LSF0102-Q1 [TI]

汽车类双通道双向多电压电平转换器;
LSF0102-Q1
型号: LSF0102-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类双通道双向多电压电平转换器

转换器 电平转换器
文件: 总25页 (文件大小:1252K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LSF0102-Q1  
ZHCSI50B MAY 2018 REVISED MAY 2023  
LSF0102-Q1 汽车2 通道自动双向多电压电平转换器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
LSF0102-Q1 器件是一款自动双向电压转换器无需方  
向引脚即可在广泛的电源范围内进行转换。当容性负载  
30pF LSF0102-Q1 支持最高 100MHz 的升压  
转换和高于 100MHz 的降压转换。此外当容性负载  
50pF LSF0102-Q1 支持最高 40MHz 的上行和  
下行转换因此LSF0102-Q1 器件可支持汽车中各种  
常见的标准接口I2CSPIGPIOSDIOUART  
MDIO。  
– 温度等140°C TA 125°C  
– 器HBM ESD 分类等2  
CDM ESD 分类等C6  
• 在无方向引脚的情况下提供双向电压转换  
• 支持开漏和推挽应用I2CSPIUART、  
MDIOSDIO GPIO  
• 在不超30pF 的容性负载条件下支持最高达  
100MHz 的上行转换和超100MHz 的下行转换,  
50pF 的容性负载条件下支持高40MHz 的上  
/下行转换  
LSF0102-Q1 器件具有 5V 耐受数据输入。因此该器件  
可兼容 TTL 电压电平。此外LSF0102-Q1 还支持混  
合模式电压转换可在各个通道上升压和降压转换至不  
同的电源电平。  
• 可实现以下电压之间的双向电压电平转换  
0.95V 1.8/2.5/3.3/5 V  
1.2V 1.8/2.5/3.3/5V  
1.8V 2.5/3.3/5V  
2.5V 3.3/5V  
封装信息(1)  
封装尺寸标称值)  
器件型号  
LSF0102-Q1  
封装  
DCUVSSOP82.30mm × 2.00mm  
3.3V 5V  
• 低待机电流  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
5V I/O 端口可支TTL  
电压电平  
Vref_A  
2
Vref_B  
7
LSF0102-Q1  
• 低导通电阻可减少信号失真  
EN = 低电平时为高阻I/O 引脚  
• 采用直通引脚排列以简PCB 布线  
• 闩锁性能超100mAJESD 78 II 类规范  
8
EN  
B1  
6
5
SW  
SW  
3
4
A1  
A2  
2 应用  
B2  
信息娱乐系统音响主机  
图形群集  
ADAS 融合  
1
ADAS 前置摄像头  
HEV 电池管理系统  
GND  
功能方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SDLS969  
 
 
 
 
LSF0102-Q1  
ZHCSI50B MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
Table of Contents  
7 Parameter Measurement Information............................8  
8 Detailed Description........................................................9  
8.1 Overview.....................................................................9  
8.2 Functional Block Diagram...........................................9  
8.3 Feature Description.....................................................9  
9 Application and Implementation..................................12  
9.1 Application Information............................................. 12  
9.2 Typical Application.................................................... 12  
9.3 Power Supply Recommendations.............................17  
9.4 Layout....................................................................... 18  
10 Device and Documentation Support..........................19  
10.1 Documentation Support.......................................... 19  
10.2 接收文档更新通知................................................... 19  
10.3 支持资源..................................................................19  
10.4 Trademarks.............................................................19  
10.5 静电放电警告.......................................................... 19  
10.6 术语表..................................................................... 19  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics (Translating Down):  
VCCB = 3.3 V..................................................................6  
6.7 Switching Characteristics (Translating Down):  
VCCB = 2.5 V..................................................................6  
6.8 Switching Characteristics Translating Up): VCCB  
= 3.3 V...........................................................................6  
6.9 Switching Characteristics (Translating Up): VCCB  
= 2.5 V...........................................................................6  
6.10 Typical Characteristics..............................................7  
Information.................................................................... 19  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (April 2021) to Revision B (May 2023)  
Page  
Updated the Recommended Operating Conditions table to reflect maximum of 5.5 V...................................... 4  
Updated the Thermal Information table.............................................................................................................. 4  
Changed all Switching Characteristic Test Conditions........................................................................................6  
Added the Output Enable section.......................................................................................................................9  
Added the Up and Down Translation sections.................................................................................................. 11  
Changed pull up resistor to bias resistor in Enable, Disable, and Reference Voltage Guidelines section....... 12  
Added the Bias Circuitry section.......................................................................................................................13  
Updated the current values in the table titled Pull-up Resistor Values ............................................................ 13  
Added image to the Mixed-Mode Voltage Translation section..........................................................................14  
Added the Single Supply Translation section................................................................................................... 15  
Added section Voltage Translation for Vref_B < Vref_A + 0.8 V ......................................................................17  
Changes from Revision * (May 2018) to Revision A (April 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Updated the Bidirectional Translation section to include inclusive terminology................................................13  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SDLS969  
2
Submit Document Feedback  
Product Folder Links: LSF0102-Q1  
 
