequency, and LED string current are configured with external resistors through  
the BST_FSET, PWM_FSET, and ISET pins. The INT pin is used to report faults to the system. Fault interrupt  
status can be cleared with the I2C, SPI interface, or is cleared on the falling edge of the VDD pin.  
The LP8863-Q1 supports pure PWM dimming and hybrid dimming; that is, combined PWM and current  
brightness control. By default PWM dimming mode is enabled, but can be changed using the I2C or SPI  
interface.  
The six LED current drivers provide up to 150 mA per output and can be tied together to support higher current  
LEDs. The maximum output current of the LED drivers is set with the ISET resistor and can be optionally scaled  
by the LEDx_CURRENT[11:0] register bits with I2C or SPI interfaces. The LED output PWM frequency is set with  
a PWM_FSET resistor. The number of connected LED strings is automatically detected, and the device  
automatically selects the correct phase shift. For example, if four strings are connected, the LED outputs are  
phase shifted by 90 degrees (= 360 / 4); if 6 strings are connected, the LED outputs are phase shifted by 60  
degrees (= 360 / 6). Outputs that are not used must be connected to GND. Unused outputs are disabled and  
excluded from adaptive voltage and do not generate open/short LED faults. When I2C is available, LED outputs  
can be re-configured in cluster mode to support up to 6 individually controlled channels or, alternatively, 3 to 5  
channels for a display and 3 to 1 individual channels for indicator lights. In this mode all strings can be connected  
to the boost of LP8863-Q1 or an external boost can be used for indicator channels.  
A resistor divider connected from VOUT to the FB pin sets the maximum voltage of the boost. For best efficiency  
the boost voltage is adapted automatically to the minimum necessary level needed to drive the LED strings by  
monitoring all the LED output voltage drops in real time. The switching frequency of the boost regulator can be  
set between 300 kHz and 2.2 MHz by the BST_FSET resistor. The boost has a start-up feature that reduces the  
peak current from the power-line during start-up. The LP8863-Q1 also can control a power-line FET to reduce  
battery leakage when disabled and provide isolation and protection in the event of a fault.  
Fault detection features of LP8863-Q1 include:  
Open-string and shorted LED detection  
LED fault detection prevents system overheating in case of open or short in some of the LED strings  
Boost overcurrent  
Boost overvoltage  
Device undervoltage protection  
Threshold sensing from VDD pin  
VIN input overvoltage protection (OVP)  
Threshold sensing from VSENSE_P pin  
VIN input undervoltage protection  
Threshold sensing from VSENSE_P pin  
VIN input overcurrent protection (OCP)  
Threshold sensing across RISENSE resistor  
Thermal shutdown in case of die overtemperature  
Die temperature read-out and programmable thermal window detector  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
8.2 Functional Block Diagram  
VSENSE_P  
VSENSE_N SD  
VDDIO  
CPUMP  
CPUMP  
GD  
Powerline FET  
Control  
GD  
PGND  
PGND  
C1N  
C1P  
VDD  
Charge  
Pump  
ISNS  
+
-
Boost  
Controller  
ISNSGND  
Analog  
FB  
VLDO  
LDO  
Discharge  
DISCHARGE  
Digital  
OSC  
20 MHz  
PWM_FSET  
BST_FSET  
EEPROM  
LED0  
LED1  
LED2  
LED3  
LED4  
LED5  
ISET  
6 x LED  
Current  
Sinks  
ADC  
EN  
INT  
Digital Blocks  
(FSM, Adaptive  
Voltage Control,  
Fault Logic, etc.)  
BST_SYNC  
IFSEL  
SS_ADDRSEL  
SDO_PWM  
SDI_SDA  
SCLK_SCL  
LED  
Current  
Setting  
SPI / I2C  
TEMP  
Sensor  
Analog Blocks  
(VREF, TSD, etc.)  
ADC  
GND  
Copyright © 2017, Texas Instruments Incorporated  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Control Interface  
Device control interface includes:  
EN is the enable input for the LP8863-Q1 device.  
INT is an open-drain fault output (indicating fault condition detection or thermal threshold crossing).  
IFSEL is used for selecting between I2C and SPI.  
SPI is a 4-wire interface using SCL, SDI, SDO, and SS pins.  
When SPI is selected the brightness must be controlled using the DISP_BRT and BRT_MODE registers.  
I2C is a 2-wire interface using SCL and SDA pins.  
When I2C is selected, the ADDRSEL pin is used to select between two alternate slave addresses.  
When I2C is selected, the BRT_MODE register setting is used to select whether the brightness is  
controlled by the DISP_BRT register or PWM input pin. The PWM pin is selected by default so that an I2C  
interface is not required.  
BST_SYNC is used to input an external clock for the boost switching frequency and control the internal boost  
clock mode.  
The external clock is auto detected at start-up and, if missing, the internal clock is used.  
Optionally, the BST_SYNC can be tied to VDDIO to enable the boost spread spectrum function or tied to  
GND to disable it.  
ISET pin to set the maximum LED current level per string.  
BST_FSET pin to set the boost switching frequency.  
PWM_FSET pin to set the LED output PWM dimming frequency.  
Control interface is selected with IF_SEL pin according to 1.  
1. Control Interface Selection, SPI or I2C  
IF_SEL  
VDDIO (1)  
GND (0)  
SERIAL INTERFACE  
I2C  
SPI  
In I2C mode the ADDRSEL is used to select between two unique slave addresses, and the PWM input may be  
used to control the brightness.  
8.3.2 Boost Controller  
The LP8863-Q1 current-mode-controlled boost DC/DC controller generates the bias voltage for the LEDs. The  
boost is a current-mode-controlled topology with an 8-A cycle by cycle current limit. The boost converter senses  
the switch current and across the external sense resistor connected between ISNS and ISNSGND. A 25-mΩ  
sense resistor results in an 8-A cycle by cycle current limit.. Maximum boost voltage is configured with external  
FB-pin resistor divider connected between VOUT and FB. The FB-divider equation is described in Boost Adaptive  
Voltage Control.  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
D1  
L1  
VIN  
VBOOST  
CIN  
COUT  
OCP  
ADAPTIVE  
VOLTAGE  
CONTROL  
LIGHT  
LOAD  
CPUMP  
GD  
OVP  
R
RFB1  
FB  
R
R
R
-
GM  
Q1  
RFB2  
+
S
GATE  
DRIVER  
PGND  
BOOST OSCILLATOR  
BST_FSET  
ADC  
RBST_FSET  
ISNS  
OFF/BLANK TIME  
PULSE GENERATOR  
CURRENT RAMP  
GENERATOR  
BST_SYNC  
RISENSE  
MUX  
GM  
G
ISNS_GND  
Copyright © 2017, Texas Instruments Incorporated  
9. Boost Controller Block Diagram  
The boost switching frequency is adjustable from 300 kHz to 2.2 MHz via an external resistor at BST_FSET (see  
2).  
2. Boost Frequency Selection  
R_BST_FSET (kΩ)  
BOOST FREQUENCY (kHz)  
3.92  
4.75  
5.76  
7.87  
11  
303  
400  
606  
800  
1000  
1250  
1667  
2200  
17.8  
42.2  
140  
8.3.2.1 Boost Adaptive Voltage Control  
The LP8863-Q1 boost DC/DC converter generates the bias voltage for the LEDs. During normal operation, boost  
output voltage is adjusted automatically based on the LED current sink headroom voltages. This is called  
adaptive boost control. The number of used LED outputs is auto detected and only the active LED outputs are  
monitored to control the adaptive boost voltage. Any LED strings with open or short faults are also removed from  
the adaptive voltage control loop. The LED driver pin voltages are periodically monitored by the control loop and  
the boost voltage is raised if any of the LED outputs falls below the low headroom threshold. The boost voltage is  
lowered if all the LED outputs are above the high headroom threshold. See 10 for how the low and high  
headroom thresholds automatically scale based on the LED string current and VSAT level being used.  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
LED0-5 PIN  
VOLTAGE  
Adaptive Control  
makes no change  
Adaptive Control  
makes no change  
Adaptive Control  
steps voltage down  
Adaptive Control  
steps voltage up  
SHORTED_LED_THRESHOLD  
Only one output (LED0)  
above threshold  
All LED0-5 outputs above  
threshold  
One output (LED5) below  
threshold  
LED_DRV_HEADROOM  
+0.5v  
LED_DRV_HEADROOM  
10. Adaptive Boost Voltage Control Loop Function  
The external resistive divider (RFB1, RFB2) defines both the minimum and maximum adaptive boost voltage levels.  
The FB circuit operates the same in boost and SEPIC topologies. Choose maximum boost voltage based on the  
maximum LED string voltage specification. Before the LED drivers are active the boost starts up to the initial  
boost level. The initial boost voltage is approximately 90% of maximum boost voltage. Once the LED driver  
channels are active, the boost output voltage is adjusted automatically based on LED current sink headroom  
voltage. The FB pin resistor divider also scales the boost OVP and undervoltage levels.  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
8.3.2.1.1 FB Divider Using Two-Resistor Method  
A typical FB-pin circuit uses a two-resistor divider circuit between the boost output voltage and ground.  
VIN  
VBOOST  
+
BSTOVPH  
BSTOVPL  
BSTOCP  
VOVPH  
VOVPL  
VUVP  
-
+
-
-
+
RFB1  
FB  
-
COMP  
+
RFB2  
+
ISEL[10:0]  
VBG  
-
11. Two-Resistor FB Divider Circuit  
Maximum boost voltage can be calculated with 公式 1. The maximum boost voltage can be reached during  
OPEN string detection or if all LED strings are left disconnected.  
VBG  
VMAXBOOST = ((  
) + ISEL_MAX )) ì RFB1 + VBG  
RFB2  
where  
VBG = 1.21 V  
ISEL_MAX = 38.7 µA  
RFB2 recommended value is 100 kΩ for boost operation and 170 kΩ for SEPIC operation.  
(1)  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
150  
200  
250  
300  
350  
400  
450  
500  
550  
600  
650  
700  
750  
800  
850  
900  
950  
R_FB1 (kOhm)  
RFB2 = 100 kΩ  
12. Maximum Boost Output Voltage vs. RFB1 Resistor Value  
The minimum boost voltage must be less than the minimum LED string voltage. Minimum boost voltage is  
calculated with 公式 2:  
VBG  
VMINBOOST = (  
) ì RFB1 + VBG  
RFB2  
where  
VBG = 1.21 V  
(2)  
When the boost OVP_LOW level is reached the boost controller stops switching the boost FET and the  
BSTOVPL_STATUS bit is set. The LED drivers are still active during this condition, and the boost resumes  
normal switching operation once the boost output level falls. The boost OVP low voltage threshold is calculated  
with 公式 3:  
V
VBOOST _OVP_LOW = (( OVPL ) + ISEL_MAX ) ì RFB1 + VOVPL  
RFB2  
where  
VOVPL = 1.423 V  
ISEL_MAX = 38.7 µA  
(3)  
When the boost OVP_HIGH level is reached the boost controller enters fault recovery mode, and the  
BSTOVPH_STATUS bit is set. The boost OVP high-voltage threshold is calculated with 公式 4:  
V
VBOOST _OVP_HIGH = (( OVPH ) + ISEL_MAX ) ì RFB1 + VOVPH  
RFB2  
where  
VOVPH = 1.76 V  
ISEL_MAX = 38.7 µA  
(4)  
When the boost UVP level is reached the boost controller starts a 100-ms OCP counter. The LP8863-Q1 device  
enters the fault recovery mode and sets the BSTOCP_STATUS bit if the boost voltage does not rise above the  
UVP threshold before the timer expires. The boost UVP voltage when adaptive voltage control is at the maximum  
output voltage is calculated with 公式 5:  
V
VBOOST _UVP = (( UVP ) + ISEL_MAX ) ì RFB1 + VUVP  
RFB2  
where  
VUVP = 0.886 V  
ISEL_MAX = 38.7 µA  
(5)  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
8.3.2.1.2 FB Divider Using Three-Resistor Method  
A FB-pin circuit using a three-resistor divider circuit can be used for applications where less than 200-kΩ  
resistors are required.  
VIN  
VBOOST  
+
BSTOVPH  
BSTOVPL  
BSTOCP  
VOVPH  
VOVPL  
VUVP  
-
+
-
-
+
RFB1  
RFB3  
FB  
-
COMP  
+
RFB2  
+
ISEL[10:0]  
VBG  
-
13. Three-Resistor FB Divider Circuit  
Maximum boost voltage can be calculated with 公式 6. The maximum boost voltage can be reached during  
OPEN string detection or if all LED strings are left disconnected.  
»
ÿ
»
ÿ
»
ÿ
Ÿ
1
VMAXBOOST  
=
((I  
ì RFB3) + VBG) ì (  
)
+ I  
ì RFB1 + (ISEL_MAX ì RFB3)+ VBG  
Ÿ
SEL_MAX Ÿ  
SEL_MAX  
RFB2  
……  
Ÿ
Ÿ
where  
VBG = 1.21 V  
ISEL_MAX = 38.7 µA  
RFB2 recommended value is 6 kΩ for boost operation and 10 kΩ for SEPIC operation  
RFB3 recommended value is 27 kΩ for boost operation and 30 kΩ for SEPIC operation  
(6)  
The minimum boost voltage must be less than the minimum LED string voltage. Minimum boost voltage is  
calculated with 公式 7:  
R
VMINBOOST = (VBG ì ( FB1 )) + VBG  
RFB2  
(7)  
21  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
When the boost OVP_LOW level is reached the boost controller stops switching the boost FET, and the  
BSTOVPL_STATUS bit is set. The LED drivers are still active during this condition, and the boost resumes  
normal switching operation once the boost output level falls. The boost OVP low voltage threshold is calculated  
with 公式 8:  
»
ÿ
»
ÿ
»
ÿ
Ÿ
1
VBOOST_OVP_LOW  
=
((I  
ì RFB3) + VOVPL) ì (  
)
+ I  
ì RFB1 + (ISEL_MAX ì RFB3)+ VOVPL  
Ÿ
SEL_MAX Ÿ  
SEL_MAX  
RFB2  
……  
Ÿ
Ÿ
where  
VOVPL= 1.423 V  
ISEL_MAX = 38.7 µA  
(8)  
When the boost OVP_LOW level is reached the boost controller enters fault recovery mode, and the  
BSTOVPH_STATUS bit is set. The boost OVP high-voltage threshold is calculated with 公式 9:  
»
ÿ
»
ÿ
»
ÿ
Ÿ
1
VBOOST _OVP_HIGH  
=
((I  
ì RFB3) + VOVPH) ì (  
)
+ I  
ì RFB1 + (ISEL_MAX ì RFB3)+ VOVPH  
Ÿ
SEL_MAX Ÿ  
SEL_MAX  
RFB2  
……  
Ÿ
Ÿ
where  
VOVPH = 1.76 V  
ISEL_MAX = 38.7 µA  
(9)  
When the boost UVP level is reached the boost controller starts a 100-ms OCP counter. The LP8863-Q1 device  
enters the fault recovery mode and sets the BSTOCP_STATUS bit if the boost voltage does not rise above the  
UVP threshold before the timer expires. The boost UVP voltage is calculated with 公式 10:  
»
ÿ
»
ÿ
»
ÿ
Ÿ
1
VBOOST_UVP  
=
((I  
ì RFB3) + VUVP) ì (  
)
+ I  
ì RFB1 + (ISEL_MAX ì RFB3)+ VUVP  
Ÿ
SEL_MAX Ÿ  
SEL_MAX  
RFB2  
……  
Ÿ
Ÿ
where  
VUVP = 0.886 V  
ISEL_MAX = 38.7 µA  
(10)  
8.3.2.2 Boost Sync and Spread Spectrum  
The boost controller can be clocked by an external BST_SYNC signal. If the external synchronization clock  
disappears the boost continues operation at the frequency defined by RBST_FSET resistor. If the external sync  
clock disappears while the SYNC pin level is low the boost continues operation without spread spectrum. If the  
external sync clock disappears, and BST_SYNC pin remains high the boost initially stops switching for  
approximately 256 μs and then begins switching with spread spectrum enabled.  
If using the external BST_SYNC input, the external frequency must be between 1.2 and 1.5 times higher than the  
frequency defined by the RBST_SET resistor.  
The boost converter has also an internal spread spectrum function that reduces EMI noise around the switching  
frequency and its harmonic frequencies. The internal spread spectrum function modulates the boost frequency  
±3% from the central frequency with a 1.875-kHz modulation frequency. The spread-spectrum function cannot be  
used when an external synchronization clock is used.  
3. Boost Synchronization Mode  
BST_SYNC PIN LEVEL  
Low (GND)  
BOOST CLOCK MODE  
Spread spectrum disabled  
High (VDDIO)  
Spread spectrum enabled  
300-kHz to 2200-kHz clock frequency  
Spread spectrum disabled, external synchronization mode  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
8.3.2.3 Boost Output Discharge  
When the boost is disabled, the discharge pin typically sinks 30-mA current in order to discharge the boost  
output voltage. The boost voltage discharge time depends on output capacitance. The discharge function is  
enabled for a maximum of 400 ms or until the output voltage falls below 3.3 V. The discharge state is entered  
when the EN pin goes low. If VDD falls below the power-on reset (POR) level, the LP8863-Q1 device exits the  
discharge state early and immediately enters the shutdown state. If the discharge feature is unused, leave the  
DISCHARGE pin floating.  
8.3.3 2X Charge Pump  
An integrated 2X charge pump can be used to supply the gate drive for the external FET of the boost controller.  
The charge pump is enabled or disabled by automatically detecting the presence of the external C2X capacitor. If  
VDD is < 4.5 V then use the charge pump to generate a high-enough gate voltage to drive the external boost  
switching FET. To use the charge pump, a 2.2-µF cap is placed between C1N and C1P. If the charge pump is  
not required, C1N and C1P must be left unconnected and CPUMP pins tied to VDD. A 10-µF CPUMP capacitor is  
used to store energy for the gate driver. The CPUMP capacitor is required to be used in both charge pump  
enabled and disabled conditions and must be placed as close as possible to the CPUMP pins. 14 and 15  
show required connections for both use cases.  
D1  
L1  
RISENSE  
Q2  
VIN  
RSD  
CIN  
COUT  
CPUMP  
CPUMP  
CPUMP  
Q1  
GD  
RFB1  
RFB2  
GD  
ISNS  
C1N  
RSENSE  
PGND  
C2X  
PGND  
LP8863-Q1  
ISNSGND  
C1P  
VDD  
VDD  
CVDD  
FB  
14. Charge Pump Enabled Circuit  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
D
1
RISENSE  
L1  
Q2  
VIN  
RSD  
CIN  
COUT  
CPUMP  
CPUMP  
CPUMP  
Q1  
GD  
RFB1  
RFB2  
GD  
ISNS  
C1N  
RSENSE  
PGND  
PGND  
LP8863-Q1  
ISNSGND  
C1P  
VDD  
VDD  
CVDD  
FB  
15. Charge Pump Disabled Circuit  
The C2X_STAT status bit shows whether a C2X capacitor was detected. The C2X_INT bit shows status of any  
charge pump faults and generates a INT signal. The C2X_INT bit can be used to prevent the charge-pump fault  
from causing an interrupt on the INT pin signal.  
8.3.4 1.8-V LDO  
The internal LDO regulator converts the input voltage at VDD to a 1.8-V output voltage at VLDO pin. The LDO  
regulator supplies internal circuitry. Bypass LDO with a ceramic capacitor of at least 4.7-µF capacitance to  
ground. Place capacitor as close as possible to the VLDO pin.  
8.3.5 LED Current Sinks  
8.3.5.1 LED Output Current Setting  
The maximum output LED current is set by an external resistor value. The LEDx_CURRENT[11:0] registers can  
also be used to individually adjust each string’s current down from this maximum. The default value for all the  
LEDx_CURRENT[11:0] registers is the maximum (4095). 公式 11 is used to calculate the current setting of an  
individual string:  
1.21V  
RISET  
LEDx _CURRENT[11: 0]  
4095  
ILEDx =  
ì2560ì  
(11)  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
LED0 Current Sink  
LED0  
LATCH  
DIN  
LED0_DAC  
LED0_CURRENT[11:0]  
DOUT  
EXTERNAL  
CURRENT  
SETTING  
ISET  
RISET  
LATCH  
DIN  
LED1_DAC  
LED2_DAC  
LED3_DAC  
LED4_DAC  
LED5_DAC  
LED1 Current Sink  
LED2 Current Sink  
LED3 Current Sink  
LED4 Current Sink  
LED5 Current Sink  
LED1  
LED2  
LED3  
LED4  
LED5  
LED1_CURRENT[11:0]  
LED2_CURRENT[11:0]  
LED3_CURRENT[11:0]  
LED4_CURRENT[11:0]  
LED5_CURRENT[11:0]  
DOUT  
DOUT  
DOUT  
DOUT  
DOUT  
LATCH  
DIN  
LATCH  
DIN  
LATCH  
DIN  
LATCH  
DIN  
LOAD_BRT  
16. LED Driver Current Setting Circuit  
The LEDx_CURRENT[11:0] registers updates are also latched by the LOAD_BRT_DB register similar to the  
individual brightness registers. This is done so all LED currents can be updated simultaneously. The default  
value for all the LEDx_CURRENT[11:0] registers is FFFh.  
8.3.5.2 LED Output PWM Clock Generation  
The LED PWM frequency is asynchronous from the input PWM frequency. The LED PWM frequency is  
generated from the internal 20-MHz oscillator and can be set to eight discrete frequencies from 152 Hz to 19.531  
kHz. The PWM dimming resolution is highest when the lowest PWM frequency is used. The PWM_FSET resistor  
determines the LED PWM frequency based on 4. PWM resolution in 4 is with PWM dither disabled.  
4. LED PWM Frequency Selection  
R_PWM_FSET (kΩ)  
LED PWM FREQUENCY (Hz)  
PWM DIMMING RESOLUTION (bits)  
3.92  
4.75  
5.76  
7.87  
11  
152  
305  
16 (maximum)  
16  
15  
14  
13  
12  
11  
10  
610  
1221  
2441  
4883  
9766  
19 531  
17.8  
42.2  
140  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
8.3.5.3 LED Output String Configuration  
The six LED driver channels of the LP8863-Q1 device can automatically support applications using six, five, four,  
three, and two LED strings. The driver channels can also be tied together in groups of two, three, or six  
channels. This allows the LP8863-Q1 device to drive three 300-mA LED strings, two 450-mA LED strings, or one  
900-mA LED string. The LED strings are always appropriately phase shifted for their string configuration. This  
reduces the ripple seen at the boost output, which allows smaller output capacitors and reduces audible ringing  
in the capacitors. Phase shift increases the load frequency, which can move potential capacitor noise above the  
audible band while still keeping PWM frequency low to support a higher dimming ratio.  
When the LP8863-Q1 device is first powered on the string configuration is automatically detected and the phases  
of each channel configured. The LED string configuration must not be changed unless the LP8863-Q1 is  
powered off in shutdown state. The string configurations in 5 are valid configurations for auto detection. Any  
other detected configuration defaults to 6 channel / 60 degree mode. The detected string configuration can be  
read from the LED_STRING_CONF[2:0] register. Tie unused LEDx pins to ground.  
5. LED Output String Configuration  
AUTOMATIC  
PHASE SHIFT  
CONFIGURATION  
LED0  
LED1  
LED2  
LED3  
LED4  
LED5  
6 channels  
5 channels  
4 channels  
3 channels  
2 channels  
150 mA  
150 mA  
150 mA  
150 mA  
150 mA  
150 mA  
150 mA  
150 mA  
150 mA  
150 mA  
150 mA  
150 mA  
150 mA  
150 mA  
150 mA  
150 mA  
150 mA  
150 mA  
60°  
72°  
(Tied to GND)  
(Tied to GND)  
(Tied to GND)  
(Tied to GND)  
150 mA  
(Tied to GND)  
90°  
150 mA  
(Tied to GND) (Tied to GND)  
(Tied to GND) (Tied to GND)  
120°  
180°  
(Tied to GND)  
3 channels, 300 mA  
/channel  
300 mA  
300 mA  
300 mA  
120°  
(tie LED pins together)  
2 channels, 450 mA  
/channel  
450 mA  
450 mA  
180°  
(tie LED pins together)  
1 channel, 900 mA  
(tied LED pins together)  
900 mA  
None  
8.3.5.3.1 Independent Cluster Brightness Control Mode  
The LP8863-Q1 supports a cluster mode like that found in the LP8860-Q1 LED driver. This mode allows the  
brightness of each of the six driver channels to be controlled independently using the I2C or SPI interface. This is  
done by using the six CLUSTER_BRTx[15:0] registers, the six LEDx_GROUP registers and the  
LED_EXT_SUPPLY[5:0] register.  
The LEDx_GROUP registers select which CLUSTER_BRTx or DISP_BRT register is used for each of the six  
LED driver channels. The LED_EXT_SUPPLY[5:0] register selects which channels are used by the adaptive  
boost voltage control loop. This allows the LP8863-Q1 to drive LED strings that powered with either the  
integrated boost controller or external supply. If a LED driver channel is driving a string powered from the boost  
then its corresponding LED_EXT_SUPPLY bit should be set to zero. By default all LED_EXT_SUPPLY bits are  
0, and all LEDx_GROUP bits are 000.  
An example of how the registers would be configured if the application calls for a display backlight with 4 strings  
and uses the remaining 2 current sinks to drive indicator LEDs where anodes are supplied externally (not from  
the boost of the LP8863-Q1 device) follows:  
LED_EXT_SUPPLY[5:0] = 11000b  
LED0_GROUP = 000b  
LED1_GROUP = 000b  
LED2_GROUP = 000b  
LED3_GROUP = 000b  
LED4_GROUP = 100b  
LED5_GROUP = 101b  
(LED5 and LED4 use external supply )  
(LED0 uses DISP_BRT register)  
(LED1 uses DISP_BRT register)  
(LED2 uses DISP_BRT register)  
(LED3 uses DISP_BRT register)  
(LED4 uses CLUSTER_BRT4 register)  
(LED5 uses CLUSTER_BRT5 register)  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
8.3.6 Brightness Control  
The LP8863-Q1 supports global or individual brightness control for each LED string through individual PWM duty  
cycle control of the LED0 to LED5 driver channels via I2C/SPI registers. An internal 20-MHz clock is used for  
generating PWM outputs.  
8.3.6.1 Brightness Control Signal Path  
One display brightness path and five individual brightness paths can be used to control the LED driver channel  
brightness. The LEDx_GROUP registers select whether the display brightness path or the cluster 1 to 5  
brightness paths control each LED output. The BRT_MODE register selects whether the input to the display  
brightness path is the PWM input pin or DISP_BRT register. The brightness control signal path diagram is shown  
in 17.  
The display brightness path has sloper and hybrid dimming functions that can be enabled. By default the sloper  
function is enabled and hybrid dimming function disabled. Both functions can be controlled using the I2C or SPI  
interface. The sloper function is described in Sloper and hybrid dimming is described in Hybrid Dimming.  
By default the LP8863-Q1 operates with LED0 to LED5 channels controlled by the display brightness path. To  
enable individual LED string brightness control the LEDx_GROUP registers must be reconfigured with the  
SPI/I2C interface.  
17. LP8863-Q1 Brightness Path Diagram  
8.3.6.2 Hybrid Dimming  
In addition to pure PWM dimming, LP8863-Q1 supports a hybrid-dimming mode. Hybrid dimming combines PWM  
and current modes for brightness control for the display brightness path. In hybrid mode PWM dimming is used  
for the low range of brightness, and current dimming is used for high brightness levels as shown in 18.  
Current dimming control enables improved optical efficiency due to increased LED efficiency at lower currents.  
PWM dimming control at low brightness levels ensures linear and accurate control.  
Hybrid mode can be enabled with the DIMMING_MODE bit in USER_CONFIG1 register. The PWM and current  
modes transition threshold can be set at 12.5% or at 0% brightness with the DIMMING_MODE bits. The latter  
selection allows for pure current dimming control mode.  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
 