LSF0102-Q1  
ZHCSI50B MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
5-1. LSF0102-Q1 DCU Package, 8-Pin VSSOP (Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
3
A1  
A2  
B1  
B2  
I/O  
I/O  
I/O  
I/O  
Input/Output A port for Channel 1  
Input/Output A port for Channel 2  
Input/Output B port for Channel 1  
Input/Output B port for Channel 2  
4
6
5
I/O enable input; see 9-1 for typical setup. Should be tied directly to Vref_B to be enabled  
or pulled LOW to disable all I/O pins.  
EN  
8
I
GND  
1
2
Ground  
Vref_A  
A side reference supply voltage; see 9 for setup and supply voltage range.  
B side reference supply voltage. Must be connected to supply through 200 k; see 9 for  
setup and supply voltage range.  
Vref_B  
7
(1) I = input, O = output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LSF0102-Q1  
English Data Sheet: SDLS969  
 
 
LSF0102-Q1  
ZHCSI50B MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted)(1)  
MIN  
0.5  
0.5  
MAX  
7
UNIT  
V
Input voltage(2), VI  
Input/output voltage(2), VI/O  
Continuous channel current  
Input clamp current, IIK  
7
V
128  
50  
150  
150  
mA  
mA  
°C  
VI < 0  
Storage temperature range, Tstg  
Operating junction temperature, TJ  
65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input and input/output negative-voltage ratings may be exceeded if the input and input/output clamp-current ratings are observed.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
5.5  
UNIT  
V
VI/O  
Input/output voltage  
Vref_A/B/EN  
IPASS  
TA  
Reference voltage  
5.5  
V
Pass transistor current  
Operating free-air temperature  
64  
mA  
°C  
125  
40  
6.4 Thermal Information  
LSF0102-Q1  
THERMAL METRIC(1)  
DCU (US8)  
8 PINS  
279.7  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
129.9  
Junction-to-board thermal resistance  
191.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
66.3  
190.1  
ψJB  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SDLS969  
4
Submit Document Feedback  
Product Folder Links: LSF0102-Q1  
 
 
 
 
 
 
 
 
 
 
LSF0102-Q1  
ZHCSI50B MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1) MAX UNIT  
VIK  
IIH  
Input clamp voltage  
V
II = 18 mA, VEN = 0  
1.2  
I/O input high  
leakage  
VI = 5 V, VEN = 0  
5.0  
µA  
Vref_B to Vref_A  
leakage  
ICCBA  
Vref_B = VEN = 5.5 V, Vref_A = 4.5 V, IO = 0, VI = VCC or GND  
1
11  
µA  
pF  
pF  
CI(ref_A/B/EN)  
Cio(off)  
Input capacitance VI = 3 V or 0  
I/O pin off-state  
VO = 3 V or 0, VEN = 0  
4.0  
6.0  
capacitance  
I/O Pin on-state  
capacitance  
Cio(on)  
VO = 3 V or 0, VEN = 3 V  
VI = 0, IO = 64 mA  
10.5 12.5  
pF  
Vref_A = 3.3 V; Vref_B = VEN = 5 V  
Vref_A = 1.8 V; Vref_B = VEN = 5 V  
Vref_A = 1.0 V; Vref_B = VEN = 5 V  
Vref_A = 1.8 V; Vref_B = VEN = 5 V  
Vref_A = 2.5 V; Vref_B = VEN = 5 V  
Vref_A = 3.3 V; Vref_B = VEN = 5 V  
Vref_A = 1.8 V; Vref_B = VEN = 3.3 V  
Vref_A = 1.0 V; Vref_B = VEN = 3.3 V  
Vref_A = 1.0 V; Vref_B = VEN = 1.8 V  
8.0  
9.0  
10  
10  
15  
9.0  
18  
20  
30  
Ω
VI = 0, IO = 32 mA  
Ω
(2)  
ron  
On-state resistance  
VI = 1.8 V, IO = 15 mA  
VI = 1.0 V, IO = 10 mA  
VI = 0 V, IO = 10 mA  
VI = 0 V, IO = 10 mA  
Ω
Ω
Ω
Ω
(1) All typical values are at TA = 25°C.  
(2) Measured by the voltage drop between the A and B pins at the indicated current through the switch. On-state resistance is determined  
by the lowest voltage of the two (A or B) pins.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LSF0102-Q1  
English Data Sheet: SDLS969  
 
 
 
LSF0102-Q1  
ZHCSI50B MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.6 Switching Characteristics (Translating Down): VCCB = 3.3 V  
over recommended operating free-air temperature range, VCCB = 3.3 V, VCCB = VIH = Vref_A + 1, VIL = 0, and VM = 0.5Vref_A  
(unless otherwise noted) (see Parameter Measurement Information)  
CL = 50 pF  
CL = 30 pF  
MIN TYP MAX  
CL = 15 pF  
MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
Propagation delay  
time, low-to-high  
output  
From (input) A or B  
to (output) B or A  
tPLH  
1.1  
0.7  
0.8  
0.3  
0.4  
ns  
Propagation delay  
time, high-to-low  
output  
From (input) A or B  
to (output) B or A  
tPHL  
1.2  
6.7 Switching Characteristics (Translating Down): VCCB = 2.5 V  
over recommended operating free-air temperature range, VCCB = 2.5 V, VCCB = VIH = Vref_A + 1, VIL = 0, and VM = 0.5Vref_A  
(unless otherwise noted) (see Parameter Measurement Information)  
CL = 50 pF  
CL = 30 pF  
MIN TYP MAX  
CL = 15 pF  
MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
Propagation delay  
time, low-to-high  
output  
From (input) A or B  
to (output) B or A  
tPLH  
1.2  
0.8  
1
0.35  
0.5  
ns  
Propagation delay  
time, high-to-low  
output  
From (input) A or B to  
(output) B or A  
tPHL  
1.3  
6.8 Switching Characteristics Translating Up): VCCB = 3.3 V  
over recommended operating free-air temperature range, VCCB = 3.3 V, VCCB = VT = Vref_A + 1, Vref_A = VIH, VIL = 0, VM  
=
0.5Vref_A and RL = 300 (unless otherwise noted) (see Parameter Measurement Information)  
CL = 50 pF  
CL = 30 pF  
CL = 15 pF  
MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN TYP MAX  
MIN  
TYP  
MAX  
Propagation delay  
time, low-to-high  
output  
From (input) A or B  
to (output) B or A  
tPLH  
1
1
0.8  
0.4  
0.4  
ns  
Propagation delay  
time, high-to-low  
output  
From (input) A or B  
to (output) B or A  
tPHL  
0.9  
6.9 Switching Characteristics (Translating Up): VCCB = 2.5 V  
over recommended operating free-air temperature range, VCCB = 2.5 V, VCCB = VT = Vref_A + 1, Vref_A = VIH, VIL = 0, VM  
=
0.5Vref_A and RL = 300 (unless otherwise noted) (see Parameter Measurement Information)  
CL = 50 pF  
CL = 30 pF  
CL = 15 pF  
TYP MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN TYP MAX  
MIN TYP MAX MIN  
Propagation delay  
time, low-to-high  
output  
From (input) A or B  
to (output) B or A  
tPLH  
1.1  
1.3  
0.9  
1.1  
0.45  
0.6  
ns  
Propagation delay  
time, high-to-low  
output  
From (input) A or B  
to (output) B or A  
tPHL  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SDLS969  
6
Submit Document Feedback  
Product Folder Links: LSF0102-Q1  
 
 
 
 
 
LSF0102-Q1  
ZHCSI50B MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
6.10 Typical Characteristics  
6-1. Signal Integrity (1.8 to 3.3 V Translation Up at 50 MHz)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LSF0102-Q1  
English Data Sheet: SDLS969  
 
LSF0102-Q1  
ZHCSI50B MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
7 Parameter Measurement Information  
The outputs are measured one at a time, with one transition per measurement. All input pulses are supplied by  
generators that have the following characteristics:  
PRR 10 MHz  
ZO = 50 Ω  
tr 2 ns  
tf 2 ns  
VT  
RL  
S1  
From Output  
Under Test  
S2  
(1)  
CL  
A. CL includes probe and jig capacitance.  
7-1. Load Circuit  
USAGE  
SWITCH  
Translating Up  
Translating Down  
S1  
S2  
7-2. Translating Up and Down Table  
3.3 V  
VIL  
VM  
VM  
Input  
5 V  
VOL  
VM  
VM  
Output  
7-3. Translating Up  
5 V  
VIL  
VM  
VM  
Input  
2 V  
VOL  
VM  
VM  
Output  
7-4. Translating Down  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LSF0102-Q1  
English Data Sheet: SDLS969  
 
 
LSF0102-Q1  
ZHCSI50B MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LSF0102-Q1 device can be used in level translation applications for interfacing devices or systems  
operating at different interface voltages. The LSF0102-Q1 device is ideal for use in applications where an open-  
drain driver is connected to the data I/Os. With appropriate pull-up resistors and layout, the LSF0102-Q1 device  
can achieve 100 MHz. The LSF0102-Q1 can also be used in applications where a push-pull driver is connected  
to the data I/Os.  
8.2 Functional Block Diagram  
Vref_A  
2
Vref_B  
7
LSF0102-Q1  
8
EN  
B1  
6
5
SW  
SW  
3
4
A1  
A2  
B2  
1
GND  
8.3 Feature Description  
8.3.1 Auto Bidirectional Voltage Translation  
The LSF0102-Q1 device is an auto bidirectional voltage level translator that operates from 0.95 to 5.5 V on  
Vref_A and 1.8 to 5.5 V on Vref_B. This allows bidirectional voltage translation between 0.95 V and 5.5 V without  
the need for a direction pin in open-drain or push-pull applications. The LSF0102-Q1 device supports level  
translation applications with transmission speeds greater than 100 Mbps for open-drain systems using a 250-Ω  
pull-up resistor with a 30-pF capacitive load.  
8.3.2 Output Enable  
To enable the I/O pins, the EN input should be tied directly to Vref_B during operation and both pins must be  
pulled up to the HIGH side (VCCB) through a bias resistor (typically 200 k). To ensure the high impedance state  
during power-up, power-down, or during operation, the EN pin must be LOW. The EN pin should always be tied  
directly to the Vref_B pin and is recommended to be disabled by an open-drain driver without a pullup resistor.  
This allows Vref_B to regulate the EN input and bias the channels for proper translation. A filter capacitor on Vref_B  
is recommended for a stable supply at the device.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LSF0102-Q1  
English Data Sheet: SDLS969  
 