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
18. 12.5% PWM and Current Hybrid Dimming Diagram  
8.3.6.3 Sloper  
An optional sloper function makes the transition from one brightness value to another optically smooth. By default  
the advanced sloper is enabled with a 200-ms linear sloper duration. Transition time between two brightness  
values is programmed with the SLOPE_SELECT[2:0] bits (when 000, sloper is disabled). With advanced sloper  
enabled the brightness changes are further smoothed to be more pleasing to the human eye. Advanced slope is  
enabled with ADV_SLOPE_ENABLE register bit.  
Brightness  
Sloper Input  
Time  
Brightness  
Sloper Output  
Advanced Slope  
Linear Slope  
Slope Time  
Time  
19. Brightness Sloper  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
8.3.6.4 Dither  
The number of brightness steps when using LED output PWM dimming is equal to the 20-MHz oscillator  
frequency divided by the LED PWM frequency (set by PWM FSET resistor). The PWM duty cycle dither is a  
function the LP8863-Q1 uses to increase the number of brightness dimming steps beyond this oscillator clock  
limitation. The dither function modulates the LED driver output duty cycle over time to create more possible  
average brightness levels. The DITHER_SELECT[2:0] register bits control the level of dither, disabled, 1, 2, or up  
to 5 bits using the I2C or SPI interface. By default the dither has 3 bits enabled (default 011b).  
When the 1-bit dither is selected, the width of every second PWM pulse is increased by one LSB (one 20-MHz  
clock period). When the 3-bit dither is selected, within a sequence of 8 PWM periods the number of pulses with  
increased length varies: dither value 000 - all 8 pulses at default length; 001 - one of the 8 pulses is longer; 010 -  
two of the 8 pulses are longer, etc., until at 111 seven of the 8 pulses have increased length. 20 shows one  
example of PWM output dither.  
50.003%  
100 Hz  
Input PWM  
1.2 kHz LED  
PWM  
Without Dither  
50%  
50%  
50%  
50%  
50%  
1.2 kHz LED  
PWM  
50.006%  
50.006%  
50%  
With 2bit Dither  
20. PWM Dither Example  
The dither block also has an additional mode at low brightness levels when LED PWM duty cycle is less than the  
minimum pulse width (that is, less than the LED driver rise time). In this mode the dither block skips full PWM  
pulses to reduce the brightness further enabling very high dimming modes. The end result is the LED PWM  
frequency is reduced as more and more minimum pulses are skipped or dithered out. This function can be  
enabled using the I2C or SPI interface by programming the EN_MIN_PWM_LIMIT bit to 1. 21 shows how the  
2-bit minimum brightness dithering works.  
100 Hz  
Input PWM  
300 ns = 0.003%  
300 ns = 0.003%  
200 ns  
No  
Pulse  
200 ns  
No  
Pulse  
305 Hz LED PWM  
With Minimum Pulse  
Dither  
3.2 ms  
3.2 ms  
3.2 ms  
3.2 ms  
Average Brightness = 0.003%  
21. Minimum Brightness Dither Example  
8.3.7 Die Temperature Read-Out and Thermal Window Detector  
The LP8863-Q1 has two internal thermal sensors: one for protection purposes (device thermal shutdown) and  
one for die temperature monitoring. The die temperature monitor block includes a 9-bit ADC to convert the  
analog thermal-sensor output to a temperature reading available in the register JUNCTION_TEMPERATURE.  
First temperature result is available 2 ms after the activation of the block and conversion rate is 10 Hz. When the  
temperature monitor block is disabled register JUNCTION_TEMPERATURE content is –256°C.  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
 
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
The die temperature monitor also includes a thermal window detector. The TEMPERATURE_LIMIT_HIGH and  
TEMPERATURE_LIMIT_LOW bits set the high and low limits for the thermal window. These thresholds have  
±1°C hysteresis: TEMPERATURE _LIMIT_HIGH + 1°C for increasing and TEMPERATURE_LIMIT_HIGH – 1°C  
for decreasing, for example. If the die temperature increases above the high limit or reduces below the low limit,  
a fault interrupt is generated. Die temperature monitor (ADC, thermal sensor, and window detector) can be  
disabled to minimize power dissipation in STANDBY mode. The thermal sensor for TSD is always active.  
TSD_STATUS  
TSD Thermal Sensor  
INT  
Interrupts  
INT  
Temperature Monitor  
Window Detector  
TEMPHIGH_STATUS  
TEMPLOW_STATUS  
TEMPERATURE_LIMIT_HIGH  
TEMPERATURE_LIMIT_LOW  
Thermal Sensor  
I2C/SPI  
JUNCTION_TEMPERATURE  
TEMP_MON_EN  
ADC  
22. Thermal Shutdown and Sensor Block Diagram  
23, 24, and 25 show the INT pin and status behaviors of the TSD, temperature high, and temperature  
low limits.  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
Enters Standby Mode  
TTSD Thermal Shutdown  
Returns to Normal Mode  
TTSD_H hysteresis  
TEMPERATURE_LIMIT_HIGH  
TEMPERATURE_LIMIT_LOW  
Host clears INT Status  
TEMP_MON_EN  
INT  
TEMPHIGH_STATUS  
TEMPLOW_STATUS  
TSD_STATUS  
23. Thermal Shutdown and Sensor Example 1  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
TTSD Thermal Shutdown  
TTSD_H hysteresis  
TEMPERATURE_LIMIT_HIGH  
TEMPERATURE_LIMIT_LOW  
Host clears INT Status  
TEMP_MON_EN  
INT  
TEMPHIGH_STATUS  
TEMPLOW_STATUS  
TSD_STATUS  
24. Thermal Shutdown and Sensor Example 2  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
TTSD Thermal Shutdown  
TTSD_H hysteresis  
TEMPERATURE_LIMIT_HIGH  
TEMPERATURE_LIMIT_LOW  
Host clears INT Status  
TEMP_MON_EN  
INT  
TEMPHIGH_STATUS  
TEMPLOW_STATUS  
TSD_STATUS  
25. Thermal Shutdown and Sensor Example 3  
8.3.8 Protection and Fault Detections  
The LP8863-Q1 device includes fault detections for LED open and short conditions, boost input undervoltage,  
overvoltage and overcurrent, boost output overvoltage and overcurrent, VDD undervoltage and die  
overtemperature. Host can monitor the status of the faults in INTERRUPT_STATUS_1 and  
INTERRUPT_STATUS_2 registers.  
8.3.8.1 LED Faults  
During normal boost operation, boost voltage is raised if any of the LED outputs falls below the low headroom  
threshold level. Open LED fault is detected if boost output voltage has reached the maximum and at least one  
LED output is still below the threshold. The open string is then disconnected from the boost adaptive control loop  
and its output is disabled. Any LED fault sets the status bit LED_STATUS and an interrupt is generated unless  
LED interrupt is disabled. Reason for the open LED faults can be read from bits OPEN_LED and LEDx_FAULT  
(x = 0...5, indicating the faulty LED) in INTERRUPT_STATUS_2 register. These bits maintain their value until  
device power-down while the LED_STATUS bit is cleared by the interrupt clearing procedure. If a new LED fault  
is detected, LED_STATUS is set and an interrupt generated again.  
Shorted LED fault is detected if one or more LED outputs are above the SHORTED_LED_THRESHOLD setting  
and at least one LED output is inside the normal operation widow (see 26). Shorted string is disconnected  
from the boost adaptive control loop and the LED PWM output is disabled. LED_STATUS status bit is set and an  
interrupt generated similarly as in open LED case. Shorted LED fault reason can be read from bits SHORT_LED  
and LEDx_FAULT (x = 0...5, indicating the faulty LED) in INTERRUPT_STATUS_2 register.  
版权 © 2017–2018, Texas Instruments Incorporated  
33  
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
26. LED Open and Short Detection Logic  
8.3.8.2 Boost Faults  
Boost overvoltage is detected if the FB pin voltage exceeds the VOVPL threshold. When boost overvoltage is  
detected, BSTOVPL_STATUS bit is set in the INTERRUPT_STATUS_1 register. The boost FET stops switching,  
and the output voltage is automatically limited. If the BSTOVPL_STATUS bit is continually set (that is, reappears  
after clearing), it may indicate an issue in the application. Boost overvoltage low is monitored during device  
normal operation (ACTIVE mode).  
A second boost overvoltage high fault is detected if the FB pin voltage exceeds the VOVPH threshold. The  
LP8863-Q1 device enters the fault recovery state to protect against excessive thermal dissipation caused by high  
headroom on the LED drivers. When boost overvoltage is detected, BSTOVPH_STATUS bit is set in the  
INTERRUPT_STATUS_1 register. A fault interrupt is also generated. If the BSTOVPH_STATUS bit is continually  
set (that is, reappears after clearing), it may indicate an issue in the application. Boost overvoltage high is  
monitored during device normal operation (ACTIVE mode).  
Boost overcurrent is detected if the FB pin voltage drops below the VUVP threshold. A boost OCP fault is detected  
if the undervoltage condition persists for longer than 110 ms. If the boost overcurrent timer expires before the  
output voltage recovers, the BSTOCP_STATUS bit is set in the INTERRUPT_STATUS_1 register. The fault  
recovery state is entered, and a fault interrupt is generated. If the BSTOCP_STATUS bit is permanently set, it  
may indicate an issue in the application. Boost overcurrent is monitored from the boost start, and fault may  
trigger during boost start-up.  
8.3.8.3 Power-Line Faults  
If during operation of the LP8863-Q1 device the VIN (VSENSE_P pin) voltage falls below the VINUVLO falling  
level, the boost, LED outputs, and power-line FET are turned off, and the device enters STANDBY mode. The  
VINUVLO_STATUS bit is also set, and the INT pin is triggered. When the VINUVLO voltage rises above the  
rising threshold level the LP8863-Q1 device exits STANDBY and begins the start-up sequence.  
If during LP8863-Q1 device operation VIN (VSENSE_P pin) voltage rises above the VINOVP rising level, boost,  
LED outputs, and power-line FET are turned off, and the device enters STANDBY mode. The VINOVP_STATUS  
bit is also set, and the INT pin is triggered. When the VINOVP voltage falls below the falling threshold level the  
LP8863-Q1 exits STANDBY and begins the start-up sequence.  
The VIN OCP protection detects overcurrent by measuring voltage of the RISENSE resistor connected between  
VSENSE_P and VSENSE_N pins. VIN OCP sensing begins once the LP8863-Q1 enters the PL FET soft-start  
state. Fault is detected if overcurrent condition duration lasts for at least 10 μs, minimum. The VINOCP_STATUS  
bit is also set, and the INT pin is triggered. To trip at a lower current limit a larger sense resistor can be used to  
create a 220-mV voltage difference across the sense resistor.  
34  
版权 © 2017–2018, Texas Instruments Incorporated  
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
8.3.8.4 VDD Undervoltage Fault  
If during LP8863-Q1 device operation VDD falls below VDDUVLO falling level, boost, PL FET, and LED outputs  
are turned off, and the device enters STANDBY mode. The VDDUVLO_STATUS fault bit is set, and the INT pin  
is triggered. The LP8863-Q1 recovers automatically to ACTIVE mode when VDD rises above VDDUVLO rising  
threshold.  
If VDD falls below VPOR the LP8863-Q1 device enters SHUTDOWN mode.  
8.3.8.5 Thermal Shutdown  
If the die temperature of LP8863-Q1 reaches the thermal shutdown threshold TTSD, the boost, PL FET, and LED  
outputs on LP8863-Q1 device shut down to protect the device from damage. Fault status bit TSD_STATUS bit is  
set, and the INT pin is triggered. The device restarts the PL FET, the boost, and LED outputs when temperature  
drops by TTSD_H amount.  
版权 © 2017–2018, Texas Instruments Incorporated  
35  
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
8.3.8.6 Overview of the Fault/Protection Schemes  
TRIGGER FAULT  
INTERRUPT  
ENTER FAULT  
RECOVERY  
FAULT NAME  
STATUS BIT  
CONDITION  
ACTION  
FB pin voltages falls below VUVP level  
for > 110 ms  
Device goes to standby and then attempts to  
restart 200 ms after fault occurs.  
Boost overcurrent  
BSTOCP_STATUS  
Yes  
Yes  
Boost stops switching until boost voltage level  
falls. The device remains in normal mode with  
LED drivers operational.  
Boost overvoltage low  
Boost OVP high  
BSTOVPLOW_STATUS FB pin voltages rises above VOVPL level  
No  
No  
Device goes to standby and waits until output  
voltage falls below threshold before restarting.  
BSTOVPH_STATUS  
BSTSYNC_STATUS  
FB pin voltages rises above VOVPH level  
Yes  
Yes  
Device is enabled while a valid external  
SYNC clock is running. Then SYNC  
stops or changes to invalid frequency.  
Valid range is 1.2× to 1.5× of frequency  
selected by BST_FSET resistor.  
Device defaults to internal clock frequency  
selected by BST_FSET resistor. If SYNC input is  
held high then spread spectrum is enabled. If  
SYNC input is held low then spread spectrum is  
disabled.  
Boost sync clock invalid  
No  
No  
Device goes to standby and waits until output  
voltage falls below threshold before restarting.  
VIN overvoltage  
VIN undervoltage  
VINOVP_STATUS  
VINUVLO_STATUS  
VIN voltage rises above 43 V.  
Yes  
Yes  
No  
No  
Device goes to standby and then attempts to  
restart once the input voltage rises above  
threshold.  
VIN voltage falls below 2.8 V.  
Voltage across RISENSE exceeds 220  
mV  
Device goes to standby and then attempts to  
restart 200 ms after fault occurs.  
VIN overcurrent  
VINOCP_STATUS  
VDDUVLO_STATUS  
TSD_STATUS  
Yes  
Yes  
Yes  
Yes  
No  
VDD level falls below VDDUVLO  
threshold.  
Device restarts once VDD level rises above  
VDDUVLO threshold.  
VDD undervoltage  
Thermal shutdown  
Junction temperature rises above TTSD  
threshold.  
Device goes to standby and then attempts to  
restart once die temperature falls below threshold.  
No  
Headroom voltage on one or more  
channels is below minimum level and  
boost has adapted to maximum level.  
Faulted LED string is disabled and removed from  
adaptive boost control loop. String is re-enabled  
next power cycle.  
LED_STATUS  
OPEN_LED  
Open LED string  
Shorted LED  
Yes  
Yes  
No  
No  
Headroom voltage on one or more  
channels is above the  
SHORTED_LED_THRESHOLD for > 5  
ms while the headroom of at least one  
channel is still below this threshold.  
Faulted LED string is disabled and removed from  
adaptive boost control loop. String is re-enabled  
next power cycle.  
LED_STATUS  
LED string detection does not match  
one of 8 valid configurations  
Device defaults to six LED string phase shift  
mode. String detection reoccurs next power cycle.  
Invalid LED string detected INVSTRING_STATUS  
Yes  
Yes  
No  
No  
Boost does not start up. Fault is cleared by VDD  
cycling with correct resistor connection at FSET  
pin.  
BST_FSET or PWM_FSET are missing  
or an invalid value  
FSET detection fault  
Charge pump fault  
FSET_STATUS  
CP_STATUS  
Device functions normally, if possible. If charge  
pump issue is severe, it is likely boost overcurrent  
fault will trip.  
Charge pump voltage level is abnormal.  
No  
No  
36  
版权 © 2017–2018, Texas Instruments Incorporated  
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
Device functions normally, if possible. If charge  
pump issue is severe, it is likely boost overcurrent  
fault will trip.  
Charge pump components  
missing  
CPCAP_STATUS  
Charge pump is missing components.  
No  
No  
版权 © 2017–2018, Texas Instruments Incorporated  
37  
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 State Diagram  
From Any State  
VDD < POR  
SHUTDOWN  
VDD > POR  
DEVICE INIT  
STANDBY  
EN=1  
PL FET  
SOFTSTART  
FAULT RECOVERY  
200 ms and  
PL_PRECHARGE_READY  
50 ms and  
PL_PRECHARGE_COMPLETE  
BOOST STARTUP  
50 ms and  
BOOST_OK=0  
50 ms and  
BOOST_OK=1  
FAULT  
NORMAL  
LATCH FAULT  
All LED channels have been  
disabled due to open or short faults.  
EN=0  
DISCHARGE_DONE and  
EN=0  
DISCHARGE  
27. State Machine Diagram  
8.4.2 Shutdown  
When VDD is below POR threshold device is in shutdown state.  
8.4.3 Device Initialization  
After POR is released device initialization begins. During this state the LDO is started up, EEPROM default and  
trim configurations are loaded, BOOST_FSET and PWM_FSET resistors are detected, and the LED string  
configuration is detected.  
38  
版权 © 2017–2018, Texas Instruments Incorporated  
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
Device Functional Modes (接下页)  
8.4.4 Standby Mode  
In standby the LP8863-Q1 device can be accessed with I2C or SPI to change any configuration registers. Analog  
blocks are disabled to save power.  
8.4.5 Power-line FET Soft Start  
Power-line FET is enabled, and boost input and output capacitors are charged to VIN level. VIN faults for OCP,  
OVP, and UVP are enabled.  
8.4.6 Boost Start-Up  
Boost voltage is ramped to maximum voltage level with reduced current limit. Start-up exits when boost reaches  
initial target voltage. All boost faults are now enabled.  
8.4.7 Normal Mode  
LED drivers are enabled when brightness is greater than zero. All LED faults are active.  
8.4.8 Discharge Mode  
When EN goes low from normal mode the boost output voltage is discharged. This state exits when boost  
voltage falls below 3.3 V or when the 400-ms timer expires.  
8.4.9 Fault Recovery  
Non-LED faults can trigger fault recover state. LED drivers, boost converter, and power-line FET are disabled for  
200 ms, and the device attempts to restart from standby mode if EN is still high.  
8.4.10 Latch Fault  
If all LED strings are disabled due to faults then the LP8863-Q1 enters the latch fault mode. This state can be  
exited by toggling the VDD pin.  
版权 © 2017–2018, Texas Instruments Incorporated  
39  
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
Device Functional Modes (接下页)  
8.4.11 Start-Up Sequence  
DEVICE  
INIT  
PL FET  
PRECHARGE  
BOOST  
SOFTSTART  
STATE  
VIN  
SHUTDOWN  
STANDBY  
NORMAL  
VDD  
VDDIO  
EN  
PWM  
Input Pin  
VINIT  
VADAPT  
Boost VOUT  
VIN  
50 ms  
50 ms  
LEDx  
28. Start-Up Sequence Diagram  
40  
版权 © 2017–2018, Texas Instruments Incorporated  
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
Device Functional Modes (接下页)  
8.4.12 Shutdown Sequence  
STATE  
VIN  
NORMAL  
DISCHARGE  
SHUTDOWN  
VDD  
VDDIO  
EN  
PWM Input  
Pin  
Boost  
VOUT  
3.3 V  
0 V  
LEDx  
< 400 ms  
29. Shutdown Sequence Diagram  
For proper operation of discharge function, pull the EN pin before VDD pin. VIN and VDDIO can be set low any  
time after EN low.  
版权 © 2017–2018, Texas Instruments Incorporated  
41  
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
8.5 Programming  
8.5.1 Serial Interface Selection  
The serial interface type is selected by connecting the IFSEL pin to VDDIO or GND. The LP8863-Q1 device  
checks the IFSEL pin state as part of device startup. Device start-up occurs after VDD and VDDIO POR levels  
are reached. 6 shows how to connect the IFSEL pin to select between the SPI and I2C-compatible interfaces.  
6. Serial Control Interface Selection  
PIN NAME  
SS_ADDRSEL  
SCLK_SCL  
SDI_SDA  
IFSEL PIN = VDDIO  
IFSEL PIN = GND  
ADDRSEL  
SCL  
SS  
SCLK  
SDI  
SDA  
SDO_PWM  
PWM  
SDO  
8.5.2 SPI Interface  
In SPI mode host can address as many unique LP8863-Q1 devices as there are slave select pins on host. The  
complete 10-bit register space in LP8863-Q1 device can be accessed using SPI interface.  
The LP8863-Q1 device is compatible with SPI serial-bus specification and operates as a slave device. The  
transmission consists of 32-bit write and read cycles. One cycle consists of a 15-bit register address (10 bits  
used), 1 read/write (R/W) bit and 16-bit data to maintain compatibility with 16-bit SPI.  
The R/W bit high state defines a write cycle and low defines a read cycle. The SDO output is normally in a high-  
impedance state. When the slave-select pin SS for the device is active (that is, low) the SDO output is pulled  
low. During write cycle SDO stays in high-impedance state. The address and data bits are transmitted MSB first.  
The slave-select signal SS must be low during the cycle transmission. SS resets the interface when high, and it  
has to be taken high between successive cycles, except when using auto- increment mode. Data is clocked in on  
the rising edge of the SCLK clock signal, while data is clocked out on the falling edge of SCLK.  
30. SPI Write  
31. SPI Read  
42  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
8.5.3 I2C-Compatible Interface  
Two LP8863-Q1 slave devices may share the same I2C bus. The SS_ADDRSEL pin selects between the two  
possible base slave addresses.  
7. I2C Address Selection  
SS_ADDRSEL PIN  
GND  
7-BIT I2C BASE SLAVE ADDRESS  
0x2C  
0x3C  
VDDIO  
The LP8863-Q1 uses a 10-bit register address space. The 10-bit register address space is accessed as four  
separate 8-bit address spaces. Four different slave addresses are used to access each of the four 8-bit address  
register spaces.  
8. I2C Address Registers Selection  
SS_ADDRSEL PIN  
7-BIT BASE ADDRESS  
7-BIT SLAVE ADDRESS  
ACCESSIBLE 10-BIT REGISTERS  
0x000 to 0x0FF  
0x2C  
0x2D  
0x2E  
0x2F  
0x3C  
0x3D  
0x3E  
0x3F  
0x100 to 0x1FF  
GND  
0x2C  
0x200 to 0x2FF  
0x300 to 0x3FF  
0x000 to 0x0FF  
0x100 to 0x1FF  
VDDIO  
0x3C  
0x200 to 0x2FF  
0x300 to 0x3FF  
Write I2C transactions are made up of 4 bytes. The first byte includes the 7-bit slave address and Write bit. The  
7-bit slave address selects the LP8863-Q1 slave device and one of four 8-bit register address sections. The  
second byte includes eight LSB bits of the 10-bit register address. The last two bytes are the 16-bit register  
value.  
Read I2C transactions are made up of five bytes. The first byte includes the 7-bit slave address and Write bit.  
The 7-bit slave address selects the LP8863-Q1 slave device and one of four 8-bit register address sections. The  
second byte includes eight LSB bits of the 10-bit register address. The third byte includes the 7-bit slave address  
and Read bit. The last two bytes are the 16-bit register value returned from the slave.  
32. I2C Write  
33. I2C Read  
版权 © 2017–2018, Texas Instruments Incorporated  
43  
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
8.5.4 Programming Examples  
8.5.4.1 General Configuration Registers  
The LP8863-Q1 does not require any serial interface configuration. It can be simply controlled with the EN pin  
and PWM pin. Most of the device configuration is accomplished using external resistor values or automatic  
detection. If a serial interface is available then extended configuration is possible. The configuration registers can  
be written in standby state as shown in 9.  
9. Configuration Registers  
REGISTER NAME  
BRT_MODE  
FUNCTION  
Selects PWM pin or DISPLAY_BRT register for brightness control.  
Selects voltage level for shorted LED Fault.  
SHORTED_LED_THRESHOLD  
DITHER_SELECT  
Selects up to 3 bits of PWM dither for added dimming resolution.  
Enables 200-ns PWM pulse limit and frequency dither to reach lower minimum brightness  
levels.  
EN_MIN_PWM_LIMIT  
SLOPE_SELECT  
Selects duration for linear brightness sloper.  
ADV_SLOPE_ENABLE  
DIMMING_MODE  
Enables advance sloper S-shape smoothing function.  
Select between PWM, hybrid or current LED ouput dimming types.  
Enables temperature window monitor function.  
TEMP_MON_EN  
TEMPERATURE_LIMIT_HIGH  
TEMPERATURE_LIMIT_LOW  
Sets HIGH threshold level for temperature window function.  
Sets LOW threshold level for temperature window function.  
8.5.4.2 Clearing Fault Interrupts  
The LP8863-Q1 has an INT pin to alert the host when a fault occurs. If a serial interface is available, the Interrupt  
Fault Status registers can be read back to learn which fault(s) have been detected. These status bits are located  
in the INTERRUPT_STATUS_1, INTERRUPT_STATUS_2, and INTERRUPT_STATUS_3 registers. Each  
interrupt status has a STATUS bit and a CLEAR bit. If a fault interrupt has been detected, a 1 is read back from  
its STATUS bit. To clear a fault interrupt status a 1 must be written to both the STATUS bit and CLEAR bit at the  
same time.  
8.5.4.3 Disabling Fault Interrupts  
By default most of the LP8863-Q1 faults trigger the INT pin. Each fault has two INT_EN bits. These bits are  
located in the INTERRUPT_ENABLE_1, INTERRUPT_ENABLE_2, and INTERRUPT_ENABLE_3 registers. If the  
INT_EN bit is read and returns a 1, the INT pin is triggered when that fault occurs. The fault interrupt can be  
disabled by writing 01 to its INT_EN bits, or it can be enabled by writing 11 to its INT_EN bits. There is also a  
GLOBAL fault interrupt that can be disabled to prevent any faults from triggering the INT pin.  
8.5.4.4 Diagnostic Registers  
The LP8863-Q1 contains several diagnostic registers than can be read with the serial interface for debugging or  
additional device information. 10 is a summary of the available registers.  
10. Diagnostic Registers  
REGISTER NAME  
JUNCTION_TEMPERATURE  
FUNCTION  
9-bit die junction temperature in 2s complement form — 1°C per LSB  
Current state of the functional state machine  
FSM_LIVE_STATUS  
PWM_INPUT_STATUS  
LED_PWM_STATUS  
LED_CURRENT_STATUS  
Measured 6-bit duty cycle of the PWM pin input  
16-bit LED0 PWM duty cycle from state machine  
12-bit LED0 current DAC value from state machine  
10-bit value for adaptive boost voltage target — value is linear between  
VBOOST_MIN and VBOOST_MAX calculations  
VBOOST_STATUS  
AUTO_PWM_FREQ_SEL  
AUTO_BOOST_FREQ_SEL  
AUTO_LED_STRING_CFG  
LED PWM frequency value from PWM_FSET detection  
Boost switching frequency value from PWM_FSET detection  
LED string phase configuration detected from LED pin configuration  
44  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
8.5.4.5 Cluster Mode Configuration and Control Registers  
The LP8863-Q1 device supports a cluster mode where the duty cycles and LED current of the six LED current  
drivers can be controlled independently. This mode can also select which LED current driver’s headroom levels  
are used by the adaptive boost voltage control loop. If the anode of an LED string is supplied by an external  
supply and not the integrated boost controller then its LED_EXT_SUPPLY bit is set to 1. The cluster mode  
configuration registers are summarized in 11. More details can be found in Register Maps.  
11. Cluster Mode Configuration Registers  
REGISTER NAME  
FUNCTION  
LED0_GROUP...LED5_GROUP  
Selects which of the five CLUSTERx_BRT or DISPLAY_BRT registers control each  
LED current driver.  
CLUSTER1_BRT…CLUSTER5_BRT  
LED0_CURRENT…LED5_CURRENT  
LOAD_BRT_DB  
Five 16-bit brightness values that can be used in addition to the DISPLAY_BRT  
register.  
Six 12-bit current registers allow LED current to be independently scaled from  
maximum level for LED current driver.  
Load BRT bit is written to 1 in order to update the CLUSTERx_BRT and  
LEDx_CURRENT registers at the same time.  
LED_EXT_SUPPLY  
Six bits to select which LED current driver is powered from an external supply and not  
the boost converter.  
LED0_SHORT_DISABLE…  
LED5_SHORT_DISABLE  
Six bits to individually disable LED short detection for each LED current driver. Used if  
LED current value is set to lower value than other strings.  
版权 © 2017–2018, Texas Instruments Incorporated  
45  
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
8.6 Register Maps  
8.6.1 FullMap Registers  
Table 12 lists the memory-mapped registers for the FullMap registers. All register offset addresses not listed in  
Table 12 should be considered as reserved locations and the register contents should not be modified.  
Table 12. FULLMAP Registers  
Offset  
20h  
Acronym  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
BL_MODE  
Brightness Mode  
28h  
DISP_BRT  
Display Brightness  
30h  
GROUPING1  
Brightness Grouping 1  
Brightness Grouping 2  
User Config 1  
32h  
GROUPING2  
40h  
USER_CONFIG1  
42h  
USER_CONFIG2  
User Config 2  
4Eh  
INTERRUPT_ENABLE_3  
INTERRUPT_ENABLE_1  
INTERRUPT_ENABLE_2  
INTERRUPT_STATUS_1  
INTERRUPT_STATUS_2  
INTERRUPT_STATUS_3  
JUNCTION_TEMPERATURE  
TEMPERATURE_LIMIT_HIGH  
TEMPERATURE_LIMIT_LOW  
CLUSTER1_BRT  
Fault Interrupt Enable 3  
Fault Interrupt Enable 1  
Fault Interrupt Enable 2  
Fault Interrupt Status 1  
Fault Interrupt Status 2  
Fault Interrupt Status 3  
Die Junction Temperature  
Temperature High Limit  
Temperature Low Limit  
Cluster 1 Brightness  
Cluster 2 Brightness  
Cluster 3 Brightness  
Cluster 4 Brightness  
Cluster 5 Brightness  
Cluster Brightness and Current Load Bit  
LED0 Current  
50h  
52h  
54h  
56h  
58h  
E8h  
ECh  
EEh  
13Ch  
148h  
154h  
160h  
16Ch  
178h  
1C2h  
1C4h  
1C6h  
1C8h  
1CAh  
1CCh  
288h  
28Ah  
2A4h  
2A6h  
2A8h  
2AAh  
2ACh  
2AEh  
CLUSTER2_BRT  
CLUSTER3_BRT  
CLUSTER4_BRT  
CLUSTER5_BRT  
BRT_DB_CONTROL  
LED0_CURRENT  
LED1_CURRENT  
LED1 Current  
LED2_CURRENT  
LED2 Current  
LED3_CURRENT  
LED3 Current  
LED4_CURRENT  
LED4 Current  
LED5_CURRENT  
LED5 Current  
BOOST_CONTROL  
SHORT_THRESH  
Boost Control  
Shorted LED Threshold  
Device State Diagnostics  
PWM Input Diagnostics  
PWM Output Diagnostics  
LED Current Diagnostics  
Adaptive Boost Diagnostics  
Auto Detect Diagnstics  
FSM_DIAGNOSTICS  
PWM_INPUT_DIAGNOSTICS  
PWM_OUTPUT_DIAGNOSTICS  
LED_CURR_DIAGNOSTICS  
ADAPT_BOOST_DIAGNOSTICS  
AUTO_DETECT_DIAGNOSTICS  
Complex bit access types are encoded to fit into small table cells. Table 13 shows the codes that are used for  
access types in this section.  
Table 13. FullMap Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
46  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
Table 13. FullMap Access Type Codes (continued)  
Access Type  
Write Type  
W
Code  
Description  
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
8.6.1.1 BL_MODE Register (Offset = 20h) [reset = 300h]  
BL_MODE is shown in Figure 34 and described in Table 14.  
Return to Summary Table.  
Figure 34. BL_MODE Register  
15  
7
14  
6
13  
5
12  
4
11  
10  
2
9
1
8
0
RESERVED  
R/W-C0h  
3
RESERVED  
R/W-C0h  
brightness_mode  
R/W-0h  
Table 14. BL_MODE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-2  
1-0  
RESERVED  
R/W  
C0h  
These bits are reserved.  
brightness_mode  
R/W  
0h  
0h = Brightness controlled by PWM Input  
1h = Reserved  
2h = Brightness controlled by DISPLAY_BRT Register  
3h = Reserved  
8.6.1.2 DISP_BRT Register (Offset = 28h) [reset = 0h]  
DISP_BRT is shown in Figure 35 and described in Table 15.  
Return to Summary Table.  
Figure 35. DISP_BRT Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DISPLAY_BRT  
R/W-0h  
Table 15. DISP_BRT Register Field Descriptions  
Bit  
15-0  
Field  
DISPLAY_BRT  
Type  
Reset  
Description  
R/W  
0h  
Display Brightness Register  
8.6.1.3 GROUPING1 Register (Offset = 30h) [reset = 0h]  
GROUPING1 is shown in Figure 36 and described in Table 16.  
Return to Summary Table.  
Copyright © 2017–2018, Texas Instruments Incorporated  
47  
 