 
 
 
 
LSF0102-Q1  
ZHCSI50B MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
3.3 V  
VCCB  
1.8 V  
200 k  
Vref_B  
EN  
Vref_A  
0.1 F  
B1  
A1  
8-1. EN Pin Tied to Vref_B Directly and to VCCB Through a Pull-Up Resistor  
The supply voltage of open drain I/O devices can be completely different from the supplies used for the LSF and  
has no impact on the operation. For additional details on how to use the enable pin, see the Using the Enable  
Pin with the LSF Family video.  
8-1. EN Pin Function Table  
INPUT EN(1) PIN  
Tied directly to Vref_B  
L
Data Port State  
An = Bn  
Hi-Z  
(1) EN is controlled by Vref_B logic levels.  
8.3.3 Device Functional Modes  
For each channel (n), when either the An or Bn port is LOW, the switch provides a low impedance path between  
the An and Bn ports; the corresponding Bn or An port will be pulled LOW. The low RON of the switch allows  
connections to be made with minimal propagation delay and signal distortion.  
8-1 provides a summary of device operation. For additional details on the functional operation of the LSF  
family of devices, see the Down Translation with the LSF Family and Up Translation with the LSF Family videos.  
8-2. Device Functionality  
Switch State  
Signal Direction(1)  
Input State  
Functionality  
ON  
A-side voltage is pulled low through the switch to the B-side voltage  
B = LOW  
(Low Impedance)  
B to A (Down Translation)  
(2)  
OFF  
(High Impedance)  
A-side voltage is clamped at Vref_A  
B = HIGH  
A = LOW  
A = HIGH  
ON  
B-side voltage is pulled low through the switch to the A-side voltage  
(Low Impedance)  
A to B (Up Translation)  
OFF  
(High Impedance)  
B-side voltage is clamped at Vref_A and then pulled up to the VPU  
supply voltage  
(1) The downstream channel should not be actively driven through a low impedance driver, or else bus contention may occur.  
(2) The A-side can have a pullup to Vref_A for additional current drive capability or may also be pulled above Vref_A with a pullup resistor.  
Specifications in the Recommended Operating Conditions section should always be followed.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SDLS969  
10  
Submit Document Feedback  
Product Folder Links: LSF0102-Q1  
 
 
 
 
 
LSF0102-Q1  
ZHCSI50B MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
8.3.3.1 Up and Down Translation  
8.3.3.1.1 Up Translation  
When the signal is being driven from A to B and the An port is HIGH, the switch will be OFF and the Bn port will  
then be driven to a voltage higher than Vref_A by the pull-up resistor that is connected to the pull-up supply  
voltage (VPU). This functionality allows seamless translation between higher and lower voltages selected by the  
user, without the need for directional control. Pull-up resistors are always required on the high side, and pull-ups  
are only required on the low side, if the low side of the device's output is open drain or its input has a leakage  
greater than 1 µA.  
3.3 V  
VCCB  
1.8 V  
VCCA  
LSF010x-Q1  
200 k  
Vref_B  
EN  
Vref_A  
0.1 μF  
RB1  
B1  
B2  
A1  
A2  
3.3 V  
Device  
1.8 V  
Device  
GND  
8-2. Up Translation Example Schematic with Push-Pull and Open Drain Configuration  
Up translation with the LSF requires attention to two important factors: maximum data rate and sink current.  
Maximum data rate is directly related to the rising edge of the output signal. Sink current depends on supply  
values and the chosen pull-up resistor values. 方程式 1 shows the maximum data rate formula and 方程式 2  
shows the maximum sink current formula, both of which are estimations. A low RC value is needed to reach high  
speeds, which also require strong drivers. Please see the Up Translation with the LSF Family video for estimated  
data rate and sink current calculations based on circuit components.  
1
1
bits  
second  
=
+
(1)  
(2)  
3 × 2R  
C
6R  
C
B1 B1  
B1 B1  
V
V
R
CCA  
CCB  
I
A
OL  
R
A1  
B1  
8.3.3.1.2 Down Translation  
When the signal is being driven HIGH from the Bn port to An port, the switch will be OFF, clamping the voltage  
on the An port to the voltage set by Vref_A. A pull-up resistor can be added on either side of the device. There are  
special circumstances that allow the removal of one or both of the pull-up resistors. If the signal is always going  
to be down translated from a push-pull transmitter, then the resistor on the B-side can be removed. If the leakage  
current into the receiver on the A-side is less than 1 µA, then the resistor on the A-side can also be removed.  
This arrangement with no external pull-up resistors can be used when down translating from a push-pull output  
to a low-leakage input. For an open drain transmitter, the pull-up resistor on the B-side is necessary because an  
open drain output can't drive high by itself. For a summary of device operation, refer to 8.3.3. For additional  
details on the functional operation of the LSF family of devices, see the Up Translation with the LSF Family and  
Down Translation with the LSF Family videos.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LSF0102-Q1  
English Data Sheet: SDLS969  
 