 
 
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
Figure 36. GROUPING1 Register  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
LED3_GROUP  
R/W-0h  
LED2_GROUP  
R/W-0h  
4
3
LED1_GROUP  
R/W-0h  
LED0_GROUP  
R/W-0h  
Table 16. GROUPING1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-8  
7-4  
LED3_GROUP  
LED2_GROUP  
LED1_GROUP  
LED0_GROUP  
R/W  
0h  
LED Output 3 Brightness Control Mapping  
0h = DISP_BRT/PWM  
1h = CLUSTER1_BRT  
2h = CLUSTER3_BRT  
3h = CLUSTER3_BRT  
4h = CLUSTER4_BRT  
5h = CLUSTER5_BRT  
R/W  
R/W  
R/W  
0h  
0h  
0h  
LED Output 2 Brightness Control Mapping  
0h = DISP_BRT/PWM  
1h = CLUSTER1_BRT  
2h = CLUSTER3_BRT  
3h = CLUSTER3_BRT  
4h = CLUSTER4_BRT  
5h = CLUSTER5_BRT  
LED Output 1 Brightness Control Mapping  
0h = DISP_BRT/PWM  
1h = CLUSTER1_BRT  
2h = CLUSTER3_BRT  
3h = CLUSTER3_BRT  
4h = CLUSTER4_BRT  
5h = CLUSTER5_BRT  
3-0  
LED Output 0 Brightness Control Mapping  
0h = DISP_BRT/PWM  
1h = CLUSTER1_BRT  
2h = CLUSTER3_BRT  
3h = CLUSTER3_BRT  
4h = CLUSTER4_BRT  
5h = CLUSTER5_BRT  
8.6.1.4 GROUPING2 Register (Offset = 32h) [reset = 0h]  
GROUPING2 is shown in Figure 37 and described in Table 17.  
Return to Summary Table.  
Figure 37. GROUPING2 Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
RESERVED  
R/W-0h  
LED5_GROUP  
R/W-0h  
LED4_GROUP  
R/W-0h  
48  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
Table 17. GROUPING2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
RESERVED  
R/W  
0h  
These bits are reserved.  
7-4  
LED5_GROUP  
R/W  
0h  
LED Output 5 Brightness Control Mapping  
0h = DISP_BRT/PWM  
1h = CLUSTER1_BRT  
2h = CLUSTER3_BRT  
3h = CLUSTER3_BRT  
4h = CLUSTER4_BRT  
5h = CLUSTER5_BRT  
3-0  
LED4_GROUP  
R/W  
0h  
LED Output 4 Brightness Control Mapping  
0h = DISP_BRT/PWM  
1h = CLUSTER1_BRT  
2h = CLUSTER3_BRT  
3h = CLUSTER3_BRT  
4h = CLUSTER4_BRT  
5h = CLUSTER5_BRT  
8.6.1.5 USER_CONFIG1 Register (Offset = 40h) [reset = 8B0h]  
USER_CONFIG1 is shown in Figure 38 and described in Table 18.  
Return to Summary Table.  
Figure 38. USER_CONFIG1 Register  
15  
7
14  
13  
5
12  
11  
10  
2
9
8
DITHER_SELECT  
RESERVED  
TEMP_MON_E  
N
RESERVED  
R/W-0h  
R/W-2h  
3
R/W-0h  
1
R/W-0h  
0
6
4
SLOPE_SELECT  
ADV_SLOPE_  
ENABLE  
RESERVED  
DIMMING_MODE  
R/W-5h  
R/W-1h  
R/W-0h  
R/W-0h  
Table 18. USER_CONFIG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-13  
DITHER_SELECT  
R/W  
0h  
0h = Dither Disabled  
1h = 1-bit Dither  
2h = 2-bit Dither  
3h = 3-bit Dither  
4h = 4-bit Dither  
5h = 5-bit Dither  
6h = Unused  
7h = Unused  
12-10  
9
RESERVED  
R/W  
R/W  
2h  
0h  
These bits are reserved.  
TEMP_MON_EN  
0h = Temperature Monitor Disabled  
1h = Temperature Monitor Enabled  
8
RESERVED  
R/W  
0h  
This bit is reserved.  
Copyright © 2017–2018, Texas Instruments Incorporated  
49  
 
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
Table 18. USER_CONFIG1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
7-5  
SLOPE_SELECT  
R/W  
5h  
0h = 0ms  
1h = 1ms  
2h = 2ms  
3h = 50ms  
4h = 100ms  
5h = 200ms  
6h = 300ms  
7h = 500ms Times are for linear slope mode. Advanced sloper will  
increase durations while adding additional smoothing to brightness  
transitions. 1ms and 2ms sloper times are intended to be used only  
in linear mode. 50ms to 500ms sloper durations may be used with or  
without advanced sloper function.  
4
ADV_SLOPE_ENABLE  
R/W  
1h  
0h = Linear Sloping  
1h = Advanced Sloping  
3-2  
1-0  
RESERVED  
R/W  
R/W  
0h  
0h  
These bits are reserved.  
DIMMING_MODE  
LED Output Dimming Mode  
0h = PWM Mode  
1h = 12.5% Hybrid Mode  
2h = Unused  
3h = 12-bit Constant Current Mode  
8.6.1.6 USER_CONFIG2 Register (Offset = 42h) [reset = 0h]  
USER_CONFIG2 is shown in Figure 39 and described in Table 19.  
Return to Summary Table.  
Figure 39. USER_CONFIG2 Register  
15  
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
EN_MIN_PWM  
_LIMIT  
RESERVED  
R/W-0h  
7
R/W-0h  
3
4
RESERVED  
R/W-0h  
Table 19. USER_CONFIG2 Register Field Descriptions  
Bit  
Field  
EN_MIN_PWM_LIMIT  
Type  
Reset  
Description  
15  
R/W  
0h  
Allows PWM pulses to be dithered to reduce lower minimum  
brightness.  
When enabled brightness levels that map to less than 200ns pulse  
width will cause pulses to be skipped.  
0h = Disabled  
1h = Enabled  
14-0  
RESERVED  
R/W  
0h  
These bits are reserved.  
8.6.1.7 INTERRUPT_ENABLE_3 Register (Offset = 4Eh) [reset = 200Ah]  
INTERRUPT_ENABLE_3 is shown in Figure 40 and described in Table 20.  
Return to Summary Table.  
50  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
Figure 40. INTERRUPT_ENABLE_3 Register  
15  
14  
13  
VINOCP_INT_EN  
R/W-2h  
12  
11  
CPCAP_INT_EN  
R/W-0h  
10  
9
1
8
0
BSTSYNC_INT_EN  
R/W-0h  
CP_INT_EN  
R/W-0h  
7
6
5
4
3
2
FSET_INT_EN  
R/W-0h  
INVSTRING_INT_EN  
R/W-0h  
VINOVP_INT_EN  
R/W-2h  
VINUVP_INT_EN  
R/W-2h  
Table 20. INTERRUPT_ENABLE_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-14  
13-12  
11-10  
9-8  
BSTSYNC_INT_EN  
VINOCP_INT_EN  
CPCAP_INT_EN  
CP_INT_EN  
R/W  
0h  
Missing Boost Sync Interrupt Enable  
Read:  
0h = Interrupt is currently disabled  
2h = Interrupt is currently enabled  
Write:  
1h = Disable Interrupt  
3h = Enable Interrupt  
R/W  
R/W  
R/W  
R/W  
R/W  
2h  
0h  
0h  
0h  
0h  
VIN Over-Current Interrupt Enable  
Read:  
0h = Interrupt is currently disabled  
2h = Interrupt is currently enabled  
Write:  
1h = Disable Interrupt  
3h = Enable Interrupt  
Charge Pump Cap Missing Interrupt Enable  
Read:  
0h = Interrupt is currently disabled  
2h = Interrupt is currently enabled  
Write:  
1h = Disable Interrupt  
3h = Enable Interrupt  
Charge Pump Interrupt Enable  
Read:  
0h = Interrupt is currently disabled  
2h = Interrupt is currently enabled  
Write:  
1h = Disable Interrupt  
3h = Enable Interrupt  
7-6  
FSET_INT_EN  
Missing FSET Resistor Interrupt Enable  
Read:  
0h = Interrupt is currently disabled  
2h = Interrupt is currently enabled  
Write:  
1h = Disable Interrupt  
3h = Enable Interrupt  
5-4  
INVSTRING_INT_EN  
Invalid LED String Configuration Interrupt Enable  
Read:  
0h = Interrupt is currently disabled  
2h = Interrupt is currently enabled  
Write:  
1h = Disable Interrupt  
3h = Enable Interrupt  
Copyright © 2017–2018, Texas Instruments Incorporated  
51  
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
Table 20. INTERRUPT_ENABLE_3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-2  
VINOVP_INT_EN  
R/W  
2h  
VIN Over-Voltage Interrupt Enable  
Read:  
0h = Interrupt is currently disabled  
2h = Interrupt is currently enabled  
Write:  
1h = Disable Interrupt  
3h = Enable Interrupt  
1-0  
VINUVP_INT_EN  
R/W  
2h  
VIN Under-Voltage Interrupt Enable  
Read:  
0h = Interrupt is currently disabled  
2h = Interrupt is currently enabled  
Write:  
1h = Disable Interrupt  
3h = Enable Interrupt  
8.6.1.8 INTERRUPT_ENABLE_1 Register (Offset = 50h) [reset = A02Ah]  
INTERRUPT_ENABLE_1 is shown in Figure 41 and described in Table 21.  
Return to Summary Table.  
Figure 41. INTERRUPT_ENABLE_1 Register  
15  
GLOBAL_INT_EN  
R/W-2h  
14  
13  
12  
11  
TEMP_INT_EN  
R/W-0h  
10  
9
1
8
BSTOVPH_INT_EN  
R/W-2h  
RESERVED  
R/W-0h  
7
6
5
4
3
2
0
BSTOVPL_INT_EN  
R/W-0h  
BSTOCP_INT_EN  
R/W-2h  
VDDUVLO_INT_EN  
R/W-2h  
TSD_INT_EN  
R/W-2h  
Table 21. INTERRUPT_ENABLE_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-14  
13-12  
11-10  
9-8  
GLOBAL_INT_EN  
R/W  
2h  
Global Interrupt Enable  
Read:  
0h = Interrupt is currently disabled  
2h = Interrupt is currently enabled  
Write:  
1h = Disable Interrupt  
3h = Enable Interrupt  
BSTOVPH_INT_EN  
TEMP_INT_EN  
RESERVED  
R/W  
R/W  
R/W  
2h  
0h  
0h  
Boost OVP High Interrupt Enable  
Read:  
0h = Interrupt is currently disabled  
2h = Interrupt is currently enabled  
Write:  
1h = Disable Interrupt  
3h = Enable Interrupt  
Temperature Interrupt Enable  
Read:  
0h = Interrupt is currently disabled  
2h = Interrupt is currently enabled  
Write:  
1h = Disable Interrupt  
3h = Enable Interrupt  
These bits are reserved.  
52  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
Table 21. INTERRUPT_ENABLE_1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
7-6  
BSTOVPL_INT_EN  
R/W  
0h  
Boost OVP Low Interrupt Enable  
Read:  
0h = Interrupt is currently disabled  
2h = Interrupt is currently enabled  
Write:  
1h = Disable Interrupt  
3h = Enable Interrupt  
5-4  
3-2  
1-0  
BSTOCP_INT_EN  
VDDUVLO_INT_EN  
TSD_INT_EN  
R/W  
R/W  
R/W  
2h  
2h  
2h  
Boost Over-Current Interrupt Enable  
Read:  
0h = Interrupt is currently disabled  
2h = Interrupt is currently enabled  
Write:  
1h = Disable Interrupt  
3h = Enable Interrupt  
VDD UVLO Interrupt Enable  
Read:  
0h = Interrupt is currently disabled  
2h = Interrupt is currently enabled  
Write:  
1h = Disable Interrupt  
3h = Enable Interrupt  
Thermal Shutdown Interrupt Enable  
Read:  
0h = Interrupt is currently disabled  
2h = Interrupt is currently enabled  
Write:  
1h = Disable Interrupt  
3h = Enable Interrupt  
8.6.1.9 INTERRUPT_ENABLE_2 Register (Offset = 52h) [reset = 80h]  
INTERRUPT_ENABLE_2 is shown in Figure 42 and described in Table 22.  
Return to Summary Table.  
Figure 42. INTERRUPT_ENABLE_2 Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
9
1
8
0
RESERVED  
R/W-0h  
2
LED_INT_EN  
R/W-2h  
RESERVED  
R/W-0h  
Table 22. INTERRUPT_ENABLE_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-8  
7-6  
RESERVED  
R/W  
0h  
These bits are reserved.  
LED_INT_EN  
R/W  
2h  
LED Open / Short Interrupt Enable  
Read:  
0h = Interrupt is currently disabled  
2h = Interrupt is currently enabled  
Write:  
1h = Disable Interrupt  
3h = Enable Interrupt  
5-0  
RESERVED  
R/W  
0h  
Copyright © 2017–2018, Texas Instruments Incorporated  
53  
 