 
 
LSF0102-Q1  
ZHCSI50B MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The LSF0102-Q1 device is able to perform voltage translation for open-drain or push-pull interfaces such as I2C,  
SPI, UART, MDIO, SDIO, and GPIO.  
9.2 Typical Application  
9.2.1 Bidirectional Translation  
VB_Pullup = 3.3 V  
Vref_A = 1.2 V  
200 kΩ  
Vpu1 = 3.3 V  
Vref_A  
2
Vref_B  
7
Rpu  
LSF0102-Q1  
Rpu  
EN  
8
Rpu  
Vpu3 = 2.5 V  
VCC  
GPIO3  
VCC  
GPIO1  
B1  
6
A1  
3
SW  
SW  
B2  
5
GPIO2  
VCC  
A2  
4
GPIO3  
GND  
1
GND  
GND  
9-1. Bidirectional Translation to Multiple Voltage Levels  
9.2.1.1 Design Requirements  
9.2.1.1.1 Enable, Disable, and Reference Voltage Guidelines  
The LSF0102-Q1 device has an EN input that is used to disable the device by setting EN LOW, which places all  
I/Os in the high-impedance state. Since LSF family is switch-type voltage translator, the power consumption is  
very low. It is recommended to always enable LSF0102-Q1 device for bidirectional applications by connecting  
the EN pin to the Vref_B pin, as shown in 9-1. For additional details on setting up the Vref_A, Vref_B, and EN  
pins, see the Understanding the Bias Circuit for the LSF Family video.  
9-1. Application Operating Condition  
PARAMETER  
MIN  
TYP  
MAX  
5.5  
UNIT  
(1)  
Vref_A  
Vref_B  
VI(EN)  
VPU  
reference voltage (A)  
0.95  
V
V
V
V
reference voltage (B)  
input voltage on EN pin  
pull-up supply voltage  
Vref_A + 0.8  
Vref_A + 0.8  
0
5.5  
Vref_B  
5.5  
Vref_B  
(1) Vref_A is required to be the lowest voltage level across all inputs and outputs.  
The 200 k, bias resistor is required to allow Vref_B to regulate the EN input. A filter capacitor on Vref_B is  
recommended. Also Vref_B and VI(EN) are recommended to be 1.0 V higher than Vref_A for best signal integrity.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SDLS969  
12  
Submit Document Feedback  
Product Folder Links: LSF0102-Q1  
 
 
 
 
 
 
 
LSF0102-Q1  
ZHCSI50B MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
9.2.1.1.2 Bias Circuitry  
For proper operation, VCCA must always be at least 0.8 V less than VCCB (VCCA + 0.8 VCCB). The 200 kbias  
resistor is required to allow Vref_B to regulate the EN input and properly bias the device for translation. A 0.1 µF  
capacitor is recommended for providing a path from Vref_B to ground for high frequency noise. Vref_B and VI(EN)  
are recommended to be 1.0 V higher than Vref_A for best signal integrity.  
Attempting to drive the EN pin directly with a push-pull output device is a very common design error with the  
LSF0102-Q1 series of devices. It is also very important to note that current does flow into the A-side voltage  
supply during normal operation. Not all voltage sources can sink current, so be sure that applicable designs can  
handle this current. For more design details, see the Understanding the Bias Circuit for the LSF Family video.  
3.3 V  
VCCB  
1.8 V  
200 kΩ  
Vref_B  
EN  
Vref_A  
0.1 µF  
B1  
A1  
9-2. Bias Circuitry Inside the LSF010x-Q1 Device  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Bidirectional Translation  
For the bidirectional clamping configuration (higher voltage to lower voltage or lower voltage to higher voltage),  
the EN input must be connected to Vref_B and both pins pulled to HIGH side VCCB through a bias resistor  
(typically 200 k), as shown in 9-1. This allows Vref_B to regulate the EN input. A filter capacitor on Vref_B is  
recommended. The controller output driver can be push-pull or open-drain (pull-up resistors may be required)  
and the peripheral device output can be push-pull or open-drain (pull-up resistors are required to pull the Bn  
outputs to Vpu).  
If either output is push-pull, data must be unidirectional or the outputs must be tri-state and be controlled by  
some direction-control mechanism to prevent HIGH-to-LOW contention in either direction. If both outputs are  
open-drain, no direction control is needed.  
In 9-1, the reference supply voltage Vref_A is connected to the processor core power supply voltage. Vref_B is  
connected through a 200 kresistor to a 3.3 V VB_Pullup power supply and Vref_A is set to 1.2 V. The output of A1  
has a maximum output voltage equal to Vref_A, and the bidirectional interface on channel 2 has a maximum  
output voltage equal to VPU1  
.
9.2.1.2.2 Pull-Up Resistor Sizing  
To maintain an appropriate output low voltage, the pull-up resistor value should limit the current through the pass  
transistor when it is in the ON state to less than 15 mA. This ensures a pass voltage of 260 mV to 350 mV. To  
set the current through each pass transistor at 15 mA, the pull-up resistor value can be calculated using the  
following equation:  
V
0.35 V  
pu  
0.015 A  
R
=
(3)  
pu  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LSF0102-Q1  
English Data Sheet: SDLS969  
 
 
 
LSF0102-Q1  
ZHCSI50B MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
The appropriate pull up resistor will depend on the current requirements of the application. 9-2 provides  
resistor values, reference voltages, and currents at 15 mA, 10 mA, and 3 mA. The resistor value shown in the  
+10% column (or a larger value) should be used to ensure that the pass voltage of the transistor is 350 mV or  
less. The external driver must be able to sink the total current from the resistors on both sides of the LSF0102-  
Q1 device at 0.175 V, although the 15 mA applies only to current flowing through the LSF0102-Q1.  
9-2. Pull-up Resistor Values  
8 mA  
5 mA  
3 mA  
VPU  
NOMINAL (Ω)  
+10%(1) (Ω)  
NOMINAL (Ω)  
+10%(1) (Ω)  
NOMINAL (Ω)  
+10%(1) (Ω)  
5 V  
581  
639  
930  
1023  
1550  
1705  
3.3 V  
2.5 V  
1.8 V  
1.5 V  
1.2 V  
369  
269  
181  
144  
106  
406  
296  
199  
158  
117  
590  
430  
290  
230  
170  
649  
473  
319  
253  
187  
983  
717  
483  
383  
283  
1082  
788  
532  
422  
312  
(1) +10% to compensate for VDD range and resistor tolerance  
9.2.1.2.3 Application Curve  
9-3. Captured Waveform From Above I2C Set-Up (1.8 V to 3.3 V at 2.5 MHz)  
9.2.1.2.4 Mixed-Mode Voltage Translation  
The supply voltage (VPU) for each channel can be individually set with a pull-up resistor. 9-4 shows an  
example of this mixed-mode multi-voltage translation. For additional details on multi-voltage translation, see the  
Multi-voltage Translation with the LSF Family video.  
With the Vref_B pulled up to 5 V and Vref_A connected to 1.8 V, all channels will be clamped to 1.8 V at which  
point a pullup can be used to define the high level voltage for a given channel.  
Push-Pull Down Translation (5 V to 1.8 V): Channel 1 is an example of this setup. When B1 is 5 V, A1 is  
clamped to 1.8 V, and when B1 is LOW, A1 is driven LOW through the switch.  
Push-Pull Up Translation (1.8 V to 5 V): Channel 2 is an example of this setup. When A2 is 1.8 V, the  
switch is high impedance and the B2 channel is pulled up to 5 V. When A2 is LOW, B2 is driven LOW through  
the switch.  
Push-Pull Down Translation (3.3 V to 1.8 V): Channels 3 and 4 are examples of this setup. When either B3  
or B4 are driven to 3.3 V, A3 or A4 are clamped to 1.8 V, and when either B3 or B4 are LOW, A3 or A4 are  
driven LOW through the switch.  
Open-Drain Bidirectional Translation (3.3 V 1.8 V): Channels 5 through 8 are examples of this setup.  
These channels are for bidirectional operation for I2C and MDIO to translate between 1.8 V and 3.3 V with  
open-drain drivers.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SDLS969  
14  
Submit Document Feedback  
Product Folder Links: LSF0102-Q1  
 
 
 