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
8.6.1.10 INTERRUPT_STATUS_1 Register (Offset = 54h) [reset = 0h]  
INTERRUPT_STATUS_1 is shown in Figure 43 and described in Table 23.  
Return to Summary Table.  
Figure 43. INTERRUPT_STATUS_1 Register  
15  
14  
13  
12  
11  
10  
9
1
8
BSTOVPH_ST BSTOVPH_CL TEMPHIGH_ST TEMPHIGH_CL TEMPLOW_ST TEMPLOW_CL  
RESERVED  
R/W-0h  
ATUS  
EAR  
ATUS  
EAR  
ATUS  
EAR  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
7
6
5
4
3
2
0
BSTOVPL_STA BSTOVPL_CLE BSTOCP_STA BSTOCP_CLE VDDUVLO_ST VDDUVLO_CL TSD_STATUS  
TSD_CLEAR  
TUS  
AR  
TUS  
AR  
ATUS  
EAR  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 23. INTERRUPT_STATUS_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
BSTOVPH_STATUS  
R/W  
0h  
Boost OVP High Status  
0h = No Fault  
1h = Fault  
14  
13  
BSTOVPH_CLEAR  
R/W  
R/W  
0h  
0h  
Boost OVP High Fault Clear  
Write "1" to both Status bit and Clear bit at same time to clear  
interrupt register status and interrupt pin status.  
TEMPHIGH_STATUS  
Temperature High Status  
0h = No Fault  
1h = Fault  
12  
11  
TEMPHIGH_CLEAR  
TEMPLOW_STATUS  
R/W  
R/W  
0h  
0h  
Temperature High Fault Clear  
Write "1" to both Status bit and Clear bit at same time to clear  
interrupt register status and interrupt pin status.  
Temperature Low Status  
0h = No Fault  
1h = Fault  
10  
TEMPLOW_CLEAR  
R/W  
0h  
Temperature Low Fault Clear  
Write "1" to both Status bit and Clear bit at same time to clear  
interrupt register status and interrupt pin status.  
9-8  
7
RESERVED  
R/W  
R/W  
0h  
0h  
These bits are reserved.  
BSTOVPL_STATUS  
Boost OVP Low Status  
0h = No Fault  
1h = Fault  
6
5
BSTOVPL_CLEAR  
BSTOCP_STATUS  
R/W  
R/W  
0h  
0h  
Boost OVP Low Fault Clear  
Write "1" to both Status bit and Clear bit at same time to clear  
interrupt register status and interrupt pin status.  
Boost Over-Current Status  
0h = No Fault  
1h = Fault  
4
3
BSTOCP_CLEAR  
R/W  
R/W  
0h  
0h  
Boost Over-Current Fault Clear  
Write "1" to both Status bit and Clear bit at same time to clear  
interrupt register status and interrupt pin status.  
VDDUVLO_STATUS  
VDD UVLO Status  
0h = No Fault  
1h = Fault  
54  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
Table 23. INTERRUPT_STATUS_1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
VDDUVLO_CLEAR  
R/W  
0h  
VDD UVLO Fault Clear  
Write "1" to both Status bit and Clear bit at same time to clear  
interrupt register status and interrupt pin status.  
1
0
TSD_STATUS  
TSD_CLEAR  
R/W  
R/W  
0h  
0h  
Thermal Shutdown Status  
0h = No Fault  
1h = Fault  
Thermal Shutdown Fault Clear  
Write "1" to both Status bit and Clear bit at same time to clear  
interrupt register status and interrupt pin status.  
8.6.1.11 INTERRUPT_STATUS_2 Register (Offset = 56h) [reset = 0h]  
INTERRUPT_STATUS_2 is shown in Figure 44 and described in Table 24.  
Return to Summary Table.  
Figure 44. INTERRUPT_STATUS_2 Register  
15  
14  
13  
12  
11  
10  
9
8
LED5_FAULT  
R/W-0h  
LED4_FAULT  
R/W-0h  
LED3_FAULT  
R/W-0h  
LED2_FAULT  
R/W-0h  
LED1_FAULT  
R/W-0h  
LED0_FAULT  
R/W-0h  
OPEN_LED  
R/W-0h  
SHORT_LED  
R/W-0h  
7
6
5
4
3
2
1
0
LED_STATUS  
R/W-0h  
LED_CLEAR  
R/W-0h  
RESERVED  
R/W-0h  
Table 24. INTERRUPT_STATUS_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
LED5_FAULT  
LED4_FAULT  
LED3_FAULT  
LED2_FAULT  
LED1_FAULT  
LED0_FAULT  
R/W  
0h  
LED5 Status  
0h = No Fault  
1h = Fault  
Status is cleared with LED_STATUS bit  
14  
13  
12  
11  
10  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
LED4 Status  
0h = No Fault  
1h = Fault  
Status is cleared with LED_STATUS bit  
LED3 Status  
0h = No Fault  
1h = Fault  
Status is cleared with LED_STATUS bit  
LED2 Status  
0h = No Fault  
1h = Fault  
Status is cleared with LED_STATUS bit  
LED1 Status  
0h = No Fault  
1h = Fault  
Status is cleared with LED_STATUS bit  
LED0 Status  
0h = No Fault  
1h = Fault  
Status is cleared with LED_STATUS bit  
Copyright © 2017–2018, Texas Instruments Incorporated  
55  
 
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
Table 24. INTERRUPT_STATUS_2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
9
OPEN_LED  
R/W  
0h  
LED Open Status  
0h = No Fault  
1h = Fault  
Status is cleared with LED_STATUS bit  
8
7
SHORT_LED  
LED_STATUS  
R/W  
R/W  
0h  
0h  
LED Short Status  
0h = No Fault  
1h = Fault  
Status is cleared with LED_STATUS bit  
LED Open / Short Fault Status  
0h = No Fault  
1h = Fault  
6
LED_CLEAR  
RESERVED  
R/W  
R/W  
0h  
0h  
LED Open / Short Fault Clear  
Write "1" to both Status bit and Clear bit at same time to clear  
interrupt register status and interrupt pin status.  
5-0  
These bits are reserved.  
8.6.1.12 INTERRUPT_STATUS_3 Register (Offset = 58h) [reset = 0h]  
INTERRUPT_STATUS_3 is shown in Figure 45 and described in Table 25.  
Return to Summary Table.  
Figure 45. INTERRUPT_STATUS_3 Register  
15  
14  
13  
12  
11  
10  
9
8
BSTSYNC_ST BSTSYNC_CL VINOCP_STAT VINOCP_CLEA CPCAP_STAT CPCAP_CLEA  
CP_STATUS  
CP_CLEAR  
ATUS  
EAR  
US  
R
US  
R
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
1
R/W-0h  
0
7
6
5
4
3
2
FSET_STATUS FSET_CLEAR INVSTRING_S INVSTRING_C VINOVP_STAT VINOVP_CLEA VINUVP_STAT VINUVP_CLEA  
TATUS  
LEAR  
US  
R
US  
R
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 25. INTERRUPT_STATUS_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
BSTSYNC_STATUS  
R/W  
0h  
Missing Boost Sync Fault Status  
0h = No Fault  
1h = Fault  
14  
13  
BSTSYNC_CLEAR  
VINOCP_STATUS  
R/W  
R/W  
0h  
0h  
Missing Boost Sync Fault Clear  
Write "1" to both Status bit and Clear bit at same time to clear  
interrupt register status and interrupt pin status.  
VIN Over-Current Fault Status  
0h = No Fault  
1h = Fault  
12  
11  
VINOCP_CLEAR  
CPCAP_STATUS  
R/W  
R/W  
0h  
0h  
VIN Over-Current Fault Clear  
Write "1" to both Status bit and Clear bit at same time to clear  
interrupt register status and interrupt pin status.  
Missing Charge Pump Capacitor Fault Status  
0h = No Fault  
1h = Fault  
56  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
Table 25. INTERRUPT_STATUS_3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
10  
CPCAP_CLEAR  
R/W  
0h  
Missing Charge Pump Capacitor Fault Clear  
Write "1" to both Status bit and Clear bit at same time to clear  
interrupt register status and interrupt pin status.  
9
CP_STATUS  
R/W  
0h  
Charge Pump Fault Status  
0h = No Fault  
1h = Fault  
8
7
CP_CLEAR  
R/W  
R/W  
0h  
0h  
Charge Pump Fault Fault Clear  
Write "1" to both Status bit and Clear bit at same time to clear  
interrupt register status and interrupt pin status.  
FSET_STATUS  
Missing Boost / PWM FSET Resistor Fault Status  
0h = No Fault  
1h = Fault  
6
5
FSET_CLEAR  
R/W  
R/W  
0h  
0h  
Missing Boost / PWM FSET Resistor Fault Clear  
Write "1" to both Status bit and Clear bit at same time to clear  
interrupt register status and interrupt pin status.  
INVSTRING_STATUS  
Invalid LED String Configuration Fault Status  
0h = No Fault  
1h = Fault  
4
3
INVSTRING_CLEAR  
VINOVP_STATUS  
R/W  
R/W  
0h  
0h  
Invalid LED String Configuration Fault Clear  
Write "1" to both Status bit and Clear bit at same time to clear  
interrupt register status and interrupt pin status.  
VIN Over-Voltage Fault Status  
0h = No Fault  
1h = Fault  
2
1
VINOVP_CLEAR  
VINUVP_STATUS  
R/W  
R/W  
0h  
0h  
VIN Over-Voltage Fault Clear  
Write "1" to both Status bit and Clear bit at same time to clear  
interrupt register status and interrupt pin status.  
VIN Under-Voltage Fault Status  
0h = No Fault  
1h = Fault  
0
VINUVP_CLEAR  
R/W  
0h  
VIN Under-Voltage Fault Clear  
Write "1" to both Status bit and Clear bit at same time to clear  
interrupt register status and interrupt pin status.  
8.6.1.13 JUNCTION_TEMPERATURE Register (Offset = E8h) [reset = 100h]  
JUNCTION_TEMPERATURE is shown in Figure 46 and described in Table 26.  
Return to Summary Table.  
Figure 46. JUNCTION_TEMPERATURE Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
RESERVED  
JUNCTION_TE  
MPERATURE  
R-0h  
4
R-100h  
0
5
3
2
JUNCTION_TEMPERATURE  
R-100h  
Copyright © 2017–2018, Texas Instruments Incorporated  
57  
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
Table 26. JUNCTION_TEMPERATURE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-9  
RESERVED  
R
0h  
These bits are reserved.  
8-0  
JUNCTION_TEMPERATU  
RE  
R
100h  
Junction Temperature ADC Measurement  
2's complement number.  
000h - 0FFh = 0 °C to 255 °C  
100h - 1FFh = –256 °C to –1 °C  
8.6.1.14 TEMPERATURE_LIMIT_HIGH Register (Offset = ECh) [reset = 7Dh]  
TEMPERATURE_LIMIT_HIGH is shown in Figure 47 and described in Table 27.  
Return to Summary Table.  
Figure 47. TEMPERATURE_LIMIT_HIGH Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
RESERVED  
TEMPERATUR  
E_LIMIT_HIGH  
R-0h  
4
R/W-7Dh  
0
5
3
2
TEMPERATURE_LIMIT_HIGH  
R/W-7Dh  
Table 27. TEMPERATURE_LIMIT_HIGH Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-9  
8-0  
RESERVED  
R
0h  
These bits are reserved.  
TEMPERATURE_LIMIT_ R/W  
HIGH  
7Dh  
High Limit for Junction Temperature Monitor  
2's complement number.  
000h - 0FFh = 0 °C to 255 °C  
100h - 1FFh = –256 °C to –1 °C  
8.6.1.15 TEMPERATURE_LIMIT_LOW Register (Offset = EEh) [reset = 69h]  
TEMPERATURE_LIMIT_LOW is shown in Figure 48 and described in Table 28.  
Return to Summary Table.  
Figure 48. TEMPERATURE_LIMIT_LOW Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
RESERVED  
TEMPERATUR  
E_LIMIT_LOW  
R-0h  
4
R/W-69h  
0
5
3
2
TEMPERATURE_LIMIT_LOW  
R/W-69h  
Table 28. TEMPERATURE_LIMIT_LOW Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-9  
8-0  
RESERVED  
R
0h  
These bits are reserved.  
TEMPERATURE_LIMIT_L R/W  
OW  
69h  
Low Limit for Junction Temperature Monitor  
2's complement number.  
000h - 0FFh = 0 °C to 255 °C  
100h - 1FFh = –256 °C to –1 °C  
58  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
 
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
8.6.1.16 CLUSTER1_BRT Register (Offset = 13Ch) [reset = FFFFh]  
CLUSTER1_BRT is shown in Figure 49 and described in Table 29.  
Return to Summary Table.  
Figure 49. CLUSTER1_BRT Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CLUSTER1_BRT  
R/W-FFFFh  
Table 29. CLUSTER1_BRT Register Field Descriptions  
Bit  
15-0  
Field  
CLUSTER1_BRT  
Type  
Reset  
Description  
R/W  
FFFFh  
CLUSTER1 Brightness Control.  
This register controls LED output duty cycle for the LED outputs  
assigned to LED GROUP 1.  
This register is buffered, write LOAD_BRT_DB bit to update.  
8.6.1.17 CLUSTER2_BRT Register (Offset = 148h) [reset = FFFFh]  
CLUSTER2_BRT is shown in Figure 50 and described in Table 30.  
Return to Summary Table.  
Figure 50. CLUSTER2_BRT Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CLUSTER2_BRT  
R/W-FFFFh  
Table 30. CLUSTER2_BRT Register Field Descriptions  
Bit  
15-0  
Field  
CLUSTER2_BRT  
Type  
Reset  
Description  
R/W  
FFFFh  
CLUSTER2 Brightness Control.  
This register controls LED output duty cycle for the LED outputs  
assigned to LED GROUP 2.  
This register is buffered, write LOAD_BRT_DB bit to update.  
8.6.1.18 CLUSTER3_BRT Register (Offset = 154h) [reset = FFFFh]  
CLUSTER3_BRT is shown in Figure 51 and described in Table 31.  
Return to Summary Table.  
Figure 51. CLUSTER3_BRT Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CLUSTER3_BRT  
R/W-FFFFh  
Table 31. CLUSTER3_BRT Register Field Descriptions  
Bit  
15-0  
Field  
CLUSTER3_BRT  
Type  
Reset  
Description  
R/W  
FFFFh  
CLUSTER3 Brightness Control.  
This register controls LED output duty cycle for the LED outputs  
assigned to LED GROUP 3.  
This register is buffered, write LOAD_BRT_DB bit to update.  
Copyright © 2017–2018, Texas Instruments Incorporated  
59  
 
 
 
 
 
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
8.6.1.19 CLUSTER4_BRT Register (Offset = 160h) [reset = FFFFh]  
CLUSTER4_BRT is shown in Figure 52 and described in Table 32.  
Return to Summary Table.  
Figure 52. CLUSTER4_BRT Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CLUSTER4_BRT  
R/W-FFFFh  
Table 32. CLUSTER4_BRT Register Field Descriptions  
Bit  
15-0  
Field  
CLUSTER4_BRT  
Type  
Reset  
Description  
R/W  
FFFFh  
CLUSTER4 Brightness Control.  
This register controls LED output duty cycle for the LED outputs  
assigned to LED GROUP 4.  
This register is buffered, write LOAD_BRT_DB bit to update.  
8.6.1.20 CLUSTER5_BRT Register (Offset = 16Ch) [reset = FFFFh]  
CLUSTER5_BRT is shown in Figure 53 and described in Table 33.  
Return to Summary Table.  
Figure 53. CLUSTER5_BRT Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CLUSTER5_BRT  
R/W-FFFFh  
Table 33. CLUSTER5_BRT Register Field Descriptions  
Bit  
15-0  
Field  
CLUSTER5_BRT  
Type  
Reset  
Description  
R/W  
FFFFh  
CLUSTER5 Brightness Control.  
This register controls LED output duty cycle for the LED outputs  
assigned to LED GROUP 5.  
This register is buffered, write LOAD_BRT_DB bit to update.  
8.6.1.21 BRT_DB_CONTROL Register (Offset = 178h) [reset = 0h]  
BRT_DB_CONTROL is shown in Figure 54 and described in Table 34.  
Return to Summary Table.  
Figure 54. BRT_DB_CONTROL Register  
15  
7
14  
6
13  
5
12  
11  
3
10  
9
1
8
0
RESERVED  
R/W-0h  
4
2
RESERVED  
R/W-0h  
LOAD_BRT_D  
B
R/W-0h  
Table 34. BRT_DB_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-1  
0
RESERVED  
R/W  
0h  
These bits are reserved.  
LOAD_BRT_DB  
R/W  
0h  
Write this bit to "1" to update CLUSTERx_BRT registers and  
LEDx_CURRENT registers (those registers are buffered).  
60  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
 
 
 
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
8.6.1.22 LED0_CURRENT Register (Offset = 1C2h) [reset = FFFh]  
LED0_CURRENT is shown in Figure 55 and described in Table 35.  
Return to Summary Table.  
Figure 55. LED0_CURRENT Register  
15  
14  
6
13  
12  
11  
10  
9
8
0
LED0_SHORT_  
DISABLE  
RESERVED  
LED0_CURRENT  
R/W-0h  
7
R/W-0h  
5
R/W-FFFh  
4
3
2
1
LED0_CURRENT  
R/W-FFFh  
Table 35. LED0_CURRENT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
LED0_SHORT_DISABLE R/W  
0h  
Short Fault Disable for LED0  
0h = Short LED Faults are detected for LED0 output  
1h = Short LED Faults are not detected for LED0 output  
14-12  
11-0  
RESERVED  
R/W  
R/W  
0h  
LED0_CURRENT  
FFFh  
Individual LED Current control for LED0 Output  
8.6.1.23 LED1_CURRENT Register (Offset = 1C4h) [reset = FFFh]  
LED1_CURRENT is shown in Figure 56 and described in Table 36.  
Return to Summary Table.  
Figure 56. LED1_CURRENT Register  
15  
14  
6
13  
12  
11  
10  
9
8
0
LED1_SHORT_  
DISABLE  
RESERVED  
LED1_CURRENT  
R/W-0h  
7
R/W-0h  
5
R/W-FFFh  
4
3
2
1
LED1_CURRENT  
R/W-FFFh  
Table 36. LED1_CURRENT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
LED1_SHORT_DISABLE R/W  
0h  
Short Fault Disable for LED1  
0h = Short LED Faults are detected for LED1 output  
1h = Short LED Faults are not detected for LED1 output  
14-12  
11-0  
RESERVED  
R/W  
R/W  
0h  
LED1_CURRENT  
FFFh  
Individual LED Current control for LED1 Output  
8.6.1.24 LED2_CURRENT Register (Offset = 1C6h) [reset = FFFh]  
LED2_CURRENT is shown in Figure 57 and described in Table 37.  
Return to Summary Table.  
Copyright © 2017–2018, Texas Instruments Incorporated  
61  
 
 
 
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
Figure 57. LED2_CURRENT Register  
15  
14  
6
13  
12  
11  
10  
9
8
LED2_SHORT_  
DISABLE  
RESERVED  
LED2_CURRENT  
R/W-0h  
7
R/W-0h  
5
R/W-FFFh  
4
3
2
1
0
LED2_CURRENT  
R/W-FFFh  
Table 37. LED2_CURRENT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
LED2_SHORT_DISABLE R/W  
0h  
Short Fault Disable for LED2  
0h = Short LED Faults are detected for LED2 output  
1h = Short LED Faults are not detected for LED2 output  
14-12  
11-0  
RESERVED  
R/W  
R/W  
0h  
LED2_CURRENT  
FFFh  
Individual LED Current control for LED2 Output  
8.6.1.25 LED3_CURRENT Register (Offset = 1C8h) [reset = FFFh]  
LED3_CURRENT is shown in Figure 58 and described in Table 38.  
Return to Summary Table.  
Figure 58. LED3_CURRENT Register  
15  
14  
6
13  
12  
11  
10  
9
8
0
LED3_SHORT_  
DISABLE  
RESERVED  
LED3_CURRENT  
R/W-0h  
7
R/W-0h  
5
R/W-FFFh  
4
3
2
1
LED3_CURRENT  
R/W-FFFh  
Table 38. LED3_CURRENT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
LED3_SHORT_DISABLE R/W  
0h  
Short Fault Disable for LED3  
0h = Short LED Faults are detected for LED3 output  
1h = Short LED Faults are not detected for LED3 output  
14-12  
11-0  
RESERVED  
R/W  
R/W  
0h  
LED3_CURRENT  
FFFh  
Individual LED Current control for LED3 Output  
8.6.1.26 LED4_CURRENT Register (Offset = 1CAh) [reset = FFFh]  
LED4_CURRENT is shown in Figure 59 and described in Table 39.  
Return to Summary Table.  
Figure 59. LED4_CURRENT Register  
15  
14  
6
13  
12  
11  
10  
9
8
0
LED4_SHORT_  
DISABLE  
RESERVED  
LED4_CURRENT  
R/W-0h  
7
R/W-0h  
5
R/W-FFFh  
4
3
2
1
LED4_CURRENT  
R/W-FFFh  
62  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
Table 39. LED4_CURRENT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
LED4_SHORT_DISABLE R/W  
0h  
Short Fault Disable for LED4  
0h = Short LED Faults are detected for LED4 output  
1h = Short LED Faults are not detected for LED4 output  
14-12  
11-0  
RESERVED  
R/W  
R/W  
0h  
LED4_CURRENT  
FFFh  
Individual LED Current control for LED4 Output  
8.6.1.27 LED5_CURRENT Register (Offset = 1CCh) [reset = FFFh]  
LED5_CURRENT is shown in Figure 60 and described in Table 40.  
Return to Summary Table.  
Figure 60. LED5_CURRENT Register  
15  
14  
6
13  
12  
11  
10  
9
8
0
LED5_SHORT_  
DISABLE  
RESERVED  
LED5_CURRENT  
R/W-0h  
7
R/W-0h  
5
R/W-FFFh  
4
3
2
1
LED5_CURRENT  
R/W-FFFh  
Table 40. LED5_CURRENT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
LED5_SHORT_DISABLE R/W  
0h  
Short Fault Disable for LED5  
0h = Short LED Faults are detected for LED5 output  
1h = Short LED Faults are not detected for LED5 output  
14-12  
11-0  
RESERVED  
R/W  
R/W  
0h  
LED5_CURRENT  
FFFh  
Individual LED Current control for LED5 Output  
8.6.1.28 BOOST_CONTROL Register (Offset = 288h) [reset = 1C0h]  
BOOST_CONTROL is shown in Figure 61 and described in Table 41.  
Return to Summary Table.  
Figure 61. BOOST_CONTROL Register  
15  
7
14  
6
13  
12  
11  
3
10  
9
1
8
0
LED_EXT_SUPPLY  
R/W-0h  
RESERVED  
R/W-1C0h  
5
4
2
RESERVED  
R/W-1C0h  
Copyright © 2017–2018, Texas Instruments Incorporated  
63  
 
 
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
Table 41. BOOST_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-10  
LED_EXT_SUPPLY  
R/W  
0h  
Selects whether external LED voltage supply is used for a LED  
output.  
Bit 15 = LED5  
Bit 14 = LED4  
Bit 13 = LED3  
Bit 12 = LED2  
Bit 11 = LED1  
Bit 10 = LED0  
0h = LP8863 Boost Converter Supply is used  
1h = External Supply is used.  
9-0  
RESERVED  
R/W  
1C0h  
These bits are reserved.  
8.6.1.29 SHORT_THRESH Register (Offset = 28Ah) [reset = 2882h]  
SHORT_THRESH is shown in Figure 62 and described in Table 42.  
Return to Summary Table.  
Figure 62. SHORT_THRESH Register  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
SHORTED_LED_THRESHOLD  
R/W-4h  
9
1
8
RESERVED  
R/W-2h  
RESERVED  
R/W-82h  
2
0
RESERVED  
R/W-82h  
Table 42. SHORT_THRESH Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
15-12  
11-9  
R/W  
2h  
This bit is reserved.  
SHORTED_LED_THRES R/W  
HOLD  
4h  
Threshold for detecting Shorted LED Fault on LED outputs.  
Fault is detected when LEDx pin voltage (referenced to ground)  
exceeds selected threshold when LED driver is enabled.  
0h = 2.6V  
1h = 3.0V  
2h = 3.4V  
3h = 3.8V  
4h = 4.2V  
5h = 4.8V  
6h = 5.2V  
7h = 6.0V  
8-0  
RESERVED  
R/W  
82h  
These bits are reserved.  
8.6.1.30 FSM_DIAGNOSTICS Register (Offset = 2A4h) [reset = 0h]  
FSM_DIAGNOSTICS is shown in Figure 63 and described in Table 43.  
Return to Summary Table.  
Figure 63. FSM_DIAGNOSTICS Register  
15  
14  
13  
12  
11  
10  
9
8
RESERVED  
R-0h  
64  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
7
6
5
4
3
2
1
0
RESERVED  
R-0h  
FSM_LIVE_STATUS  
R-0h  
Table 43. FSM_DIAGNOSTICS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-5  
RESERVED  
R
0h  
These bits are reserved.  
4-0  
FSM_LIVE_STATUS  
R
0h  
Current status of Device state machine.  
1h = LDO_STARTUP  
2h = EEPROM_READ  
3h = STANDBY  
4h - Ch = BOOST_START  
Dh = NORMAL  
Eh = DISCHARGE  
Fh = SHUTDOWN  
10h = FAULT_RECOVERY  
11h = ALL_LED_FAULT  
8.6.1.31 PWM_INPUT_DIAGNOSTICS Register (Offset = 2A6h) [reset = 0h]  
PWM_INPUT_DIAGNOSTICS is shown in Figure 64 and described in Table 44.  
Return to Summary Table.  
Figure 64. PWM_INPUT_DIAGNOSTICS Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PWM_INPUT_STATUS  
R-0h  
Table 44. PWM_INPUT_DIAGNOSTICS Register Field Descriptions  
Bit  
15-0  
Field  
PWM_INPUT_STATUS  
Type  
Reset  
Description  
16bit value for detected duty cycle of PWM input signal.  
R
0h  
8.6.1.32 PWM_OUTPUT_DIAGNOSTICS Register (Offset = 2A8h) [reset = 0h]  
PWM_OUTPUT_DIAGNOSTICS is shown in Figure 65 and described in Table 45.  
Return to Summary Table.  
Figure 65. PWM_OUTPUT_DIAGNOSTICS Register  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
LED_PWM_STATUS  
R-0h  
Table 45. PWM_OUTPUT_DIAGNOSTICS Register Field Descriptions  
Bit  
15-0  
Field  
LED_PWM_STATUS  
Type  
Reset  
Description  
R
0h  
16-bit PWM Duty Code that Brightness path is driving to LED0  
output.  
8.6.1.33 LED_CURR_DIAGNOSTICS Register (Offset = 2AAh) [reset = 0h]  
LED_CURR_DIAGNOSTICS is shown in Figure 66 and described in Table 46.  
Return to Summary Table.  
Copyright © 2017–2018, Texas Instruments Incorporated  
65  
 
 
 