LSF0102-Q1  
ZHCSI50B MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
Vpu = 5.0 V  
Vref(A) = 1.8 V  
200 k  
Vref_B  
Vref_A  
LSF010x-Q1  
EN  
Rpu  
1.8 V  
Vcc  
Vcc  
A1  
A2  
A3  
A4  
B1  
B2  
B3  
B4  
B5  
B6  
GPIO  
GPIO  
GPIO  
SW  
SW  
SW  
SW  
Vpu  
=
3.3 V  
GPIO  
GPIO  
GPIO  
Vcc  
GPIO  
GPIO  
Rpu  
Rpu  
A5  
A6  
SW  
SW  
SW  
SW  
SCL  
SDA  
SCL  
SDA  
Rpu  
Rpu  
MDIO  
MDIO  
MDC  
MDC  
9-4. Multi-Voltage Translation with the LSF010x-Q1  
9.2.1.2.5 Single Supply Translation  
Sometimes, an external device will have an unknown voltage that could be above or below the desired  
translation voltage, preventing a normal connection of the LSF. Resistors are added on the A side in place of the  
second supply in this case this is an example of when LSF single supply operation is utilized, shown in Figure  
9-5. In the following figure, a single 3.3 V supply is used to translate between a 3.3 V device and a device that  
can change between 1.8 V and 5.0 V. R1 and R2 are added in place of the second supply. Note that due to  
some current coming out of the Vref_A pin, this cannot be treated as a simple voltage divider.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LSF0102-Q1  
English Data Sheet: SDLS969  
 
 
LSF0102-Q1  
ZHCSI50B MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
3.3 V  
VCCB  
LSF010x-Q1  
200 k  
R1  
Vref_B  
EN  
Vref_A  
R2  
1.8 V – 5 V  
0.1 µF  
RB1  
RB2  
RA1  
RA2  
B1  
B2  
A1  
A2  
5
1.8 V – V  
Device  
3.3 V  
Device  
GND  
9-5. Single Supply Translation with 3.3 V Supply  
The steps to select the resistor values for R1 and R2 are as follows:  
1. Select a value for R1. Typically, 1 Mis used to reduce current consumption.  
2. Plug in values for your system into the following equation. Note that Vref_A is the lowest voltage in the  
system. VCCB is the primary supply and R1 is the selected value from step 1.  
3
200 10 × R × V  
1
REFA  
0.85 × R  
1
R
=
(4)  
2
3
200 10 + R  
V
− V  
1
CCB  
REFA  
The single supply used must be at least 0.8 V larger than the lowest desired translation voltage. The voltage at  
Vref_A must be selected as the lowest voltage to be used in the system. The LSF evaluation module (LSF-EVM)  
contains unpopulated pads to place R1 and R2 for single supply operation testing. For an example single supply  
translation schematic and details, see the Single Supply Translation with the LSF Family video.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SDLS969  
16  
Submit Document Feedback  
Product Folder Links: LSF0102-Q1  
 
LSF0102-Q1  
ZHCSI50B MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
9.2.1.2.6 Voltage Translation for Vref_B < Vref_A + 0.8 V  
As described in the Enable, Disable, and Reference Voltage Guidelines section, it is generally recommended  
that Vref_B > Vref_A + 0.8 V; however, the device can still operate in the condition where Vref_B < Vref_A + 0.8 V as  
long as additional considerations are made for the design.  
Typical Operation (Vref_B > Vref_A + 0.8 V): in this scenario, pullup resistors are not required on the A-side for  
proper down-translation as is shown for channels 1 and 2 of 9-4. The typical operating mode of the device  
ensures that when down translating from B to A, the A-side I/O ports will clamp at Vref_A to provide proper  
voltage translation. For further explanation of device operation, see the Down Translation with the LSF Family  
video.  
Requirements for Vref_B < Vref_A + 0.8 V Operation: in this scenario, there is not a large enough voltage  
difference between Vref_A and Vref_B to ensure that the A side I/O ports will be clamped at Vref_A, but rather at a  
voltage approximately equal to Vref_B 0.8 V. For example, if Vref_B = 1.8 V and Vref_A = 1.2 V, the A-side I/Os  
will clamp to a voltage around 1.0 V. Therefore, to operate in such a condition, the following additional design  
considerations must be met:  
Vref_B must be greater than VRef_A during operation (Vref_B > Vref_A  
)
Pullup resistors should be populated on A-side I/O ports to ensure the line will be fully pulled up to the  
desired voltage.  
9-6 shows an example of this setup, where 1.2 V 1.8 V translation is achieved with the LSF0102-Q1. This  
type of setup also applies for other voltage nodes such as 1.8 V 2.5 V, 1.05 V 1.5 V, and others as long as  
the Recommended Operating Conditions table is followed.  
1.8 V  
1.2 V  
200 kΩ  
Vref_B  
Vref_A  
EN  
RPU(A2)  
RPU(A1)  
RPU(B1)  
RPU(B2)  
0.1 μF  
A1  
A2  
B1  
B2  
SW  
SW  
1.2 V Device  
1.8 V Device  
9-6. 1.2 V to 1.8 V Level Translation with LSF010x  
9.3 Power Supply Recommendations  
There are no power sequence requirements for the LSF family. 9-3 provides the recommended operating  
voltages for all supply and input pins.  
9-3. Recommended Operating Voltages  
PARAMETER  
MIN  
TYP  
MAX  
5.5  
UNIT  
(1)  
Vref_A  
Vref_B  
VI(EN)  
reference voltage (A)  
0.95  
V
V
V
reference voltage (B)  
Vref_A + 0.8  
Vref_A + 0.8  
5.5  
input voltage on EN pin  
5.5  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LSF0102-Q1  
English Data Sheet: SDLS969  
 