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
Figure 66. LED_CURR_DIAGNOSTICS Register  
15  
7
14  
6
13  
12  
11  
10  
9
8
0
RESERVED  
R-0h  
LED_CURRENT_STATUS  
R-0h  
5
4
3
2
1
LED_CURRENT_STATUS  
R-0h  
Table 46. LED_CURR_DIAGNOSTICS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-12  
11-0  
RESERVED  
R
0h  
These bits are reserved.  
LED_CURRENT_STATU  
S
R
0h  
12-bit Current DAC Code that Brightness path is driving to LED0  
output.  
8.6.1.34 ADAPT_BOOST_DIAGNOSTICS Register (Offset = 2ACh) [reset = 0h]  
ADAPT_BOOST_DIAGNOSTICS is shown in Figure 67 and described in Table 47.  
Return to Summary Table.  
Figure 67. ADAPT_BOOST_DIAGNOSTICS Register  
15  
7
14  
6
13  
12  
11  
10  
2
9
8
0
RESERVED  
R-0h  
VBOOST_STATUS  
R-0h  
5
4
3
1
VBOOST_STATUS  
R-0h  
Table 47. ADAPT_BOOST_DIAGNOSTICS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-11  
10-0  
RESERVED  
R
0h  
These bits are reserved.  
VBOOST_STATUS  
R
0h  
11-bit Boost Voltage Code that Adaptive Voltage Control Loop is  
sending to Analog Boost Block.  
Boost Output Voltage =  
((R_FB1/R_FB2)*1.2)+(R_FB1*18.75nA*VBOOST_STATUS)  
8.6.1.35 AUTO_DETECT_DIAGNOSTICS Register (Offset = 2AEh) [reset = 0h]  
AUTO_DETECT_DIAGNOSTICS is shown in Figure 68 and described in Table 48.  
Return to Summary Table.  
Figure 68. AUTO_DETECT_DIAGNOSTICS Register  
15  
14  
13  
12  
11  
10  
9
1
8
RESERVED  
AUTO_PWM_F  
REQ_SEL  
R-0h  
R-0h  
0
7
6
5
4
AUTO_BOOST_FREQ_SEL  
R-0h  
3
2
AUTO_PWM_FREQ_SEL  
R-0h  
AUTO_LED_STRING_CFG  
R-0h  
66  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
Table 48. AUTO_DETECT_DIAGNOSTICS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15-9  
RESERVED  
R
0h  
These bits are reserved.  
8-6  
5-3  
2-0  
AUTO_PWM_FREQ_SEL  
R
R
R
0h  
0h  
0h  
PWM Frequency Setting based on PWM_FSET resistor detection.  
0h = 152Hz  
1h = 305Hz  
2h = 610 Hz  
3h = 1.22kHz  
4h = 2.44kHz  
5h = 4.88kHz  
6h = 9.77kHz  
7h = 19.53kHz  
AUTO_BOOST_FREQ_S  
EL  
Boost Frequency Setting based on BST_FSET resistor detection.  
0h = 303kHz  
1h = 400kHz  
2h = 606kHz  
3h = 800kHz  
4h = 1MHz  
5h = 1.25 MHz  
6h = 1.67MHz  
7h = 2.2MHz  
AUTO_LED_STRING_CF  
G
Detected LED string configuration.  
0h = 6 separate strings  
1h = 5 separate strings  
2h = 4 separate strings  
3h = 3 separate strings  
4h = 2 separate strings  
5h = outputs connected in groups of 2 to drive 3 strings  
6h = outputs connected in groups of 3 to drive 2 strings  
7h = all outputs connected together to drive one string  
版权 © 2017–2018, Texas Instruments Incorporated  
67  
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The LP8863-Q1 device is designed for automotive applications, and an input voltage VIN is intended to be  
connected to the vehicle battery. Depending on the input voltage, the device may be used in either boost mode  
or SEPIC mode. The device is internally powered from the VDD pin, and voltage must be in 2.7-V to 5.5-V range.  
The device has flexible configurability through external components or by an SPI or I2C interface. If the VDD  
voltage is not high enough to drive an external nMOSFET gate, an internal charge pump must be used to power  
the gate driver (GD pin).  
For applications where VIN voltage is below the output voltage, use a boost converter  
topology. Maximum operating voltage for VIN is 48 V, and the boost converter can achieve  
output voltage up to 47 V. Conversion ratio of 5.5 (full load) or 10 (half load) must be  
taken into account. If VIN voltage is expected to be below or above output voltage, a  
SEPIC converter can be implemented. The SEPIC converter can achieve maximum output  
voltage up to 24 V, and maximum conversion ratio for SEPIC mode is 5.  
9.2 Typical Applications  
9.2.1 Full Feature Application for Display Backlight  
69 shows a full application for the LP8863-Q1 device in a boost topology. It supports 6 LED strings in display  
mode, each at 100 mA, with an automatic 60° phase shift. Brightness control register is used for LED dimming  
method through I2C communication. The charge pump is enabled for a 400-kHz boost switching frequency with  
spread spectrum.  
68  
版权 © 2017–2018, Texas Instruments Incorporated  
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
Typical Applications (接下页)  
D1  
Q2  
L1  
RISENSE  
VIN  
VOUT  
COUT  
RSD  
CIN  
CPUMP  
RFB1  
RFB2  
CPUMP  
CPUMP  
Q1  
GD  
GD  
ISNS  
C1N  
PGND  
RSENSE  
C2x  
PGND  
ISNSGND  
C1P  
VDD  
FB  
VDD  
DISCHARGE  
GND  
CVDD  
CLDO  
VLDO  
LED0  
LED1  
LED2  
LED3  
LP8863-Q1  
VDDIO  
IFSEL  
HOST  
EN  
INT  
SDO_PWM  
SDI_SDA  
SCLK_SCL  
LED4  
LED5  
ISET  
I2C  
SS_ADDRSEL  
BST_SYNC  
RISET  
PWM_FSET  
BST_FSET  
RPWM  
VDDIO  
RBST  
Copyright © 2017, Texas Instruments Incorporated  
69. Full Feature Application for Display Backlight  
9.2.1.1 Design Requirements  
This typical LED-driver application is designed to meet the parameters listed in 49:  
49. LP8863-Q1 Full-Feature Design Parameters  
DESIGN PARAMETER  
VIN voltage range  
VALUE  
3 V to 20 V  
VDD voltage  
3.3 V  
LED strings configuration  
Charge pump  
6 strings, 7 LEDs in series  
Enabled  
I2C  
Brightness control  
Output configuration  
LED string current  
Boost frequency  
Inductor  
LED0 to LED5 are in display mode (phase shift 60°)  
100 mA  
400 kHz  
22 µH at 12-A saturation current  
RISENSE  
20 mΩ  
Power-line FET  
RSENSE  
Enabled  
20 mΩ  
Input/Output capacitors  
Spread spectrum  
Discharge function  
CIN and COUT: 2 × 33-µF electrolytic + 2 × 10-µF ceramic  
Enabled  
Enabled  
版权 © 2017–2018, Texas Instruments Incorporated  
69  
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Inductor Selection  
There are a few things to consider when choosing an inductor: inductance, current rating, and DC resistance  
(DCR). 50 shows recommended inductor values for each operating frequency. The LP8863-Q1 device  
automatically sets internal boost compensation controls depending on the selected switching frequency.  
50. Inductance Values for Boost Switching Frequencies  
SW FREQUENCY (kHz)  
INDUCTANCE (µH)  
300  
400  
22  
22  
15  
15  
10  
10  
10  
10  
600  
800  
1000  
1250  
1667  
2200  
The current rating of inductor must be at least 25% higher than maximum boost switching current ISW(max), which  
can be calculated with 公式 12. TI recommends a current rating of 12 A for most applications; use an inductor  
with low DCR to achieve good efficiency. Efficiency varies with load condition, switching frequency, and  
components, but 80% can be use as safe estimation. Power Stage Designer™ Tools can be used for the boost  
calculation: http://www.ti.com/tool/powerstage-designer  
IOUT(max)  
DIL  
2
ISW(max)  
=
+
1- D  
where  
ΔIL = VIN(min) × D / ( ƒSW × L )  
D = 1 – VIN(min) × η / VOUT  
ISW(max): Maximum switching current  
ΔIL: Inductor ripple current  
IOUT(max): Maximum output current  
D: Boost duty cycle  
VIN(min): Minimum input voltage  
ƒSW: Minimum switching frequency of the converter  
L: Inductance  
VOUT: Output voltage  
η: Efficiency of boost converter  
(12)  
9.2.1.2.2 Output Capacitor Selection  
Recommended voltage rating for output capacitors is 50% higher than maximum output voltage level — 100-V  
voltage rating is recommended. Capacitance value determines voltage ripple and boost stability. The DC-bias  
effect can reduce the effective capacitance significantly, by up to 80%, a consideration for capacitance value  
selection. Effective capacitance must be at least 50 µF for full load/maximum conversion ratio applications and  
must be used to achieve good phase and gain margin levels. TI recommends using two 33-µF Al-polymer  
electrolytic capacitors and two 10-µF ceramic capacitors in parallel to reduce ripple, increase stability, and  
reduce ESR effect.  
9.2.1.2.3 Input Capacitor Selection  
Recommended input capacitance is the same as output capacitance although input capacitors are not as critical  
to boost operation. Input capacitance can be reduced but must ensure enough filtering for input power.  
70  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
9.2.1.2.4 Charge Pump Output Capacitor  
TI recommends a ceramic capacitor with at least 16-V voltage rating for the output capacitor of the charge pump.  
A 10-μF capacitor can be used for most applications.  
9.2.1.2.5 Charge Pump Flying Capacitor  
TI recommends a ceramic capacitor with at least 16-V voltage rating for the flying capacitor of the charge pump.  
One 2.2-μF capacitor connecting C1P and C1N pins can be used for most applications.  
9.2.1.2.6 Output Diode  
A Schottky diode must be used for the boost output diode. Current rating must be at least 25% higher than the  
maximum output current; TI recommends a 12-A current rating for most applications. Schottky diodes with a low  
forward drop and fast switching speeds are ideal for increasing efficiency. At maximum current, the forward  
voltage must be as low as possible; less than 0.5 V is recommended. Reverse breakdown voltage of the  
Schottky diode must be significantly larger than the output voltage, 25% higher voltage rating is recommended.  
Do not use ordinary rectifier diodes, because slow switching speeds and long recovery times cause efficiency  
and load regulation to suffer.  
9.2.1.2.7 Switching FET  
Gate-drive voltage for the FET is VDD with charge pump bypassed, or about double VDD, if the charge pump is  
enabled. Switching FET is a critical component for determining power efficiency of the boost converter. Several  
aspects need to be considered when selecting switching FET such as voltage and current rating, RDSON, power  
dissipation, thermal resistance and rise/fall times. An N type MOSFET with at least 25% higher voltage rating  
than maximum output voltage must be used. Current rating of switching FET should be same or higher than  
inductor rating. RDSON must be as low as possible, less than 20 mis recommended. Thermal resistance (RθJA  
)
must also be low to dissipate heat from power loss on switching FET. TI recommends typical rise/fall time values  
less than 10 ns.  
9.2.1.2.8 Boost Sense Resistor  
The RSENSE resistor determines the boost overcurrent limit and is sensed every boost switching cycle. A high-  
power 20-mΩ resistor can be used for sensing the boost SW current and setting maximum current limit at 10 A  
(typical). RSENSE can be increased to lower this limit and can be calculated with 公式 13, but this should be done  
carefully because it may also affect stability. Boost overcurrent limit must not be set below 4 A, therefore RSENSE  
must not exceed 50 mΩ. Power rating can be calculated from the inductor current and sense resistor resistance  
value.  
200 mV  
RSENSE  
=
IBOOST _OCP  
where  
RSENSE: boost sense resistor (mΩ)  
IBOOST_OCP: boost overcurrent limit  
(13)  
9.2.1.2.9 Power-Line FET  
A power line FET can be used to disconnect input power from boost input to protect the LP8863-Q1 device and  
boost components in case an overcurrent event occurs. A P type MOSFET is used for the power-line FET.  
Voltage rating must be at least 25% higher than maximum input voltage level. Low RDSON is important to reduce  
power loss on the FET — less than 20 mis recommended. Current rating for the FET must be at least 25%  
higher than input peak current. Gate-to-source voltage (VGS) for open transistor must be less than minimum input  
voltage; use a 20-kΩ resistor between the pFET gate and source.  
9.2.1.2.10 Input Current Sense Resistor  
A high-power resistor can be used for sensing the boost input current. Overcurrent condition is detected when  
the voltage across RISENSE reaches 220 mV. Typical 20 mΩ sense resistor is used to set 11-A input current limit.  
Sense resistor value can be increased to lower overcurrent limit for application as needed. Power rating can be  
calculated from the input current and resistance value.  
版权 © 2017–2018, Texas Instruments Incorporated  
71  
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
9.2.1.2.11 Feedback Resistor Divider  
Feedback resistors RFB1 and RFB2 determine the maximum boost output level. Output voltage can be calculated  
as in 公式 14:  
«
VBG  
VOUT_MAX  
=
+ ISEL_MAX ì RFB1 + VBG  
÷
RFB2  
where  
VBG = 1.21 V  
ISEL_MAX = 38.7 µA  
RFB2 = 100 k(recommended for boost mode)  
(14)  
9.2.1.2.12 Critical Components for Design  
70 shows the critical part of circuitry: boost components, the LP8863-Q1 internal charge pump for gate-driver  
powering, and powering/grounding of LP8863-Q1. Schematic example is shown in 70.  
D1  
Q2  
L1  
RISENSE  
VIN  
VOUT  
COUT  
RSD  
CIN  
CPUMP  
RFB1  
CPUMP  
CPUMP  
Q1  
GD  
GD  
ISNS  
C1N  
PGND  
RSENSE  
RFB2  
C2x  
PGND  
ISNSGND  
C1P  
VDD  
FB  
VDD  
DISCHARGE  
GND  
CVDD  
VLDO  
LED0  
LED1  
LED2  
LED3  
CLDO  
LP8863-Q1  
VDDIO  
IFSEL  
HOST  
EN  
INT  
SDO_PWM  
SDI_SDA  
SCLK_SCL  
LED4  
LED5  
ISET  
I2C  
SS_ADDRSEL  
BST_SYNC  
RISET  
PWM_FSET  
BST_FSET  
RPWM  
VDDIO  
RBST  
Copyright © 2017, Texas Instruments Incorporated  
70. Critical Components for Full Feature Design  
72  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
51. Recommended Component Values for Full Feature Design Example  
REFERENCE  
DESCRIPTION  
NOTE  
DESIGNATOR  
RISENSE  
RSD  
20 mΩ, 3 W  
20 kΩ, 0.1 W  
Input current sensing resistor  
Power-line FET gate pullup resistor  
Boost current sensing resistor  
Bottom feedback divider resistor  
Top feedback divider resistor  
Boost frequency set resistor  
Current set resistor for 100 mA maximum  
Output PWM frequency set resistor  
Charge-pump output capacitor  
Flying capacitor  
RSENSE  
RFB2  
20 mΩ, 3 W  
100 kΩ, 0.1 W  
RFB1  
910 kΩ, 0.1 W  
RBST  
RISET  
RPWM  
CPUMP  
C2X  
4.77 kΩ, 0.1 W  
31.2 kΩ, 0.1 W  
42.2 k, 0.1 W  
10-µF, 16-V ceramic  
2.2-µF, 25-V ceramic  
CVDD  
CLDO  
CIN  
4.7-µF + 0.1-µF, 10-V ceramic  
4.7-µF + 0.1-µF, 10-V ceramic  
2 × 33-µF, 63-V electrolytic + 2 × 10-µF, 100-V ceramic  
2 × 33-µF, 63-V electrolytic + 2 × 10-µF, 100-V ceramic  
22-μH saturation current 23 A  
100 V, 10-A Schottky diode  
60-V, 25-A nMOSFET  
VDD bypass capacitor  
VLDO bypass capacitor  
Boost input capacitor  
COUT  
L1  
Boost output capacitor  
Boost inductor  
D1  
Boost Schottky diode  
Q1  
Boost nMOSFET  
Q2  
60-V, 30-A pMOSFET  
Power-line FET  
9.2.1.3 Application Curves  
FLED_PWM = 300 Hz  
Phase Shift 60°  
6 Strings  
ƒSW = 400 kHz  
100 mA/String  
CIN = COUT = 2 × 33 μF (electrolytic) + 2 × 10 μF (ceramic)  
71. LED String Currents Showing Phase Shift PWM  
72. Typical Start-Up  
Operation  
版权 © 2017–2018, Texas Instruments Incorporated  
73  
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
9.2.2 Application With Basic/Minimal Operation  
The LP8863-Q1 needs only a few external components for basic functionality if material cost and PCB area for a  
solution need to be minimized. In this example LP8863-Q1 is configured with external components and no I2C or  
SPI communication. The power-line FET is removed, as is input current sensing. Internal charge pump is not  
used, and all external synchronization functions and special features are disabled. Only 5 LED strings are  
enabled.  
D1  
L1  
VIN  
VOUT  
COUT  
CIN  
CPUMP  
RFB1  
CPUMP  
CPUMP  
Q1  
GD  
GD  
ISNS  
C1N  
PGND  
RSENSE  
RFB2  
PGND  
ISNSGND  
C1P  
RFB3  
VDD  
FB  
VDD  
DISCHARGE  
CVDD  
GND  
VLDO  
LED0  
LED1  
LED2  
LED3  
LED4  
CLDO  
LP8863-Q1  
VDDIO  
IFSEL  
EN  
INT  
SDO_PWM  
SDI_SDA  
SCLK_SCL  
LED5  
ISET  
SS_ADDRSEL  
BST_SYNC  
RISET  
PWM_FSET  
BST_FSET  
RPWM  
RBST  
Copyright © 2017, Texas Instruments Incorporated  
73. Minimal Solution/Minimum Components Application  
74  
版权 © 2017–2018, Texas Instruments Incorporated  
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
9.2.2.1 Design Requirements  
This typical LED-driver application is designed to meet the parameters listed in 52:  
52. LP8863-Q1 Minimal Solution Design Parameters  
DESIGN PARAMETER  
VIN voltage range  
VALUE  
5 V to 30 V  
VDD voltage  
5 V (note: 5 V required when charge pump disabled.)  
5 strings, 10 LEDs in series  
LED strings configuration  
RFB1 = 100 k, RFB2 = 6 k, RFB3 = 27 k(maximum output  
voltage set to 43.5 V)  
3-resistor feedback network  
Charge pump  
Disabled  
Brightness control  
PWM input  
LED0 to LED4 are in display mode (phase shift 72°); LED5 is  
not used (GND)  
Output configuration  
LED string current  
Boost frequency  
Inductor  
150 mA  
300 kHz  
22 µH at 12-A saturation current  
Power-line FET  
RSENSE  
Disabled  
20 mΩ  
Power-line FET  
RSENSE  
Enabled  
20 mΩ  
Input/Output capacitors  
Spread spectrum  
Discharge function  
CIN and COUT: 2 × 33-µF electrolytic + 2 × 10-µF ceramic  
Disabled  
Disabled  
9.2.2.2 Detailed Design Procedure  
See Detailed Design Procedure  
9.2.2.3 Application Curves  
See Application Curves  
版权 © 2017–2018, Texas Instruments Incorporated  
75  
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
9.2.3 SEPIC Mode Application  
When LED string voltage can be above and below the input voltage level, use the SEPIC configuration. In SEPIC  
mode, the SW pin detects a maximum voltage equal to the sum of the input and output voltages, a consideration  
when selecting components. This fact limits the maximum output voltage to 24 V. External frequency can be  
used to synchronize boost or SEPIC switching frequency through the BST_SYNC pin.  
CS2  
RS  
D1  
Q2  
L1  
RISENSE  
VIN  
VOUT  
COUT  
RFB1  
RSD  
CIN  
CS1  
L2  
CPUMP  
CPUMP  
CPUMP  
Q1  
GD  
GD  
ISNS  
C1N  
PGND  
RSENSE  
RFB2  
C2x  
PGND  
ISNSGND  
C1P  
VDD  
FB  
VDD  
DISCHARGE  
GND  
CVDD  
VLDO  
LED0  
LED1  
LED2  
LED3  
CLDO  
LP8863-Q1  
VDDIO  
IFSEL  
HOST  
EN  
INT  
SDO_PWM  
SDI_SDA  
LED4  
LED5  
ISET  
SCLK_SCL  
SPI  
SS_ADDRSEL  
RISET  
PWM_FSET  
BST_FSET  
BST_SYNC  
RPWM  
RBST  
Copyright © 2017, Texas Instruments Incorporated  
74. SEPIC Mode with Three LEDs in Series  
76  
版权 © 2017–2018, Texas Instruments Incorporated  
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
9.2.3.1 Design Requirements  
This typical LED-driver application is designed to meet the parameters listed in 53:  
53. LP8863-Q1 SEPIC Mode Design Parameters  
DESIGN PARAMETER  
VIN voltage range  
VALUE  
3 V to 48 V  
VDD voltage  
3.3 V  
LED strings configuration  
Charge pump  
6 strings, 3 LEDs in series  
Enabled  
SPI  
Brightness control  
Output configuration  
LED string current  
LED0 to LED5 are in display mode (phase shift 60°)  
150 mA  
2.2 MHz (Note: BST_SYNC frequency must be 0.2 to 0.5%  
higher than frequency set by BST_FSET resistor.)  
BST_SYNC external signal frequency  
BST_FSET resistor  
Inductor  
42.2 k(sets boost frequency to 1.6 MHz)  
10 µH at 12-A saturation current  
RISENSE  
20 mΩ  
Power-line FET  
RSENSE  
Enabled  
20 mΩ  
Input/Output capacitors  
Spread spectrum  
Discharge function  
Boost synchronization  
CIN and COUT: 2 × 33-µF electrolytic + 2 × 10-µF ceramic  
Disabled  
Enabled  
Enabled  
.
9.2.3.2 Detailed Design Procedure  
9.2.3.2.1 Inductor Selection  
Inductance for both inductors can be selected from 54, depending on operating frequency for the application.  
Current rating is recommended to be at least 25% higher than maximum inductor peak current. Peak-to-peak  
ripple current can be estimated to be approximately 40% of the maximum input current and and inductor peak  
current can be calculated with 公式 15, 公式 16, and 公式 17:  
54. Inductance Values for SEPIC Switching  
Frequencies  
SW FREQUENCY (kHz)  
INDUCTANCE (µH)  
300  
400  
15  
15  
600  
10  
800  
10  
1000  
1250  
1667  
2200  
6.8  
6.8  
4.7  
4.7  
版权 © 2017–2018, Texas Instruments Incorporated  
77  
 