 
 
 
LSF0102-Q1  
ZHCSI50B MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
9-3. Recommended Operating Voltages (continued)  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
VPU  
pull-up supply voltage  
0
Vref_B  
V
9.4 Layout  
9.4.1 Layout Guidelines  
Because the LSF0102-Q1 device is a switch-type level translator, the signal integrity is dependent upon the pull-  
up resistor value and PCB board parasitics. Consider the following recommendations when designing with the  
LSF0102-Q1.  
Minimize the signal trace length to reduce capacitance  
Avoid using stubs in the signal path to reduce parasitics.  
Place the LSF0102-Q1 device near the high voltage side.  
Select the appropriate pull-up resistor that applies to translation levels and driving capability of transmitter.  
9.4.2 Layout Example  
LSF0102-Q1  
EN  
GND  
1
2
3
4
8
7
6
5
Short Signal Trace as possible  
Vref_B  
Vref_A  
A1  
A2  
B1  
B2  
Minimize Stub as possible  
9-7. Short Trace Layout  
TP1  
SDIO Connector  
(3.3V IO)  
SD Controller  
(1.8V IO)  
LSF0102-Q1  
SDIO level translator  
Device PCB  
TP2  
9-8. Device Placement  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SDLS969  
18  
Submit Document Feedback  
Product Folder Links: LSF0102-Q1  
 
LSF0102-Q1  
ZHCSI50B MAY 2018 REVISED MAY 2023  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Documentation Support  
10.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TI Logic Minute: Introduction Voltage Level Translation with the LSF Family video  
Texas Instruments, Voltage-Level Translation with the LSF Family application report  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LSF0102-Q1  
English Data Sheet: SDLS969  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LSF0102QDCURQ1  
ACTIVE  
VSSOP  
DCU  
8
3000 RoHS & Green  
NIPDAUAG  
Level-2-260C-1 YEAR  
-40 to 125  
NG2SQ  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LSF0102-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Feb-2023  
Catalog : LSF0102  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE OUTLINE  
DCU0008A  
VSSOP - 0.9 mm max height  
S
C
A
L
E
6
.
0
0
0
SMALL OUTLINE PACKAGE  
3.2  
3.0  
TYP  
C
A
0.1 C  
PIN 1 INDEX AREA  
SEATING  
PLANE  
6X 0.5  
8
1
2X  
2.1  
1.9  
1.5  
NOTE 3  
4
5
0.25  
0.17  
8X  
2.4  
2.2  
B
0.08  
C A B  
NOTE 3  
SEE DETAIL A  
0.9  
0.6  
0.12  
GAGE PLANE  
0.1  
0.0  
0.35  
0.20  
0 -6  
(0.13) TYP  
A
30  
DETAIL A  
TYPICAL  
4225266/A 09/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-187 variation CA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCU0008A  
VSSOP - 0.9 mm max height  
SMALL OUTLINE PACKAGE  
SEE SOLDER MASK  
DETAILS  
SYMM  
8X (0.85)  
(R0.05) TYP  
8
8X (0.3)  
1
SYMM  
6X (0.5)  
5
4
(3.1)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4225266/A 09/2014  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCU0008A  
VSSOP - 0.9 mm max height  
SMALL OUTLINE PACKAGE  
8X (0.85)  
SYMM  
(R0.05) TYP  
8
1
8X (0.3)  
SYMM  
6X (0.5)  
4
5
(3.1)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 25X  
4225266/A 09/2014  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LSF0102DC

2-bit bidirectional multi-voltage level translator; open-drain; push-pullProduction
NEXPERIA

LSF0102DC-Q100

2-bit bidirectional multi-voltage level translator; open-drain; push-pullProduction
NEXPERIA

LSF0102DCTR

双路双向多电压电平转换器 | DCT | 8 | -40 to 125
TI

LSF0102DCUR

双路双向多电压电平转换器 | DCU | 8 | -40 to 125
TI

LSF0102DDFR

双路双向多电压电平转换器 | DDF | 8 | -40 to 125
TI

LSF0102DP

2-bit bidirectional multi-voltage level translator; open-drain; push-pullProduction
NEXPERIA

LSF0102DP-Q100

2-bit bidirectional multi-voltage level translator; open-drain; push-pullProduction
NEXPERIA

LSF0102DQER

双路双向多电压电平转换器 | DQE | 8 | -40 to 125
TI

LSF0102GS

2-bit bidirectional multi-voltage level translator; open-drain; push-pullProduction
NEXPERIA

LSF0102GX

2-bit bidirectional multi-voltage level translator; open-drain; push-pullProduction
NEXPERIA

LSF0102QDCURQ1

汽车类双通道双向多电压电平转换器 | DCU | 8 | -40 to 125
TI

LSF0102YZTR

双路双向多电压电平转换器 | YZT | 8 | -40 to 125
TI