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
VOUT + VD  
40%  
2
IL1(peak) = IOUT  
ì
ì
1+  
«
÷
V
IN(min)  
where  
IL1(peak): Peak current for inductor 1  
IOUT: Maximum output current  
VOUT: Output voltage  
VD: Diode forward voltage drop  
VIN(min): Minimum input voltage  
(15)  
(16)  
40%  
2
IL2(peak) = IOUT  
ì
1+  
«
÷
where  
IL2(peak): Peak current for inductor 2  
IOUT: Maximum output current  
VOUT  
DIL = I ì 40% = IOUT  
ì
ì 40%  
IN  
V
IN(min)  
where  
ΔIL: Inductor ripple current  
IIN: Input current  
VOUT: Output voltage  
VIN(min): Minimum input voltage  
(17)  
9.2.3.2.2 Coupling Capacitor Selection  
The coupling capacitors Cs isolate the input from the output and provide protection against a shorted load. The  
selection of SEPIC capacitors, Cs, depends mostly on the RMS current, which can be calculated with 公式 18.  
The capacitors must be rated for a large RMS current relative to the output power; TI recommends at least 25%  
higher rating for IRMS. When using uncoupled inductors, use one 10-µF ceramic capacitor in parallel with one 33-  
µF electrolytic capacitor and series 2-resistor. If coupled inductors are used, then use only one 10-µF ceramic  
capacitor.  
VOUT + VD  
ICs(rms) = IOUT  
ì
V
IN(min)  
where  
ICs(rms): RMS current of Cs capacitor  
IOUT: Output current  
VOUT: Output voltage  
VD: Diode forward voltage drop  
VIN(min): Minimum input voltage  
(18)  
9.2.3.2.3 Output Capacitor Selection  
See Detailed Design Procedure  
9.2.3.2.4 Input Capacitor Selection  
See Detailed Design Procedure  
9.2.3.2.5 Charge Pump Output Capacitor  
See Detailed Design Procedure  
9.2.3.2.6 Charge Pump Flying Capacitor  
See Detailed Design Procedure  
78  
版权 © 2017–2018, Texas Instruments Incorporated  
 
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
9.2.3.2.7 Switching FET  
Gate-drive voltage for the FET is VDD or about 2 × VDD, if the charge pump is enabled. Use an N-type MOSFET  
for the switching FET. The switching FET for SEPIC mode sees a maximum voltage of VIN(max) + VOUT, 25%  
higher rating is recommended. Current rating is also recommended to be 25% higher than peak current, which  
can be calculated with 公式 19. RDSON must be as low as possible — less than 20 mis recommended. Thermal  
resistance (RθJA) must also be low to dissipate heat from power loss on switching FET. Typical rise/fall time  
values recommended are less than 10 ns.  
IQ1(peak) = IL1(peak) + IL2(peak)  
where  
IQ1(peak): Peak current for switching FET  
IL1(peak): Peak current for inductor 1  
IIL2(peak): : Peak current for inductor 2 BOOST_OCP  
(19)  
9.2.3.2.8 Output Diode  
A Schottky diode must be used for the SEPIC output diode. Current rating must be at least 25% higher than the  
maximum current, which is the same as switch peak current. Schottky diodes with a low forward drop and fast  
switching speeds are ideal for increasing efficiency. At maximum current, the forward voltage must be as low as  
possible; TI recommends less than 0.5 V. Reverse breakdown voltage of the Schottky diode must be able to  
withstand VIN(max) + VOUT(max); at least 25% higher voltage rating is recommended. Do not use ordinary rectifier  
diodes, because slow switching speeds and long recovery times cause efficiency and load regulation to suffer.  
9.2.3.2.9 Switching Sense Resistor  
See Detailed Design Procedure  
9.2.3.2.10 Power-Line FET  
See Detailed Design Procedure  
9.2.3.2.11 Input Current Sense Resistor  
See Detailed Design Procedure  
9.2.3.2.12 Feedback Resistor Divider  
Feedback resistors RFB1 and RFB2 determine the maximum boost output level. Output voltage can be calculated  
as follows:  
«
VBG  
VOUT _MAX  
=
+ ISEL_MAX ì RFB1 + VBG  
÷
RFB2  
where  
VBG = 1.21 V  
ISEL_MAX = 38.7 µA  
RFB2 = 170 k(recommended for SEPIC Mode)  
(20)  
9.2.3.2.13 Critical Components for Design  
75 shows the critical part of circuitry: SEPIC components, the LP8863-Q1 internal charge pump for gate-driver  
powering, and powering/grounding of LP8863-Q1. Schematic example is shown in 70.  
版权 © 2017–2018, Texas Instruments Incorporated  
79  
 
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
CS2  
RS  
D1  
Q2  
L1  
RISENSE  
VIN  
VOUT  
COUT  
RFB1  
RSD  
CIN  
CS1  
L2  
CPUMP  
CPUMP  
CPUMP  
Q1  
GD  
GD  
ISNS  
C1N  
PGND  
RSENSE  
RFB2  
C2x  
PGND  
ISNSGND  
C1P  
VDD  
FB  
VDD  
DISCHARGE  
GND  
CVDD  
VLDO  
LED0  
LED1  
LED2  
LED3  
CLDO  
LP8863-Q1  
VDDIO  
IFSEL  
HOST  
EN  
INT  
SDO_PWM  
SDI_SDA  
LED4  
LED5  
ISET  
SCLK_SCL  
SPI  
SS_ADDRSEL  
RISET  
PWM_FSET  
BST_FSET  
BST_SYNC  
RPWM  
RBST  
Copyright © 2017, Texas Instruments Incorporated  
75. Critical Components for SEPIC Mode Design  
55. Recommended Components for SEPIC Design Example  
REFERENCE DESIGNATOR  
DESCRIPTION  
20 mΩ, 3 W  
NOTE  
RISENSE  
RSD  
Input current sensing resistor  
20 kΩ, 0.1 W  
Power-line FET gate pullup resistor  
SEPIC current sensing resistor  
Bottom feedback divider resistor  
Top feedback divider resistor  
SEPIC frequency set resistor  
Current set resistor for 150 mA max  
Output PWM frequency set resistor  
Charge pump output capacitor  
Flying capacitor  
RSENSE  
RFB2  
RFB1  
RBST  
RISET  
RPWM  
CPUMP  
C2x  
20 mΩ, 3 W  
170 kΩ, 0.1 W  
560 kΩ, 0.1 W  
140 kΩ, 0.1 W  
20.5 kΩ, 0.1 W  
140 k, 0.1 W  
10-µF, 16-V ceramic  
2.2-µF, 25-V ceramic  
4.7-µF + 0.1-µF, 10-V ceramic  
10-µF + 0.1-µF, 10-V ceramic  
2 × 33-µF, 63-V electrolytic  
2 × 33-µF, 63-V electrolytic  
10-µF, 100-V ceramic  
33-µF, 63-V electrolytic  
2 Ω, 0.125 W  
CVDD  
CLDO  
CIN  
VDD bypass capacitor  
VLDO bypass capacitor  
SEPIC input capacitor  
COUT  
CS1  
SEPIC output capacitor  
SEPIC coupling capacitor  
SEPIC coupling capacitor  
SEPIC resistor  
CS2  
RS  
L1  
10-µH saturation current 15.5 A  
10-µH saturation current 15.5 A  
100-V 10-A Schottky diode  
60-V, 25-A nMOSFET  
60-V, 30-A pMOSFET  
SEPIC inductor  
L2  
SEPIC inductor  
D1  
SEPIC Schottky diode  
Q1  
SEPIC nMOSFET  
Q2  
Power-line FET  
80  
版权 © 2017–2018, Texas Instruments Incorporated  
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
9.2.3.3 Application Curves  
See Application Curves  
10 Power Supply Recommendations  
The LP8863-Q1 is designed to operate from a car battery. The VIN input must be protected from reverse voltage  
and voltage dump condition over 48 V. The impedance of the input supply rail must be low enough that the input  
current transient does not cause drop below VIN UVLO level. If the input supply is connected with long wires,  
additional bulk capacitance may be required in addition to normal input capacitor.  
The voltage range for VDD is 3 V to 5.5 V. A ceramic capacitor must be placed as close as possible to the VDD  
pin. The boost gate driver is powered from the CPUMP pins. A ceramic capacitor must be placed as close to the  
CPUMP pins as possible.  
版权 © 2017–2018, Texas Instruments Incorporated  
81  
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
76 shows a layout recommendation for the LP8863-Q1 used to illustrate the principles of good layout. This  
layout can be adapted to the actual application layout if and where possible. It is important that all boost  
components are close to each other and to the chip; the high-current traces must be wide enough. VDD must be  
as noise-free as possible. Place a VDD bypass capacitor near the VDD and GND pins and ground it to a low-  
noise ground. A charge-pump capacitor, boost input capacitors, and boost output capacitors must be connected  
to PGND. Place the charge-pump capacitors close to the device. The main points to guide the PCB layout  
design:  
Current loops need to be minimized:  
For low frequency the minimal current loop can be achieved by placing the boost components as close as  
possible to each other. Input and output capacitor grounds need to be close to each other to minimize  
current loop size.  
Minimal current loops for high frequencies can be achieved by making sure that the ground plane is intact  
under the current traces. High frequency return currents follow the route with minimum impedance, which  
is the route with minimum loop area, not necessarily the shortest path. Minimum loop area is formed when  
return current flows just under the positive current route in the ground plane, if the ground plane is intact  
under the route.  
For high frequency the copper area capacitance must be taken into account. For example, the copper  
area for the drain of boost nMOSFET is a tradeoff between capacitance and the cooling capacity of the  
components.  
GND plane must be intact under the high-current-boost traces to provide shortest possible return path and  
smallest possible current loops for high frequencies.  
Current loops when the boost switch is conducting and not conducting must be in the same direction in  
optimal case.  
Inductors must be placed so that the current flows in the same direction as in the current loops. Rotating the  
inductor 180° changes current direction.  
Use separate power and noise-free grounds. PGND is used for boost converter return current. Use a low-  
noise ground for more sensitive signals, like VDD bypass capacitor grounding as well as grounding the GND  
pins of the LP8863-Q1 device itself.  
Route boost output voltage (VOUT) to LEDs from output capacitors not straight from the diode cathode.  
A small bypass capacitor (TI recommends a 39-pF capacitor) must be placed close to the FB pin to suppress  
high frequency noise  
VDD line must be separated from the high current supply path to the boost converter to prevent high  
frequency ripple affecting the chip behavior. A separate 1-µF bypass capacitor is used for the VDD pin, and it  
is grounded to noise-free ground.  
Capacitor connected to charge pump output CPUMP must have 10-µF capacitance, grounded by the shortest  
way to boost a switch-current-sensing resistor. This capacitor must be as close as possible to CPUMP pin.  
This capacitor provides a greater peak current for gate driver and must be used even if the charge pump is  
disabled. If the charge pump is disabled, the VDD and CPUMP pins must be tied together.  
Input and output capacitors need low-impedence grounding (wide traces with many vias to PGND plane).  
If two or more output capacitors are used, symmetrical layout must be used to get all capacitors working  
ideally.  
Input/output ceramic capacitors have DC-bias effect. If the output capacitance is too low, it can cause boost  
to become unstable under certain load conditions. DC bias characteristics should be obtained from the  
component manufacturer; DC bias is not taken into account on component tolerance. TI recommends  
X5R/X7R capacitors.  
82  
版权 © 2017–2018, Texas Instruments Incorporated  
LP8863-Q1  
www.ti.com.cn  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
11.2 Layout Example  
76. LP8863-Q1 Layout Guidelines  
版权 © 2017–2018, Texas Instruments Incorporated  
83  
LP8863-Q1  
ZHCSGN5B MARCH 2017REVISED JULY 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
84  
版权 © 2017–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LP8863ADCPRQ1  
ACTIVE  
HTSSOP  
DCP  
38  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
LP8863AQ1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Mar-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LP8863ADCPRQ1  
HTSSOP DCP  
38  
2000  
330.0  
16.4  
6.9  
10.2  
1.8  
12.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Mar-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP DCP 38  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
LP8863ADCPRQ1  
2000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DCP 38  
4.4 x 9.7, 0.5 mm pitch  
PowerPAD TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224560/B  
www.ti.com  
PACKAGE OUTLINE  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
36X 0.5  
38  
1
2X  
9
9.8  
9.6  
NOTE 3  
19  
20  
0.27  
0.17  
0.08  
38X  
4.5  
4.3  
B
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 0.95 MAX  
NOTE 5  
19  
20  
2X 0.95 MAX  
NOTE 5  
0.25  
GAGE PLANE  
1.2 MAX  
39  
4.70  
3.94  
THERMAL  
PAD  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1
38  
2.90  
2.43  
4218816/A 10/2018  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
METAL COVERED  
BY SOLDER MASK  
(2.9)  
SYMM  
38X (1.5)  
38X (0.3)  
SEE DETAILS  
38  
1
(R0.05) TYP  
36X (0.5)  
3X (1.2)  
SYMM  
39  
(4.7)  
(9.7)  
NOTE 9  
(0.6) TYP  
SOLDER MASK  
DEFINED PAD  
(
0.2) TYP  
VIA  
20  
19  
(1.2)  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4218816/A 10/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.9)  
BASED ON  
0.125 THICK  
STENCIL  
38X (1.5)  
38X (0.3)  
METAL COVERED  
BY SOLDER MASK  
1
38  
(R0.05) TYP  
36X (0.5)  
(4.7)  
SYMM  
39  
BASED ON  
0.125 THICK  
STENCIL  
19  
20  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.24 X 5.25  
2.90 X 4.70 (SHOWN)  
2.65 X 4.29  
0.125  
0.15  
0.175  
2.45 X 3.97  
4218816/A 10/2018  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

LP8863ADCPRQ1

具有 6 个 150mA 通道的 LP8863-Q1 汽车显示屏 LED 背光驱动器 | DCP | 38 | -40 to 125
TI

LP8864-Q1

LP8864-Q1 Automotive Display LED-backlight Driver with Four 200-mA Channels
TI

LP8864-Q1_V01

LP8864-Q1 Automotive Display LED-backlight Driver with Four 200-mA Channels
TI

LP8864-Q1_V02

LP8864-Q1 Automotive Display LED-backlight Driver with Four 200-mA Channels
TI

LP8864-Q1_V03

LP8864-Q1 Automotive Display LED-backlight Driver with Four 200-mA Channels
TI

LP8864QDCPRQ1

LP8864-Q1 Automotive Display LED-backlight Driver with Four 200-mA Channels
TI

LP8864QRHBRQ1

LP8864-Q1 Automotive Display LED-backlight Driver with Four 200-mA Channels
TI

LP8864S-Q1

LP8864S-Q1 Automotive Display LED-backlight Driver with Four 150-mA Channels
TI

LP8864S-Q1_V01

LP8864S-Q1 Automotive Display LED-backlight Driver with Four 150-mA Channels
TI

LP8864SQDCPRQ1

LP8864S-Q1 Automotive Display LED-backlight Driver with Four 150-mA Channels
TI

LP8864SQRHBRQ1

LP8864S-Q1 Automotive Display LED-backlight Driver with Four 150-mA Channels
TI

LP8866-Q1

具有 6 个 200mA 通道的汽车显示 LED 背光驱动器
TI